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We develop an equilibrium model to price forward contracts for electricity introducing green
(renewable energy) producers besides the conventional (brown) producers and retailers. Assuming
inelastic spot demand and market power of the conventional producers, we get the optimal
production of each producer as a function of both forward and spot prices. The model provides the
optimal forward positions of risk-averse market participants and predicts that the forward premium
is negatively (positively) related to the variance of spot prices, and positively (negatively) related to
the skewness of spot prices when the expected demand is low (high) and is negatively related to the
kurtosis of spot prices at all levels of expected demand. The forward premium increases when the
uncertainty risk of green production growths. We test the model’s theoretical predictions through an
empirical application based on hourly data of the Spanish electricity day-ahead and spot (real-time)

markets during 2017. The empirical results largely support the theoretical predictions.
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1. Introduction

Wholesale electricity markets are one of the world’s largest commodity markets. The European
Commission (2017) reports in 2017 the total volume of electricity traded on the EU amounted to
12,647 million MWh with an average price of 50 €/MWHh, totalling about €632,350 million. The
churn rate, the ratio of the total volume of power trade and electricity consumption, measuring
market liquidity, was estimated to be four?, and so traded volume was four times as much as the
electricity consumption during this period, suggesting the growing importance of these markets.
Since, at this time, electricity cannot be economically stored, spot prices are volatile (Escribano et
al., 2011). So, forward markets play a key role as facilitators of hedging decisions by market
participants. The extent to which electricity forward trading offers benefits to electricity producers
and consumers depends on the sign, size, and determinants of the forward premium, defined as the

difference between the forward price and the expected spot price during the delivery period.

Economic theory (e.g. Hirshleifer, 1990) suggests the forward premium should compensate risk-
averse market participants for bearing systematic risk. Therefore, the forward premium should be
related to economic risks and the willingness of different market agents to bear these risks.
Bessembinder and Lemmon (2002, B&L from now on) posit an equilibrium model in which risk-
averse producers compete in power supply and trade with retailers who are also risk-averse. In their
model prices are determined by industry participants rather than by financial traders, and the
forward premium decreases with the variance of spot prices but increases with the skewness of spot
prices. The negative impact of the variance of spot prices on the forward premium reflects the net
hedge pressure from the retailers’ side, as the retail price charged to the final customer by the
retailers is fixed. The positive effect of the skewness of spot prices on the forward premium arises
from the net hedge pressure of the producers’ side, since producers may face upward spikes in

marginal production cost when demand is positively skewed. Longstaff and Wang (2004) find

! As a comparison, the world’s largest metal market by value is gold, worth around €170,000 million per year at the
average price during 2017.
2 In the most liquid of European power markets, Germany and the Nordic, churn ratios are close to 8.



supportive evidence to B&L model in the PJIM market. Geman and Roncoroni (2006) and Douglas
and Popova (2008) also report empirical evidence consistent with B&L. Other papers present mixed
evidence. Bunn and Chen (2013) focus on the British market where the variance of spot prices has a
significant positive (instead of negative) impact on the forward premium in peak hours, while the
skewness has a negative (instead of positive) impact. These findings remark the influence of
fundamental factors such as the expected demand or fuel costs on power prices’ distribution and on
the forward premium. So, the net hedging pressure in the forward market may switch among
players because of facts other than revenue risk or cost risk. Redl et al. (2009) study the ex-post
forward premium in the EEX and Nord Pool markets and report evidence of a positive effect of the
variance of spot prices on the forward premium with EEX, but no impact of the variance or the
skewness with Nord Pool. Thus, market-specific elements may play a role in market participants’

hedge decisions.

Recently, a new challenge in the modelling of the forward premium appears because renewable
power production has been growing in many countries thanks to technological development and
government support. For instance, in December 2017 wind power generation in the EU reached the
highest level ever, amounting to 41 TWh and representing a share of 16% in the monthly electricity
generation mix (European Commission, 2017). The 20-20-20 Climate and Energy Package
(CEP2020 from now on) is binding legislation adopted in late 2008 setting an EU-wide share of 20%
of gross final energy consumption from Renewable Energy Sources (RES), although mandatory
national targets vary from 10% in Malta to 49% in Sweden. Many papers in this line of research
already confirm the impact of renewable production on power prices. Jonsson et al. (2013) posit
that wind power generation should be considered in the forecasting model for electricity spot prices.
Acemoglu et al. (2017) suggest that power producers may diversify their energy portfolio into
renewable generation as a response to the price decline. Ito and Reguant (2016) show the strategic
behaviour of green producers in sequential power markets and show how spot prices are affected by

factors related to renewable production. However, although several empirical papers (e.g. Green
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and Vasilakos, 2010, Gelabert, et al., 2011, Wurzburg, et al. , 2013., Ciarreta et al., 2014 among
others) have documented stylized facts of the impact of RES on electricity spot prices, namely a
decrease in prices but an increase in their volatility, there is scarce theory-based literature studying
the impact of RES on the forward premium and the change of hedging behaviour of market
participants when producers with different generation assets (e.g. “brown” or “green”) are

competing in the market.

To fill this gap in the literature, we propose a new equilibrium model by introducing both
conventional (brown) and RES (green) producers and study the consequences of this new market
structure on the forward premium and on the hedging strategies of market participants. We can
reconcile the mixed evidence found in the literature about the impact of the volatility and skewness
of spot prices on the forward premium. In doing so, we shed light on the relationship between the
forward premium and the percentage of RES production over total production. We account for the
uncertainty risk in renewable production and analyse the influence of this production risk on the

forward premium.

The rest of this paper is organized as follows. Section 2 reviews the literature. After describing the
methodology in Section 3, we present data in Section 4. Section 5 discusses empirical results.

Section 6 concludes.

2. Literature Review

Informationally efficient forward markets generate unbiased predictors of future spot prices.
Through this paper we use the notion of the forward premium or forward risk premium defined as
the difference between the forward price and the expect spot price during the delivery period. Note
that the expectation of the spot price at time t is taken with respect to the real-world probability
measure, but the futures price is the expectation made also at time t of the spot price but with
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respect to the risk-neutral measure. But because of non-storability, we cannot use the traditional no-
arbitrage arguments based on the cost-of-carry in a commodity market for pricing electricity
forwards. The existence of forward premium in electricity futures markets justified from a
combination of the non-storability of the commaodity, specific economic and technical fundamentals,
the existence of asymmetries of information and asynchronous risk exposures, the exercise of
market power by some generators, and physical and legal constraints posed by the infrastructure,

regulations and market design.

The forward premium has been studied by comparing forward prices against expected spot prices.
Expected spot prices cannot be observed but must be estimated. If realized (ex-post) spot prices are
used, forward prices contain forecast errors that may induce bias in estimated risk premia. If
estimated (ex-ante) spot prices are used, estimated risk premia become dependent on the spot price
model used. There are many models of the spot price and none enjoys general acceptance (see the

comparisons in Benth et al., 2012 and in Weron and Zator, 2014).

An alternative way of dealing with this problem is by formulating a theoretical model including
some specific characteristics of electricity markets. Bessembinder and Lemmon (2002) present an
equilibrium hedging model, with risk-averse identical generators, retailers and no speculators,
predicting a forward premium increasing with expected demand a with a convex relation with the
volatility of demand, first decreasing and then increasing. The model suggests a negative impact of
spot price variance and positive impact of price skewness on the forward premium. The intuition is
that high demand associated with high prices boosts the risk aversion of retailers and their hedging
pressure increases forward prices. In low-demand and low-price periods, generators' concerns about
hedging price risk dominates, decreasing forward prices. They present evidence suggesting that the
forward prices in the Pennsylvania, New Jersey and Maryland (PJM) market and the California

market are upward biased estimators of the spot market prices when the demand is high, or the



market risk is high, consistent with the testable implications of their model. Powell (1993) and
Anderson and Hu (2008) introduce a game-theoretic approach element when modeling the
interaction between generators and retailers, suggesting that positive or negative forward premia
may be induced by retailers’ appraisal of the market power of the generators in the spot market. The
intuition is that when retailers forecast high demand (and prices) and expect that generators may use
their market power to raise the spot price, they will buy futures contracts from generators (above
expected spot price), which reduces the incentive of generators to raise spot prices. Consequently,
we see positive a forward premium. When retailers forecast a low demand (and low spot prices),
they have less incentive to buy futures contracts from generators and offer low strike prices.
Generators have less incentive to enter those contracts and prefer raise prices in the spot market, so
inducing a negative forward premium. Rudell et al. (2018) argue that financial traders cannot
arbitrage away those forward premia because they lack market power in the spot market. In another
framework, Pirrong and Jermakyan (2008) present a fundamentals-based model with the demand
variable and a fuel price as the state variables. Given a specification of the dynamics of the state
variables and the relevant boundary conditions, they apply partial differential equation solvers to
value contingent claims. They use data from the PJM market and report large seasonal upward bias
(peaks in July and August) in the forward price because of the extreme right skewness of spot
electricity prices; this induces left skewness in the payoff of short futures positions and large risk
premium is required to induce traders to sell power forward. Benth et al. (2008) relate the term
structure of the forward premium to the net hedging demand of consumers and producers,
producing a model that yields decreasing absolute values of forward premia (eventually getting

negative) when time to maturity or delivery period length increases.

Regarding the empirical evidence on the forward premium Douglas and Popova (2008) confirm the
negative impact of spot price variance and positive impact of price skewness on the forward

premium for the PJIM day-ahead forward market. However, Lucia and Torr6 (2011), Botterud et al.



(2010) for weekly contracts at the Nord Pool, Redl et al. (2009) for monthly contracts at the EEX
and Nord Pool, and Furié and Meneu (2010) for monthly contracts in the Spanish electricity market,
report partial, inverse (positive impact of volatility and negative impact of skewness) or no support
to those effects. Bunn and Chen (2013) focus on the British market and report evidence on daily
and seasonal sign reversals in the risk premium associated with demand cycles and fuel risk pass-
through. Daskalakis and Markellos (2009) find a significant negative forward premium in the EEX,
Nord Pool and PowerNext long-term electricity markets, and Redl et al. (2009) and Kolos and Ronn
(2008) find a negative forward premium for monthly, quarterly and yearly contracts at the German
market. In summary, current literature has documented positive, negative and zero risk premia. The
empirical evidence suggests that the risk premium may vary throughout the hour of the day, among
days of the week, between months or seasons, or over the year. Results differ from one market to
another market, and within the same market over different periods, and whether ex-ante or ex-post
measures are used. In this paper we posit a theoretical model explaining why the changing hedging

needs of producers and retailers may help in explaining this diverse empirical evidence.

3. Methodology

We extend and generalize the standard equilibrium model of electricity prices by introducing green
(renewable energy) producers into the equilibrium model and allowing for imperfect competition
between them and the conventional (brown) generators. In doing so, we rely on the basic
Bessembinder and Lemmon (2002) model but introduce key insights on the behaviour of sequential

markets, based on Ito and Reguant (2016).

Consider N,, conventional producers with the same total cost function:

TCc =Fc + % (QP_C)C (1D



where F is the fixed cost and, @, .. denotes the total production. Thus, the marginal cost function

for the conventional producer i is:

dTCe ;
dQp ¢ ;

= a(QP_C_i)C_l ()

Where ¢ measures the convexity of the marginal cost curve. We expect ¢ to be equal or greater than
two, so that the marginal cost of the conventional producer increases along with generation at a
rising rate. Positively skewed spot prices appear regardless of the power demand’s distribution

when ¢ > 2.

Meanwhile, there are N, green producers with homogeneous total cost function of the form:

TCG = FG + Ql%_G (3)
2b;
Then, the marginal cost function of the green producer j is:
dTCs; _Qprc @
dQp ¢ j b,

Re-arranging (4), we obtain the optimal amount of power production of the green producer j as :

dTC;
dQp ¢ j

QP_G_j = b, (5)

where Q, , represents the total output from the green producer and, b, > 0 is the slope of the supply

curve at time t. Notice that b, accounts for all possible factors affecting the production and higher
b, indicates better conditions for generating power using renewable sources. As (4) shows the
marginal cost increases in the total output at a constant rate and better production conditions reduce
the marginal cost. The green production is a function of the generating conditions and the marginal
cost, see (5). So, the green producer j will produce if the price is above the marginal cost and total

output depends on b;.



Since b, may change over time, by is the slope of one renewable producer’s supply curve in the
forward market and b, in the spot market. Because is hard to store renewable inputs, like sunlight
or wind, as well as the electricity itself, the real-time delivery of power using green resources is
decided by the real-time production conditions. Therefore, the renewable producers submit offers in
the forward market according to their expectations on the future production conditions, and adjust
their positions based on the realized ones in the real-time market. Since these production conditions
are difficult to predict, variation between expected production and realized production using
renewable resources exposes the industry to uncertainty risk. Hence, we use the difference between
the forecasted conditions, b4, and the realized conditions, b,, as a measure for the uncertainty risk
in renewable productions. The smaller the difference, the closer the realized production conditions
are to the forecasted ones, and the lower the volatility in renewable productions and, consequently,

less uncertainty risk.

To account for the uncertainty risk, the production of one renewable producer in the forward and

real-time (spot) market are:
Qg_,- = b1 P (6)
Qf;_j = byPw — by Pr (7)

Where Qg_j and Qf;_]. are the forward position and the spot position respectively of the green
producer j , Pr is the forward price and is Py, the spot price. Following Ito and Reguant (2016), and
depending of the values of b and bz , the green producer will supply in the spot market more than
its forward commitment if Py, > Pr, and commit less if Py, < Pr. When Py, = Pp, the green
producer does not trade in the spot market. This setting motivates the renewable producers to
participate in the forward market as they can benefit from price differences. Moreover, the total

position is QG_]. = Qg_j + Qg_j = (by—by)Pr + b, Py,. Thus, the variation of renewable generation not

only comes from the variation in prices but also is influenced by the uncertainty risk measure,



(b; — by). We assume power markets are dominated by conventional producers because the
renewable competitors have relatively small size. Thus, following Ito and Reguant (2016), we
assume that the traditional generators face residual demand and set the spot price, while the green

producers are price-takers.

According to the power market structure in most countries, the spot market is usually regarded as a
balancing market which is used to price deviations in supply and demand from long-term contracts
(Weron, 2006). Therefore, the volume traded in the spot power market is smaller than in the
forward market. We denote the total demand as @, which is the sum of the forward demand @ and
the spot demand e , representing the demand shock which cannot be forecasted in advance, but may
appear in real-time. So, the residual spot demand faced by the conventional producers in the spot
market is calculated by subtracting the spot position taken by all green producers from the spot

demand:

RDS=E+(b2PF—bzpw)*Ng (8)
Thus, a conventional producer i maximizes profits by solving the following problem for the optimal
spot price Pw:

€ + (byPr — byPy) * N, a c
N 2y + PrQf ; — F¢c — p (Qc)
P

MAX {Py} 1 = Py(

€+ (b2Pp — byPy) * Ny

Ny

s.t Qci + Q¢

Where m; are the profits computed as revenues minus costs. The forward position is seen by the
producer as sunk cost, since it was already committed. Thus, solving the problem by taking the first
derivative of the profit function with respect to Py, we get the optimal spot price Py, (see appendix

A part i):
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Py == (Pr + aQ3! +

) 9)

€
b,Ng
From equation (9), we can observe that optimal spot price depends on the forward price, the total
conventional production, the cost of renewable production, the number of renewable producers, as

well as the spot demand shock. Manipulating equation (9), we obtain the optimal conventional

production of producer i :

Qc_i _ (ZPW—PF € )Z (10)

a ab,Ng

Since the electricity delivery must be balanced, the total supply, which is the sum of the
conventional positions and the renewable positions, must equal the total demand. We define
parameter p to denote for the percentage of the conventional (brown) generation over the total
demand. Together with expression (9), we have three equations as shown below, and three un-

known parameters Pg, Py, Q .

( —Pr=aQ<ly
2Py—Pr = aQ( ! + g (10a)
QD = NPQC_i + NQQG_]' where QG_j = (bl_bZ)PF + bzPW (10b)
N,Q,
Q,= —pp C. (10¢)

Solving for Py, as a function of Q. ; (see appendix A part ii ), we get

N, (1 _ 1) Qc, + alb — b)N,QS + (Z—; _ 1) ¢

P
(2b1 — by)Ng

Py =

(11)

Equation (11) gives the formula for deriving the optimal model-based spot price when the total
individual conventional production is known. Notice that the amount of renewable production plays

a role in setting the spot price.
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Applying Taylor’s expansion and the quadratic equation formula, we can obtain the individual

conventional production as a function of Py, as displayed by expression (12) (see appendix A part
iii),:
1
Qc; = a1 + az(a3 — ay + asPy)? (12)
Where
N - 1 c—
% +a(b; — b)(c — D(c—NEQ. ) "

a(by — by)(c — D(c— 2E(Q, )

a, =

1
alc—D(c—2EWQ, )"

a

Oa = Np(l —p)
3 ng(bl_bz)

+alc- DB - IEQ, )
c— c— 2
@y = a(c—1(c—2EQ. ) (a(c ~ (- EQ.) + T;{L)

_2a(c— 1D - 2E(Qc,)" @by — by)
- by — b,

Qs

Besides brown and green producers, we also consider N, homogeneous retailers. As intermediates
between the generators and final consumers, they benefit from the price difference between the
purchase price and the retail price. From expression (10c), we can again re-write the individual

retailer’s demand Q,, , as related to a single conventional production, Q. ; as:

N,Q ;
QR_n = :,T;_ (13)

In the forward market, risk-averse participants lower their payoffs for having higher
production(consumption) uncertainty. However, in our model, the renewable producers have no
such concerns, as their supplies are satisfied first by design and their forward positions are publicly

known. Thus, only the conventional producers and the retailers have objective functions which are
12



linear in expectations and variances. As a result, the optimal forward position for such risk-averse
players can be expressed as a function of the ex-ante forward premium, and the covariance between
the “but-for-hedge” profit and the spot prices (see Hirshleifer and Subramanyam (1993),

Bessembinder and Lemmon (2002)), which is defined by equation (14).

F _ Pp—EPy) | COV(p,Pw)
Q" = avareyy T Varey) (14)

Define %1 to be the coefficient on the variance of the profit in the objective function, and it can be

viewed as the measure of absolute risk aversion. p is the profit function when no forward markets

exist for the players to hedge risks. So, we define p, p, for the conventional producers and the

retailers respectively below:
a Cc
pci=PwQci—Fc—-(Qc) (15)
pR_n = PRQR_n - PWQR_n (16)

Where Py, is the retail price; @ , is the demand of retailer n. As the market should clear, we expect

the sum of all forward positions to be zero. After derivation (see Appendix A part iv), we obtain the

forward price as an equation of non-diversifiable risks as:

_ Nr+Np _ A
Pr= [(Nr+Np)+ANgb1VAR(PW)]E(PW) (Ny+Np)+ANgb,VAR(Py,)

[PRNTCOU(QR_nJ Pw) -

Ny cov(Ry Qg j, Pu) — = Npcov((Qc.i)°, P (17)

13



With finite number of participants, there are three types of risks that cannot cancel out. The retail
revenue risk for the retailers, the wholesale revenue risk for the green producers, and the production
cost risk of the conventional producers. These three risk-related terms reflect the hedge pressures
for the producers and retailers. Moreover, the forward price will be higher when the hedge

pressures from the producers are higher than that from the retailers, and lower otherwise.

Using Taylor’s expansion (see Appendix A part v) for the covariance terms, we could re-write the

ex-ante forward premium as a function of the moments of the spot prices’ distribution.

Pr = BLE(Py) + B.VAR(Py) + B:SKEWNESS(Py,) + B,KURTOSIS(Py,) (18)
Where
~ N, + N,
h = (N, + N,) + ANyb;VAR(Py,)
_ A azasNy _1 E _1
N AT ANgb1VAR(PW){ SB[ (1) B
c— 1 1
— aE(QC_i) 2 ((2 — c)E(QC_l-) + (¢ — 1)a1)] + N, (1 — 5) [a1 + azE(Y)é]
- D k(e ) e
_ A aasN, _3 _P_R
SR T ANgb1VAR(PW){ g )7 [ p s
+(1-2) B0 ~ EPy)as) + asaB (0c)° (2 - 9B (0c.) + (e - Dav )|}
p - -+
B A ayal B Ny
b= N Ny + ANgb, VAR ) 8 0 (N’“ p )
where
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Y = a3 —a,+ asPy

And, aq,ay, az, a,, as are defined in equation (12). Comparing (18) with the equation (13) in
Bessembinder and Lemmon (2002), there are similarities and dissimilarities. Whereas B&L posit
that B, < 0and B, > 0, the signs of 8, and §, in (18) are not predetermined. Also, we find that the
forward premium is affected by the kurtosis of the spot prices. Since we expect p < 1, the sign of

B, is negative, suggesting that fat tails in the spot price distribution will lead to lower forward price.

To gauge the sign of g, and §,, we perform simulations (see Appendix A, part viii) and find that
the forward premium is negatively (positively) related to the variance of spot prices, and positively
(negatively) related to the skewness of spot prices when the expected demand is low (high). To
clarify this implication for S5, B&L posit that under the setting of homogeneous conventional
producers with convex marginal cost (c > 2), the prices will be positively skewed regardless of the
demand. However, this may not be true anymore with the presence of green competitors in the
market. Specifically, when the demand is low, and can be satisfied by the renewable supply which
has much lower marginal cost® than that of the conventional producers, extremely low (or even
negative) prices may occur (see Fanone et al., 2013 and Valitov, 2018). Then, the spot prices could
be negatively skewed even when ¢ > 2. Notice also that the forward premium increases when

uncertainty risk of green production increases.

Next, we obtain the optimal forward position for the conventional producers and the retailers

(Appendix A part vi and vii). The optimal forward position for the conventional producer i is given

by

3 According to the model, this will happen when the renewable production is lower or the generating conditions using
green resources are very good.
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— E(Py) SKEW (Py) Ly KURTOSIS(Py)

Fo_

=" o A VAR(PW) T VaReyy T 3T VARG (19)

Where
Y, = {al + %E(Y)_%(ZE(Y) + E(Py)as)
a“Z“S 2B B, ) PEM) 2 ((2 ~ OE(Qc,) + (¢~ Dary)
_ ( (Qc e as}
3
Y, = { 2 2 acyag —22E(Q, ) T EM (2 - 0E(Qc,) + (e - 1)0:1)}
2
Y; = - 225 E(Y)2

And

Y =a%—a,+ asPy

Also, ay, ay, a3, a4, as are defined in equation (12). Notice that the optimal forward position of the
conventional producer is unlikely to be equal to its expected total production even when the
forward price is an unbiased estimator of the expected spot price and the distribution of spot prices
is normal. With the competition from the green producers in both markets, it is difficult for the
traditional generators to commit all their expected production in the forward market. Notice also
that in setting the optimal forward position of the conventional producer the kurtosis appears in the
expression (19). Moreover, higher kurtosis of distribution of the spot power prices is linked with
lower optimal futures purchase by the conventional producer because Yz < 0. This is consistent
with previous discussion about the impact of kurtosis on the forward premium. Higher kurtosis in
the spot prices will lead to lower forward premium suggesting net hedge pressure on the retailers’

side and resulting in relatively smaller position by the producers and larger position by the retailers.
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The optimal forward positions of homogeneous (fully diversified) retailers are just the opposite of
that of the conventional producers. We allow for heterogeneous N, retailers, each one covering

partial demand. The sensitivity of each retailer’s demand with respect to the total demand is :

9

Qr —6+p* +€

Where p_is the power demand beta. If p, =1, the retailer n is fully diversified and takes as
optimal forward position just the opposite of one conventional producer; If p, = 0, the retailer n
has non-systematic demand risk. If the retailer n’s demand risk is systematic, p, # 0. Therefore, we
can derive the optimal forward position of retailer n. The results are reported below (see Appendix
A part vii ):

Pr—E(Py) SKEW (Py) KURTOSIS(Py)
AVAR(Py) 2 VAR(Pw) 3 VAR(Pw)

Qg_n =@ + (20)

Where

PR'DnNP arqs5 -5 ,Dan ar 1
1 No == 2
1 { N.p 2 LEEm N (a1 + 5 () 2(2E(Y) +E(Pw)a5))}
PrpyNp aras anNP“Z“S 3 PNy (weas 3
= =2 2 _
¥a { N,p EC ) Nrp < g L) 2(4EX) EUJW)“S))}

_ PNy @zt _3
p; = Nrp 3 E(Y) 2

And
Y=a?—a,+asPy

Also, ay, a, a3, ay, as are defined in equation (12). The kurtosis of spot prices appears in equation

(20), with @, > 0. When the retailer has systematic demand risk (p,, # 0), higher kurtosis leads to

higher optimal position taken by the retailers to hedge its revenue risk (i.e increasing its futures

sale).
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To gain intuition on how the optimal forward position of the conventional producer and the retailers
would change with the risk factors, we simulate the optimal forward positions in Appendix A (ix).
When expected demand level and demand risk are high (low), the brown producer responds by

increasing (reducing) its futures position. For retailers we find the same effects.

4. Data

We focus on the day-ahead market and intra-day market of the Spanish Electricity Markets. All data
used in this paper are retrieved from the website of OMIE (www.omie.es, the Iberian Energy
Market Operator). The day-ahead market (the forward market) trades hourly electricity supply
delivered next day. In the delivery day, six intra-day sessions are held consecutively in which
market participants can adjust their positions up to four hours ahead of real time delivery. We
choose the first session of the intra-day market as the spot market, because they hold the first
session five hours after the day-ahead market is closed. Within such interval, we assume little
information updating excepting information about demand and supply. Electricity price exhibits
yearly, monthly, weekly, daily and hourly cycles. We choose the year 2017. In Appendix B part (i)
and (ii), we give price statistics. We define seasons as Winter (December to February), Spring
(March to May), Summer (June to August), and Autumn (September to November). Figure 7 shows

the box plots of day-ahead prices.

[INSERT FIGURE 7 HERE]

The day-ahead prices show hourly cycle. There are two peaks, from 9:00 to 12:00, and from 19:00

to 21:00. The standard deviation of prices is higher during daytime, from 8:00 to 18:00. Average
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prices and price volatility are higher in Winter and lower in Spring. Day-ahead price distribution is

negatively skewed in Spring, when the average price is low, but appear symmetric in other seasons.

Figure 8 shows the box plots of the prices of the first session of the intra-day market (spot market).
Like the day-ahead prices, there are hourly and seasonal cycles. Because the interval between the
day-ahead market and the first session of the intra-day market, the difference between the day-
ahead prices and the spot prices are small. Spot price distributions are symmetric, but in Spring

prices are left-skewed.

[INSERT FIGURE 8 HERE]

We also study average spot prices during on-peak hours and off-peak hours together with
conventional production over the same hours. The on-peak hours are from 8:00 to 20:00, and the
rest are off-peak hours. According to our model, a positive link between the spot price and the
conventional production should appear. To compute the monthly average prices and productions,
we first work out the daily average values both in on-peak hours and in off-peak hours. Then

monthly average values are obtained from daily averages.

[INSERT FIGURE 9 HERE]

Figure 9 shows that the conventional production and the spot price are higher in the on-peak hours

than they are in the off-peak hours.
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5. Results

To obtain model-based prices, we need estimates of the cost parameters of both the conventional
producer and the green producer, and the demand shock. We assume homogeneous green producers,
and the cost parameters are the same for all renewable producers. Thus, we can estimate b, and b,
by regarding all renewable units as one player and thus the slope of aggregate supply curve should
be equal to the slope of individual supply curve if all green producers have the same cost function.
According to REE (Red Electrica de Espafa), renewable sources refer to solar thermal, solar PV,
wind, hydro, renewable waste and other renewables. In OMIE, trading participants trade with an
generation unit code. Though each unit code is unique, several unit codes may belong to the same
company. The source of energy production in each unit is not disclosed by OMIE. Therefore, we
hand-collected information about the companies using renewable sources according to the
participants list provided by OMIE. We include a company as renewable producer if on their
official website the company claims that renewable source is used to generate electricity. However,
we are fully aware of the limitation of this way to identify renewable producers. For example,
companies may use both conventional and renewable sources, and conventional companies may
have affiliates producing electricity with renewable sources. But we do not include them as
renewable producers because available data does not allow us to distinguish the units who use
renewable sources from other conventional units owned by the same company. The effect of this
lack of data granularity is to induce a downward bias in estimates of b; and b, . The reason is
actual renewable units are likely more than the ones we have identified as such in our sample. We
identify 43 companies as renewable providers out of 87 generators. The Spanish electricity market
is concentrated because the top 4 companies have 80% of market share of generation (lberian Data
by EDP,2017). Following the approach of Ito and Reguant (2016), we estimate b; and b, as the
slopes of the residual demand (demand minus the renewable supply). First, we obtain the supply
and demand of each unit for each hour per day per market. Then we compute the residual demand

which is the demand minus the supply by the renewable producers at each price level. In order to
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statistically test the difference between b, and b,, we re-construct the data by combing the residual
demands and the prices of the day-ahead market with those of the intraday market. We should also
control for the total demand as demand curve may influence the residual demand curve. To solve
this, we set the dependent variable by subtracting the total demand from the residual demand. Then,

the regression we run per hour per day is:

Residual Demand,,, — Total Demand,,, = constant + b, * pricey, + constant *

MarketDummy,, + ¢, * price,, * MarketDummy, + &, (21)

Where i represents market (either day-ahead market or intraday market), p represents different price
levels of the bids and offers in one market, MarketDummy is a dummy variable equals to 0 if the
data is from the day-ahead market and to 1 if the data is from the intraday market. b, is the

coefficient of pricey,, and b, equals to the sum of by + ¢,. If ¢, is significant, that means the

difference between b, and b, is significant. We run (21) for each hour each day and estimated b,
b, are obtained accordingly. We provide basic descriptions of estimated b; and b, in Appendix B
part iii Table B3. We may see that b, is on average four times larger than b,. On average, b, is
around 35, while b, is around 9*. Next, we estimate the demand shock, . According to our
definition, € should be the demand shock of the total demand, realized in the spot market. In other
words, € cannot be forecasted by players in the forward market. Total demand should be equal to
the forward demand plus the spot demand. (Appendix B part iv, see Table B4 to TableB9 ). The

regression is :

4 Ito and Reguant (2016) assume that the total demand is inelastic, getting estimates with higher order of magnitude but
report that b, is several times larger than b,.
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In(Total Demand);, = constant + B, * In(Forward Demand);, + 8, *
In(Renewable Spot Demand);, + B * In(Planned Demand);, + B, *
In(Forecasted Demand);, + B * Week « Month + B, « Week x Hour + ., x Month * Hour +

Bg*x Week + By x Month + B, * Hour + FE + €, (22)

Where total demand is the sum of the accepted demand bids in both markets. Forward demand is
the accepted demand bids in the day-ahead market. Renewable spot demand is the demand bids
from renewable producers in the intraday market. Planned demand is the scheduled demand
submitted by all participants to OMIE before the trading in the day-ahead market. The forecasted
demand is obtained from REE (the system operator) and is the forecast of real-time total demand of
the Spanish peninsula. Dummy variables are Week (day of the week from Monday (1) to Sunday
(7)), Month (month of the year from January (1) to December (12)), Hour as (hour of the day from
1:00 to 24:00), are ordinal variables used to control for weekly, monthly, and hourly cycles. We
also include interactions between these ordinal variables to control for unobservable trends. This is
a dated panel regression, with cross-sessions being Hour, so j represents Day, and h represents
Hour. As there may exist unobservable factors across time are related with independent variables,

we include fixed effects. We provide regression results and residuals statistics in Appendix B part v.

According to Table B11 (Appendix B part iv), demand shocks are positive in peak hours and
negative during off-peak hours. The volatility of the shock is higher in peak hours than in off-peak
hours, as expected. Next, we estimate a and ¢ which are cost parameters of the conventional
production. To obtain estimates of a and c¢ for each hour in each season, we include ordinal

variables named as Hour and Season. The regression is:
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In (QPC)jh = constant + 6§ ln(bz(ZPW — Pp) — s)jh + §,constant * season * hour +

831n(b,(2P,, — Pr) — €) * season * hour + i (23)

Where season is an ordinal variable from 1 to 4 with 1 for winter (December to February), 2 for
spring (March to May), 3 for summer (June to August), 4 for autumn (September to November);

hour is also an ordinal variable from 1 to 24 represents the hour of the day. @, is the total
conventional supply bids which are accepted in both markets. The explanatory variable, b,(2P,, —

Pr) — ¢, is computed using market prices and estimated® b,, . In the end, ¢ = 61 +landa =
1

constant
e 61

b,

. We provide basic descriptions on estimated ¢ and a in Appendix B part v. With estimated

parameters, now we can derive model-based prices. According to equation (11), we can obtain
model-based spot prices by inserting estimated values into the equation. Table 1 shows the average

difference between the model-based prices and the realized prices by hour.

[INSERT TABLE 1 HERE]

The model-based prices appear to be higher than the realized ones during peak-time, but lower on
average during the off-peak time. However, t-statistics fail to reject the null hypotheses of zero
average difference in all cases. Therefore, the evidence suggest that the model can replicate actual

spot prices.

5 As the parameters b,, ¢ are average estimates, negative values for the explanatory variable may appear (in 25 cases out
of 8760). Since this variable should be non-negative, we set negative value as missing value.
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Next, we study if the forward premium is negatively (positively) related to the variance of spot
prices, and positively (negatively) related to the skewness of spot prices when the expected demand
is low (high). The model also suggest that the forward premium should be negatively related to the
kurtosis of spot prices at all levels of expected demand, and should increases when the uncertainty
of RES production over total production increases. We run a threshold regression where state

variable defining the thresholds is the level of total demand. The regression we run is as follows

Forward Premium; = constant + ®;variance;(highdemand) +
+®,variance;(lowdemand) + ®;skewness,(highdemand) + ®,skewness;(lowdemand) +
®ckurtsosis;(highdemand) + ®gkurtosiss;(lowdemand) +

®,renew ableuncertainty,, + controls + u, (22)

Where variance, skewness and kurtosis are conditional values obtained by using sample moments
of 30-day moving averages of intraday prices. The variable renewableuncertainty is the difference
between estimated b; and estimated b, . Controls includes ordinal variables for hour, week, month,
and season to control for hourly, weekly, monthly, and seasonally trend as well as lagged values of

the dependent variable.

Table 2 gives the results by considering two thresholds of “low” and “high” demand.

[INSERT TABLE 2 HERE]
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We may see that in when demand is low (“low state”), the coefficients of the variance (negative),
skewness (positive) and kurtosis (negative) present the expected signs according to our model and
are statistically significant at conventional levels. In the “high state” (high demand), the skewness
(negative) and the kurtosis (negative) present the expected signs, but the variance presents a
negative sign. The measure of uncertainty of renewables production presents a positive and
significant impact on the forward premium, as expected. All other variables also present the
expected signs. Therefore, the empirical results largely agree with the predictions of the theoretical

model.

6. Conclusions

The importance of the study of the forward premium in electricity markets arises for its
implications about the market efficiency of power derivatives markets, a significant concern to
financial investors, utilities, power producers, retailers, regulators, and policymakers. In this paper,
we develop an equilibrium model to price forward contracts for electricity introducing green
producers besides the conventional (brown) producers. In doing so, we extend and refine the
implications of the benchmark B&L model by including a richer market setup and a more realistic
structure of the generating assets. We argue that the hedging activities market of participants may
change according to the expected spot price, or to the fundamental variables such as expected

demand.

We get the implication that the forward electricity price is a biased forecast of the future spot price.
This bias depends on two elements. First, on the variance, skewness, and kurtosis of the distribution
of spot prices. The impact of these moments can be positive or negative, depending on the level of
expected demand. Second, by the uncertainty of green production, that has a positive relationship

with the forward premium. We also get the optimal forward positions for brown producers and
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retailers. When expected demand level and demand risk are high (low), the brown producer

responds by increasing (reducing) its futures position. For retailers we find the same effects.

Empirical evidence comparing model-based prices and market-observed prices by using hourly data
of the Spanish market is largely consistent with the implications of the model. Regression analysis
shows that the forward premium is related to the variance, asymmetry, and kurtosis of the
distribution of spot prices, the sign depending on expected demand. Increases in the uncertainty of

RES production increase the forward premium, as predicted.

Our findings help in reconciling the mixed empirical support received by earlier equilibrium models,
and we give added insights about the hedging decisions of market participants. Therefore, we

believe that the implications of our model are useful for practitioners and policymakers alike.
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Tables

Table 1: Differences between the model-based fitted prices and the realized spot prices

The table shows descriptive statistics, and t-statistics for the null hypothesis of zero difference for the
average differences between the model-based fitted prices and the realized spot prices. Units are € MWHh.

The sample is from 1 January 2017 to 31 December 2017.

HOUR Mean Std. Dev. Obs. T-stat P-value
1 -1.700439 16.99846 365 -0.141471 0.443749
2 -1.413872 15.24023 365 -0.131200 0.447809
3 -0.416224 14.36878 365 -0.040966 0.483662
4 -0.662584 14.09458 365 -0.066482 0.473497
5 -2.035911 14.22437 365 -0.202414 0.419797
6 -3.285663 15.02272 365 -0.309307 0.378544
7 -5.814217 18.03774 365 -0.455852 0.324248
8 -5.465775 21.38411 365 -0.361473 0.358873
9 -0.872095 18.81843 365 -0.065538 0.473873

10 0.04753 18.77718 365 0.003580 0.498572
11 2.159637 18.11977 365 0.168556 0.433073
12 2.579151 17.81575 365 0.204733 0.418890
13 2.932957 17.22411 365 0.240815 0.404849
14 3.116797 17.07509 365 0.258143 0.398148
15 3.011083 16.70029 365 0.254984 0.399368
16 1.872595 16.61897 365 0.159351 0.436696
17 1.557062 16.75373 365 0.131435 0.447716
18 1.401681 18.05852 365 0.109770 0.456296
19 1.087808 19.48203 365 0.078965 0.468530
20 1.120782 20.09022 365 0.078895 0.468558
21 1.382585 20.14574 365 0.097056 0.461341
22 2.256196 19.70887 365 0.161894 0.435695
23 -5.226655 21.55694 365 -0.342888 0.365842
24 -4.42284 19.70893 365 -0.317361 0.375485
All -0.282934 18.0692 8760 -0.022144 0.491166
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Table 2: Threshold Regression results

The table shows the result sof a threshold regression where the state variable is the Total Demand. The
sample is hourly data from 1 January 2017 to 31 December 2017.

Dependent Variable: PFPS
Method: Threshold Regression
Sample (adjusted): 16 8744
Included observations: 8729 after adjustments
Threshold type: Fixed number of globally determined thresholds
Threshold variable: TOTALDEMAND
Threshold value used: 33665.899
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
bandwidth = 11.0000)
Variable Coefficient Std. Error t-Statistic Prob.
TOTALDEMAND < 33665.899 -- 6409 obs
HOUR -0.250882 0.031501 -7.964370 0.0000
VARIANCE -0.023775 0.001635 -14.54286 0.0000
SKEW 1.118339 0.238049 4.697938 0.0000
KURTOSIS -0.628367 0.114377 -5.493816 0.0000
33665.899 <= TOTALDEMAND -- 2320 obs
HOUR -0.810647 0.053671 -15.10399 0.0000
VARIANCE -0.010540 0.001792 -5.879957 0.0000
SKEW -0.723635 0.363069 -1.993105 0.0463
KURTOSIS -1.953685 0.304787 -6.409992 0.0000
Non-Threshold Variables
B1B2 0.836597 0.026457 31.62120 0.0000
WEEK 0.689433 0.066157 10.42120 0.0000
MONTH -0.585991 0.071378 -8.209724 0.0000
SEASON -2.990647 0.212851 -14.05045 0.0000
PFPS(-1) 0.431010 0.015381 28.02144 0.0000
PFPS(-2) -0.029307 0.012638 -2.318896 0.0204
PFPS(-3) -0.029120 0.009388 -3.102017 0.0019
PFPS(-4) 0.002974 0.008387 0.354580 0.7229
PFPS(-5) 0.045386 0.010260 4.423558 0.0000
PFPS(-6) 0.039412 0.008830 4.463496 0.0000
PFPS(-7) 0.036873 0.009466 3.895156 0.0001
R-squared 0.624736| Mean dependent var -0.045392
IAdjusted R-squared 0.623961| S.D. dependent var 18.25988
S.E. of regression 11.19733| Akaike info criterion 7.671401
Sum squared resid 1092061.| Schwarz criterion 7.686800
Log likelihood -33462.83| Hannan-Quinn criter. 7.676649
Durbin-Watson stat 1.611072
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Figure 1 Low Demand case: Forward Premium as a percentage to the expected spot price, as a function of demand volatility
and conventional production cost convexity (c). Total demand is normally distributed with mean E(Qp) = 2000 and standard

deviation from 20 to 60. Demand shock is also normally distributed with mean E(e) = 0 and standard deviation SD(¢) = 30. Q; is
set as 50% of Q. ¢ changes from 2 to 6, and a is then set by expression (9). Py is 100. Finally, the risk parameter A = 02—8
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Figure 2 High Demand case: Forward Premium as a percentage to the expected spot price, as a function of demand volatility

and conventional production cost convexity (c). Total demand is normally distributed with mean E (Qp)

= 6000 and standard

deviation from 20 to 60. Demand shock is also normally distributed with mean E (e) = 0 and standard deviation SD(e) = 30. Q; is

set as 50% of Q. ¢ changes from 2 to 6, and a is then set by expression (9). Py is 100. Finally, the risk parameter A = Oz;f.
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Figure 4 Forward Premium as a percentage to the expected spot price, as a function of b, and expected demand. Total demand
is normally distributed with mean E(Qp) from 2000 to 6000 and standard deviation SD(Qp) = 30. Demand shock is also normally

distributed with mean E(e) = 0 and standard deviation SD(e) = 30. Qp,. is set as 50% of Qp. c is set as 4, and a is then set by
0.8

expression (9). Pg is 100. b; is set as 8, and b, changes from 1 to 6. Finally, the risk parameter A = >
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Figure 5 optimal conventional hedge ratio (optimal hedge position over expected production), as a function of expected
demand and demand volatility. Total demand is normally distributed with mean E(Qp) from 2000 to 6000 and standard deviation
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Figure 6 optimal retailer (retailer with non-systematic local demand and retailer with systematic local demand) hedge ratio
(optimal hedge position over expected demand), as a function of expected demand and demand volatility. Total demand is
normally distributed with mean E(Qp) from 2000 to 6000 and standard deviation from 20 to 60. Demand shock is also normally

distributed with mean E () = 0 and standard deviation SD(e) = 30. Qp,. is set as 80% of Qp. c is set as 4, and a is then set by

0

expression (9). Pg is 100. Finally, the risk parameter A = 2—?
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Appendix A

(i)

€+ (bZPF - bZPW) * Ng
N

d c
MAX T = Py ( )+ PrQg ; — Fc — c (Qci)

p
_ €+ (bZPF_bZPW)*Ng F

C.i
N p

S.t QC_i

Taking the first derivative with respect to Py,

—b, *N € + (byPr — byPyy) * N c—1/—=by * N
5 e M G e RC N o e

Rearranging the equation, we get

2Py—Pr = aQ{ ' +

b;Ng

And solving for the optimal spot price

, 1 -1 €
Py =5 Pr+aQci + m)
Which is text equation (9).
(if)
We know the following equations hold
(2Py—Pp = aQS ™ + —— (al)
w F C_l bZNG
Qp = NpQ¢; + NgQG_]. where QG_]. = (b;—bz)P; + byPy (a2)
NDQC i
— = a3
Qp b (a3)
Inserting (a3) into (a2), we get
NPQCJ —
—_—= = NPQC_i + Ng((bl_bZ)PF + bZPW) (a.4)

p

Multiplying (al) on both sides with (b;—b;)N,, and sum with (a4), Pr can be eliminated. Leaving
Py as a function of Q. ; shown in text equation (11)
Np(%—1)Qc_i+a(b1—b2)NgQEjil+(E—;—1)e

Pw = (2b1—by)Ng (11)
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Taylor’s expansion helps to give the approximation of function F* where z is a constant around the

point E(F), such as

z(z—1)
2

z(z—1)

7212
= [E(F)J*2F

F* = [E(F)] <1 —z+ ) +z(2 —2)[E(F)]*IF +

Thus, applying Taylor’s expansion, we get
_ —2)(c=3 -1 -2 —-2)(c—1 —3
Qgi = (@)2#) E(Qci)C +(c-1DB - C)E(Qci)c *Qq t+ %E(Qci)c * Q(Z:i (iii-A)

Then, replacing Qgi_l in text equation (11) with expression (iii-A), we get

a(by=by)  (c—=1)(c=2) -3 2 Np(1-p) a(by—by) c—2
2by—b, 2 E(Qci) *Qu t [Ng(Zbl—bz)p + 2b;—b2 (c-DG- C)E(Qci) ] Qi +

(c=2)(c—3) c=1 a(by—by) (by—by)e _ _
> E(Qw) x5 + @by, W =0 (11-B)

According to quadratic formula and considering Q; > 0, we can get Q. ; as a function of Py, as

shown by text equation (12).

1

Q= +ay (0§ — oy + asPy)? (12)
Where
NelP=1) L o tb, —b)(c— 1)(c — 3E(Q. )
Ngp 12 Ci

Q
i
I

a(by —bp)(c— D(c—DE(Q.,)

1
ac— 1)(c— 2E(Q. )

0%}

Np(l - p)

__‘p\t B _ _ c—2
az = N.p(b; — by) +a(c—1(3 c)E(QC_i)

c— = 2
o =a(c—D(c—DEQ,) <a(c — (- E(Q ) + TR})

_ 2a(c—1)(c— DE(Q,)" (2by —by)
- by — b,

05

(iv)

The optimal forward position of conventional producers are:
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F _ Pp—E(Pw) Cov(pp'PW)
Q = Ne Zvarew T NP Varew (IV-A)

The optimal forward position of retailers are:

F_ N PrECW) COV(pg,Pw) -
Q = NrA*VAR(PW) +N; VAR(Py) (1v-B)
And, the forward position of green producers are:

Q" = Nygb, Py (IV-C)

Since the forward market should clear, Qi + Qg + Q. = 0 which gives:

NpCOV(p,,Pw )+NrCOV(pg,Pw)

Pr—E(Pw) _
ARy (Np +ND) + ARG + Ngb;Pr =0 (IV-D)
Rearranging equation (iv-D), we get
_ Nr+Np _ A
Pp = [(Nr+Np)+ANgb1VAR(PW)] E(Pw) (Nr+Np)+ANgb; VAR(Pw) [Npcov(pp, PW) +
N, cov(pg, Pw)] (IV-E)
As
c

pci = PwQci — Fe — = (Qc) (15)

pR_n = PRQR_n - PWQR_n (16)
Then,

[Npcov (p,, Pw) + Ny cov(pg, Pw)| = [PrNrcov(Qy ,, Pw) — Ngcov (Pu Qg ;, Pw) —

2Npeov ((Qq)" Pw)] (IV-F)
Inserting (IV-F) into (IV-E), we get text expression (17)

(v)

As according to text equation (13),

NpQ¢
Qn =y (13)

We can rewrite (iv-F) as

PRN,
P

[Nycov (p,, Pu) + Ne.cov(py, Pw)]| = 2 COV(Qq, Pw) + (N, = -2) COV(PwQg, Pw) —

N
—2Cov(Qg;, Pw) (V-A)
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Thus, to derive text equation (18), we need to derive first COV(Qc;, Pw), COV(PwQci, Pw) and
COV(Qg;, Pw).

Define

Y =0a%—a, + asPy

Q; is given by equation (12), and applying Taylor’s expansion,

1

Qe = o1 + (@ — oy + asPw ) = o + g {%E(Y)% FIEWN) oY — 1B 7 YZ} — oy +
o {EE(Y)% +2EY) 7 % (o — ) — SEO) 2(cd - a)’|+ BE(Y)‘% v o5 —2EN2(ed -
(x4)a5] Py — LE(Y) 2P } (V-B)
Then,
COV(Qgy, Py) = 0 {[ E(Y) 2 # ag — ZE(Y)” 2(od — a4)a5] VAR(Py) — —E(Y)_5a§COV(Pv2v, PW)}
(V-C)
And,
COV(PyQcs, Pw) = aqVAR(Bw) + az {[2B(V) + 2E(Y) 2 % (o — ) — 2E(Y) (e —
(x4)2] VAR(Py) + E E(Y) 7 * ag — iE(Y)_%(ag - a4)a5] COV(PZ, Py) —
L E(Y)_5a§COV(PV3V, pw)} (V-D)

Also, according to Taylor’s expansion

-1 -2 C c— -1 c—
Q(C:i - %(C)E(QG) +¢(2 - 0OE(Qq) B Qg t+ C(CZ—)E(QCi) " Q(zji

1
Where Qéi =af+a5(af — g+ asPy) +2*0a; *xaz(ad — oy + asPy)?

c(c 1)

Thus, COV(QS$;, Pw) = c(2 — )E(Qc)¢ ! * COV(Qcj, Pw) + E(Qc)¢ 2adasVAR(Py) + 2 *
o o {[2 E(Y) 2 * ag — ZE()” 2(af — a,)as| VAR(Ry) - —E(Y)‘Ea§COV(PV2v, Pw)}  (V-E)
Define cov(PZ, Py) = skew(Py) * SD(Py)? + 2E(Py)Var(Py), and

cov(Py, Py) = kurtosis(Py) * SD(Py)* + 3E(Py)skew(Py) * SD(Py)3 + 3E(Py)?Var(Py),

We can re-write equation (V-C), (V-D), and (V-E) as follows:
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(Xzag —3
E(Y) 2SKEWNESS(Py) (V-F)

1
2255 E(Y) 2VAR(Py) — .

COV(Qci, Pw) = >

o2

s E(Y)‘§(4E(Y) —

COV(PwQci, Pw) = {0 + ZE(Y) Z(2E(Y) + E(Pw)as) | VAR (By) +{[%2

E(Pw)as)] SKEWNESS(Py) — %E(Y)_%aéKURTOSIS(PW)} (V-G)

cay0s
2

E(Qe) 2E(Y) 2((2 — OEQq) + (¢ — Day) +

COV(QS;, P) = {

c(c—-1)
2

1)oy ]} SKEWNESS (Py) (V-H)

(o{04

2% Q) 2E(Y) 2[(2 — O)E(Qq) + (¢ —

E(Qc)* 2odas | VAR (Py) + {— 2

Finally, replacing (V-A) with (V-F), (V-G),(V-H), we can get text equation (18).
(vi)

To derive the optimal forward position of the conventional producer, we first need to derive the

covariance term between the “but-for-hedge” conventional profit and the spot price as expression

(VI-A) shows
COV(pp» PW) = cov(PwQci, Pw) — %COV((QCi)Cf Pw) (VI-A)

As we have derived cov(PyQc;i, Pw) and cov((Qc¢;)€, Py ) in last section, we can just insert equation
(V-F) and (V-G) into (VI-A).

And, according to expression (14), we could have text expression (19).

(vii)

b

Like the derivation in part vi, we need to derive the covariance term between the “but-for-hedge’

profit of the retailer and the spot price.

If we assume there is one retailer with partial demand risk in the market, and N.Q, = = NpQCi +

NgQG_].. Applying the covariance properties, we get
n N
COV(prn, Pw) = PRCOV(Qgry, Pw) — COV(PWQRn' PW) = Pg * E_R * ?p [COV(Qci, Pw)] —

8uVAR(Ry) — 5.VAR(Py) — 2 * " [COV(QciPw, Pw)] (VII-A)

COV(Qc;j, Pw) is given by expression (V-F), COV(Q¢;Pw, Pw) is given by expression (V-G). Thus,
we can derive the optimal forward position of the retailer as equation (20) states for both systematic

and non-systematic retailer case.
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(viii)

To gauge the sign of B, and B, we perform simulations. First, we set the cost factors of the
renewable producer, b; and b,, to be 8 and 5, following Horta¢su and Puller (2008) and Ito and
Reguant (2016) who find evidence that b; > b,. Second, both the total demand and the demand
shock in the spot market are assumed to be normally distributed. Specifically, we set the total
demand to be at low level (high level) when its mean is 2000 (6000) and its standard deviation
changes from 20 to 60 with intervals being 1. The demand shock follows distribution with mean
zero and standard deviation to be 30. The retail price Py is set as 100. In practice, the retail price
charged by the retailer does not change frequently and thus it applies to the consumers under all
circumstances. Fourth, we choose p as a percentage of the conventional production over the total
production to be 80%. Fifth, the convexity measure of the conventional cost function c ranges from
2 to 6. Also, a is calculated according to equation (9) conditional on Q,, = 2000,Py, = 40,6 =0
and p = 80%. This is to fix the spot price to be 40 when the demand is 2000 and the demand shock
to be 0 in order to compare results across different simulation settings. Sixth, we set N, = N, =

N, = 1to minimize the impact of numbers of players on the forward premium. Finally, similar to

B&L we set the absolute risk aversion parameter, A =(;;f . Note that A can be chosen

discretionarily to scale the results.

The sign of 8, and 8, in (18) can be inferred by changing the cost parameter ¢ and the volatility of
the total demand. Thus, for each c and std(Qp), we generate 1000 realizations for the spot price
based on expression (11). Then, the forward premium is derived according to equation (17). We
report the bias in the forward price as a percentage of the expected spot prices as shown in Figure 1

and Figure 2.
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Figure 1 displays the bias of forward price versus the cost and demand risk in the situation where
the total demand is low. In agreement with B&L, forward premium decreases in variance and

becomes more negative when ¢ = 2, suggesting the sign of 3, is negative. Also, the bias in the

forward premium increases in skewness when c increases, indicating that the sign of g is positive.

However, in Figure 2 where the demand is high, the results are different. With quadratic cost (c =
2) and green production fixed, the skewness of the spot prices remains constant. Instead of
observing a decreasing trend of forward premium, the forward bias increases in demand risk,
implying the g, is positive when the demand is at high level. This implies that the hedge pressure
switches from the retailers’ side to the producers’ side in the case of high expected demand and
rising demand volatility. As mentioned above, retailers are more concerned with low prices or low
demand, while the conventional producers worry more about positive demand spikes due to their
convex cost in production. Therefore, it is reasonable to expect the conventional producers having
higher net hedge pressure when the demand has higher mean and volatility. Regarding the sign of
B, we may observe a decreasing trend in ¢ of the forward premium when the demand is high. This
suggest that the net hedge pressure from the retailers’ side is stronger than the producers’ pressure
in the case of high demand and higher skewness. As c becomes higher, the spot prices are more

positively skewed.
[Insert Figure 1 Here]
[Insert Figure 2 Here]

We present the forward bias in relation with the percentage of conventional production over total

demand and the expected demand in Figure 3.

[Insert Figure 3 Here]
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From Figure 3, the higher the market share of the renewable production the higher the forward
premium. This reflects higher hedge pressure of the conventional producers when their market

share is shrinking due to the competition from the green generators.

Another renewable-related risk is the uncertainty risk. The unpredictable conditions for generating
power using renewable resources expose the market to this uncertainty risk, which could potentially
lead to more volatile prices. Thus, we simulate the forward bias versus the measure of this
renewable production uncertainty risk, |b; — b,|, and the expected demand. To better visualize the
simulation results without losing generality, we set b; to be 8 and changing b, from 1 to 6. Thus,
the higher the b, is, the smaller the difference between b, and b,, the higher precision of the
forecast on the generating conditions using green resources, then the less uncertainty risk in
renewable production. Figure 4 shows the simulation results. We may see that the lower the
uncertainty risk of the green generation, the lower the forward premium, suggesting smaller
forward position of the retailers. As intermediates, the retailers have obligations to supply certain
quantity of power to the final consumers. Therefore, lower uncertainty risk of the green production

reduces this default risk for the retailers and leads to less buying in the forward market.

[Insert Figure 4 Here]

(ix)

To gain intuition on how the optimal forward position of the conventional producer and the retailers
would change with the risk factors, we simulate the optimal forward positions. We compute
forward premiums according to equation (17) and the procedure in Appendix A, part viii. Then,
equation (19) is used to derive the optimal forward positions. We present the optimal hedge ratio,
which is the simulated optimal forward position over the expected conventional production, instead

of optimal position per se.

[Insert Figure 5 Here]
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Figure 5 illustrates the implications of equation (19), based on ¢ = 4 and normally distributed
demand. When expected demand and demand risk are low, the brown producer responds to the
decreasing bias in the forward price by reducing its futures purchases; when either the demand or
the demand volatility increases, the producer optimally increases its futures purchases, as a reaction

to the upward forward bias as well as to hedge its cost risk.

We assume two retailers: one with power beta zero, the other one with power beta two. Since the
forward premium would change accordingly, we re-calculate the forward premium according to
expression (17). And, the optimal forward position of each retailer is obtained using expression (20).
Figure 6 combines two plots on the two retailers’ optimal forward position with respect to their
expected demand versus expected total demand and demand volatility. For both retailers, in most of
the time, the higher the standard deviation of total demand, the higher the optimal forward position;
Except when the retailer has systematic demand risk and the demand is low, the retailer chooses to
decrease its forward position as a response to the low demand level. However, retailer with
systematic local demand generally increases its forward position along with the rising expected
demand, while the retailer with non-systematic local demand optimally decreases its forward
position relative to its expected demand. This finding is consistent with the implications from B&L
model (2002). Retailer with non-systematic local demand decreases its forward position as a
respond to the upward bias in the forward price with respect to the expected spot price. However,
the retailer with systematic demand concerns more about its revenue risk, thus it increases its

forward position to hedge potential high expected spot price and price spikes.

[Insert Figure 6 Here]
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Appendix B

(i)
Winter
M 1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 5754 | 51.76 | 48.32 | 45.31 | 4422 | 45.89 | 51.26 | 60.11 | 63.56 | 66.35 | 67.50 | 66.52 | 65.29 | 64.22 | 61.99 | 60.17 | 60.11 | 64.10 | 70.42 | 73.19 71.95 69.35 | 65.83 | 61.34 60.68
Median 56.95 | 51.91 | 49.18 | 45.94 | 45.00 | 46.95 | 51.19 | 60.60 | 65.01 | 67.52 | 68.36 | 66.85 | 65.38 | 62.70 | 61.03 | 59.86 | 59.75 | 65.86 | 72.67 | 7524 | 72.81 | 70.03 | 65.01 | 60.11 | 61.08
Maximum 97.70 | 90.00 | 81.69 | 78.98 | 77.50 | 78.00 | 80.10 | 95.01 | 98.01 | 98.61 | 98.61 | 97.35 | 96.50 | 96.00 | 94.01 | 92.84 | 91.19 | 96.69 | 99.18 | 101.70 | 101.99 | 100.67 | 99.18 | 96.19 93.24
Minimum 27.57 | 15.00 | 9.80 5.48 5.27 5.27 5.00 5.27 9.27 | 17.10 | 22.67 | 21.95 | 1951 | 18.10 | 15.19 | 10.56 | 11.90 | 16.60 | 25.00 | 30.43 30.01 2201 | 1240 | 12.40 15.57
Std. Dev. 13.75 | 1358 | 13.43 | 13.70 | 13.73 | 1356 | 14.31 | 17.00 | 17.37 | 1584 | 1442 | 1428 | 1412 | 1425 | 1454 | 1520 | 1524 | 1530 | 14.38 | 13.24 13.07 12.84 | 1358 | 13.84 14.36
Skewness 039 | -0.09 | -045 | -041 | -042 | -0.48 | -050 | -0.51 | -0.55 | -0.36 | -0.21 | -0.20 | -0.20 | -0.10 | -0.12 | -0.31 | -0.36 | -0.33 | -0.36 -0.20 -0.10 -0.27 -0.37 | -0.13 -0.28
Kurtosis 3.30 3.82 4.08 412 422 424 4.24 4.05 3.88 3.59 3.40 3.40 347 3.42 321 344 3.23 3.00 294 3.07 3.33 413 4.70 3.92 3.68
Probability 0.28 0.26 0.03 0.03 0.02 0.01 0.01 0.02 0.03 0.20 0.53 0.55 0.48 0.67 0.83 0.33 0.35 0.45 0.38 0.73 0.75 0.05 0.00 0.18
Observations 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Spring
MU 1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 4543 | 41.81 | 39.47 | 3849 | 3822 | 39.41 | 43.04 | 46.01 | 4758 | 48.41 | 47.81 | 46.81 | 46.18 | 45.68 | 44.27 | 4257 | 41.79 | 42.44 | 43.87 | 46.47 49.25 51.33 | 49.18 | 46.74 44.68
Median 48.14 | 42.18 | 39.65 | 39.23 | 39.28 | 40.12 | 43.98 | 48.67 | 50.36 | 50.54 | 50.00 | 48.60 | 48.45 | 48.06 | 46.53 | 43.64 | 4191 | 41.67 | 4458 | 47.72 50.20 52.77 | 50.61 | 48.49 46.06
Maximum 5493 | 54.04 | 53.25 | 52.79 | 52.02 | 52.13 | 54.12 | 55.58 | 57.80 | 59.58 | 58.22 | 57.55 | 57.06 | 56.07 | 54.93 | 54.93 | 5450 | 54.53 | 55.00 | 61.05 56.97 58.80 | 57.01 | 56.00 55.79
Minimum 27.04 | 14.00 | 12.16 | 12.00 | 12.00 | 1240 | 1390 | 12.89 | 14.69 | 1561 | 12.12 | 10.00 | 10.29 | 7.09 5.00 2.30 2.30 5.01 8.70 15.67 21.00 3296 | 3441 | 31.67 14.38
Std. Dev. 6.90 7.70 791 8.23 8.22 8.46 8.09 8.30 8.40 7.60 7.50 7.45 7.67 8.00 8.22 8.71 8.84 8.40 7.18 6.30 5.16 4.58 4.88 5.63 7.43
Skewness -0.70 | -0.66 | -0.60 | -0.79 | -093 | -091 | -1.36 | -1.88 | -1.80 | -1.94 | -2.16 | -2.13 | -1.88 | -2.03 | -1.93 | -1.63 | -1.47 | -1.49 | -1.50 -1.20 -2.10 -1.61 -0.98 | -0.79 -1.44
Kurtosis 242 3.36 3.33 3.69 4.14 4.15 5.60 6.98 6.74 7.80 9.56 9.85 851 9.34 8.95 7.76 7.02 7.27 8.01 7.59 11.29 6.16 351 2.85 6.50
Probability 0.01 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Observations 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Table B1-1 statistics on seasonal day-ahead prices




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Average
Mean 49.71 | 46.33 | 44.19 | 4353 | 43.15 | 4344 | 45.04 | 47.27 | 49.12 | 5057 | 50.73 | 50.97 | 51.77 | 52.12 | 51.65 | 50.42 | 49.66 | 49.31 | 48.94 | 4895 | 50.14 | 52.14 | 51.83 | 49.15 | 48.75
Median 50.15 | 46.27 | 43.94 | 43.02 | 42.67 | 43.03 | 45.00 | 48.25 | 5055 | 51.88 | 51.99 | 51.83 | 52.26 | 5255 | 51.95 | 51.27 | 50.80 | 50.66 | 50.03 | 49.99 | 51.05 | 52.24 | 51.84 | 49.87 | 49.29
Maximum | 59.99 | 55.65 | 54.05 | 53.78 | 5257 | 53.00 | 54.93 | 58.01 | 58.62 | 5859 | 58.01 | 58.10 | 59.20 | 59.15 | 59.00 | 58.93 | 59.03 | 59.03 | 58.62 | 58.00 | 58.43 | 59.35 | 60.15 | 59.99 | 57.67
Minimum | 37.86 | 35.00 | 32.89 | 32,50 | 30.00 | 28.50 | 2850 | 28.00 | 29.77 | 32.29 | 3358 | 35.99 | 38.80 | 42,53 | 41.72 | 40.60 | 37.99 | 37.49 | 37.47 | 38.60 | 4191 | 44.09 | 44.99 | 40.00 | 36.29
Std. Dev. 475 | 465 | 471 | 462 | 462 | 470 | 485 | 564 | 578 | 510 | 4.82 | 439 | 407 | 360 | 355 | 410 | 465 | 481 | 455 | 418 | 3.75 | 3.04 | 319 | 386 4.42
Skewness | -0.38 | -0.08 | 023 | 019 | 005 | -0.10 | -0.17 | -0.67 | -0.85 | -1.24 | -1.21 | -1.07 | -0.82 | -0.59 | -0.67 | -0.59 | -0.58 | -0.52 | -0.40 | -0.31 | -0.44 | -0.02 | 0.20 | -0.14 | -0.42
Kurtosis 299 | 241 | 244 | 265 | 288 | 318 | 3.50 | 348 | 353 | 441 | 431 | 408 | 356 | 315 | 362 | 3.01 | 274 | 254 | 249 | 252 | 281 | 29 | 301 | 277 313
Probability | 0.33 | 048 | 037 | 059 | 096 | 087 | 050 | 0.02 | 000 | 0.00 | 000 | 000 | 000 | 007 | 002 | 007 | 007 | 009 | 017 | 031 | 022 | 099 | 074 | 077
Observations | 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
Autumn
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Average
Mean 53.68 | 50.13 | 47.89 | 46.78 | 46.27 | 47.11 | 51.09 | 56.44 | 57.61 | 58.92 | 58.60 | 57.81 | 57.39 | 57.27 | 55.87 | 54.02 | 53.53 | 55.66 | 58.51 | 60.99 | 62.39 | 61.41 | 57.61 | 54.47 | 55.06
Median 5240 | 50.25 | 49.29 | 4832 | 47.33 | 4859 | 49.98 | 55.52 | 57.76 | 59.19 | 58.44 | 56.69 | 56.86 | 57.81 | 55.99 | 53.51 | 52.98 | 53.70 | 60.51 | 62.69 | 63.76 | 61.84 | 57.28 | 53.31 | 55.17
Maximum | 71.04 | 66.84 | 62.65 | 61.84 | 60.53 | 60.43 | 70.10 | 78.45 | 76.39 | 77.23 | 77.97 | 76.69 | 76.39 | 76.39 | 75.00 | 73.00 | 73.73 | 76.31 | 78.94 | 79.62 | 78.81 | 7561 | 70.27 | 70.00 | 72.68
Minimum | 36.36 | 30.00 | 24.47 | 24.88 | 23.85 | 25.00 | 25.23 | 29.00 | 32.00 | 33.80 | 33.60 | 33.25 | 34.05 | 34.81 | 35.15 | 33.96 | 33.25 | 3359 | 35.15 | 37.80 | 41.53 | 47.30 | 42.90 | 3850 | 33.31
Std. Dev. 768 | 699 | 697 | 683 | 674 | 624 | 769 | 986 | 998 | 911 | 848 | 819 | 756 | 737 | 7.35 | 781 | 835 | 959 | 1065 | 991 | 7.98 | 640 | 672 | 6.98 7.98
Skewness 0.25 | -0.08 | -0.66 | -0.99 | -1.13 | -0.90 | 0.00 | -0.12 | -0.19 | -0.17 | -0.16 | -0.09 | 0.00 | -0.10 | -0.07 | 0.00 | 0.04 | 0.09 | 004 | -021 | -0.20 | -0.02 | -0.05 | 0.07 -0.19
Kurtosis 275 | 310 | 375 | 427 | 462 | 419 | 397 | 278 | 257 | 282 | 332 | 335 | 357 | 371 | 369 | 338 | 295 | 245 | 217 | 223 | 226 | 223 | 218 | 261 3.12
Probability | 055 | 094 | 001 | 000 | 000 | 000 | 017 | 082 | 053 | 076 | 067 | 0.75 | 054 | 036 | 039 | 077 | 098 | 053 | 026 | 024 | 026 | 032 | 028 | 0.72
Observations | 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Table B1-2 statistics on seasonal day-ahead prices




(i)

Winter
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Average
Mean 57.16 | 52.06 | 48.70 | 45.38 | 44.19 | 45.95 | 51.06 | 59.98 | 63.87 | 66.57 | 67.84 | 66.88 | 65.63 | 6459 | 62.31 | 60.37 | 60.18 | 63.97 | 70.10 | 72.76 | 71.40 | 69.13 | 65.70 | 6128 | 60.71
Median 5550 | 51.46 | 48.98 | 45.37 | 44.69 | 46.80 | 51.31 | 60.56 | 66.23 | 70.00 | 7029 | 68.42 | 66.34 | 63.88 | 60.80 | 60.05 | 60.28 | 6550 | 72.78 | 7549 | 7283 | 6955 | 6541 | 60.03 | 61.35
Maximum | 9870 | 9244 [ 8599 | 79.60 | 76.18 | 79.04 | 8110 | 9837 | 100.31 | 101.18 | 10249 | 100.00 | 99.77 | 99.77 [ 97.73 | 95.00 | 9378 | 94.71 | 99.18 | 100.70 | 10150 | 99.67 | 101.35 | 9851 | 94.88
Minimum | 2263 | 1383 | 590 | 216 | 3.00 [ 150 | 151 | 386 | 510 1.00 | 1651 | 1945 | 1841 | 1658 | 13.19 | 8.60 | 10.71 | 1538 | 2097 | 2263 | 2293 [ 1991 | 11.91 | 1130 | 1204
Std Dey, | 1555 | 1524 | 1465 | 1500 | 1458 | 14.63 | 1569 | 17.96 | 1843 | 17.66 | 1609 | 1567 | 1521 [ 1520 | 1571 | 1644 | 1631 | 1604 | 1523 | 1450 | 14.34 | 1389 | 14.82 | 1487 [ 1557
Skewness 031 | 003 | -0.26 | -0.38 | -040 | 048 | 054 | -046 | -055 | -065 | -041 | 031 | -025 | -0.13 | -0.16 | -0.37 | -0.40 | -0.44 | -046 | 045 | -031 | -024 | -022 | 0.04 031
Kurtosis 334 | 401 | 429 | 398 | 395 | 422 | 415 | 398 | 382 4.36 3.63 340 | 347 | 348 | 343 | 369 | 334 | 305 | 295 | 3.25 330 | 361 | 403 | 375 3.69
Probability | 040 | 015 | 0.03 [ 006 | 005 | 001 | 001 [ 003 | 003 0.00 0.14 035 | 041 [ 057 | 059 | 014 | 025 | 023 | 021 | 020 042 | 032 | 009 | 035
Observations | 9° 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Spring
Hour 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 | Average
Mean 4453 | 42.08 | 39.88 | 38.40 | 37.97 | 38.83 | 42.06 | 45.38 | 47.27 | 48.39 | 47.87 | 47.02 | 46.37 | 4591 | 44.40 | 4273 | 42.05 | 42.44 | 4361 | 46.19 | 48.83 | 51.06 | 48.75 | 46.02 | 44.50
Median 4558 | 42.67 | 40.62 | 39.60 | 39.07 | 40.02 | 43.56 | 48.37 | 5054 | 51.00 | 50.39 | 49.00 | 4835 | 46.83 | 45.79 | 43.82 | 43.00 | 42.46 | 44.16 | 47.73 | 4998 | 5219 | 49.98 | 47.84 | 45.94
Maximum | 5550 | 5551 [ 5362 | 5215 | 52.15 | 52.13 | 5538 | 5634 | 59.95 | 59.58 | 5828 | 57.31 | 57.50 | 57.23 | 56.14 | 5593 | 5554 | 5554 | 5546 | 60.56 | 58.82 | 58.90 | 56.92 | 5447 [ 5629
Minimum | 1893 | 1080 | 11.84 | 1184 | 1119 [ 851 | 830 | 870 | 8.00 882 | 1090 | 10.00 [ 10.29 | 7.09 | 500 | 1.80 | 150 | 2.00 | 770 | 1267 | 1500 | 30.00 | 31.94 | 2854 | 1172
Std. Dev. 719 [ 735 | 714 | 783 | 789 | 829 | 852 | 9.02 | 9.39 8.36 7.72 759 | 767 | 794 | 840 | 897 | 931 | 903 | 7.77 | 6.79 575 | 502 | 504 | 6.12 7.67
Skewness | 0-96 | 0.99 [ -1.08 | -135 | -1.44 [ -161 [ -173 | -190 | -187 | 223 | -242 | -231 | -184 | -200 | -1.78 | -160 | -169 | -1.70 | -148 | -126 | -232 [ -188 | -0.94 | -082 | -163
Kurtosis 418 | 540 | 545 | 573 | 6.09 | 7.03 | 745 | 760 | 756 | 1011 | 1164 | 1125 | 881 | 1013 | 881 | 809 | 850 | 871 | 7.73 | 776 | 1429 | 814 | 377 | 293 7.80
Probability | 0% | 000 | 0.00 [ 000 | 000 | 000 [ 0.00 [ 000 | 0.00 0.00 0.00 000 | 000 [ 000 | 000 | 000 | 0.00 [ 0.00 | 0,00 | 0.00 000 | 000 | 000 | 0.01
Observations | 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Table B2-1 statistics on seasonal intraday prices




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Average
Mean 49.13 | 46.48 | 44.59 | 4376 | 4332 | 4346 | 44.71 | 46.96 | 48.83 | 50.14 | 50.40 | 50.66 | 51.49 | 51.80 | 51.30 | 49.99 | 49.35 | 48.86 | 48.60 | 4854 | 49.48 | 51.40 | 51.19 | 4828 | 4845
Median 50.30 | 4659 | 44.52 | 43.38 | 43.13 | 43.42 | 4459 | 47.63 | 50.00 | 51.49 | 51.85 | 51.65 | 52.12 | 52.01 | 51.46 | 50.31 | 50.42 | 50.15 | 49.43 | 49.26 | 50.31 | 52.03 | 5157 | 49.68 | 49.05
Maximum | 59-84 | 55.90 [ 5496 | 53.13 | 5270 | 54.03 | 54.79 | 57.93 | 58.72 | 50.21 | 59.99 | 59.96 | 6195 | 62.03 | 6150 | 61.30 | 60.96 | 60.10 | 59.25 | 58.69 | 50.19 | 59.35 | 59.05 | 58.01 | 58.44
Minimum | 3355 | 31.95 | 30.55 | 30.00 | 29.10 | 30.24 | 3350 | 3320 | 3320 | 34.93 | 36.15 | 39.40 | 4075 | 42.00 | 40.89 | 39.43 | 4040 | 37.49 | 37.47 | 40.10 | 40.21 | 4189 | 4182 | 39.00 | 3655
Std. Dev. 521 | 454 | 440 | 429 | 434 | 447 | 462 | 562 | 600 | 562 | 515 | 471 | 451 | 417 | 423 | 461 | 490 | 513 | 493 | 466 | 430 | 368 | 358 | 4.06 4.66
Skewness | 049 | 039 [ 026 | -038 | -0.37 | 0.30 [ -001 | -035 | -0.58 | 078 [ -0.62 | -0.50 | -0.38 [ 029 [ -038 | -0.15 | 0.11 [ -011 | -005 | 0.01 | 0.18 | -034 | -0.17 | -0.18 | -031
Kurtosis 308 | 352 | 366 | 405 | 382 | 343 | 255 | 261 | 274 | 302 | 272 | 262 | 281 | 294 | 315 | 263 | 236 | 219 | 220 | 211 | 239 | 266 | 267 | 222 2.84
Probability | 016 | 018 | 0.26 [ 004 | 010 | 036 | 068 [ 030 | 006 | 001 [ 005 | 011 | 031 | 053 | 031 | 065 | 041 [ 026 | 029 | 022 | 0.38 [ 034 | 065 | 0.25
Observations | 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
Autumn
Hour 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 | Average
Mean 52.96 | 50.04 | 47.93 | 46.47 | 45.88 | 46.69 | 50.33 | 56.20 | 57.42 | 58.83 | 58.35 | 57.48 | 57.20 | 57.11 | 55.73 | 53.60 | 53.05 | 54.96 | 57.96 | 60.39 | 61.80 | 61.10 | 57.15 | 53.87 | 54.69
Median 51.66 | 49.93 | 48.78 | 47.66 | 47.10 | 48.00 | 49.61 | 55.12 | 56.94 | 57.80 | 57.51 | 56.39 | 57.33 | 57.13 | 55.14 | 52.92 | 52.15 | 52.50 | 58.89 | 62.48 | 63.31 | 61.06 | 57.00 | 52.04 | 5452
Maximum | 7254 | 68.94 [ 62.62 | 61.34 | 57.34 | 56.80 | 70.80 | 77.73 | 78.39 | 79.23 | 79.77 | 78.93 | 78.15 | 7829 | 76.50 | 74.50 | 75.23 | 7831 | 80.94 | 81.62 | 80.81 | 77.51 | 7399 | 7105 | 7381
Minimum | 3209 | 2950 | 24.47 | 24.88 | 23.85 | 25.00 | 27.00 | 3050 | 33.10 | 3578 | 3560 | 37.50 | 3553 | 35.81 | 37.55 | 3505 | 3325 | 34.19 | 3654 | 37.20 | 4100 | 47.28 | 40.00 | 3843 | 33.80
Std. Dev. 802 | 712 | 702 | 686 | 661 | 637 | 7.95 | 1037 | 1065 | 9.83 | 924 | 891 | 836 | 821 | 798 | 842 | 878 | 996 | 11.02 | 1051 | 846 | 684 | 7.49 | 7.83 8.45
Skewness 033 | 008 | 055 | -1.03 | -1.27 | -1.04 | 011 | 0.02 | 007 | 0.02 | 016 | 027 | 031 | 025 | 043 | 042 | 038 | 036 | 018 | -0.12 | -0.06 | 024 | 0.12 | 0.30 0.01
Kurtosis 311 | 338 | 378 | 448 | 489 | 412 | 346 | 251 | 249 | 251 | 282 | 284 | 329 | 333 | 328 | 327 | 316 | 258 | 217 | 220 | 233 | 238 | 231 | 253 3.05
Probability | 43 | 072 | 0.03 [ 000 | 000 | 0.00 [ 061 | 063 | 058 | 064 | 078 | 054 | 041 [ 050 [ 022 | 023 [ 032 [ 027 | 021 | 027 [ 042 | 031 | 037 [ 034
Observations | 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Table B2-2 statistics on seasonal intraday prices




(i)

b1
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 2098 | 2887 | 2869 | 2828 | 2752 | 27.23 | 27.98 | 31.30 | 36.60 | 38.02 | 39.97 | 4053 | 40.94 | 4113 | 41.15 | 4047 | 4030 | 4030 | 40.11 | 4061 | 4053 | 4048 | 33.10 | 31.35 35.64
Median 2959 | 2868 | 2817 | 27.95 | 27.23 | 26.89 | 27.33 | 30.61 | 36.68 | 37.73 | 39.85 | 40.31 | 40.70 | 40.96 | 40.89 | 39.94 | 40.13 | 39.77 | 39.68 | 40.04 | 39.82 | 4011 | 3246 | 30.95 35.27
Maximum | 4457 | 4455 [ 4265 | 4208 | 4125 | 4143 | 4393 | 4601 | 5555 | 5575 | 56.65 | 57.18 [ 5632 | 56.88 | 56.76 | 56.88 | 56.90 | 6227 | 59.66 | 6272 | 6337 [ 6241 | 5377 [ 5126 52.95
Minimum 1752 | 1309 | 1560 | 17.75 | 1664 | 16.86 | 1332 | 17.41 | 2052 | 24.89 | 2648 | 2697 | 2721 | 2587 | 2581 | 27.12 | 27.09 | 27.05 | 25.80 | 24.76 | 25.00 | 26.10 | 20.06 | 7.78 2153
Std. Dev. 514 | 533 [508 |48 |493 |487 |[579 |55 |58 |56l |562 |575 |575 |58 |58 |58 |58 |613 |621 |611 |613 | 622 |59 |611 5.67
Skewness 017 [017 [039 [020 [030 [034 [042 [019 [021 [031 [010 [011 [015 |[011 [012 [025 |026 |036 |027 |028 [038 [029 |048 | 026 0.26
Kurtosis 28 [330 [291 [279 [261 |271 |28 [263 [317 [291 |[278 |28 |28 |29 |28 |29 |29 |[305 [271 [304 [318 [292 |308 | 334 2.93
Probability | 033 | 021 [ 001 [006 [002 |00L [000 [012 [022 [005 [050 [052 [048 [065 [058 [015 [013 [002 [005 [008 |00L [007 [000 [005
Observations | 362 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365
b2
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 831 | 795 799 | 789 | 787 | 817 | 892 | 971 | 1014 | 1032 | 1044 | 1037 | 1025 | 10.16 | 10.04 | 9.99 | 10.16 | 10.62 | 11.10 | 11.48 | 11.37 | 10.66 | 9.67 9.22 9.70
Median 818 | 795| 785 | 783 | 777 | 809 | 863 | 931 | 948 | 971 | 968 | 954 | 969 | 962 | 960 | 933 | 941 | 974 977 | 984 | 98 | 962 | 918 8.76 9.10
Maximum 1748 | 1890 | 2014 | 21.16 | 2278 | 2295 | 2142 | 2727 | 2984 | 2971 | 3015 | 2814 | 2933 | 28.16 | 2645 | 26.15 | 2540 | 2889 | 39.08 | 3887 | 37.07 | 31.89 | 2405 | 1897 26.84
Minimum 094 | 08| 097 114| 120 146 | 116 | 170 | 247 | 167 | 18| 18| 209 | 147 153 | 14| 172 169 | 249 180 | 155 | 154 | 160 | -1556 0.86
Std. Dev. 301 | 28| 303| 301| 293| 311 | 325| 355| 413 | 430 | 427 | 413 | 390 | 383 | 368 | 377 | 379 | 448 | 537 | 600| 601 | 498 | 364 3.37 3.93
Skewness 036 | 041 049 | 049 | o061 055| 057 | 107 | 133 127 | 133 | 133 125| 117 | 110 | 118 117 158 | 174 | 167 | 145| 135| 082 | -061 0.99
Kurtosis 325 | 384 | 377 | 38| 458 | 413 | 346 | 548 | 647 | 583 | 647 | 595| 607 | 578 | 513 | 511 | 502 | 634 | 724| 638 | 549 | 539 | 424 1048 5.38
Probability 0.01 | 000| 000| 000| 000| 000| 000| 000| 000[ 000| 000[ 000[ 000| 000[ 000| 000| 000[ 000[ 000| 000[ 000| 000| 000 0.00
365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365

Observations




(iv)

Table B3 statistics on estimated b, and b,

Date Description Full description source | whether accepted bids
Total demand Forward demand plus Intraday demand OMIE | yes

Renewable spot demand | Demand by renewable producer in intraday market | OMIE | yes

Forward demand Forward demand in day-ahead market OMIE | yes

Planned demand Forecasted total demand by planned schedule OMIE

Forecast demand Forecasted total demand by REE REE

Table B4 Data information for regression (20)




Winter

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 28679.59 | 26144.32 | 24682.68 | 23873.34 | 23440.60 | 24043.09 | 26118.05 | 29019.71 | 30277.82 | 32679.76 | 34587.01 | 35230.09 | 35311.45 | 35387.56 | 34670.89 | 33621.53 | 33176.48 | 33058.64 | 34827.93 | 35864.60 | 36214.99 | 36007.23 | 34145.70 | 31255.68 | 31346.61
Median 28805.90 | 26237.15 | 24684.55 | 24000.85 | 23136.10 | 24196.70 | 26805.90 | 29734.95 | 30012.05 | 32439.70 | 35038.15 | 35295.25 | 36109.50 | 35724.85 | 34841.35 | 33621.70 | 33206.75 | 32733.65 | 34645.60 | 35885.90 | 36184.15 | 36096.70 | 33795.55 | 31093.55 | 31430.27
Maximum | 3333240 [ 31960.10 | 31330.60 | 30921.70 | 30464.50 | 3080510 | 32314.00 | 39993.50 | 4245170 | 44186.00 | 45218.00 | 45584.50 | 45185.60 | 4531050 | 44797.80 | 44561.60 | 44028.30 | 43850.20 | 46064.00 | 47168.20 | 48079.40 | 44514.50 | 4191590 | 37237.30 | 40469.81
Minimum | 21009.60 | 17644.30 [ 17919.90 | 16263.70 | 15533.30 | 15895.70 | 1640340 | 16639.00 | 16953.50 | 20447.10 | 22076.70 | 22409.30 | 23194.80 | 24197.90 | 23839.90 | 19899.80 | 19883.00 | 18859.10 | 23918.90 | 24633.10 | 24618.10 | 24526.80 | 23795.70 | 22116.20 | 20528.28
Std. Dev. 2853.86 | 3162.97 | 3075.97 | 341896 | 3412.01 | 344893 | 373926 | 5025.14 | 5452.99 | 5503.05 | 5302.04 | 5049.74 | 4906.62 | 4612.80 | 4541.95 | 4861.87 | 4947.49 | 5230.14 | 5235.14 | 5316.94 | 491692 | 3891.89 | 344043 | 2936.89 | 4345.17
Skewness -0.47 -0.50 -0.16 -0.23 -0.20 -0.39 -0.68 -0.37 -0.05 -0.06 -0.25 -0.28 -0.36 0.29 031 -0.40 -0.36 0.27 0.00 -0.16 -0.06 0.30 -0.21 0.39 -0.28
Kurtosis 2.66 2.74 2.55 2.34 2.44 2.59 2.72 2.59 2.56 2.28 2.33 2.46 2.59 2.66 2.78 2.99 2.79 2.61 2.05 2.15 2.35 3.09 3.23 3.39 2.62
Probability 0.16 0.14 0.56 0.30 0.42 0.23 0.03 0.26 0.69 0.37 0.27 0.31 0.28 0.42 0.45 0.30 0.35 0.42 0.19 0.21 0.44 0.50 0.65 0.25
Observations 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Spring
Hour 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 25668.35 | 23684.57 | 22632.73 | 22006.90 | 21723.19 | 22061.73 | 23250.44 | 25345.08 | 26723.61 | 28662.84 | 30121.78 | 30471.04 | 3077322 | 30901.35 | 30419.28 | 29760.01 | 29312.31 | 2865857 | 28178.28 | 28504.49 | 29688.48 | 30825.76 | 29306.80 | 27183.98 | 27327.70
Median 26277.60 | 24004.85 | 22754.70 | 22073.65 | 22010.20 | 22284.25 | 23979.15 | 26551.00 | 28315.05 | 30707.40 | 31584.40 | 31663.35 | 32057.95 | 32102.80 | 31379.60 | 30753.55 | 30324.65 | 29876.00 | 29035.25 | 29212.10 | 30450.35 | 31716.65 | 29824.00 | 2754550 | 28186.83
Maximum | 29004.10 [ 27408.70 | 27430.70 | 27435.20 | 27383.80 | 27555.80 | 26791.30 | 30385.60 | 3250150 | 34122.20 | 35340.90 | 35868.30 | 36507.20 | 36227.30 | 35677.60 | 35393.60 | 35065.40 | 34951.30 | 33886.70 | 33871.10 | 34586.80 | 34733.20 | 33246.10 | 30697.40 | 32336.33
Minimum | 20765.70 | 18948.90 | 1816170 | 17485.30 | 17525.00 | 17567.90 | 18104.80 | 18131.60 | 18369.80 | 19874.00 | 21525.10 | 21809.30 | 21162.30 | 2193360 | 22530.20 | 21694.90 | 20502.50 | 20155.90 | 19288.40 | 2028170 | 21627.10 | 24533.30 | 23755.50 | 21861.10 | 20316.48
Std. Dev. 1786.86 | 192373 | 1986.34 | 2009.00 | 2047.84 | 204450 | 224429 | 3364.12 | 3941.77 | 4028.90 | 363570 | 3401.14 | 3615.06 | 3463.44 | 3281.83 | 3471.96 | 3553.73 | 3666.39 | 3430.32 | 3137.34 | 3160.76 | 2651.19 | 2093.36 | 1826.27 | 2906.91
Skewness -0.84 -0.53 0.11 0.04 0.04 0.19 071 -0.69 -0.51 -0.69 -0.90 -0.89 -0.84 0.82 072 -0.58 -0.65 055 -0.62 -0.48 055 0.61 051 -0.57 -0.56
Kurtosis 3.19 2.53 2.29 2.47 2.50 2.71 2.44 2.27 2.12 2.22 2.62 2.79 2.69 2.73 2.59 2.26 2.48 2.38 2.59 2.33 2.29 213 254 2.89 2.50
Probability 0.00 0.07 0.34 0.58 0.61 0.65 0.01 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.05 0.04 0.07 0.04 0.01 0.09 0.08
92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Observations

Table B5-1 statistics on total demand




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 29230.84 | 27189.68 | 25839.65 | 24929.30 | 24488.49 | 24444.46 | 25373.84 | 26616.28 | 28589.96 | 30910.07 | 32886.21 | 33792.11 | 34789.43 | 35233.79 | 35470.33 | 35124.26 | 3495851 | 34692.63 | 34092.48 | 33470.74 | 33028.43 | 32769.92 | 32568.36 | 30949.39 | 30893.30
Median 29312.95 | 27279.35 | 26099.90 | 25099.15 | 24679.25 | 24591.50 | 25692.90 | 27263.75 | 29405.85 | 31589.00 | 33651.65 | 34693.65 | 35731.35 | 36371.45 | 36622.70 | 36340.45 | 36083.55 | 35799.70 | 35144.35 | 34389.20 | 33573.20 | 33880.55 | 33063.25 | 31340.15 | 31570.78
Maximum | 3312310 [ 3048120 | 29035.70 | 28236.40 | 27832.70 | 2791820 | 2919050 | 32697.40 | 36376.70 | 38375.90 | 39989.80 | 40850.30 | 42188.40 | 42551.90 | 42616.00 | 42369.70 | 42191.60 | 41816.90 | 40857.70 | 39942.20 | 3913050 | 39053.20 | 37847.10 | 35433.80 | 3667112
Minimum | 25296.80 | 2309550 | 21869.20 | 20930.30 | 20588.30 | 20080.70 | 19728.30 | 19495.90 | 20052.80 | 21525.30 | 23175.70 | 24627.30 | 25747.20 | 26754.50 | 27177.20 | 26833.00 | 25968.90 | 25613.30 | 25705.40 | 25549.60 | 25821.60 | 24058.00 | 23923.90 | 26535.10 | 23756.41
Std. Dev. 188262 | 1694.17 | 1754.23 | 1808.30 | 1747.31 | 1861.30 | 2299.44 | 3317.44 | 3963.29 | 4198.91 | 401457 | 3916.21 | 4059.15 | 407382 | 3856.65 | 397652 | 4130.69 | 4142.66 | 3778.84 | 3486.44 | 318237 | 3509.94 | 2824.81 | 2171.14 | 315212
Skewness 0.00 0.15 0.24 -0.20 -0.14 0.17 -0.50 -0.44 -0.30 -0.38 -0.57 -0.54 -0.49 -0.44 -0.44 -0.40 -0.42 041 -0.39 -0.36 -0.36 -0.57 -0.57 -0.10 -0.36
Kurtosis 2.24 2.32 2.29 2.22 2.28 2.26 2.40 2.25 2.10 2.09 2.45 2.44 2.33 2.18 2.33 2.25 2.18 217 2.18 2.27 2.34 2.49 313 2.24 2.31
Probability 0.33 0.35 0.24 0.23 0.32 0.28 0.08 0.08 0.11 0.07 0.05 0.06 0.07 0.06 0.09 0.10 0.07 0.07 0.08 0.13 0.17 0.05 0.08 0.31
Observations 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
Autumn
Hour 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 27022.21 | 25021.63 | 24028.64 | 23396.63 | 23072.08 | 23347.20 | 25139.71 | 28273.47 | 30060.01 | 31715.71 | 32879.36 | 33379.26 | 33812.42 | 33945.05 | 33283.57 | 32645.38 | 32240.35 | 32451.28 | 33100.19 | 33659.05 | 34584.56 | 34087.69 | 31545.40 | 29026.71 | 30071.57
Median 27184.90 | 25168.40 | 24117.30 | 23551.70 | 23191.90 | 23481.80 | 25280.00 | 28381.70 | 30141.80 | 32658.30 | 33609.60 | 34402.60 | 35083.20 | 35174.10 | 34563.30 | 33853.00 | 33532.90 | 33595.00 | 33173.60 | 33391.60 | 34789.00 | 34486.90 | 31645.10 | 28761.60 | 30550.80
Maximum | 33038.90 [ 32406.70 | 30750.80 | 2912370 | 29055.60 | 30038.50 | 3232350 | 37073.00 | 40019.40 | 41721.80 | 42166.70 | 41512.70 | 4157180 | 41543.40 | 40786.90 | 40245.90 | 39562.40 | 40395.80 | 43126.10 | 43340.50 | 42908.70 | 41263.30 | 37800.70 | 34795.00 | 37773.83
Minimum | 22994.60 | 19437.80 [ 19785.80 | 19540.30 | 1944370 | 18725.40 | 19114.80 | 19234.60 | 19707.60 | 2107650 | 22358.00 | 23275.70 | 22702.90 | 23448.20 | 2361750 | 23217.80 | 22461.00 | 23002.80 | 23870.10 | 23796.20 | 25191.70 | 21245.60 | 21392.90 | 24927.60 | 21815.38
Std. Dev. 199150 | 2082.83 | 2007.78 | 1890.48 | 1883.42 | 2178.84 | 2796.20 | 454898 | 5357.19 | 5221.54 | 491242 | 4504.74 | 4377.80 | 416383 | 3959.16 | 4124.26 | 4231.83 | 4415.02 | 4828.49 | 5007.62 | 449147 | 4002.71 | 3078.97 | 2456.61 | 3688.07
Skewness 0.23 0.32 0.47 0.42 0.65 0.51 0.02 0.02 -0.14 -0.14 0.23 -0.36 -0.56 0.62 -0.59 -0.57 -0.60 0.40 -0.03 0.08 0.01 -0.58 -0.12 0.54 0.07
Kurtosis 3.10 436 3.91 358 4.02 3.48 2.80 2.22 2.16 2.29 2.56 2.56 2.62 2.64 2.66 2.50 2.38 2.22 2.33 2.18 2.29 3.55 323 2.77 2.85
Probability 0.65 0.01 0.04 0.14 0.01 0.09 0.93 0.31 0.23 0.33 0.46 0.25 0.07 0.04 0.06 0.05 0.03 0.09 0.43 0.26 0.38 0.05 0.81 0.10
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Observations

Table B5-2 statistics on total demand




Winter

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 26758.78 | 24466.54 | 23155.90 | 22413.90 | 22062.68 | 22611.36 | 24450.60 | 27042.68 | 28239.80 | 30510.31 | 32354.01 | 33075.03 | 33165.70 | 33292.39 | 32640.20 | 31677.90 | 31228.49 | 30998.52 | 32551.36 | 33476.95 | 3389350 | 33862.86 | 32240.02 | 29531.92 | 29404.23
Median 26917.15 | 24487.60 | 23214.70 | 22468.55 | 21892.20 | 22748.15 | 24994.30 | 27749.60 | 27602.45 | 30050.45 | 32407.50 | 33313.80 | 33557.70 | 33396.15 | 32649.05 | 31622.50 | 31630.60 | 31005.35 | 32475.00 | 33636.05 | 34184.25 | 34116.80 | 32038.65 | 29494.20 | 2948553
Maximum | 31555.00 [ 30388.70 | 29504.80 | 29183.60 | 28775.80 | 29847.20 | 31230.70 | 36770.60 | 39112.60 | 40910.40 | 4169450 | 42081.50 | 41997.60 | 41906.80 | 41197.10 | 40679.40 | 40115.00 | 39149.40 | 40996.30 | 41965.50 | 4281850 | 40444.90 | 38139.30 | 34559.50 | 37292.70
Minimum | 19362.30 | 16424.20 | 16247.80 | 14818.90 | 14506.90 | 14666.60 | 15339.80 | 15450.80 | 15780.60 | 18540.70 | 20515.60 | 2137180 | 22170.90 | 2296640 | 2227450 | 18576.80 | 18398.40 | 17447.30 | 22859.30 | 22714.30 | 22768.30 | 22619.20 | 22077.10 | 2044030 | 19097.83
Std. Dev. 269422 | 3014.13 | 2951.01 | 3289.57 | 3298.09 | 3336.15 | 3557.40 | 4702.12 | 517350 | 5236.04 | 500598 | 4748.64 | 463557 | 4337.16 | 426597 | 4511.04 | 4599.15 | 486222 | 4801.15 | 4932.27 | 460257 | 3691.04 | 3312.84 | 2837.97 | 4099.83
Skewness -0.54 0.41 0.14 -0.20 0.18 0.34 0.64 0.41 -0.01 -0.03 -0.27 -0.33 -0.38 031 -0.33 -0.45 -0.43 0.37 -0.11 -0.26 0.21 -0.38 -0.34 051 0.32
Kurtosis 2.90 2.79 2.71 2.44 2.54 2.69 2.78 2.55 2.46 2.15 2.23 2.37 2.49 2.55 2.61 2.93 2.75 2.50 1.93 2.06 2.19 2.90 2.99 3.31 2.58
Probability 0.11 0.26 0.73 0.41 0.54 0.35 0.04 0.20 0.57 0.25 0.19 0.21 0.21 0.34 0.33 0.22 0.22 0.22 0.11 0.12 0.21 0.34 0.43 0.12
Observations 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Spring
Hour 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 23599.50 | 21742.48 | 20780.69 | 20192.15 | 19963.25 | 20271.34 | 21227.91 | 23060.51 | 24478.03 | 26373.81 | 27907.68 | 28328.33 | 28662.55 | 2880154 | 28375.35 | 27788.79 | 27392.08 | 2676253 | 26269.78 | 26490.24 | 2758421 | 28706.77 | 27316.88 | 25282.73 | 25306.63
Median 24159.90 | 22088.50 | 21061.50 | 20398.80 | 20149.00 | 20423.05 | 21645.70 | 24308.30 | 25823.05 | 28075.75 | 29267.45 | 29344.10 | 29728.65 | 29832.30 | 29325.75 | 28747.60 | 28315.35 | 27792.25 | 27046.20 | 27305.25 | 28403.45 | 29709.85 | 27782.50 | 25642.05 | 26099.01
Maximum | 2658220 | 25884.30 | 25416.90 | 25299.60 | 25090.50 | 25087.40 | 24612.60 | 2704540 | 29833.40 | 31523.20 | 32459.80 | 32913.20 | 3371240 | 33996.20 | 33210.30 | 33515.80 | 33561.90 | 33389.10 | 31791.80 | 31401.10 | 3205220 | 32366.90 | 30788.00 | 28882.80 | 30017.38
Minimum | 1904140 | 1720110 [ 16601.70 | 15698.40 | 15659.40 | 15958.30 | 16124.40 | 15861.40 | 16379.60 | 18012.30 | 19146.90 | 2000450 | 19960.40 | 20546.80 | 20591.10 | 19875.50 | 19214.00 | 18932.20 | 18415.60 | 18671.40 | 19454.10 | 22373.60 | 21631.90 | 19397.60 | 18531.40
Std. Dev. 1766.20 | 1890.73 | 1959.97 | 1982.60 | 2012.96 | 2008.30 | 220822 | 3113.46 | 3733.58 | 3842.60 | 3478.40 | 3240.11 | 344564 | 331176 | 3162.57 | 3309.33 | 3412.16 | 3506.53 | 3271.79 | 2986.37 | 3032.11 | 2614.43 | 210573 | 1840.25 | 2801.49
Skewness -0.67 0.39 -0.09 -0.02 -0.05 0.28 -0.69 073 -0.46 -0.66 -0.88 -0.87 -0.80 0.78 -0.68 -0.56 -0.58 -0.48 -0.51 -0.46 -0.64 0.67 -0.59 -0.69 -0.55
Kurtosis 2.78 2.45 2.26 2.42 243 2.57 2.49 2.34 2.04 2.15 2.58 2.75 2.57 2.61 2.53 2.25 2.40 2.26 2.39 2.27 2.33 2.23 2.62 3.16 2.45
Probability 0.03 0.17 0.33 0.52 0.52 0.39 0.02 0.01 0.03 0.01 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.07 0.07 0.02 0.01 0.05 0.03
92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Observations

Table B6-1 statistics on forward demand




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 26988.51 | 25074.54 | 23822.60 | 2293452 | 22571.25 | 22524.83 | 23364.48 | 24533.75 | 26358.24 | 28597.30 | 30590.21 | 31485.74 | 32421.33 | 32850.46 | 33072.82 | 32813.97 | 32694.70 | 32475.88 | 31887.67 | 31364.66 | 30932.65 | 30617.40 | 30418.92 | 28831.67 | 28717.84
Median 27209.65 | 25135.50 | 24046.85 | 23168.15 | 22755.05 | 22623.35 | 23571.50 | 24948.30 | 26802.70 | 29115.85 | 3120150 | 32193.25 | 33300.45 | 34120.15 | 34161.65 | 33904.15 | 33847.80 | 33699.15 | 32868.25 | 32220.50 | 31497.00 | 31483.00 | 30756.60 | 28942.15 | 2931552
Maximum | 30639.40 | 28208.20 | 26773.30 | 25836.10 | 25597.70 | 25784.20 | 26998.50 | 30260.50 | 3349950 | 35743.50 | 37295.20 | 38075.20 | 39358.20 | 39794.90 | 39707.30 | 39610.80 | 39466.10 | 39154.60 | 38183.30 | 37438.10 | 36931.00 | 37012.60 | 3597530 | 33349.60 | 34195.55
Minimum | 2297970 | 20969.10 | 1984550 | 19077.80 | 18746.40 | 18575.50 | 1846150 | 17976.70 | 18570.10 | 19892.80 | 21597.30 | 22932.80 | 23838.70 | 24756.20 | 25146.40 | 24826.40 | 24369.30 | 23948.60 | 23896.80 | 24016.80 | 24107.10 | 21952.10 | 21565.50 | 24317.20 | 21931.93
Std. Dev. 1889.51 | 169274 | 1664.21 | 1698.06 | 1648.02 | 1728.93 | 2167.90 | 3111.10 | 3759.76 | 4019.89 | 383395 | 3755.19 | 3907.45 | 3949.60 | 3768.99 | 3867.26 | 3970.13 | 3969.06 | 3653.82 | 337358 | 3158.17 | 3542.18 | 2887.89 | 2199.58 | 3050.71
Skewness -0.13 0.26 0.28 0.22 -0.18 -0.20 -0.45 -0.37 -0.24 -0.33 -0.53 -0.50 -0.46 -0.40 0.42 -0.39 -0.37 0.39 -0.38 -0.34 0.33 -0.52 -0.56 -0.05 0.35
Kurtosis 2.18 2.28 2.23 2.15 2.27 2.24 2.35 2.23 2.07 2.06 2.41 2.40 2.29 213 2.26 2.21 2.13 2.15 2.17 2.21 2.27 2.44 317 2.30 2.27
Probability 0.24 0.22 0.18 0.17 0.28 0.25 0.09 0.11 0.12 0.08 0.06 0.07 0.08 0.07 0.09 0.10 0.08 0.07 0.09 0.12 0.16 0.07 0.08 0.39
Observations 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
Autumn
Hour 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 24849.73 | 23090.93 | 22228.01 | 21658.11 | 21390.55 | 21595.26 | 23035.97 | 25617.45 | 27189.15 | 28725.27 | 29930.54 | 30577.00 | 31029.15 | 31243.24 | 30613.50 | 30068.10 | 29620.11 | 29555.32 | 29805.11 | 30228.95 | 31106.94 | 30840.96 | 28841.13 | 26666.97 | 27479.48
Median 24902.10 | 23249.50 | 22292.30 | 21741.70 | 21304.60 | 21589.10 | 22950.20 | 25700.60 | 27413.20 | 29402.70 | 30304.50 | 31170.30 | 32050.70 | 32259.20 | 31528.90 | 31089.30 | 30676.10 | 30642.70 | 30068.10 | 30213.80 | 31420.50 | 31514.80 | 28868.00 | 26450.30 | 27866.80
Maximum | 3071260 [ 29289.30 | 28368.80 | 27164.30 | 26995.20 | 27877.00 | 29237.50 | 33768.80 | 35869.70 | 37488.40 | 38270.20 | 38266.80 | 38498.70 | 38463.30 | 37673.30 | 37096.90 | 36432.10 | 36529.30 | 38821.60 | 39652.70 | 39843.70 | 37741.00 | 35024.60 | 32464.30 | 34647.92
Minimum | 20265.00 | 17994.70 [ 1779110 | 17185.60 | 16830.60 | 16725.00 | 1671530 | 16770.90 | 17068.60 | 18717.80 | 20261.50 | 21546.80 | 20693.90 | 22009.40 | 21609.50 | 21275.30 | 20746.10 | 21024.30 | 21612.70 | 22039.40 | 22917.10 | 19541.00 | 19605.00 | 22234.70 | 19715.89
Std. Dev. 1901.32 | 1968.96 | 1978.48 | 1898.08 | 1912.07 | 2207.70 | 2597.74 | 4017.79 | 4683.04 | 4647.13 | 4369.14 | 4068.63 | 3976.95 | 3796.32 | 3621.61 | 3738.15 | 3798.85 | 3813.38 | 4080.23 | 4241.00 | 3801.19 | 3592.00 | 2890.61 | 2290.46 | 3328.78
Skewness 0.33 0.34 0.43 0.38 0.51 0.43 -0.08 -0.07 -0.18 -0.20 0.30 -0.38 -0.58 0.62 -0.60 -0.60 -0.65 -0.54 -0.05 0.09 0.04 -0.56 -0.07 0.42 0.10
Kurtosis 337 3.96 371 345 3.78 341 2.93 2.31 2.22 2.32 2.64 2.65 2.75 2.71 2.72 2.56 2.45 2.36 252 2.42 2.59 3.71 332 2.87 2.91
Probability 0.33 0.07 0.09 0.22 0.04 0.18 0.95 0.39 0.25 0.31 0.39 0.27 0.07 0.05 0.06 0.04 0.02 0.05 0.64 0.50 0.72 0.03 0.79 0.26
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Observations

Table B6-2 statistics on forward demand




Winter

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 158.52 144.04 145.61 155.68 158.75 158.45 150.43 137.51 154.89 180.09 188.01 189.61 183.10 182.65 178.61 174.26 179.71 169.31 164.09 171.71 170.91 169.08 158.09 152.77 165.66
Median 126.65 101.65 100.35 121.75 125.50 122.25 127.10 106.65 126.50 158.90 168.65 170.40 149.25 152.55 152.95 149.25 149.55 142.40 132.45 142.30 131.80 132.80 123.40 122.80 134.91
Maximum 524.60 532.30 787.10 466.50 481.00 458.10 551.40 457,50 519.50 682.50 643.10 609.20 591.60 626.80 653.80 694.50 666.40 665.90 622.00 635.70 688.80 687.90 665.90 684.00 608.17
Minimum 38.00 38.40 32.20 33.90 33.20 33.20 30.60 25.20 17.10 39.00 37.50 47.60 32.90 30.20 21.80 23.20 30.80 26.60 29.60 29.40 29.80 33.40 18.20 22.00 30.58
Std. Dev. 110.49 103.74 120.02 102.27 110.48 110.35 105.57 97.03 101.62 111.67 112.53 112.34 112.47 115.54 112.02 114.52 122.50 112.99 104.12 113.85 122.29 121.30 109.74 109.00 111.19
Skewness 1.46 151 2.54 1.11 1.04 1.02 1.57 1.26 1.15 1.45 1.17 1.25 1.22 1.26 1.18 1.36 1.28 1.45 1.29 1.39 1.66 155 1.57 1.75 1.40
Kurtosis 4.71 498 11.63 3.64 317 3.26 5.74 4.07 3.99 6.37 4.76 479 4.45 490 5.23 6.25 4.91 6.07 5.60 5.16 6.18 6.33 6.88 8.12 5.47
Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Observations 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Spring
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 163.14 146.01 147.73 144.61 140.18 137.54 137.41 152.73 163.20 185.11 191.25 186.53 182.77 186.63 177.78 175.08 170.21 176.99 171.72 167.55 187.49 191.09 175.85 170.92 167.90
Median 134.70 118.80 116.05 121.35 123.15 117.75 117.20 132.75 138.40 160.55 167.25 160.85 147.90 163.80 156.50 156.80 140.90 147.60 143.60 152.35 177.75 169.50 167.90 161.30 145.61
Maximum 582.60 397.00 494.40 454.10 447.80 386.60 406.40 483.00 525.40 593.90 641.00 636.90 708.60 679.90 720.30 710.30 683.60 642.10 617.10 546.20 513.90 606.10 478.70 415.60 557.15
Minimum 48.80 32.00 28.30 35.40 31.20 19.80 34.80 30.40 33.80 28.40 29.20 28.00 22.80 22.10 2250 22.30 25.50 32.40 31.60 29.10 26.30 27.60 24.40 24.70 28.81
Std. Dev, 88.25 85.08 95.15 88.91 80.14 78.56 73.95 87.54 97.86 107.38 111.66 104.01 108.82 107.62 104.31 101.44 106.90 103.86 109.59 96.72 99.71 109.03 87.97 81.25 96.49
Skewness 1.52 1.09 1.32 1.36 1.20 0.98 1.39 1.49 1.35 1.21 1.27 1.37 1.76 1.64 1.81 1.91 1.96 1.77 2.00 1.39 0.78 1.32 0.98 0.69 1.40
Kurtosis 6.90 3.55 432 4.56 4.39 3.28 5.17 5.40 476 4.67 5.46 6.04 8.05 7.31 9.51 10.00 8.48 7.29 7.67 5.46 3.39 494 3.92 3.18 5.74
Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02
92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Observations

Table B7-1 statistics on renewable spot demand




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 30317 | 27212 | 256.49 | 266.33 | 249.21 | 242.89 | 254.98 | 247.30 272.90 288.47 310.26 310.15 31214 | 32287 | 31323 | 324.63 325.99 326.45 317.51 289.11 314.98 316.96 301.99 | 290.26 292.93
Median 302.85 | 259.55 | 236.70 | 239.05 | 22560 | 22350 | 22450 | 225.95 271.55 271.80 283.60 287.10 299.80 | 291.20 | 294.00 | 302.00 312.15 306.30 293.40 277.10 301.70 295.45 293.85 | 288.30 275.29
Maximum 596.70 | 584.30 | 747.70 | 745.60 | 72290 | 660.00 | 627.70 | 916.80 | 1138.00 | 1150.00 | 1120.00 | 1121.60 | 1047.90 | 967.50 | 888.10 | 862.60 826.50 789.00 771.80 752.00 810.20 | 1007.00 87250 | 526.10 843.85
Minimum 73.90 69.40 59.50 77.30 75.30 60.30 53.10 67.60 94.50 74.30 73.90 63.80 46.40 45.90 62.30 65.90 65.30 65.30 50.20 4750 50.10 53.30 44,50 58.10 62.40
Std. Dev. 124.65 | 12310 | 127.25 | 13580 | 128.94 | 13012 | 129.68 | 131.34 140.79 141.37 154.03 154.87 156.30 | 16530 | 156.61 | 160.29 160.27 153.46 150.53 143.45 153.42 159.83 14091 | 121.43 143.49
Skewness 0.23 0.47 1.05 1.24 1.28 0.97 0.84 1.75 2.66 2.68 1.92 1.80 1.37 1.20 1.12 0.99 0.92 0.77 0.68 0.72 0.64 1.15 0.89 0.08 1.14
Kurtosis 2.54 2.73 4.40 461 5.10 3.82 3.25 9.03 16.75 16.55 10.08 9.94 7.28 5.12 4.85 421 4.14 3.79 3.48 3.23 331 5.52 4.78 2.25 5.86
Probability 0.44 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.04 0.00 0.00 0.32
Observations 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
Autumn
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 27479 | 25171 | 239.04 | 23497 | 23342 | 23958 | 24355 | 293.13 309.23 346.25 357.58 373.76 386.74 | 39242 | 37456 | 378.41 379.20 412.60 437.49 444,07 448.46 429.71 398.90 | 358.65 343.26
Median 24350 | 22620 | 20310 | 21340 | 230.10 | 22850 | 193.00 | 278.10 275.80 322.60 321.00 347.00 369.10 | 380.90 | 352.80 | 362.60 327.50 386.80 391.20 458.10 438.00 406.20 397.00 | 352.20 321.03
Maximum 71520 | 75830 | 557.10 | 590.80 | 640.00 | 646.90 | 882.30 | 830.20 755.60 918.80 940.40 988.70 97530 | 969.20 | 986.10 | 98550 | 116750 | 1090.00 | 1094.00 | 113460 | 1159.60 885.10 | 100530 | 946.50 900.96
Minimum 54.50 37.70 63.40 52.10 28.10 39.40 38.50 29.20 34.60 60.40 57.70 71.90 78.70 81.40 78.20 69.70 63.30 44.40 34.80 33.30 26.90 26.20 38.20 40.30 49.29
Std. Dev. 147.02 | 14253 | 12382 | 12295 | 12257 | 12633 | 15256 | 16557 171.68 189.46 188.11 195.67 204.10 | 200.10 | 189.88 | 201.19 216.05 234.87 251.98 246.72 219.45 21353 20059 | 17371 183.35
Skewness 0.95 1.03 0.76 0.83 0.72 0.93 1.54 0.92 0.54 0.71 0.85 0.75 0.71 0.68 0.78 0.91 1.16 0.64 0.45 0.37 0.36 0.23 0.53 0.64 0.75
Kurtosis 3.50 3.96 2.74 3.12 3.28 3.92 5.68 3.86 2.55 3.14 3.38 3.20 3.20 3.30 3.53 3.73 457 2.87 2.50 2.63 3.25 2.40 315 3.63 3.38
Probability 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.08 0.02 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.04 0.13 0.28 0.34 0.34 0.12 0.02
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Observations

Table B7-2 statistics on renewable spot demand




Winter

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 36404.46 | 34064.11 | 32860.89 | 32636.26 | 32549.85 | 32439.19 | 33156.07 | 35976.54 | 38638.90 | 41034.78 | 42748.33 | 43247.96 | 43181.78 | 43312.71 | 42573.48 | 41798.03 | 41091.51 | 40874.75 | 42789.03 | 44911.33 | 4594431 | 45588.20 | 43060.05 | 39609.57 | 39603.84
Median 36585.05 | 34166.20 | 32885.15 | 32925.45 | 32954.75 | 32735.40 | 33291.60 | 37157.75 | 40633.60 | 43367.75 | 44592.15 | 44523.35 | 44174.75 | 44107.00 | 42894.60 | 42422.40 | 42062.00 | 41832.00 | 43083.35 | 45620.90 | 4642135 | 45924.25 | 43106.45 | 39760.90 | 40301.17
Maximum | 41722:90 | 38815.30 | 37595.30 | 36895.70 | 36708.80 | 37305.30 | 39151.80 | 4143220 | 4501350 | 47486.70 | 48769.20 | 49027.50 | 49158.30 | 4868450 | 47656.30 | 46920.20 | 46353.30 | 46710.60 | 49546.10 | 50774.70 | 51702.00 | 51056.80 | 47729.00 | 44501.20 | 45029.88
Minimum | 30351.90 | 27966.10 | 26680.00 | 2568150 | 25521.30 | 2555050 | 25823.00 | 26315.20 | 26825.90 | 28501.60 | 30244.20 | 3085350 | 31678.20 | 3261340 | 33090.40 | 32516.80 | 31610.10 | 29857.70 | 32907.80 | 35046.40 | 36308.60 | 3683120 | 36040.30 | 33320.60 | 30506.05
Std. Dev. 203542 | 2076.04 | 2190.43 | 2255.16 | 2205.66 | 2236.47 | 2552.70 | 3811.94 | 4942.35 | 5000.69 | 4528.60 | 4146.48 | 402271 | 3735.81 | 343482 | 3624.86 | 373320 | 3903.88 | 3906.33 | 3596.13 | 3430.04 | 3259.38 | 2786.34 | 2277.75 | 3320.55
Skewness -0.52 -0.34 0.27 -0.60 -0.56 -0.40 -0.40 -0.61 -0.57 -0.68 -0.78 -0.75 -0.65 -0.65 0.62 -0.57 -0.56 -0.52 -0.39 -0.55 -0.54 -0.50 -0.51 -0.54 -0.55
Kurtosis 391 3.55 3.09 3.61 3.47 3.43 3.26 2.23 2.02 2.24 2.67 2.85 2.64 2.76 271 2.42 2.35 2.40 2.38 2.66 2.83 2.84 2.83 3.14 2.85
Probability 0.03 0.23 0.57 0.03 0.06 0.22 0.26 0.02 0.01 0.01 0.01 0.01 0.03 0.04 0.05 0.05 0.04 0.07 0.16 0.09 0.11 0.15 0.14 0.11
Observations 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Spring
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 33005.20 | 31115.97 | 30094.46 | 29524.48 | 29225.30 | 29247.92 | 30065.10 | 32360.07 | 34963.08 | 37266.87 | 38634.56 | 39055.01 | 39404.76 | 39329.18 | 38631.68 | 38038.21 | 37502.78 | 36902.77 | 36250.62 | 36833.12 | 38489.41 | 39765.35 | 37950.88 | 35169.99 | 35367.78
Median 33375.85 | 31239.70 | 30126.85 | 29592.30 | 29289.50 | 29312.85 | 30647.35 | 33675.10 | 36723.85 | 39059.50 | 40094.15 | 40360.25 | 40837.90 | 40364.65 | 39771.50 | 39161.65 | 38725.15 | 38191.50 | 37446.00 | 37400.35 | 38880.25 | 40351.80 | 38427.70 | 35467.55 | 36188.47
Maximum | 35983:80 | 34899.50 | 34313.00 | 34230.40 | 3417610 | 33914.20 | 33274.50 | 36652.40 | 40087.80 | 42826.50 | 44079.40 | 44253.70 | 4414770 | 43580.60 | 4303140 | 42882.20 | 43225.00 | 4203170 | 40494.60 | 42641.90 | 45351.00 | 44800.40 | 42479.30 | 3965330 | 40125.43
Minimum | 27837:30 | 25908.30 | 25064.00 | 24329.50 | 24176.20 | 24122.30 | 24106.60 | 23642.70 | 24941.40 | 27042.70 | 28340.80 | 2956330 | 3022300 | 30526.70 | 29609.50 | 28881.70 | 28316.60 | 27889.40 | 27763.40 | 2757370 | 28638.10 | 32486.90 | 31566.00 | 28879.60 | 2755957
Std. Dev, 177355 | 1842.04 | 207507 | 2150.94 | 218336 | 2158.29 | 212534 | 3216.41 | 4110.66 | 4270.32 | 3920.65 | 3573.74 | 3485.47 | 330820 | 3199.21 | 329591 | 3319.70 | 3310.96 | 314655 | 340591 | 3791.03 | 3041.64 | 2307.40 | 193315 | 2956.06
Skewness -0.67 0.33 -0.01 0.04 0.01 -0.09 0.77 -0.85 -0.83 -0.90 -0.93 -0.90 -0.92 -0.95 -0.96 -0.90 -0.81 -0.80 0.74 -0.56 -0.46 0.63 071 0.79 -0.64
Kurtosis 2.86 2.79 2.65 2.70 2.71 2.68 2.86 2.62 2.39 2.60 2.85 2.82 2.78 2.95 2.99 2.79 2.68 2.50 2.40 2.64 2.74 2.77 321 3.80 2.78
Probability 0.03 0.41 0.79 0.83 0.85 0.77 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.07 0.18 0.04 0.02 0.00
92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Observations

Table B8-1 statistics on planned demand




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 35800.83 | 33585.81 | 32186.39 | 31341.64 | 30893.87 | 30791.07 | 31502.62 | 33013.41 | 35344.42 | 38132.71 | 40071.64 | 41167.40 | 4223581 | 42755.75 | 42550.06 | 42075.60 | 41821.42 | 41505.38 | 40902.73 | 40441.79 | 40240.96 | 40601.60 | 40067.35 | 37900.68 | 37788.79
Median 36222.75 | 33947.20 | 32368.15 | 31522.60 | 31039.80 | 30986.20 | 31951.80 | 33728.10 | 36467.30 | 39313.05 | 41171.15 | 42311.40 | 43497.60 | 44091.05 | 43819.10 | 43164.25 | 42808.80 | 42651.45 | 41948.70 | 41420.30 | 41388.10 | 41257.50 | 40386.40 | 38092.65 | 38564.81
Maximum | 39145.70 | 36564.10 | 34928.80 | 34463.80 | 34224.50 | 34302.70 | 35180.90 | 37992.30 | 4165110 | 44597.50 | 46369.30 | 47264.90 | 48648.40 | 4909520 | 48958.80 | 48863.70 | 48684.30 | 48230.00 | 4729240 | 46586.40 | 46213.10 | 46059.10 | 44987.80 | 42037.10 | 43014.25
Minimum | 3153070 | 29986.60 | 2875250 | 27745.70 | 27090.10 | 26633.10 | 26463.00 | 26488.20 | 26923.70 | 28834.10 | 3076170 | 32218.40 | 33130.20 | 33624.00 | 33384.60 | 33021.30 | 33347.40 | 32968.20 | 33213.60 | 33616.90 | 33652.80 | 34058.20 | 34622.50 | 32895.50 | 31040.13
Std. Dev. 1797.98 | 156151 | 1499.03 | 152268 | 151952 | 1587.73 | 1999.50 | 2825.96 | 3706.06 | 4110.44 | 401335 | 392356 | 4085.27 | 398272 | 3899.29 | 403048 | 4117.95 | 411573 | 378851 | 3426.85 | 3165.03 | 2786.13 | 2347.56 | 2022.14 | 2993.12
Skewness -0.32 -0.37 -0.26 -0.27 -0.26 -0.38 -0.62 -0.63 -0.66 -0.74 0.77 -0.76 -0.70 -0.67 -0.60 -0.53 -0.49 -0.50 -0.48 -0.42 0.41 0.37 0.22 0.21 -0.48
Kurtosis 2.26 2.28 2.26 2.48 2.63 2.75 2.67 2.49 2.39 2.51 2.62 2.60 2.47 2.44 2.39 2.30 2.16 2.18 2.18 2.20 2.28 2.38 2.48 2.56 2.42
Probability 0.16 0.13 0.21 0.34 0.46 0.29 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.04 0.04 0.05 0.08 0.10 0.16 0.41 0.50
Observations 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
Autumn
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 32884.63 | 31151.92 | 30216.87 | 29743.71 | 29488.09 | 29465.89 | 30531.66 | 33098.01 | 34964.84 | 36839.15 | 38258.80 | 38976.23 | 39573.78 | 39804.35 | 39115.90 | 38477.52 | 37930.20 | 37480.45 | 37640.13 | 38334.05 | 40089.99 | 40174.22 | 37621.73 | 34974.25 | 3570152
Median 32945.80 | 31187.10 | 30234.30 | 29793.20 | 29628.30 | 29566.70 | 31043.50 | 34077.80 | 36185.40 | 38349.30 | 39414.90 | 40161.70 | 40864.00 | 40959.30 | 40174.00 | 39556.50 | 39114.40 | 38806.00 | 38099.60 | 38666.40 | 40585.30 | 40562.40 | 37849.40 | 34944.90 | 36365.43
Maximum | 3725250 | 36783.80 | 35929.20 | 35313.40 | 35220.20 | 35209.90 | 35655.80 | 40132.40 | 42950.00 | 44918.00 | 46009.80 | 45819.50 | 45935.20 | 45804.00 | 44892.30 | 44277.00 | 43583.10 | 43867.20 | 46738.00 | 48003.80 | 49023.60 | 48372.00 | 45247.80 | 40384.10 | 42388.44
Minimum | 2942040 | 27798.00 | 26812.30 | 25904.20 | 25400.20 | 25178.30 | 25179.30 | 25304.80 | 25616.20 | 27560.60 | 28951.70 | 30537.90 | 31365.80 | 31943.00 | 31613.50 | 30664.50 | 30060.80 | 28538.80 | 28745.00 | 20778.80 | 32872.40 | 3420240 | 32407.90 | 30350.20 | 29008.63
Std. Dev, 1813.97 | 1662.80 | 1697.23 | 1792.63 | 1831.48 | 1830.05 | 206854 | 339552 | 4198.59 | 4240.80 | 387953 | 3604.36 | 3596.35 | 3374.82 | 316041 | 3388.02 | 3496.68 | 3697.37 | 3878.17 | 3882.39 | 3486.80 | 3044.81 | 255525 | 2062.62 | 2984.97
Skewness 0.02 0.32 0.42 0.40 0.40 0.32 043 -0.46 -0.53 -0.63 0.72 -0.74 -0.78 0.78 0.72 071 071 -0.66 -0.23 0.07 0.00 0.09 0.42 0.39 0.22
Kurtosis 257 3.52 3.87 3.78 3.94 3.75 3.25 2.54 2.41 2.60 2.88 2.73 2.54 2.58 2.58 2.43 2.36 2.35 2.75 2.92 2.94 2.96 3.56 3.43 2.97
Probability 0.70 0.28 0.06 0.09 0.06 0.16 0.22 0.13 0.06 0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.58 0.96 0.99 0.94 0.15 0.22
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Observations

Table B8-2 statistics on planned demand




Winter

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 147005.3 | 181617.3 | 179862.7 | 160151.7 | 161457.4 | 135386.2 | 132465.5 | 147433.0 | 148462.0 | 147776.4 | 157098.4 | 154396.5 | 156492.2 | 169906.1 | 171100.5 | 161675.7 | 142856.7 | 142585.7 | 151496.6 | 149984.3 | 156579.9 | 171449.1 | 168502.2 | 153363.4 | 156212.7
Median 151224.0 | 206090.5 | 198565.0 | 1871515 | 173095.5 | 145697.0 | 139552.5 | 157151.0 | 175905.5 | 166918.5 | 162960.0 | 164034.5 | 171486.5 | 195151.0 | 1811345 | 169124.5 | 156116.0 | 150890.0 | 167222.0 | 170919.0 | 163070.5 | 192792.0 | 181141.0 | 159904.5 | 170304.0
Maximum | 2175930 | 2390350 | 2185280 | 213673.0 | 209789.0 | 186068.0 | 195997.0 | 189863.0 | 192622.0 | 1992050 | 230706.0 | 2326780 | 230358.0 | 2335350 | 227479.0 | 211305.0 | 2015840 | 1921310 | 203337.0 | 199695.0 | 218674.0 | 228717.0 | 225579.0 | 232989.0 | 2137975
Minimum 11831.0 1539.0 | 14129.0 1884.0 14410 | 12176.0 1268.0 14950 | 13569.0 1516.0 | 15132.0 1842.0 | 13617.0 | 18279.0 1964.0 2005.0 1914.0 1892.0 1851.0 13420 | 12914.0 1527.0 | 17306.0 | 14655.0 6962.0
Std. Dev 518735 | 60497.4 | 48902.2 | 62599.6 | 45375.8 | 40869.9 | 52780.8 | 44130.8 | 56935.9 | 54121.9 | 519035 | 57231.2 | 592834 | 657632 | 52113.4 | 48273.0 | 54488.1 | 42468.0 | 542785 | 545715 | 48653.1 | 60276.4 | 49617.2 | 54049.2 | 52960.7
1.4 -1.8 2.3 -1.6 2.1 2.1 -1.4 2.1 1.7 -1.8 -15 1.4 -15 -15 -1.9 2.0 -1.6 2.1 1.7 1.7 -1.7 -1.8 2.0 -1.3 -1.7
Skewness

Kurtosis 46 5.7 7.9 4.2 7.6 7.0 41 7.0 43 49 5.2 46 43 4.0 6.6 6.8 43 7.2 5.0 4.8 5.8 5.2 6.6 45 55

Probability 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Observations 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

Spring
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 1573645 | 187688.4 | 160774.3 | 156677.0 | 161732.0 | 154929.5 | 161807.3 | 137848.7 | 148580.0 | 135344.8 | 155655.1 | 179172.2 | 166531.7 | 161466.5 | 162030.3 | 161591.7 | 167447.6 | 154439.9 | 157282.4 | 150742.1 | 145013.3 | 163431.8 | 167164.8 | 185444.5 | 160006.7
Median 165192.0 | 196773.5 | 167415.0 | 1642405 | 177153.5 | 178203.0 | 174206.5 | 149823.0 | 152313.0 | 151173.0 | 166708.0 | 201803.5 | 178497.0 | 171091.0 | 173949.0 | 168588.0 | 1831975 | 177938.5 | 170182.0 | 151952.0 | 151951.5 | 173932.5 | 190456.5 | 206192.5 | 172622.2
Maximum | 2171470 | 246889.0 | 212366.0 | 212452.0 | 2066130 | 2116530 | 1966850 | 1897920 | 1907050 | 197764.0 | 198136.0 | 234638.0 | 215124.0 | 222154.0 | 2328430 | 220528.0 | 2160450 | 198797.0 | 205209.0 | 196389.0 | 200102.0 | 2177980 | 2367930 | 230739.0 | 2128067
Minimum 149.0 | 147370 17540 | 12801.0 1583.0 | 13381.0 | 13561.0 | 11973.0 1377.0 12730 | 14286.0 22420 | 13831.0 | 14905.0 156.0 1486.0 | 14789.0 196.0 193.0 | 13091.0 1403.0 1438.0 | 15888.0 1598.0 7003.8
Std. Dev 56737.7 | 52899.0 | 456789 | 49359.3 | 45688.2 | 57305.8 | 36786.2 | 503955 | 38598.2 | 58349.1 | 44855.7 | 64490.1 | 50516.6 | 53199.4 | 59992.7 | 51912.6 | 52204.1 | 549525 | 51337.3 | 36687.4 | 46836.9 | 54507.2 | 658465 | 52153.1 | 51303.8
-15 -1.6 -1.9 -1.8 2.2 -1.7 2.7 -1.7 2.3 -1.4 2.1 -1.7 2.2 -1.8 -1.6 -1.8 -1.9 -1.9 2.0 2.1 -1.8 -1.8 1.4 2.3 -1.9
Skewness

Kurtosis 46 6.0 7.0 5.8 8.0 45 11.3 46 9.0 35 7.2 49 7.0 5.6 47 6.0 6.2 5.2 6.0 8.9 6.1 5.8 3.8 7.9 6.2

Probability 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Observations

Table B9-1 statistics on forecasted demand




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 163465.1 | 175292.4 | 183225.7 | 162903.7 | 144301.1 | 153761.6 | 143116.9 | 147909.3 | 155222.1 | 161389.8 | 155870.2 | 156326.1 | 151824.0 | 169416.0 | 167783.3 | 170487.8 | 140350.7 | 146866.8 | 151594.5 | 161629.6 | 153191.2 | 162595.1 | 154116.6 | 136480.9 | 157046.7
Median 1741035 | 197771.5 | 196743.0 | 1800115 | 153006.5 | 165935.0 | 149504.5 | 166715.0 | 175138.0 | 170803.5 | 168122.0 | 173723.0 | 162367.0 | 188860.5 | 179239.0 | 182163.5 | 1524915 | 154172.5 | 1580755 | 1804535 | 182542.5 | 176043.0 | 172785.0 | 148289.0 | 171210.8
Maximum | 2330540 | 2354730 | 2203460 | 211088.0 | 2001250 | 2102910 | 187239.0 | 1950340 | 191891.0 | 2043420 | 204755.0 | 2255030 | 229377.0 | 2253110 | 210327.0 | 220039.0 | 2040580 | 197614.0 | 201417.0 | 2019540 | 207562.0 | 218498.0 | 2197130 | 195857.0 | 2104528
Minimum 1824.0 2018.0 | 142380 2023.0 | 12539.0 14770 | 13391.0 14350 | 14163.0 1713.0 1377.0 171.0 21580 | 144310 | 15618.0 2028.0 1567.0 | 12692.0 1803.0 1354.0 1846.0 1397.0 | 13387.0 1323.0 5665.5
Std. Dev 61688.1 | 65163.3 | 39895.8 | 51500.0 | 49712.5 | 55583.0 | 44086.9 | 52067.1 | 46341.1 | 46400.9 | 48504.8 | 61651.8 | 63207.1 | 549283 | 37487.6 | 51663.3 | 545235 | 48301.6 | 48301.1 | 46450.1 | 62823.7 | 52900.7 | 53098.9 | 528545 | 52047.3
1.4 -1.6 2.5 -2.0 -1.7 -1.7 2.0 -1.9 2.2 2.3 2.0 -15 -1.3 -1.9 2.7 2.1 -15 -1.8 -1.9 2.3 -15 -1.8 -1.7 -1.4 -1.9
Skewness

Kurtosis 4.2 4.4 10.8 6.4 5.1 5.0 6.4 5.5 7.0 78 6.6 41 35 5.9 11.4 71 4.2 5.7 6.1 7.9 38 5.9 5.0 4.1 6.0

Probability 0 0 0 0 0 0 0 0 0 0 0 0 | 0.000003 0 0 0 0 0 0 0 0 0 0 0

Observations 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Autumn
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 173163.3 | 164440.6 | 150914.5 | 148297.6 | 157137.1 | 160557.5 | 130067.9 | 134625.2 | 128772.9 | 156122.2 | 185570.7 | 161677.6 | 176409.2 | 161040.4 | 1413115 | 161910.2 | 161936.9 | 156801.8 | 134948.9 | 139378.9 | 153691.2 | 165843.2 | 178099.0 | 150777.0 | 155562.3
Median 195725.0 | 175591.0 | 169342.0 | 160022.0 | 180074.0 | 175826.0 | 137888.0 | 148663.0 | 145743.0 | 161295.0 | 204375.0 | 180101.0 | 189967.0 | 176056.0 | 152793.0 | 173989.0 | 181281.0 | 176388.0 | 148274.0 | 145539.0 | 163317.0 | 180238.0 | 207759.0 | 167327.0 | 170732.2
Maximum | 2277040 [ 235779.0 | 216259.0 | 206082.0 | 208077.0 | 2033530 | 1822220 | 1950310 | 194329.0 | 1978050 | 228578.0 | 216859.0 | 235249.0 | 225866.0 | 1888410 | 214798.0 | 206409.0 | 201799.0 | 1875030 | 1971610 | 217756.0 | 2244620 | 230772.0 | 2045410 | 2103015
Minimum 14683.0 1638.0 1943.0 1624.0 1892.0 1874.0 1816.0 | 11575.0 12550 | 12977.0 2194.0 15940 | 13505.0 | 15451.0 188.0 14040 | 14021.0 | 14748.0 1442.0 1562.0 17430 | 15062.0 2213.0 1232.0 5734.8
Std. Dev 57349.0 | 62662.7 | 625142 | 57120.3 | 55032.2 | 48943.0 | 40677.8 | 53178.6 | 55946.7 | 411132 | 51300.8 | 553134 | 595123 | 55702.9 | 42927.6 | 514987 | 51921.0 | 50559.9 | 48124.1 | 496929 | 55091.6 | 617259 | 608375 | 566265 | 53557.2
-1.8 -1.4 -1.4 -15 -1.8 2.2 2.0 -1.4 -1.3 2.1 2.3 -1.9 -1.8 -1.7 2.2 2.0 2.0 -1.9 -1.9 -1.6 -1.6 -15 -1.8 -15 -1.8
Skewness

Kurtosis 5.4 43 36 41 5.1 7.0 6.6 3.9 33 7.9 8.2 57 5.4 5.1 7.1 6.4 6.0 5.8 5.3 5.0 4.8 4.2 5.3 4.4 5.4

Probability 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Observations

Table B9-2 statistics on forecasted demand
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Dependent Variable: LOG(TOTALDEMAND)
Method: Panel Least Squares

Date: 04/05/19 Time: 20:15

Sample: 1/01/2017 12/31/2017

Periods included: 365

Cross-sections included: 24

Total panel (balanced) observations: 8760

Variable Coefficient  Std. Error  t-Statistic Prob.
LOG(FORWARDDEMAND) 0.981297 0.002889 339.6871  0.0000
LOG(RENEWDEMANDSPO

T) 0.006939 0.000329 21.10828 0.0000
LOG(PLANNEDDEMAND) -0.043002 0.004110 -10.46171 0.0000
LOG(FORECASTD) 0.001402 0.001312 1.068266 0.2854
WEEK*MONTH -0.000106  2.90E-05 -3.650269  0.0003
WEEK*HOUR -0.000126 1.46E-05 -8.625433  0.0000
MONTH*HOUR 9.58E-05 8.43E-06 11.37198  0.0000
WEEK 0.000833 0.000280 2.976064  0.0029

MONTH -0.000184 0.000170 -1.078744  0.2807

C 0.674800 0.026240 25.71627 0.0000

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.990200 Mean dependent var 10.28812
Adjusted R-squared 0.990164 S.D. dependent var 0.188877
S.E. of regression 0.018732  Akaike info criterion -5.113404
Sum squared resid 3.062206 Schwarz criterion -5.086741
Log likelihood 22429.71 Hannan-Quinn criter.  -5.104319
F-statistic 27556.02 Durbin-Watson stat 1.216709
Prob(F-statistic) 0.000000

Table B10 results for regression (20)



Winter

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 9942.9 | 118036 | 13210.1 | 101735 | 11363.8 84145 7407.3 | 12029.6 | 10268.4 8295.1 | 10481.1 74737 | 149643 | 11386.2 7721.2 9663.4 7030.7 8355.5 | 123965 9834.6 9674.6 | 12355.1 | 118155 | 10402.3 | 10269.3
Median -251.5 -181.2 -294.2 -299.7 -394.8 -334.2 2741 27.8 23.7 -67.5 -55.0 -163.6 -160.5 -170.5 2175 -339.3 -355.7 -195.2 40.6 157.2 5.4 -72.0 -256.6 -320.0 -175.6
Maximum | 1770190 | 213827.0 | 206797.0 | 189138.0 | 192372.0 | 1474340 | 155537.0 | 183929.0 | 1831840 | 189798.0 | 1709840 | 151482.0 | 230358.0 | 208541.0 | 1973410 | 167261.0 | 1691230 | 1563020 | 1997350 | 168971.0 | 2035730 | 2240830 | 1903250 | 173889.0 | 1854585
Minimum -895.4 | -1006.1 | -1281.4 | -1253.3 | -1284.2 | -1200.2 -1211.8 | -1065.7 -1060.9 | -1009.9 | -1186.7 -1209.2 | -1152.8 | -12128 | -1319.9 -1221.8 | -1287.7 | -1363.8 -1190.9 | -12705 | -1502.3 | -1982.7 -1798.7 | -17275 | -1279.0
Std. Dev 38000.5 | 457305 | 50907.0 | 42771.9 | 445151 | 332824 | 312446 | 45280.3 | 41707.2 | 377843 | 39469.1 | 307842 | 566715 | 46809.9 | 35279.8 | 374336 | 324918 | 34663.6 | 467742 | 36855.8 | 39767.9 | 50737.7 | 45558.0 | 40577.0 | 41045.7
35 3.6 35 3.9 35 35 3.9 35 3.9 4.4 35 3.9 35 3.9 45 35 4.4 3.9 35 35 4.0 3.9 35 35 3.8
Skewness
Kurtosis 13.7 145 13.1 16.0 135 13.3 16.7 13.1 16.0 20.7 13.2 16.4 13.1 16.0 215 13.3 20.9 16.1 13.2 13.6 17.4 16.0 13.1 13.4 15.3
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Probability
) 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
Observations
Spring
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 125.2 107.5 732 72.0 31.6 51.7 236.6 368.3 297.6 235.5 87.0 15.8 -15.2 -38.1 62.2 11121 -146.9 1745 -1295 311 205 26.2 -48.9 74.8 38.1
Median 68.8 38.7 46.0 454 2.4 6.0 213.5 297.3 270.7 234.0 33.0 -28.1 9.4 -48.4 -88.2 -141.0 -201.1 -189.8 -153.6 -45.1 36.3 99.0 -79.1 -70.8 14.0
Maximum 1468.3 1678.6 1719.8 13725 1243.9 1114.1 1131.9 18445 1791.1 1726.7 1400.1 1629.1 1619.0 1599.6 1628.6 1578.0 1464.4 1346.7 1712.3 2119.9 2124.1 2311.8 1079.6 981.9 1570.3
Minimum -642.3 -606.5 -534.0 -792.7 -965.5 -843.3 -646.7 -602.1 -689.7 -739.1 -980.8 -976.3 -986.6 -1102.3 | -1166.9 -1056.9 | -1027.6 | -1033.7 -1041.4 | -1079.4 | -1077.0 | -11745 -1156.9 | -1046.6 -915.4
Std. Dev 468.0 450.7 393.5 377.1 388.4 365.5 414.7 522.6 541.7 507.9 503.4 494.5 468.3 459.0 440.1 441.2 446.7 4283 4329 511.7 549.2 564.7 4837 465.3 463.3
0.8 13 1.4 0.6 0.4 0.5 0.0 0.3 0.4 0.5 0.3 0.5 0.4 0.3 0.4 0.6 0.6 0.5 0.7 0.8 0.5 0.5 0.1 0.1 0.5
Skewness
Kurtosis 34 5.0 6.2 38 36 34 23 2.7 2.7 29 26 3.1 33 36 42 41 37 36 5.3 5.2 42 48 2.7 24 37
Probability 0.00 0.00 0.00 0.01 0.15 0.07 0.40 0.35 0.20 0.14 0.31 0.19 0.31 0.27 0.02 0.01 0.03 0.07 0.00 0.00 0.01 0.00 0.81 0.43
92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Observations

Table B11-1 statistics on residuals from regression (20)




Summer

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 67.1 31.1 -10.2 -14.3 -75.8 718 -38.1 8.2 76.0 69.3 -48.7 -85.6 -61.0 -78.0 874 -186.3 -238.2 -290.0 -284.5 -334.2 -345.8 2716 -298.8 -281.9 -119.0
Median 81.8 277 -58.7 -60.3 -111.0 -1125 -73.8 -17.4 -19.4 100.5 97.6 -95.9 -78.9 -58.6 -84.6 -222.3 -276.9 -324.0 2731 -310.3 -370.5 -259.7 -362.0 -304.3 -142.4
Maximum 1016.0 1525.5 934.2 941.5 617.0 782.2 740.8 801.3 1100.6 1070.7 899.9 935.5 843.6 905.6 1020.9 740.5 719.7 667.5 929.1 695.4 888.2 1020.0 1469.4 1202.2 936.1
Minimum -692.3 -771.8 -650.2 -597.0 -698.1 -882.5 7321 -635.3 -786.5 974.1 -920.3 -1032.6 -967.7 -1093.4 -1037.6 -1174.6 -1244.6 -1308.7 -1295.3 -1124.5 -1140.9 -1380.0 -1212.6 -1019.1 9738
Std. Dev 373.2 351.0 317.2 298.8 276.7 292.1 291.8 320.2 386.2 404.0 379.6 405.4 400.9 4176 404.8 416.4 424.1 4243 411.4 391.8 4129 489.9 488.8 438.1 384.0
0.3 1.0 0.6 0.8 0.4 0.5 0.2 0.3 0.5 0.3 0.4 0.4 0.3 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.2 0.2 0.7 0.6 0.4
Skewness

Kurtosis 2.8 5.5 3.1 40 3.1 3.9 3.1 2.6 2.9 2.9 2.8 2.9 2.7 2.9 2.7 25 25 2.4 3.1 2.8 3.0 3.1 3.9 3.4 3.1

Probability 0.36 0.00 0.05 0.00 0.34 0.03 0.67 0.44 0.13 0.40 0.29 0.37 0.44 0.97 0.78 0.63 0.57 0.53 0.66 0.74 0.68 0.69 0.01 0.05

) 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Observations
Autumn
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Average
Mean 147.6 22.8 -1185 -139.4 -190.0 -1485 91.6 479.7 591.8 610.4 506.5 300.5 247.4 130.8 120.4 53.5 109.6 374.5 751.0 847.5 844.8 605.0 139.0 -140.0 258.0
Median 78.6 61.2 -156.2 -237.6 -201.4 -128.9 15.0 347.9 477.6 469.1 376.4 216.6 170.3 25.5 102.0 -47.3 62.1 144.3 573.1 716.2 788.4 657.8 133.0 -143.6 182.4
Maximum 1631.0 1296.9 1202.7 991.1 1170.7 1239.1 1719.1 2707.8 2843.3 2719.3 2565.9 2694.6 1829.4 1771.0 1958.1 1916.8 1966.3 2751.5 2665.0 2722.9 2892.3 2370.5 2086.9 1284.8 2041.5
Minimum -823.7 -824.3 -818.8 -746.8 -822.8 -896.4 914.1 -682.2 -616.0 -576.4 -833.0 -1008.7 -1076.2 -1155.7 -1225.6 -1179.3 -1145.5 -1027.2 -840.4 -837.4 -872.4 -970.0 -1106.5 -1538.2 -939.1
Std. Dev 506.3 403.0 374.4 395.7 385.0 417.9 512.4 714.5 800.7 789.8 784.8 703.1 640.4 605.8 565.2 559.5 590.6 860.6 980.4 990.8 989.6 786.4 617.0 509.2 645.1
0.5 0.6 0.8 0.6 0.8 0.6 0.5 1.4 1.0 1.0 0.9 0.9 0.6 0.6 0.5 0.5 0.5 0.7 04 0.2 0.2 0.2 0.6 0.4 0.6
Skewness

Kurtosis 3.1 37 40 3.0 38 34 3.2 48 34 35 33 4.0 29 3.1 33 3.4 3.2 3.0 2.0 2.0 1.9 2.4 36 37 32

Probability 0.12 0.02 0.00 0.05 0.00 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.07 0.06 0.17 0.14 0.15 0.02 0.04 0.08 0.07 0.32 0.02 0.13

. 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91

Observations

Table B11-2 statistics on residuals from regression (20)




v)

Winter | Spring | Summer | Autumn Average
1 1.42E-07 | 1.8E-07 | 1.93E-07 | 1.6406E-07 | 1.69955E-07
2 1.44E-07 | 2.32E-07 | 2.66E-07 | 1.9196E-07 | 2.08591E-07
3 1.47E-07 | 2.99E-07 | 3.67E-07 | 2.2518E-07 | 2.59659E-07
4 1.48E-07 | 3.81E-07 | 5.01E-07 | 2.6072E-07 | 3.22447E-07
5 1.44E-07 | 4.7E-07 | 6.62E-07 | 2.9282E-07 | 3.92193E-07
6 1.29E-07 | 5.36E-07 | 8.09E-07 | 3.0387E-07 | 4.44606E-07
7 1.07E-07 | 5.65E-07 | 9.12E-07 | 2.9106E-07 | 4.68837E-07
8 8.98E-08 | 5.98E-07 | 1.04E-06 | 2.8055E-07 | 5.00948E-07
9 8.17E-08 | 6.89E-07 | 1.28E-06 | 2.9408E-07 | 5.85637E-07
10 7.27E-08 | 7.78E-07 | 1.54E-06 3.02E-07 | 6.74335E-07
11 6.81E-08 | 9.23E-07 | 1.96E-06 | 3.2599E-07 | 8.20042E-07
12 6.43E-08 | 1.1E-06 | 2.51E-06 | 3.5472E-07 | 1.00943E-06
13 6.04E-08 | 1.32E-06 | 3.21E-06 | 3.8468E-07 | 1.24297E-06
14 5.7E-08 | 1.58E-06 | 4.11E-06 | 4.1856E-07 | 1.5406E-06
15 5.53E-08 | 1.94E-06 | 5.42E-06 | 4.6839E-07 | 1.96954E-06
16 5.41E-08 | 2.4E-06 | 7.18E-06 | 5.2756E-07 | 2.54086E-06
17 5.14E-08 | 2.89E-06 | 9.27E-06 | 5.7852E-07 | 3.19867E-06
18 4.74E-08 | 3.38E-06 | 1.16E-05 | 6.1483E-07 | 3.91064E-06
19 4.28E-08 | 3.86E-06 | 1.42E-05 | 6.3977E-07 | 4.6899E-06
20 3.89E-08 | 4.46E-06 | 1.76E-05 | 6.7154E-07 | 5.68319E-06
21 3.56E-08 | 5.17E-06 | 2.18E-05 | 7.0857E-07 | 6.93326E-06
29 3.35E-08 | 6.17E-06 | 2.79E-05 | 7.6905E-07 | 8.71244E-06
23 3.45E-08 | 8.05E-06 | 3.89E-05 | 9.1219E-07 | 1.19798E-05
24 3.62E-08 | 1.07E-05 | 5.54E-05 | 1.1029E-06 | 1.68096E-05
Average 7.86E-08 | 2.44E-06 | 9.53E-06 | 4.6181E-07

Table B12-1 estimated a




Winter Spring Summer | Autumn | Average
1 2.971799 | 2.947658 | 2.941454 | 2.958364 | 2.954819
2 2.977099 | 2.928817 | 2.916409 | 2.950229 | 2.943139
3 2.982399 | 2.909976 | 2.891364 | 2.942094 | 2.931458
4 2.987699 | 2.891135 | 2.866319 | 2.933959 | 2.919778
5 2.992999 | 2.872294 | 2.841274 | 2.925824 | 2.908098
6 2.998299 | 2.853453 | 2.816229 | 2.917689 | 2.896418
7 3.003599 | 2.834612 | 2.791184 | 2.909554 | 2.884737
8 3.008899 | 2.815771 | 2.766139 | 2.901419 | 2.873057
9 3.014199 | 2.79693 | 2.741094 | 2.893284 | 2.861377
10 3.019499 | 2.778089 | 2.716049 | 2.885149 | 2.849697
1 3.024799 | 2.759248 | 2.691004 | 2.877014 | 2.838016
12 3.030099 | 2.740407 | 2.665959 | 2.868879 | 2.826336
13 3.035399 | 2.721566 | 2.640914 | 2.860744 | 2.814656
14 3.040699 | 2.702725 | 2.615869 | 2.852609 | 2.802976
15 3.045999 | 2.683884 | 2.590824 | 2.844474 | 2.791295
16 3.051299 | 2.665043 | 2.565779 | 2.836339 | 2.779615
17 3.056599 | 2.646202 | 2.540734 | 2.828204 | 2.767935
18 3.061899 | 2.627361 | 2.515689 | 2.820069 | 2.756255
19 3.067199 | 2.60852 | 2.490644 | 2.811934 | 2.744574
20 3.072499 | 2.589679 | 2.465599 | 2.803799 | 2.732894
21 3.077799 | 2.570838 | 2.440554 | 2.795664 | 2.721214
29 3.083099 | 2.551997 | 2.415509 | 2.787529 | 2.709534
23 3.088399 | 2.533156 | 2.390464 | 2.779394 | 2.697853
24 3.093699 | 2.514315 | 2.365419 | 2.771259 | 2.686173

Average 3.032749 | 2.730987 | 2.653437 | 3.032749

Table B12-2 estimated ¢




