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The growing field of topological orders has been extensively studied both form the 
communities of condensed matter and quantum simulation. However, very little is known 
about the fate of topological order in the presence of disturbing effects such as external noise 
or dissipation. In the first part of this thesis, we start by studying how the edge states of a 
topological insulator become unstable when interacting with thermal baths. Motivated by 
these results, we generalise the notion of Chern insulators from the well-known Hamiltonian 
case to Liouvillian dynamics. We achieve this goal by defining a new topological witness that is 
still related to the quantum Hall conductivity at finite temperature. The mixed character of edge 
states is also well captured by our formalism, and explicit models for topological insulators 
and dissipative channels are considered. Additionally, we find new topological phases that 
remain quantised at finite temperature. The construction is based on the Uhlmann phase, a 
geometric quantum phase defined for general density matrices. Using this new tool, we are 
able to characterise topological insulators and superconductors at finite temperature both in 
one and two spatial dimensions. From the experimental side, we propose a state-independent 
protocol to measure the topological Uhlmann phase in the context of quantum simulation.

Symmetry-protected topological orders have traditionally emerged from short-range 
interactions. It remains very much unknown what the role played by long-range interactions 
is, within the physics of these topological systems. In the second part of this thesis, we analyse 
how topological superconducting phases are affected by the inclusion of long-range couplings. 
Remarkably, we unveil new topological quasi-particles due to long-range interactions, that 
were absent in short-range models. We also study how topological invariants are modified by 
the presence of long-range effects.

In the appendix section of the thesis, we explore new numerical methods for driven-
dissipative phase transitions. We consider quantum systems with a dissipative term driving 
the system into a non-equilibrium steady state. The inclusion of short-range fluctuations out-
of-equilibrium deeply modifies the shape of the phase-diagram, something never observed in 
equilibrium thermodynamics.





PUBLICATIONS, RESEARCH VISITS  
AND CONFERENCES





23

PUBLICATIONS

P1 O. Viyuela; A. Rivas, and M. A. Martin-Delgado, "Generalized Toric Codes Coupled 
to Thermal Baths," New J. Phys., 14 033044 (2012).1

P2 O. Viyuela; A. Rivas, and M. A. Martin-Delgado, "Thermal Instability of Protected 
End States in a 1-D Topological Insulator," Phys. Rev. B, 86, 155140 (2012).

P3 A. Rivas; O. Viyuela, and M. A. Martin-Delgado, "Density Matrix Topological 
Insulators," Phys. Rev. B,  88, 155141 (2013).

P4 O. Viyuela; A. Rivas, and M. A. Martin-Delgado, "Uhlmann Phase as a Topological 
Measure for One-Dimensional Fermion Systems," Phys. Rev. Lett., 112, 130401 (2014).

P5 O. Viyuela; A. Rivas, and M. A. Martin-Delgado, "2D Density-Matrix 
Topological Fermionic Phases: Topological Uhlmann Numbers," Phys. Rev. Lett., 113, 
076408 (2014).

P6 O. Viyuela; A. Rivas, and M. A. Martin-Delgado, "Symmetry-protected Topological 
Phases at Finite Temperature," 2D Mater., 2 034006 (2015).

P7 O. Viyuela; D. Vodola; G. Pupillo, and M. A. Martin-Delgado, "Topological Massive 
Dirac Edge Modes and Long-Range Superconducting Hamiltonians," Phys. Rev. B, 
94, 125121 (2016).

P8 J. Jin; A. Biella; O. Viyuela; L. Mazza; J. Keeling; R. Fazio, and D. Rossini, "Cluster 
Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin 
Systems," Phys. Rev. X, 6, 031011 (2016).

P9 O. Viyuela; A. Rivas; S. Gasparinetti; A. Wallraff; S. Filipp, and M. A. Martin-Delgado, 
Measurement Protocol for the Topological Uhlmann Phase, arXiv: 1607.08778 (2016).

1 IMPACT FACTOR (IF) 2015: 2D Mater. IF: 9.611, Phys. Rev. X IF: 8.701, Phys. Rev. Lett. IF: 7.645, Phys. Rev. B IF: 
3.718, New J. Phys. IF: 3.570.



24 TESIS. SERIE INGENIERÍA, MATEMÁTICAS, ARQUITECTURA Y FÍSICA

RESEARCH VISITS

RV1 Université de Strasbourg (Prof. Guido Pupilo’s group), Strasbourg, France, 28 
September – 4 November (2015). Invited seminar: "Quantum, Topological and 
Dissipative".

RV2 Massachusetts University (Prof. Adolfo del Campo’s group), Boston, USA, 10 
March (2015). Invited seminar: "Quantum, Topological and Dissipative".

RV3 Centre for Integrated Quantum Materials at Harvard University (invited by Dr. 
Borja Peropadre), Boston, USA, 9 March (2015). Invited seminar: "Quantum, 
Topological and Dissipative".

RV4 Centre for Quantum Technologies CQT (Prof. Vlatko Vedral’s group), Singapore, 
30 November – 13 December (2014). Invited seminar: "Quantum, Topological and 
Dissipative".

RV5 Scuola Normale di Pisa (Prof. Rosario Fazio’s group), Italy, 15 September – 30 
November (2014). Invited seminar: "Quantum, Topological and Dissipative".

RV6 Los Alamos National Laboratorio (Prof. Wojciech H. Zurek’s group), USA, 25-29 
March (2012). Invited "Quantum Lunch" seminar: "Topological Insulators meet 
Dissipation and Decoherence".

RV7 Theory Division (Prof. Ignacio Cirac’s group), Max Panck Institut für Quantenoptik, 
Germany, 23-27 April (2012). Invited seminar: "Thermal Stability of Topological 
Quantum Memories".

RV8 Controlled Quantum Dynamics Centre (invited by Dr. Vignesh Venkataraman), 
Imperial College of London, UK, 15 March (2012). Invited seminar: "Thermal 
Stability of Topological Quantum Memories".



25PUBLICATIONS, RESEARCH VISITS AND CONFERENCES

CONFERENCES

C1   APS March Meeting (talk), Baltimore, USA, 2016

C1   Weyl Fermion Workshop (poster), Princeton, USA, 2016

C1   APS March Meeting (talk), San Antonio, USA, 2015

C2   Quantum Technologies Conference V (talk), Krakow, Polland, 2014

C3   31st Jerusalem Winter School on Theoretical Physics, Jerusalem, Israel, 2014

C4   MPAGs Summer School on Quantum matter (talk), Granada, Spain, 2013

C5   5th Madrid meeting on Cold Atoms (talk), Madrid, Spain, 2013

C6   APS March Meeting (talk), Baltimore, USA, 2013

C7   Symposium on Topological Quantum Information (poster), Benasque, Spain, 2013

C8   Entangle this: Strings, Fields and Atoms, Madrid, Spain, 2012

C9   Quantum Information meets Statistical Mechanics (poster), Innsbruck, Austria 2012

C10 Información Cuántica en Espańa (talk), Madrid, Spain, 2012

C11 2nd AQuA Student Congress on Quantum Information & Computation and the 
9th Canadian Student conference in Quantum Information (talk and poster), 
Waterloo, Canada, 2012

C12 508. WE-Heraeus-Seminar: Quantum meets Gravity and Metrology (poster), Bad 
Honnef, Germany, 2012

C13 Summer School in Quantum information & Coherence (SUSSP67) (poster), 
Glasgow, UK, 2011





RESUMEN EN ESPAÑOL





29

INTRODUCCIÓN

Una transición de fase es una transformación entre dos estados de la materia con 
propiedades físicas diferentes, por ejemplo cuando el agua líquida se convierte en hielo. 
Tradicionalmente, la física de las transiciones de fase ha sido perfectamente descrita por la 
teoría de Landau. Esta teoría propone la existencia de un parámetro de orden local que es 
capaz de distinguir entre dos fases distintas. Además, al atravesar la transición de fase se 
rompe espontáneamente una simetría del sistema.

A partir de los años 80 se empezaron a encontrar un tipo de transiciones de fase que no 
estaban bien descritas por la teoría de Landau. Estas fases de la materia se denominan órdenes 
topológicos y constituyen el principal objeto de esta tesis doctoral. Para estas transiciones no 
existe un parámetro de orden local que pueda distinguir entre fases con propiedades físicas 
distintas. Por el contrario, vienen caracterizadas por un parámetro de orden global que es 
capaz de retener la información topológica del sistema. La otra principal diferencia con 
respecto a las transiciones de orden, descritas por la teoría de Landau, es el papel que juegan 
las simetrías. En las transiciones de fase topológicas, cuando se cambia de una fase a otra, no 
se rompe ninguna simetría. De manera adicional, las fases topológicas de la materia vienen 
caracterizadas por un conjunto de propiedades distintivas: (1) el estado fundamental está 
separado por un gap del resto de excitaciones y está degenerado, (2) el sistema presenta estados 
gapless localizados en el borde, (3) las excitaciones son anyones con estadística exótica, etcétera.

Aunque estas fases topológicas están bien entendidas a temperatura cero, se sabe muy 
poco sobre su comportamiento cuando se entienden como sistemas cuánticos abiertos. Dicho 
con otras palabras, el acoplo inevitable entre el sistema y el ambiente (que da lugar a efectos 
de temperatura finita) debe ser tenido en cuenta en la propia definición de orden topológico. 
Este ha sido uno de los principales objetivos de la presente tesis.

La tesis se encuentra organizada de la siguiente manera. El material presentado en la 
memoria original se ha dividido en dos partes principales y un apéndice: (A) la parte I analiza 
los sistemas con orden topológico en presencia de ruido y de disipación térmica; (B) en la 
parte II estudiamos el efecto de las interacciones de largo alcance en los superconductores 
topológicos; (C) el Apéndice A versa sobre diversos métodos numéricos para estudiar 
transiciones de fase disipativas. Dentro de cada parte, hemos incluido diferentes capítulos. 
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Los primeros capítulos de cada parte se dedican a ofrecer una introducción general al campo, 
y a los diversos métodos y herramientas que se utilizarán más tarde. Los siguientes capítulos 
contienen las contribuciones originales de esta tesis doctoral, en forma de artículos que 
han sido publicados en distintas revistas científicas indexadas. Cada uno de estos artículos 
originales es complementado con una sección preliminar que trata de motivar la necesidad 
y relevancia de estos trabajos. Estas pequeñas introducciones no son exhaustivas, y se 
complementan con una extensa bibliografía.

PARTE I: DENSITY-MATRIX TOPOLOGICAL ORDERS

En esta parte de la tesis, hemos estudiado diversos sistemas con orden topológico cuando 
se encuentran acoplados a un ambiente y se enmarcan dentro de los sistemas cuánticos abiertos. 
En la publicación P2, analizamos las propiedades dinámicas y de estabilidad de un aislante 
topológico acoplado a un baño térmico. Más tarde, en la publicación P3, generalizamos la 
noción de orden topológico protegido por simetrás para el caso de ecuaciones maestras y 
superoperadores Liouvillianos. En las publicaciones P4, P5 y P6, introducimos una nueva 
fase cuántica topológica (fase de Uhlmann) que caracteriza aislantes y superconductores 
topológicos a temperatura finita. En esa misma línea, en la publicacion P9, proponemos un 
protocolo realista para medir esta nueva fase cuántica utilizando un simulador cuántico. Por 
último, en la publicación P1, generalizamos el código tórico de Kitaev (una memoria cuántica 
topológica) para sistemas de d>2 niveles, y analizamos sus propiedades dinámicas cuando se 
acopla a baños térmicos.

A continuación se resumen los resultados principales de esta parte de la tesis.

Resultados Principales: Density-matrix Topological Orders

● Derivamos una ecuación maestra que describe la dinámica de los fermiones (electro-
nes) de un aislante topológico en 1D, cuando se encuentra acoplado a un conjunto de 
baños térmicos bosónicos.

● Encontramos un resultado sorprendente: los estados de borde del sistema se vuelven 
inestables debido a estos efectos térmicos, y tienen un tiempo de vida finito.

● Por otro lado, desarrollamos un método para generalizar la noción de aislante topoló-
gico para sistemas disipativos.

● Con este propósito, introducimos el concepto de Liouvilliano de bandas como la 
estructura más apropiada para preservar el orden topológico del sistema. Se puede 
entender como el contrapunto disipativo a un Hamiltoniano de bandas.

● Basado en la estructura anterior, construimos un nuevo indicador topológico que 
denominamos Chern value. Con este indicator podemos detectar el orden topológico 
a temperatura finita para estados cuánticos mezcla generales.
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● De manera reseñable, este nuevo indicator topológico es capaz de detectar la existen-
cia de estados conductores de tipo mezcla en el borde, y está a su vez relacionado con la 
conductividad Hall cuántica a temperatura finita.

● En otro trabajo introducimos la fase de Uhlmann, que es una fase geométrica para 
matrices densidad y la aplicamos a sistemas topológicos en 1D.

● Demostramos, que para ese tipo de sistemas a temperatura finita, la fase geométrica 
de Uhlmann adquiere un carácter topológico y únicamente puede estar cuantizada 
(ΦU=π topológico no-trivial; ΦU=0 trivial).

● Por debajo de una cierta temperatura crítica Tc la fase de Uhlmann permanece inva-
riante y cuantizada. A Tc hay una transición abrupta, y la fase de Uhlmann se vuelve 
cero ΦU=0 por debajo de esa temperatura. A T=0 recuperamos el diagrama de fases 
dado por la fase de Berry.

● En 2D, definimos un nuevo invariante topológico llamado Uhlmann number.

● A temperaturas bajas, el Uhlmann number tiende al Chern number, obteniendo la 
misma caracterización topológica que a T=0.

● Utilizando este nuevo formalismo estudiamos diversos modelos bien establecidos como 
el aislante topológico de Haldane o un superconductor de tipo p-wave que presenta 
fermiones de Majorana no-abelianos. De manera notable, encontramos que siempre 
existe una región finita de temperaturas a la que este orden topológico sobrevive.

● Desde el punto de vista experimental, proponemos un protocolo de medida para la 
fase de Uhlmann en un simulador cuántico.

●	Efectuando una simulación con ruido e imperfecciones experimentales realistas, 
demostramos la viabilidad del experimento utilizando una plataforma de qubits 
superconductores.

● Por último, generalizamos el famoso código tórico de Kitaev (memoria cuántica topo-
lógica) para el caso de qudits, o lo que es lo mismo sistemas de espines de d niveles.

● El código tórico para qudits genera nuevos tipos de excitaciones anyónicas. Estas pre-
sentan diferentes estadísticas de braiding con respecto al sistema de qubits.

● Derivamos una ecuación maestra que da cuenta de la dinámica del código tórico para 
qudits acoplado a un baño térmico externo.

● Finalmente mostramos que un código tórico para qutrits (d=3) puede mejorar la esta-
bilidad dinámica de las excitaciones anyónicas.

PARTE II: LONG-RANGE TOPOLOGICAL SUPERCONDUCTIVITY

En esta segunda parte de la tesis estudiaremos nuevas formas de superconductividad 
topológica basada en acoplos de largo alcance. La superconductividad se suele definir como 
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la propiedad de ciertos materiales que no muestran resistencia al paso de corriente, por 
debajo de una cierta temperatura crítica Tc. La teoría BCS da una descripición microscópica 
de este fenómeno, y explica prácticamente todas las propiedades relacionadas con la 
superconductividad. Sin embargo, algunos materiales presentan un tipo de superconductividad 
no convencional, que no es capturada por la teoría BCS standard. Los superconductores 
topológicos aparecen una nueva forma de superconductividad no convencional con una 
fenomenología de quasipartículas muy exótica. En particular, posee fermiones de Majorana 
desapareados como modos de energía cero localizados en los bordes o vórtices del sistema. En 
la publicación P7 estudiamos el efecto de deformaciones hamiltonianas de largo alcance sobre 
la cadena de Kitaev, un modelo de superconductor topológico en 1D.

A continuación se resumen los resultados principales de esta parte de la tesis.

Resultados principales: Long-range topological superconductivity

● Introducimos la extensión más general de la cadena de Kitaev incluyendo acoplos de 
largo alcance.

● Las deformaciones de los términos de hopping (cinemático) nos permiten incrementar de 
manera significativa la región del diagrama de fases donde los modos de Majorana 
aparecen.

● También analizamos el caso de un pairing superconductor que decae de manera 
algebraica con la distancia entre fermiones. Si el decaimiento es suficientemente lento 
encontramos fermiones de Dirac masivos y no-locales en el borde. Estos fermiones son 
unas nuevas quasipartículas que no están presentes en la cadena de Kitaev estándar.

● Sorprendentemente encontramos un sector de crossover, donde es posible tener qua-
sipartículas de Majorana y fermiones de Dirac no-locales dependiendo del potencial 
químico del sistema.

● Por último, incorporando desorden al sistema comprobamos la robustez de las nue-
vas quasipartículas de Dirac, debido a su carácter topológico.

APÉNDICE A: DRIVEN-DISSIPATIVE PHASE TRANSITIONS

En el apéndice de esta tesis introducimos una nueva clase de transiciones de fase cuánticas de 
no-equilibrio producidas por disipación. En los sistemas en equilibrio, las transiciones de fase 
entre distintos estados de la materia están muy bien entendidas. Sin embargo, las transiciones 
de fase también pueden tener lugar en situaciones fuera del equilibrio. En los sistemas clásicos 
existen multitud de ejemplos de este tipo: el movimiento de los coches en un atasco, pájaros 
que muestran un vuelo flocado en grupo, etc. Estas situaciones están relacionadas unas con 
otras por el hecho de que el orden en el estado estacionario es de origen puramente dinámico, 
y no puede reducirse a propiedades de equilibrio del sistema. En mecánica cuántica, las 



33RESUMEN EN ESPAÑOL

transiciones de fase fuera del equilibrio pueden ocurrir cuando un sistema interactuante es 
acoplado a una fuente coherente externa que actúa como ambiente.

En la publicación P8 aplicamos un método numérico, denominado aproximación de 
campo medio clusterizado, con el fin de estudiar transiciones de fase cuánticas disipativas.

A continuación se resumen los resultados principales de esta parte de la tesis.

Resultados Principales: Driven-dissipative phase transitions

● Estudiamos un sistema magnético de espines 1/2 localizados en una red cuadrada. 
Las interacciones del sistema están descritas por el model XYZ de Heisenberg. Ade-
más consideramos un acoplo externo disipativo que puede voltear los espines.

● Para estudiar este sistema, extendemos el método de campo medio clusterizado, 
ampliamente utilizado en sistemas en equilibrio, a un nuevo escenario fuera del equi-
librio en el contexto de los sistemas cuánticos abiertos.

● Al contrario de lo que ocurre en la termodinámica en equilibrio, la inclusión de 
fluctuaciones de corto alcance, a través del método de campo medio clusterizado, 
cambia profundamente la topología del diagrama de fases de estas transiciones de 
fase cuánticas disipativas.

● Combinamos distintos métodos numéricos junto con la aproximación de campo 
medio clusterizado: redes de tensores y el método de trayectorias cuánticas.

● Estos resultados podrían ser muy pronto verificados experimentalmente usando 
novedosas plataformas de simulación cuántica, como por ejemplo plataformas 
de iones atrapados, estados de Rydberg excitados en átomos ultrafríos, y conjuntos de 
cavidades ópticas y de microondas acopladas.

CONCLUSIONES

El principal objetivo de esta tesis ha sido el estudio de sistemas con orden topológico y 
de sistemas cuánticos abiertos. Hemos visto que la conexión entre los dos produce muchas 
novedades y resultados sorprendentes. Además, la inclusión de efectos de largo alcance en los 
sistemas topológicos ha sido muy fructífera. Por último, hemos probado que las fluctuaciones 
de corto alcance tienen un impacto crucial sobre el diagrama de fases de los sistemas 
cuánticos disipativos, utilizando para ello sofisticados métodos numéricos. La versatilidad 
de las distintas plataformas de simulación cuántica, unido al enorme interés y dedicación que 
despiertan los experimentos en materia condensada topológica, nos hacen sentir confiados de 
que muchos de los nuevos efectos encontrados y detallados a lo largo de esta tesis serán vistos 
muy pronto en el laboratorio.
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INTRODUCTION

A phase transition is a transformation between two different states of matter with different 
physical properties (e.g. when liquid water turns into ice). Traditionally, phase transitions in 
condensed matter have been described using Landau theory. This theory invokes the existence 
of a local order parameter that distinguishes between two different phases. Additionally, at the 
phase transition point a symmetry of the system spontaneously breaks.

More recently, there have been phase transitions that do not fit into Landau theory. These 
phases are called topological orders and they constitute the main point of the present thesis. In 
this case, there is no local order parameter that can distinguish between two different phases 
with different physical properties. Instead, they are characterised by a global order parameter, 
that is able to retain the topological information of the system. The other main difference with 
respect to Landau theory is the role that symmetry plays. In topological phase transitions, 
when traversing from one phase to another, no symmetry is broken. Additionally, topological 
phases of matter are characterised by a set of remarkable physical properties: (1) the ground 
state is separated from all excitations by an energy gap and it is degenerate, (2) the system host 
protected gapless edge states, (3) quasiparticle excitations are anyons, etc.

Although these phases are well-understood at zero temperature, very little was known 
about their behaviour when the system is consider as an open quantum system. In other words, 
the unavoidable coupling between the system and a thermal environment (finite temperature) 
needs to be consider into the very definition of topological order. This has been one of the 
main objectives of the present thesis as it will be described in what follows.

The thesis is organised in the following way. The material has been divided into two 
main parts plus an appendix section: (A) part I deals with topological order in the presence of 
noise and thermal dissipation; (B) in part II we study the effect of long-range interactions on 
topological superconductors; (C) App. A discuss several state of the art numerical methods 
for the study of dissipative phase transitions. Within each part, there are several chapters. 
The first ones try to convey an introduction to the field and the main tools that are going to 
be used in the following chapters. The rest of the chapters contain original contributions of 
this thesis. These have been published in well-known international journals as detailed in the 
list of publications of this thesis. Accordingly, each chapter has an extra introductory section 
motivating the need and relevance of the work that is presented. These introductions do not 
intend to be exhaustive and they are complemented with an extensive bibliography.
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PART I: DENSITY-MATRIX TOPOLOGICAL ORDERS

In the first part of the thesis, we have studied systems with topological order when 
they are coupled to an environment and are considered as open quantum systems. In 
publication P2, we analyse the physics of a topological insulator coupled to a thermal bath. 
Later, in publication P3 we generalise the notion of symmetry-protected topological order 
for master equations and Liouvillian superoperators. In publications P4, P5 and P6 we 
introduce a new topological phase (Uhlmann phase) that characterises topological insulators 
and superconductors at finite temperature; whereas in P9, we provide a realistic protocol to 
measure this new topological quantum phase using a quantum simulator. Lastly, in P1 we 
generalise the toric code topological quantum memory for d-level systems, and analyse its 
dynamical properties when coupled to thermal baths.

In what follows we summarise the main results of this part of the thesis.

Main Results: Density-matrix Topological Orders

● We derive a novel master evolution equation for the fermionic (electrons) degrees of 
freedom of a 1D topological insulator coupled to an environment made up of bosonic 
thermal baths.

● We found a remarkable result: edge states become unstable under thermal effects and 
they have a finite lifetime.

● On the other hand, we show a way to generalise the notion of a topological insulator 
to dissipative systems.

● For this purpose, we introduce the notion of band Liouvillian as the appropriate 
structure for the dynamics to preserve topological order. It is basically the dissipative 
counterpart of a band Hamiltonian.

● We construct a new topological indicator named density matrix Chern value, that is 
able to detect topological order at finite temperature and for general quantum mixed 
states.

● Remarkably, this new topological indicator witnesses the existence of conducting 
mixed edge states and is related to the quantum Hall conductivity at finite temperature.

● We introduce the Uhlmann phase (a geometric phase for general density matrix) and 
apply it to topological many-body systems in 1D.

● We show that when applied to SPT phases at finite temperature, the geometric 
Uhlmann phase acquires a topological character and it can only be quantised (ΦU=π 
topological, ΦU=0 trivial).

● Below a certain temperature Tc, the Uhlmann phase remains unperturbed and 
quantized . At Tc there is an abrupt transition, and the Uhlmann phase vanishes ΦU=0 
above that temperature. At zero temperature, it tends to the Berry phase.
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● For 2D, we define a new gauge invariant and quantised topological invariant called 
the Uhlmann number.

● At very small temperatures, the Uhlmann number tends to the Chern number and we 
obtain the same topological characterization as at T=0.

● We apply this new framework to well-established models like the topological insulator 
Haldane model and the p-wave superconductor that can host non-Abelian Majorana 
fermions. Remarkably, we always find a finite range of temperatures at which this 
topological order survives.

● From an experimental point of view, we propose a novel state-independent 
measurement protocol for the Uhlmann phase using a quantum simulator.

● By performing a noise simulation and taking into account realistic experimental 
imperfections, we prove the feasibility of the experiment in state-of-the-art setups of 
superconducting qubits.

● Finally, we generalise the well-known Kitaev toric code (topological quantum 
memory) for the case of qudits, i.e. d-dimensional spin systems.

● A Toric code for qudits produces new types of anyonic quasiparticles with different 
braiding statistics.

● We derive a master equation that describes the dynamics of a generalised toric code 
for qudits coupled to an external heat bath.

● We show that a toric code for qutrits can improve the dynamical stability of anyonic 
quasiparticle.

PART II: LONG-RANGE TOPOLOGICAL SUPERCONDUCTIVITY

In the second part of the thesis, we study novel forms of topological superconductivity 
based on long-range couplings. Superconductivity is generally defined as a property of 
certain materials that present exactly zero resistance to the movement of electrons, bellow 
a certain critical temperature Tc. The BCS theory provides a microscopic description of the 
phenomenon and explains almost all the general features of superconductivity. However, 
there are some materials that display an unconventional form os superconductivity, that is 
not capture by standard BCS theory. Topological superconductors are a very new form of 
unconventional superconductivity with a very exotic quasi-particle phenomena. They posses 
unpaired Majorana fermions as zero-energy modes localised at the edges or vortices of the 
system. In publication P7, we study the effect of long-range hamiltonian deformations on 
the Kitaev Majorana chain, a model for a topological superconductor in 1D.

In what follows we summarise the main results of this part of the thesis.
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Main Results: Long-range topological superconductivity

● We propose the most general extension of the Kitaev chain including long-range 
couplings.

● Deformation of the hopping terms (kinetic) allows us to significantly increase the 
region in the phase diagram where Majorana modes are present.

● We consider pairing amplitudes decaying with a power-law of the distance between 
fermions. For sufficiently slow decaying pairing terms we find non-local massive Dirac 
edge states. These are new physical quasiparticles that are absent in the standard Kitaev 
model.

● Interestingly enough, we find a crossover sector where it is possible to have both 
Majorana quasiparticles and non-local Dirac quasiparticles depending on the 
chemical potential of the system.

● By incorporating static disorder into the system, we show the robustness of the new 
massive Dirac quasiparticles, due to their topological character.

APPENDIX A: DRIVEN-DISSIPATIVE PHASE TRANSITIONS

In the appendix section, we present a class of non-equilibrium quantum phase transitions 
driven by dissipation. In equilibrium systems, phase transitions between different states 
of matter are very-well understood. Phase transitions can also occur in out-of-equilibrium 
situations. In classical systems, many examples have been found: moving cars into traffic 
jams, individual flying birds exhibiting collective flocking, etc. These situations can be related 
to each other by the fact that the appearance of different steady-state ordering is of purely 
dynamical origin and cannot be reduced to the equilibrium results. In quantum mechanics, 
phase transitions away from thermal equilibrium may occur when an interacting system is 
driven by some external coherent source acting as an environment.

In publication P8, we apply a numerical technique called cluster mean-field 
approximation in order to study driven-dissipative quantum phase transitions. This method 
is combined with several others: matrix-product-states, tensor networks and quantum 
trajectories.

We now summarise the main results of this part of the thesis.

Main Results: Driven-dissipative phase transitions

● We study a magnetic system of spin-1/2 particles located on a square lattice. The 
interactions of the system are described by the so-called Heisenberg XYZ model, and 
we allow for spin-flip transitions associated to some external dissipative coupling.
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● We extend the cluster mean-field method widely used in equilibrium situations, to a 
new out-of-equilibrium scenario in open quantum systems.

● Contrary to equilibrium thermodynamics, the inclusion of short-range fluctuations, 
by means of the cluster mean-field method, deeply modifies the steady-state phase-
diagram topology of driven-dissipative quantum systems.

● We combine powerful numerical methods together with the cluster mean-field 
approach: tensor-networks and quantum trajectories techniques.

● Our results are amenable to experimental verification using novel quantum-simulation 
platforms like trapped ions, highly excited Rydberg states of ultracold atoms, and 
arrays of coupled optical or microwave cavities.

CONCLUSIONS

Throughout this thesis, we have focused our attention over systems with topological 
order and open quantum systems. We have seen that the connection of the two produces many 
novelties and surprising results. In addition, the inclusion of long-range effects in topological 
systems has been proven to be very fruitful. Furthermore, we have shown that short-range 
fluctuations have a dramatic impact on the phase diagram of driven dissipative systems, using 
sophisticated numerical methods. The versatility of quantum simulation platforms, together 
with the great effort and interest on topological condensed matter experiments, make us 
confident that many of the new findings in this thesis will be soon realised in the lab.





INTRODUCTION





45

At low energies, matter is composed only by three kinds of particles: electrons, protons 
and neutrons. Nevertheless, these constituents can be arranged in multiple ways such that 
their behaviour as an ensamble can be completely different from one another. This idea lead 
to the principle of emergence in condensed matter, very clearly formulated by the Nobel laureate 
Phil Anderson.

The ability to reduce everything to simple fundamental laws does not imply the ability 
to start from those laws and reconstruct the universe. [...] The behaviour of large and complex 

aggregates of elementary particles, it turns out, is not to be understood in terms of a simple 
extrapolation of the properties of a few particles. Instead, at each level of complexity entirely 

new properties appear, and the understanding of the new behaviours requires research which I 
think is as fundamental in nature as any other.

P. W. Anderson Science, New Series, Vol. 177, No. 4047 393-396 (1972).  

These words are very illustrative to understand that the collective behaviour of 
fundamental particles can be very rich and surprising. Emergent phenomena not only 
occur at the level of fundamental physics, but also collective behaviour has been studied and 
reported in other disciplines such as Biology (Novikoff, 1945) Sociology (Wenjian and Rauhu, 
2011) Economics (Foster and Metcalfe, 2012), etc.

In condensed matter physics, the different manners in which atoms organise themselves 
through interactions give rise to very different states of matter. Just to name a few examples: 
solid, liquid and gas; or even more exotic phases like ferromagnetism, superconductivity, 
superfluidity, Bose-Einstein condensation (BEC), etc. All these states of matter shape the 
notion of order for a many-particle system. We define a phase of matter as a particular state in 
which particles of a many-body system arrange or order themselves, comprising a distinct 
set of physical properties.

In most cases, symmetry (Gross, 1996) plays an essential role to identify and characterise 
different phases of matter. Two phases may be distinguished from each other by looking at 
their symmetries, and the transition between one phase to the another would be accompanied 
by the breaking or changing of their symmetries.

In 1937 Landau (Landau, 1937) proposed a very general theory to describe transitions 
between different phases. The theory relies on the identification of a local order parameter, i.e., 
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a local property with a finite expectation value in one phase and a vanishing expectation value 
in the other one. The second fundamental ingredient is the mechanism of symmetry breaking. 
At the phase transition point, a disordered and highly symmetric phase, acquires a non-zero 
expectation value of the order parameter by reducing or breaking the symmetry of the system.1

Additionally, the theory makes a general assumption: the free energy2 of the system can 
be expanded in terms of the order parameter. This is possible close to the transition point 
where the value of the order parameter is small. Based on this idea, phase transitions can be 
classified (Ehrenfes, 1933; Jaeger, 1998) according to the lowest derivative of the free energy 
that is discontinuous at the transition point. The macroscopic theory of Landau describes all 
continuous3 phase transitions from the thermally driven paramagnetic-ferromagnetic phase 
transition to the purely quantum superfluid-BEC one.

The success of this theory was also used by Ginzburg and Landau himself in 1950 to give 
a macroscopic description of superconductivity (Ginzburg and Landau, 1950). This theory, that 
combines Landau theory of second-order phase transitions with a Schrödinger-like wave equation, 
had a great success in explaining the macroscopic properties of superconductors. Moreover, 
Abrikosov showed that Ginzburg-Landau theory predicts the division of superconductors into 
the two categories now referred to as Type I and Type II (Abrikosov, 1957).

According to the modern classification of phase transitions (Sachdev, 2000), we can 
stablish two groups:  

● First order phase transitions

Transitions between phases with different symmetries cannot occur continuously. 
For example, when liquid water turns into ice, the inner crystalline structure of the system 
changes. Hence, for each state of matter the system has either one symmetry or the other, but 
it cannot have partly one and partly the other. For first order phase transitions, derivatives of  
the free energy undergo discontinuous changes. The order parameter is also discontinuous 
at the transition point. Strictly speaking Landau theory is not applicable, since it assumes 
continuity of the free energy. However, it is usually applied by incorporating appropriate 
corrections to the effective action. Those are higher order terms in the order parameter 
η which allows for the existence of metastable states (local minimum of the free energy). 
Transitions between solid, liquid and gas are examples of first order phase transitions. These 
transitions display a discontinuos change in particle density, proportional to the inverse of the 
derivative of the free energy with respect to pressure.

● Continuous phase transitions

We have seen that phase transitions between different crystalline structures lead to sudden 
changes on particle distributions, and the state of the system itself is modified discontinuously. 

1 This is the case for a ferromagnet that breaks spin rotation symmetry and gains a non-zero magnetisation.
2 The free energy is a thermodynamic quantity that measures the amount of work that can be extracted from a 

system. It can be written as F=E-TS where E is the internal energy of the system, T is the temperature and S is the 
entropy.

3 Divergences in the second-order or higher-order derivatives of the free energy.
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Nevertheless, there are other types of phase transitions involving a change of symmetry whose 
order parameter does not change discontinuously. A textbook example of this kind (Landau 
and Lifshitz, 2000) would be the BaTiO3 compound. At high temperature it has a cubic lattice, 
but when temperature decreases it changes to a tetragonal lattice. During the process there is 
no discontinuous change in the state of the system, and the particles rearrange continuously. 
However, the symmetry of the system changes discontinuously signalling the two different 
phases. Inside this class of phase transitions there are different subclasses: second order, third 
order, etc.; depending on whether the discontinuity in the free energy appears in the second 
derivative, the third, etc. There are even infinite-order phase transitions.4

With the discovery of the Quantum Hall Effect (QHE) (Klitzing, Dorda, and Pepper, 
1980), it was first noticed that there were continuous phase transitions that could not be 
explained using Landau theory. The QHE effect belongs to a class of systems called topological 
orders that lie outside Landau theory. The field of topological orders is actually one of the most 
active in modern condensed matter physics. It comprises several exotic quantum phases such as: 
topological insulators and superconductors [Hasan and Kane, 2010; Qi and Zhang, 2010 and 
2011], Weyl semimetals (Xu et al., 2015a and 2015; Yang et al., 2015), or the fractional QHE 
(Stormer and Gossard, 1982).

These quantum phases of matter have been largely explored during the last years. 
However, a theory that incorporates noise, thermal effects, dissipation and long-range 
interactions has been barely developed. Actually, this is one of the main purposes of the 
present thesis. We want to shed light upon the field of topological phases of matter when they 
are subjected to thermal and dissipative effects, or when long-range couplings are considered.

Furthermore, all these phases of matter used to belong exclusively to the realm 
of condensed matter physics. However, in 1982, Richard Feynman came up with this 
revolutionary concept of quantum simulators (Feynman, 1982). The central idea relies on 
the main difficulty of traditional condensed matter: sometimes we know fairly well that a certain 
quantum system is described by set of interactions; however, we don’t know how to find a 
solution exactly. Even if one resorts to numerics, the problem may become intractable for the 
most advanced computers when the number of particles N~50. This is due to the fact 
that the dimension of the Hilbert space of a quantum many-body system grows exponentially 
with the number of particles N. The DMRG method (White, 1992) has been the traditional 
strategy for the last two decades to efficiently find the low energy physics of interacting quantum 
many-body systems in 1D. For fermionic particles, the numerical solution of the dynamics 
encounters the so-called sign problem (Troyer and Wiese, 2005). This results in an exponential 
growth of the statistical error and the required simulation time with the number of particles 
N, eliminating the advantage of quantum Monte Carlo methods (Foulkes et al., 2001). Thus, 
considering all these arguments, there is a question that naturally arises:

■	Is there a general way to overcome the intractability of general quantum problems on a 
classical computer? 

4 A Kosterlich-Thouless (Kosterlitz and Thouless, 1973) (also called infinite order) phase transition describes a phase 
transition from a phase with no order where correlation functions decay exponentially with the distance, to a 
quasi-ordered phase where correlation functions decrease with the distance following a power-law which depends 
on the temperature. These transitions do not break any symmetry.
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The answer is positive (Lloyd, 1996), and it is based on the intuition that if we want 
to solve a quantum many-body problem, it is more convenient to look for a quantum setup 
instead of a classical one.

Let the computer itself be built of quantum mechanical elements which obey quantum 
mechanical laws.

 R. Feynman, Int. J. Theor. Phys. Vol.  21, No. 467 (1982).  

We consider a certain quantum many-body system S1 that can be effectively described 
by Hamiltonian HS1

, but whose solution cannot be found exactly. We may encode HS1
 on the 

interactions of a different quantum system HS2
 that we can prepare and control in the lab. 

This analog system S2 (quantum simulator (Georgescu, Ashhab and Nori, 2014) evolves in an 
analog way to the original S1. But in this case, we can perform very precise measurements and 
have arbitrary and exquisite control over the quantum simulator S2, that may not be available 
in the original system S1. Summarising, we are replicating the interactions and dynamics of a 
system on a different platform where controllability can be taken to its best. When we design 
arbitrary interactions over a system that replicates a different one, that is harder to access, we 
claim we have performed an analog quantum simulation (Dalibard and Zwerger, 2008; Buluta 
and Nori, 2009; Esslinger, 20010; Grynberg et al., 1993; Jaksch et al., 1998).

Additionally, we could think about a different protocol with the same purpose. We take 
the unitary evolution of the system S1 that cannot be solved, we discretise it and reexpress it 
into a universal set of quantum gates (Nielsen and Chuang, 2000). This method is inspired 
by the field of quantum computing, and it is called digital quantum simulation (Georgescu, 
Ashhab and Nori, 2014).

There are several platforms that are currently being used in order to perform quantum 
simulations. Let us just name some of the most popular and advanced ones at the moment:

● Trapped ions (Leibfried et al., 2003; Cirac and Zoller, 1995; Schmidt-Kaler et al.,2003; 
Porras and Cirac, 2004).

Ions can be trapped using, for instance, magnetic fields generated by simultaneous AC 
and DC currents. The ions’ vibrations can be cooled down and manipulated with high 
precision using laser fields. More precisely, the quantum states involved are chosen 
to be some internal states of the ion (for instance the fine or hyperfine structure) 
together with vibrational modes due to the laser driving. The interplay between 
these two allows us to perform quantum simulations (Schaetz et al., 2004; Blatt and 
Wineland, 2008) with great single-atom addressability and quantum computations 
(Hanneke et al., 2010; Lanyon et al., 2011) with high-fidelity quantum gates.

● Cold neutral atoms in optical lattices (Lewenstein et al., 2007; Bloch, Dalibard and 
Zwerger, 2008; Jaksch et al., 1998; Jördens et al., 2008; Köhl et al., 2005).

Counter-propagating laser beams generate standing waves that give rise to spatially 
periodic polarization patterns called optical lattices. Inside the potential minimums 
of the optical potential, neutral atoms can be placed. This platform offers great 
advantages to simulate solid state physics, due to its high controllability (Sherson et 
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al., 2010) and lack of unwanted defects. The first experiment with a cold atomic gas in 
an optical lattice simulated the quantum phase transition from a superfluid to a Mott 
insulator (Greiner et al., 2001). Since then, a large number of experiments has been 
successfully carried out including the quantum simulation of topological systems 
(Atala et al., 2013; Tracy et al., 2016).

● Circuit Quantum Electrodynamics (QED): superconducting qubits coupled to 
microwave photons (Makhlin, Schön and Shnirman, 2001; Huang et al., 2004; 
Devoret, Wallraff and Martinis, 2004; Clarke and Wilhelm, 2008; Boissonneault, 
Gambetta and Blais, 2009; Geller et al., 2015; Ripoll et al., 2008).

A superconducting qubit is a technology that is formed out of superconducting 
elements coupled through Josephson junctions (Makhlin, Schön and Shnirman, 
2001). In general, there are two families of superconducting (SC) qubits, depending on 
whether the charge (charge qubits) or the phase (flux qubits) of the superconducting 
elements are good quantum numbers. Besides, a high-quality microwave resonator 
can be coupled to the SC qubits. The situation is analogous to cavity-QED,5 where 
in this case the SC qubit can be seen as an artificial atom (You and Nori, 2003). We 
induce interactions among qubits using the resonator as an "internal bus", similar to 
the lattice vibrations for an ion trap setup.

All of these different platforms offer several advantages over traditional condensed matter 
systems: single-site addressability, the possibility to measure the phase of the wavefunction, 
ultra precise measurement sensitivity, etc. Nonetheless, the number of constituents of these 
quantum simulators is still small and great efforts are being made to scale these systems up.

On the other hand, the quantum simulation of topological physics is currently one of 
the most active fields in this area. The possibility to simulate fictitious gauge fields (Jaksch and 
Zoller, 2003; Lin et al., 2009; Osterloh et al., 2005) and perform interferometric topological 
measures) Atala et al., 2013; Gregor et al., 2014; Roushan et al., 2014; Tracy et al., 2016) have 
triggered an increasing amount of experiments and proposals (Wunsch, Guinea, and Sols, 
2008; Goldman et al., 2010; Mazza et al., 2012; Dauphin, Müller and Martin-Delgado, 2012 
and 2016; Mezzacapo et al., 2013; Goldman et al., 2013). Additionally, from the point of view 
of topological quantum computation, several experimental advances have been achieved as 
well (Nigg et al., 2014; Barends et al., 2014).

Both in quantum simulators and traditional condensed matter, the presence of finite 
temperature and dissipative effects is unavoidable. The interaction between our quantum 
system and its environment is responsible for the transition from purely quantum to classical 
effects (Paz and Zurek, 2001). Regarding phase transitions, equilibrium thermodynamic have 
been the basis for the characterisation of both classical and quantum phases. However, phase 
transitions out of equilibrium have also been studied [Marro and R. Dickman, 1999; Patanè 
et al., 2009).

Along this thesis, we have explored how all the ingredients presented in this introduction 
combine together. The thesis is organised as follows. The material has been divided into two 

5 In cavity-QED an atom is coupled to the electromagnetic field inside a cavity (Scully and Zubairy, 1997).
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main parts plus an appendix section: (A) part I deals with topological order in the presence of 
noise and thermal dissipation; (B) in part II we study the effect of long-range interactions on 
topological superconductors; (C) App. A discuss several state of the art numerical methods 
for the study of dissipative phase transitions.

Each part consists of several chapters, being the first ones a gentle introduction to the 
theory and tools needed for the understanding of the following chapters. The remaining 
chapters in each part contain the original material published in peer-reviewed articles. Each 
paper is supplemented by an introductory section and a summary of the main results. The 
introductions are in general intended to motivate why the paper is timely and convenient, 
and what the main questions or problems addressed by each paper are. Bellow, you may find 
a summary of the content of each chapter.

In chapter 1, we give a brief introduction to topological order. We describe the different 
types of order and their characteristic properties.

In chapter 2, we introduce the basic ideas of the theory of open quantum systems. We 
focus on the derivation of master equations in the weak coupling limit.

In chapter 3, we analyse the physics of a topological insulator coupled to a thermal bath. 
This chapter is based on publication P2.

In chapter 4, we propose the concept of density-matrix topological oder by defining 
the notion of topological order from a Liouvillian superoperator. This chapter is based on 
publication P3.

In chapter 5, we introduce the Uhlmann phase as a tool to characterise symmetry-
protected topological order at finite temperature. In publication P4 we study the one-
dimensional case. Additionally in P5 we extend the Uhlmann approach to two-dimensional 
systems. In publication P6 we give a detailed description of the general Uhmann theory 
both in 1D and 2D and analyse a new topological model. Finally, in P9 we provide a realistic 
protocol to measure this new topological quantum phase using a quantum simulator.

In chapter 6, we generalise a topological quantum memory for the case of qudits 
(d-dimensional quantum bits). We also study the stability of the model when coupled to a 
thermal bath. This chapter is based on publication P1. 

In chapter 7, we give an introduction to BCS and unconventional topological 
superconductivity.

In chapter 8, we study the effect of long-range hamiltonian deformations on the Kitaev 
Majorana chain, a model for a topological superconductor in 1D. This chapter is based on 
publication P7.

Finally, in App. A we present a class of non-equilibrium quantum phase transitions 
driven by dissipation. We apply a numerical technique called cluster mean-field approximation 
in order to study driven-dissipative quantum phase transitions. This method is combined 
with several others: matrix-product-states, tensor networks and quantum trajectories. This 
appendix is based on publication P8.
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Topology is the branch of mathematics that deals with geometrical properties of 
objects that are insensitive to smooth deformations. Based on this intuitive definition we can 
argue that a donut belongs to the same topological class as a cup of tea, in the sense that 
they both have the same number of holes. Mathematically, we say that both objects have 
the same genus. However, a basketball has a different topology than a ring, since they can 
never be transformed into each other by means of smooth surface deformations. This gives 
us intuition into why topological properties have some intrinsic robustness with respect to 
purely geometrical aspects.

The importance of topology in high energy physics (Witten, 1988) was recognised after 
these ideas became relevant in condensed matter or more generally for low energy physics 
(Thouless, 1988; Kosterlitz and Thouless, 1972 and 1973; Thouless et al., 1982; Haldane, 
1983; Thouless; Wu, 1985). However, a paper by Dirac (1931) can be considered as a precursor 
of the role played by topology in Physics. He showed that magnetic monopoles are possible 
in a quantum theory only if the magnetic charge is an integer times the electric charge of the 
electron.

Historically, the first known example of topological order in condensed matter was 
the integer quantum Hall effect (IQHE) (Klitzing, Dorda and Pepper, 1980). At very low 
temperature, when a 2D electron system (e.g. a MOSFET transistor) is threaded by a strong 
magnetic field, the transverse conductivity xyσ  is integer-quantized (Niu, Thouless and Wu, 
1985) in units of e

h

2

.1 The integer is a topological invariant called the Chern number, related to 
xyσ  through the TKNN formula (Thouless et al., 1982). Along this section, we will describe 

these topological invariants and show their relation with physical properties of the system. 
The Chern number is also equal to the number of filled Landau levels2 (Landau and Lifshitz, 
2000) at the Fermi energy.3 In order to understand the relation between the filled Landau 

1 Along the paper, h stands for the Planck constant, e is the electron electric charge and c stands for the speed of light.
2 In Quantum mechanics, when an electron interacts with a magnetic field, its energy spectrum is discrete. These 

levels are called Landau levels, and can be occupied by electrons with different momentum. The effects associated 
with Landau levels can only be resolved at small temperatures (small thermal energy) and strong magnetic fields 
(large energy gaps).

3 In a system of non-interacting electrons, the Fermi energy is defined as the maximum energy that the last occupied 
state (the one with highest energy) can have. This quantity depends on the material and sets whether a system 
behaves as a metal or as an insulator/semiconductor.
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levels and the quantum Hall conductance, Laughlin (1981) proposed a thought experiment 
and gave a very intuitive argument. Let us have a 2D Hall bar that we wrap into a loop (taking 
periodic boundary conditions in one direction), so we get a cylinder. The current along the 
wrapped direction generates a magnetic flux threading the cylinder. Following Laughlin’s 
calculations, for each quantum flux hc/eφ∆ =  threading the system, one electron per Landau 
level is transferred from one edge to the other, leading to the formula for the quantised Hall 
conductance.

Sometimes, Landau levels are not completely filled, but only a certain fraction of them, 
with filling factor μ = p / q, where p and q are integer numbers. This produces the famous 
fractional quantum Hall effect (FQHE) that was experimentally realised in 1982 by Nobel 
laureates Tsui and Störmer (Stormer and C Gossard, 1982). From the theoretical side, Laughlin  
(1983) gave a phenomenological description in terms of a trial wavefunction for the μ = 1/q  
states, where q  is and odd integer. Haldane (1983) extended the theory for filling factors 
μ ≠ 1/q. It was Halperin (1984) in 1984 who conjectured that the quasiparticles given by 
Laughlin wave functions had unusual particle statistics. Later, Arovas, Schrieffer and Wilczek 
(1984) proved that these quasiparticles were abelian anyons.4 When two of these particles are 
exchanged, the wavefunction acquires a phase eiѲ with =

q
πθ . Anyons with non-abelian statistics 

can be also found in the FQHE (Moore and Read, 1991; Wen, 1991; Read and Green, 2000) 
A complementary theory for FQH states with different filling factors was proposed using the 
concept of composite fermions (Jain, 1989; Halperin, Lee and Read, 1993). The underlaying 
principle states that particles in the FQHE can be described as IQH states of composite 
fermions (where magnetic fluxes are attached to electrons). Both the IQHE and the FQHE 
represent two examples of topological orders that cannot be described using Landau theory.

Therefore, let us understand what are the elements in Landau theory (Landau, 1937) of 
phase transitions that fail to describe topological order. A traditional textbook example for 
the use of Landau theory describes the phase transition from a paramagnetic (PM) phase 
to a ferromagnetic (FM) phase of a many-body spin system when temperature decreases. 
According to Landau theory, these two phases can be distinguished from each other by the 
expectation value of a local order parameter (the magnetisation M). If T > Tc the system 
behaves as a paramagnet M = 0, whereas for T < Tc , the system is a ferromagnet M ≠ 0. 
The critical temperature Tc signals where the phase transition occurs. At that point there is a 
process called spontaneous symmetry breaking, at which the spin rotational symmetry SO(3) 
in the PM phase spontaneously breaks, and the system becomes FM. This paradigm of a 
local order parameter characterising the different phases and the symmetry breaking process 
during the phase transition constitute the main core of Landau theory (Landau, 1937).

Nonetheless, there are other types of phases of matter, that cannot be described using 
Landau theory. These phases are called topological orders (TOs). In this case, there is no local 
order parameter that can distinguish between two different phases with different physical 
properties. Instead, they are characterised by a global order parameter, that is able to retain 
the topological information of the system. The other main difference with respect to Landau 

4 Anyons are excitations with unusual braiding statistics. They are neither bosons nor fermions. Because of these 
non-trivial braiding statistics they have been proposed as basic elements for Topological Quantum Computation 
(Nayak, 2008).
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theory is the role that symmetry plays. In topological phase transitions, when traversing from 
one phase to another, no symmetry is broken. The mechanism of spontaneous symmetry 
breaking is no longer valid. Actually, it is still and open problem whether a Landau-like theory 
for a topological order parameter can be derived.

On the other hand, topological phases of matter are characterised by a group of 
remarkable physical properties: the ground state is separated from all excitations by an energy 
gap and may be degenerate, they host protected gapless edge states, quasiparticle excitations 
are anyons, etc.

Actually, we have very generally defined TOs as phases of matter characterised by a 
global order parameter, whose phase transitions do not involve symmetry breaking. However, 
we can further classify TOs in two categories according to the subset of the above physical 
properties they have:

Intrinsic Topological Order (ITO):

These phases of matter have a degenerate ground state, that is isolated by an energy gap to 
all excitations. They are robust against arbitrary local perturbations. They also posses anyonic 
quasiparticle excitations with non-trivial braiding statistics. These anyons are a new type of 
topological quasiparticles that appears in 2D. They are neither bosons nor fermions. Instead, 
when we exchange two of these identical anyons, the wavefunction acquires an extra phase  
eiѲ with Ѳ ∈ (0, π). More generally the phase could be even non-abelian, which means that 
after exchanging two identical fermions, the wavefunction is multiplied by a unitary matrix 
and not just a simple U(1) phase. This opens the possibility to perform universal quantum 
computations (Kitaev, 2003; Nayak et al., 2008). Examples of intrinsic topological orders are: 
the FQHE, the toric code (Kitaev, 2003) and double semion model (Freedman et al., 2004; 
Levin and Wen, 2005) the color codes (Bombin and Martin-Delgado, 2006 and 2007) etc. 
Quantum states with ITO can be also characterised by patterns of long-range entanglement 
(Kitaev and Preskill, 2006; Levin and Wen, 2006; Gu and Wen, 2010).

Symmetry-protected topological order (SPTO):

These phases instead do not have anyonic quasiparticles in the bulk. The non-trivial 
physics happens at the boundary. Actually, these SPT phases host protected edge states, which 
are isolated from bulk excitations by an energy gap. The edge states are robust against disorder 
and local perturbations that respect a certain global protecting symmetry G (e.g. time-reversal 
symmetry). Actually, one can classify the different classes of SPT phases according to these 
discrete symmetries. Moreover, they are short-range entangled phases since they do not 
have TO in the bulk. Most of these topological phases where found to be associated with 
the fermion character of particles (Hasan and Kane, 2010; Qi and Zhang, 2011). However, 
bosonic versions of these phases were discovered and they are now all of them understood as 
symmetry-protected topological orders (SPTOs) (Vishwanath and Senthil, 2013; Metlitski et 
al., 2013; Gu, Liu and Wen, 2013).
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A detailed analysis of topological phases will be carried out in the next section.

This chapter is organised as follows: In Sec. 1.1, we introduce the notion of symmetry-
protected topological order (SPTO). We present a toolkit to analyse the topological phase 
diagram of these models at zero temperature and discuss the appearance of protected edge 
states (see also publications P4, P5 and P6). In Sec. 1.2, we describe the main features of 
intrinsic topological orders (ITOs) and their applicability to build topological quantum 
memories. In particular, we will analyse the basics of the most paradigmatic model for a 
topological quantum memory called the toric code (Kitaev, 2003) (see publication P1).

1.1. SYMMETRY-PROTECTED TOPOLOGICAL ORDER (SPTO)

In 1988, Haldane (1988) realised that it is possible to obtain a quantum Hall effect for a 
model with no Landau levels (no net magnetic flux). However, this model still breaks time-
reversal (TR) symmetry.

The discovery of topological insulators (Hasan and Kane, 2010; Qi and Zhang, 2010 and 
2011) and the rapid development of this whole community started 10 years ago when it was 
realised that a spin version of the quantum Hall effect was possible (Bernevig and Zhang, 
2006). The role of the magnetic field is played by the spin-orbit interaction which does not 
break TR symmetry. The first experimental proposal (Bernevig, Hughes and Zhang, 2006)  
and the first experiment (König, 2007) appear soon thereafter, and the spin Hall effect was first 
meassured in HgTe/CdTe semiconductor quantum wells.

A topological insulator is a material that behaves as a standard insulator in the bulk (band 
insulator, Mott insulator, Anderson insulator,...); while displaying conducting edge states at the 
boundary. In the case of the spin Hall effect, they have two counter-propagating conducting 
states at each edge with spin up and spin down respectively. Due to the conservation of TR 
symmetry, these states do not scatter and mix. In Landau theory, the concept of symmetry 
plays a very important role distinguishing different phases. For the case of SPT phases, 
symmetry also plays a key role. The focus is not on which symmetries the system breaks, 
but on which symmetries the system has to preserve to remain stable. SPT phases can be 
shown to be stable against perturbations that do not break the set of protecting symmetries 
of the system. Topological insulators belong to the SPT class of topological orders, since their 
robustness is linked to the preservation of a certain discrete symmetry.

In 2007, a 3D version of topological insulators (Fu, Kane and Mele, 2007), was first 
proposed and experimentally realised in a series of experiments (Hsieh et al., 2008; Chen et 
al., 2009; Hsieh et al., 2009, 2009a and 2009b). These were able to probe: the appearance of 
surface Dirac cones, the spin structure of edge states through ARPES5 techniques, etc.

Inter-particle interactions can also induce topological insulating phases. Topological 
Mott Insulators (Raghu et al., 2008; Dauphin, Müller and Martin-Delgado, 2012 and 2016) 

5 Angle-resolved photoemission spectroscopy (ARPES).
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are a certain kind of Mott insulators,6 whose mean-field phase diagram possesses 
topological insulating phases. The effect of interactions plays an important role in 
the topological classification of free fermion systems (Fidkowski and Kitaev, 2010). Very 
naturally, interactions in SPT phases opened the door for the generalisation of these phases 
to interacting bosonic systems (Chen et al., 2013). Despite the different particle statistics of 
fermions and bosons, particle interactions can produce novel states called bosonic topological 
insulators (Vishwanath and Senthil, 2013; Metlitski, Kane and Fisher, 2013). From the 
theoretical point of view, topological insulators can also be described using topological 
quantum field theory (Qi, Hughes and Zhang, 2008).

The field of topological insulators has attracted a lot of attention during last years. Very 
recently, it was shown (Wan et al., 2011) that for certain 3D materials7 it is possible to find band 
structures of the form of a "zero-gap semimetal", for which the valence and conduction 
band "touch" at a discrete number of crystalline momenta k (Balents, 2011). Some of these band 
touching points are protected by topology and are called diabolic points (Murakami, 2007). 
The band dispersion relation around these touching points is linear, similar to the massless 
Dirac fermions observed in graphene. However, as either TR or inversion symmetry has to 
be broken, the low energy excitations around these diabolic points satisfy the Weyl equation 
(Weyl, 1929), and behave as Weyl fermions8 instead. Weyl semimetal states have been 
experimentally observed through some of their distinct characteristics: linear band dispersion 
structure around diabolic points, the presence of surface Fermi arcs9 (Xu et al., 2015a and 
2015b; Yang et al., 2015) etc. Simulations of these topological metals in optical lattice have 
been also proposed (Bercioux et al., 2009).

Inspired by topological insulators, there has been several proposals and experiments to 
build photonic analogs of SPT phases in photonics crystals (Lu, Joannopoulos and Soljacic, 
2014). The possibility to image robust edge states of light (Hafezi, 2013) and measure 
topological invariants (Hafezi, 2014; Mittal, 2016) from scattered photons, paves the way 
for further research to construct robust waveguides with arbitrary shape. Floquet topological 
insulators induced by temporal modulation of a photonic crystal (Rechtsman et al., 2013) are 
recently getting a lot of attention too.

Furthermore, the notion of SPT phases is not restricted to insulating phases. Actually, 
superconducting phases with topological order (Sarma, Nayak and Tewari, 2006; Fu and Kane, 
2008) are probably the most exciting area within the field of topological orders, due to the 
appearance of quasiparticles that are Majorana fermions (Kitaev, 2001). This will be discussed in 
very much detail in the second part of this thesis (chapter 7).

6 A Mott insulator (Mott, 1968) is a type of insulator that is created through strong repulsive interactions between 
electrons inside a band. These strong their interactions cannot be neglected as in usual solid-state band theory.

7 For example R2 Ir2 O7 where R stands for a rare-earth element.
8 Weyl fermions satisfy the so-called Weyl equation (Weyl, 1929), a two-component Dirac-like equation that was 

proposed by Hermann Weyl in 1929. The Weyl equation has been used in particle physics to describe the chiral 
and massless behavior of neutrinos, when their small mass can be neglected.

9 At the Fermi energy, the states form open arcs whose endpoints are the projection of diabolical points onto the 
surface Brillouin zone.
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Lastly, we can classify SPT phases into what is called the periodic table of topological 
insulators and superconductors (Kitaev, 2009; Schnyder et al., 2008; Ryu, 2009). This 
classification is made according to: (a) a set of discrete anti-unitary symmetries (time-reversal 
TR, particle-hole PH and Chiral C), and (b) the space-time dimension. However, it seems 
clear that any discrete symmetry should give rise to different topological phases protected 
by symmetry (Chiu et al., 2016). This was first noted by Fu (2011) with his proposal for 
crystalline topological insulators, that have already been created in the laboratory (Hsieh et 
al., 2012). In addition, particle interactions can change the physical properties of the different 
classes (Fidkowski and Kitaev, 2010). A complete theoretical classification of all possible SPT 
phases including interactions for d > 1 is still missing.

For non-interacting SPT phases a complete topological characterisation can be given by 
means of the Berry phase, as it will be explained in what follows.

1.1.1. Berry phase

Quantum phases play nowadays a prominent role in modern condensed matter 
physics. Their importance roots back to the origin of Quantum Mechanics and the role 
played by the relative phase of a superposition state (Galindo and Pascual, 1990) in 
quantum interference. Recently, quantum phases are being used to produce very powerful 
computational systems like a quantum computer (Nielsen and Chuang, 2000; Galindo and 
Martín-Delgado, 2002).

The Aharonov-Bohm (AB) phase (Aharonov and Bohm, 1959) is a very special 
quantum phase since local perturbations leave it unaltered: it is topologically invariant. 
In classical mechanics we use the concept of force to describe the way in which electric 
or magnetic particles move due to electric or magnetic effects. Forces only depend on 
the value of the electric field E or the magnetic field B and not on the potentials (V, A). 
Due to the invariance of Maxwell’s equations under gauge transformations of the potentials, 
it has long been thought that these potentials were clearly unphysical, serving only as a purely 
mathematical construction to simplify the formulation and calculations. In quantum 
mechanics, however, potentials and not fields appear at the very heart of Schrödinger’s 
equation. Therefore, the question of whether potentials may have some physical relevance 
by themselves revived. In 1959, Aharanov and Bohm (Aharonov and Bohm, 1959) showed 
that the wave function of a particle acquires a phase, when it traverses regions of the 
space with a vanishing B field but non-zero vector potential A≠0. If a particle in free space 
winds around a solenoid, it acquires a phase that only depends on the magnetic flux that 
the close trajectory encircles. But the phase does not depend on the specific path that the 
particle describes. Equivalently, we say that the phase only depends on the topology of 
the space.

The Berry phase (Berry, 1984) is another special instance of quantum phase, one that is 
purely geometrical (Wilczek and Shapere, 1989; Luis, 2006) and independent of dynamical 
effects during the time evolution of a quantum system. The discovery of this geometric phase 
by Berry in 1984 is linked to the behaviour of adiabatically driven systems.
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Let us consider a system governed by a Hamiltonian H(R(t)), where R(t) is a parameter 
of the Hamiltonian that varies in time. The evolution of the system under this Hamiltonian is 
given by the time-dependent Schrödinger equation 

   ( ) ( )( ) ( )id t H R t t
dt
Ψ Ψ= −



 |Ψ(t)〉=_( ) ( )( ) ( )t H R t t
dt
Ψ Ψ= −  H(R(t))|Ψ(t)〉 ,    [1.1]

where h is the Planck constant. Let the initial state |Ψ(0)〉 = |n(R(0))〉 be an eigenstate of 
H(R(0)). If we assume that the evolution is adiabatic, then the state will always remain an 
eigenstate of the H(R(t)), up to some phase factor 

    |Ψ(t)〉=eiΦ(t) |n(R(t))〉.   [1.2]

By inserting Eq. [1.2] in Eq. [1.1], we get a differential equation for Φ(t) that can be 
integrated straightforwardly 

  Φ(T)= 
T

− ∫
0

1


T

∫0
En (R(t)) dt+ i

T

∫0
〈n(R(t))| d

dt
|n(R(t))〉 dt,            [1.3]

where T is the final time of the evolution and we set Φ(0)=0. Using the chain rule 

  〈n(R(t))|( )( ) ( )( ) ( ) ( ) ( )R

dR tdn R t n R t n R n R
dt dt

= ⋅ ∇|n(R(t))〉=( )( ) ( )( ) ( ) ( ) ( )R

dR tdn R t n R t n R n R
dt dt

= ⋅ ∇⋅〈n(R)|∇R|n(R)〉,    [1.4]

we can see that the last term does not really depend on time. Hence, we obtain Φ(T)=Φd+ΦB, 
where 

    Φd= 
T

− ∫
0

1


T

∫0
En (R(t))dt     [1.5]

 is called the dynamical phase and 

     ΦB=i∮C 〈n(R)|∇R|n(R)〉dR     [1.6]

is the so-called Berry phase, where we have made the choice |n(R(T))〉=|n(R(0))〉 for a closed 
path C in parameter space. The Berry phase ΦB is a geometric phase that only depends on 
the geometry of the path R(t), but not on the speed at which the path is traversed nor on any 
dynamical details of the driving. It is also independent of the system’s energy and it is clearly 
gauge invariant.10 An easy textbook example for the applicability of this result is a spin 
precessing due to a slow varying magnetic field. After a periodic driving is completed, the 
spin picks up a phase that is proportional to the area enclosed by the precession of the spin in 
the Bloch sphere.11

10 If we choose a different phase for the eigenvectors |n(R(t))〉 →eiα(t) |n(R(t))〉, the phase ΦB remains invariant.
11 The Bloch sphere is a geometric and pictorial representation of the pure state space generated by {|↑〉,|↓〉} of a spin 

1/2 particle.
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It so happens that both the AB phase and the Berry phase are intimately related. 
When a Berry phase is invariant under deformations of the path traced out by the system 
during its evolution, it becomes topological as the AB phase. Topological Berry phases have 
also acquired a great relevance in condensed matter systems. The now very active field of 
topological insulators (TIs) and superconductors (TSCs) (Hasan and Kane, 2010) ultimately 
owes its topological character to Berry phases associated to the special band structure of these 
exotic materials.

1.1.2. Topological Band theory: Berry curvature and Chern number

Describing the state of a many-body system in quantum mechanics is an outstanding 
problem, as the dimension of the Hilbert space grows exponentially with the number of 
particles N. This is the reason why the Nobel-prize winner Richard Feynman proposed to use 
a tuneable auxiliary quantum system as a quantum simulator (Feynman, 1982).

Despite the great difficulty in solving these systems exactly, this becomes much easier for 
certain states of matter that can be described using the band theory of solids. Here, the energy 
distribution of electrons tend to group and concentrate over certain available regions (bands), 
while other energies are forbidden (gaps). The particular energy distribution of electrons is 
called band structure. The so-called band insulators can be effectively described assuming 
that electron interactions can be neglected. These systems have a gap between the last band of 
occupied states (valence band) and the first band of unoccupied states (conduction band). The 
band topology remains unchanged against perturbations such as particle-interactions that do 
not close the gap.

A second assumption is that the electron-system is crystalline and we can resort to 
translational invariance. Hence, we can write the Hamiltonian H in momentum space 
satisfying H(k) = H(k+G), where k is the crystalline momentum, and G is a reciprocal lattice 
vector (Ashcroft and Mermin, 1976). The eigenstates also depend on k and follow Bloch’s 
theorem |Ψn(k)〉=eik.r |n(k)〉, where |n(k)〉 is a cell-periodic eigenstate of H(k). The crystalline 
momentum k in the Brillouin Zone (BZ) is equivalent to K + G, where G is a reciprocal lattice 
vector. Thus, the BZ is topologically equivalent to a torus Td in d spatial dimensions.

The insulating band structure can be understood as a mapping between the BZ torus 
and the space of Bloch Hamiltonians H(k) with a gap. A complementary tool for the study 
of SPT phases are the winding numbers characterising these mappings (Wen and Zee, 1989). 
This will not be analysed in this section, but more information can be found in the references 
provided and in publications P4, P5 and P6.

In 1989, Zak (1989) realised that the characteristic feature for the use of a Berry phase, 
is that the state of the system depends on a continuous parameter, such that when varied, the 
system describes a closed path. In band theory, the Berry phase arises very naturally since 
Bloch states are defined up to some arbitrary phase 

     |n(k)〉→ eiϕ(k) |n(k)〉,   [1.7]
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where the role of the continuous periodic parameter is played by the crystalline momentum k. 
Thus, we can identify a fiber bundle structure (Nakahara, 2003: 1) a manyfold of states defined 
by |n(k)〉 and 2) a U(1) fiber associated to the gauge freedom of picking a global phase for the 
state at each k point.

From that mathematical point of view, we can construct a connection through a 
condition for parallel transport of the state |n(k)〉. A connection is a mathematical object 
that allows us to transport vectors along a curve and connect states |n(k)〉 at different momentum 
k. The condition for Berry parallel transport states that the arbitrary phase ϕ(k) at each 
point should be chosen, such that the distance between |n(k)〉 and an infinitesimally close 
|n(k+dk)〉 is minimal. This is equivalent to fixing 〈n(k)||n(k+dk)〉 to be real. Thus, by 
Taylor expanding eiϕ(k) |n(k+dk)〉 in terms of dk we get 

  〈n(k)|n(k+dk)〉=eiϕ(k) [1+〈n(k)|∇k n(k)〉dk+idϕ(k)+O(dk)2].    [1.8]

If we impose this quantity to be real up to first order in dk, we get that the Berry 
connection is given by 

   AB
n (k)≡ 

( )d k
dk
φ

 =i〈n(k) |∇k| n(k)〉.     [1.9]

By integrating along a closed loop C that covers the entire BZ we get the Berry/Zak phase 

    ΦB
n=∮C A

B
n dk    [1.10]

Therefore, if we perturb the electron system by quenching k along the whole BZ, the 
system acquires a Berry phase ΦB. Note that for the 1D case, the crystalline momentum 
k∈(-π,π) is just an scalar, and ΦB is given by a simple line integral.

In 1992, Resta (1994) showed that the electric polarisation is related to the adiabatic charge 
transport in the system. Therefore, the polarisability can be expressed in terms of the Berry 
phase across the entire Brillouin Zone (Xiao, Chang and Niu, 2010). Actually, for inversion 
invariant systems, the phase is quantised and can only take the values 0 or π depending of 
whether the system is in a topologically trivial or non-trivial SPT phase respectively. Actually, 
this is not the only effect linked to the Berry phase in condensed matter. In spatial dimensions 
higher than one, the topological Berry phase plays a fundamental role in the whole dynamics 
of Bloch electrons, giving rise to effects such as the quantum Hall conductivity (Thouless 
et al., 1982), the magneto-electric effect (Qi, Hughes and Zhang, 2008), etc. Some of these 
properties will be further analysed in the following sections.

Out of the Berry connection AB
n(k) in Eq. [1.9], we can define the associated Berry 

curvature 

     F n
µν

 (k)=∇k×A
B
n (k).   [1.11]
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In 2D, the integral of the Berry curvature over the BZ gives the so-called Chern number12

    c1= π
1

2 ∮BZ F n
xy (k).d2 k,   [1.12]

an integer number that signals whether the associated band structure is topologically non-
trivial. A bit later, we will formulate the basic notions of Chern classes and establish why they 
become important on identifying the topological structure of real physical systems.

First of all, let us understand the relation between the Berry phase and the Chern 
number defined in Eq. [1.12]. This will help us get an intuitive picture of it. By means of the 
Stokes’ theorem, we can identify the Berry phase picked along the closed loop C enclosing 
the BZ [Eq. (1.10)], with the integral of the curvature over A (the area enclosed by C [Eq. (1.12)] 
(Simon, 1983). As the BZ is a T2 torus and has no boundary, the integral ∮C AB

n (k)dk would 
always give zero if AB

n (k) is well-defined along the entire BZ.

■ Is it then impossible to have a non-zero Chern number defined over a Tn (n-dimensional) 
torus?

The answer is linked to the impossibility of defining a unique vector potential (Berry 
connection) AB

n (k) over the entire BZ when the system lies within a topologically non-trivial 
phase. Therefore, we need at least two patches of AB

n (k) associated to different gauge choices 
of the wavefunctions 

    |n(k)〉'=e_if(k) |n(k)〉,   [1.13]

where f(k) is a smooth function over the whole BZ. From this gauge transformation, the Berry 
connection gets also modified 

               A
B
n (k)'= A

B
n (k)+∇k f(k)      [1.14]

For simplicity, let us suppose a model where the connection is singular at a single point 
for a global gauge choice. In that case, two patches are enough to cover the BZ with smooth 
functions. Thus, we define a connection A1(k) over a patch P1, and A2(k) over a patch P2, where  
P1 ∪ P2=BZ, and the gauge choices are related by 

      A2(k)=A1 (k)+∇k f(k)   [1.15]

We can now take Eq. [1.12] and apply Stokes’ theorem: 

 c1= π
1

2  ∮BZ F n
xy (k).d2 k=

π
1

2  ∮P1
 ∇k×A1 (k).d2 k+ π

1
2  ∮P2

∇k×A2 (k).d2 k= 

                                               
π
1

2
 ∮∂P1

 A1 (k).dk+
π
1

2
 ∮∂P2

 A2 (k).dk.              
[1.16]

12 Actually, this is strictly speaking the first Chen number, which is the only non-zero Chern class that characterises 
the fiber bundle in 2D (Nakahara, 2003).
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The BZ torus has no boundary ∂TBZ
2  =0, thus ∂P1=-∂P2. Therefore, using Eq. [1.15], we 

can simplify the Eq. [1.17] even further, 

       c1= π
1

2
 ∮∂P2

 (A2 (k)-A1 (k)).dk=
π
1

2
 ∮∂P2

 ∇k f(k).dk=n  [1.17]

where n is an integer number. The last equality comes from the fact that n(k) has to be single 
valued. Therefore, the winding of the function f(k) along the contour ∂P2 has to be an integer. 
Note that by performing a gauge transformation of the wavefunction, we can change the 
integer if we compute c1 using the Berry phase formula.This comes from the fact that ΦB 

is gauge invariant mod2π. Therefore, it is generally more convenient to compute the Chern 
number through the curvature (Dauphin, Müller and Martin-Delgado, 2014) using Eq. [1.12].

Within this framework, we can now introduce the theory of Chern classes. In general, 
the theory of characteristic classes studies the classification of fiber bundles. A principal fiber 
bundle P( ,F), over a base space  with a typical fiber F is defined as follows. We consider a 
total space � which is a differential manifold, that is projected onto the base space   according 
to a surjection13 π : � → , that is called the projection. The inverse image π-1(p)≡Fp is called 
the fiber at p∈ . The fibers Fp are diffeomorphic to a Lie group called the typical fiber F≅Fp.

Interestingly, this is the precise structure that we have introduced when computing the Berry 
phase. Any quantum mechanical state |n(k)〉 ∈ ε belongs to the total Hilbert space ε, over which 
we define a principal fiber bundle P( ,U(1)). At each point k of the BZ torus Tn, we can identify a 
projector |n(k)〉 〈n(k)| ∈ . The space of projectors (idempotent matrices of trace one)  represents 
the base space on which the fiber bundle is built. The quantum state |n(k)〉 belongs to a U(1) fiber 
which represents the equivalence class of states [|n(k)〉] up to a global phase. Finally, the projection 
π : � →  is defined as π(g |n(k)〉) = |n(k)〉 〈n(k)| where g∈U(1). We have mapped our quantum 
mechanical problem to a fiber bundle structure and we can now introduce the idea of a Chern class.

Roughly speaking, a characteristic class measures the “twisting" of a principal fibre 
bundle, and this generates a classification. In summary, a principal fibre bundle P(  ,F), 
based on  with a typical fibre F, can be imagined as a patchwork. The topology of the fibre 
bundle is characterized by the number patches that we have to use in order to obtain a well-
defined connection over the whole base space . In particular, if a single connection A(k) can 
be defined over the whole base space, then the fiber bundle is trivial. It is therefore intuitive 
that characteristic classes can generally be expressed in terms of the local connection form A 
or curvature form F. The Chern character is defined as

   c(F)=Tr[exp F
π

 
 
 2 ]= ( )dim M

2 +
j =
∑

1
cj (F),   [1.18]

where F= 1
2 Fμν dkμ ∧ dkν is the curvature 2-form, and cj (F) is called the j -th Chern character. 

The integral of cj (F) over the base space  is the j -th Chern number. By considering a U(1) 
bundle over  = T 2, the only non-zero Chern number is c1 as given in Eq. [1.12].

13 A function f :X→Y  is surjective, if every element y∈Y has a corresponding element x∈X such that f(x)=y. It is not 
necessary that x is unique; the function f may map one or more elements of X to the same element from Y.
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The appearance of non-abelian gauge structures in simple quantum mechanical systems 
was first consider by Wilczek and Zee (1984). Since then, principal fiber bundles associated 
to non-abelian Lie groups like SU(n) have been extensively studied for their application to 
real physical situations. In particular, optical lattice simulation of non-abelian gauge fields 
have been proposed (Mazza et al., 2012). They consider non-abelian Lie groups instead of the 
simplest U(1) case.

1.1.3. Quantum Hall conductivity & Topological edge states

By means of linear response theory, it is possible to prove the relation between the Chern 
number and the transverse Hall conductivity as originally carried out by Thouless, Kohmoto, 
Nightingale, and den Nijs in the so-called TKNN formula (Thouless et al., 1982). This is one 
of the main physical consequence of a system with a topologically non-trivial band structure. 
A detailed derivation of this formula, 

    σxy=
e
h

2

 c1,   [1.19]

can be found in (Goldman, 2009; Thouless et al., 1982) based on the so-called Kubo formula.14 
At the same time, Streda also arrived to the quantization of the transverse conductivity using 
linear response theory (Streda, 1982).

In this subsection however, we only want to give an intuitive argument proposed by 
Laughlin (1981) to understand why we get quantised charge transfer in the perpendicular 
direction due to filled Landau levels, and link this to the existence of gapless edge states at the 
boundary of the system.

We consider a 2D material that is traversed by a magnetic field perpendicular to the 
plane. Now let us take periodic boundary conditions along the y -direction, so the crystalline 
momentum ky is a good quantum number. The material will look like a cylinder, with the axis 
pointing in the x -direction.

By inserting a magnetic flux Δϕ threading the cylinder along x, we generate a current 
along the wrapped y -direction. Note that the direction of this flux is different from the 
one generated by the magnetic field of the system (radial direction). Following Laughlin’s 
calculations, for each quantum flux Δϕ0=h/e threading the system, one electron per Landau 
level is transferred from one edge to the other. If there are n filled Landau levels, n electrons 
will move, so the total energy transfer is given by 

     ΔE=n.e.Vx ,     [1.20]

where Vx is the potential difference across the cylinder. On the other hand, the current along 
the y -direction y

y
y

LH Hj
k π φ
∂ ∂

= =
∂ ∂2 , where Ly is the length of the circumference of the cylinder. 

14 The Kubo formula is an equation based on the linear response of an observable quantity to a time-dependent 
perturbation, applied to the system.
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This is so, since the magnetic flux Δϕ shifts ky→ky+ yL
  πφ2 . By taking the expectation value of jy on 

the ground state and discretising the formula for jy, we get that the intensity Iy= E∆
∆φ

. Thus, for 
each fundamental quantum flux Δϕ0=h/e we get that the intensity 

    
y x

eI n V
h

=
2

0 ,   [1.21]

where we have used Eq. [1.20]. Finally, the transverse conductivity can be written as 

    y
xy

x

I en
V h

σ = =
0 2

    [1.22]

where the integer n stands for the number of filled Landau levels.

Additionally, Laughlin argued that the presence of gapless edge modes is an inevitable 
consequence of quantised transverse conductivity in an insulator. The argument works as 
follows. We know that: (a) the Hall conductivity σxy is an integer and (b) σxy cannot change 
unless the bulk gap closes and reopen again. Therefore, we conclude that the boundary 
region connecting two insulators with different Hall conductance (for instance a topological 
insulator and the vacuum) must have a point where the gap closes and opens again. This is 
equivalent to having an edge mode that crosses the Fermi level. Otherwise the whole space 
would be gapped, which means that the Hall conductivity should be the same everywhere. 
In Fig. [1.1] we have depicted a typical energy spectrum of a topological insulator. We can 
see two edge modes crossing the Fermi level from the upper band to the lower band and 
viceversa. Close to k = 0, the energy of the edge states can be linearised as if they were 
“massless" Dirac fermions. It is essential that the edge states connect the upper and lower 
bands. A careful analysis of these current-carrying edge states was performed by Halperin 
(1982), studying the robustness of these states in the presence of weak disorder.

Figure 1.1.  
Energy bands of a topological insulator as a function of momentum in one direction k2

Note: The red lines correspond to conducting edge state modes. The Fermi energy has been placed at the middle point of 
the two bands.
Source: Own elaboration.
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On the contrary, in Fig. [1.2] we show the energy dispersion relation for a trivial 
insulator with edge states. The transverse Hall conductivity is equal to zero, and the edge 
modes are non-topological. They can be absorbed into the bulk by smooth Hamiltonian 
deformations.

The study of the fate of edge states when coupled to a thermal reservoir is one the central 
points studied in publications P2 and P3.

1.2. INTRINSIC TOPOLOGICAL ORDER

In symmetry-protected topological order (SPTO), we have seen that topology is 
manifested in the physics of the boundary. Inside the bulk, the band structure is similar to 
the one of a regular insulator [see Fig. (1.1)] and the system is short-range entangled. On the 
contrary, Intrinsic Topological Order (ITO) is a state of matter that is fully topological 
in the bulk. It has a degenerate ground state and the quasiparticle excitations are anyons 
with exotic particle statistics (Arovas, Schrieffer and Wilczek, 1984; Kitaev, 2003). Unlike SPT 
phases, ITO states display long-range entanglement (Kitaev and Preskill, 2006; Levin and 
Wen, 2006; Chen, Gu and Wen, 2010).

The easiest way to understand this exotic phase, is to focus on a particular example and 
review the properties to see how they arise from scratch.

1.2.1. Toric Code

The toric code (Kitaev, 2003) is an exactly solvable model with ITO, originally 
proposed by Kitaev. It was initially proposed with the idea of performing fault-tolerant 

Figure 1.2.  
Energy bands for a trivial insulator as a function of momentum in one direction k2

Note: The red lines correspond to non-conducting and non-topological edge modes. The transverse Hall conductivity is equal to zero.
Source: Own elaboration.
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quantum computation.15 It turns out that topology provides a very natural scheme to 
support large error rates on the system, due to the intrinsic robustness of topological 
properties.

First of all, let us introduce the model and analyse all the elements that defines an 
intrinsic topological phase. We consider a k x k square lattice embedded in a T2 -torus. At 
each edge of the lattice, we attach a spin 1/2, so the total number of spins16 is N=2k2. See Fig. 
[1.3] for a pictorial image. In order to define the interactions between the spins, we construct 
a particular set of operators As and Bp. For each vertex s and each face P, 

   As  ∶=  
( )   j star s

ž
∈
∏ Xj,                Bp  ∶= ( )   j boundary p∈

∏ Zj,    [1.23]

where Xj and Zj are the Pauli matrices acting on the spin at site j. The set of operators As and 
Bp commute with each other since they have either 0 or 2 common edges (see Fig. [1.3]). 
They are also Hermitian and have eigenvalues 1 and -1. Therefore, they constitute an abelian 
subgroup of the Pauli group of n qubits, named stabilizer group.

Let  be the Hilbert space of all n=2k2 qubits. We denote the topological quantum code 
C⊆ , 

   C  =  { |Ψ〉∈ ∶ As |Ψ〉=|Ψ〉, Bp |Ψ〉= |Ψ〉 for  all   s,p }.    [1.24]

15 Fault-tolerant means that quantum computation can be done for an arbitrarily long-time, provided that the error 
rate in the system lies bellow a certain threshold.

16 Sometimes we refer to spins 1/2 as qubits, since they define two-level systems like the ones for quantum information 
processing.

Figure 1.3.  
Square lattice on the torus

Note: The yellow points represent spins.
Source: Own elaboration.
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This quantum code is called the toric code, and defines the possible states |Ψ〉 where 
we can encode and perform protected quantum computation. The operators As, Bp are 
called the stabilizer operators of this code, since they leave invariant the code space when 
acting on it.

So far, we have made a purely mathematical description of a quantum code. In order to 
set and analyse the physical grounds of the model, we need to construct a Hamiltonian, 

               Hsys  ∶=  _
s
∑As  

_
p
∑Bp.     [1.25]

A full diagonalization of this Hamiltonian is possible since operators As and Bp commute. 
In particular, the ground state coincides with the protected subspace of the code C. It can be 
easily checked that the system is 4-fold degenerate and the excited states are separated by an 
energy gap ΔE≥4 (see Figure [1.4]). The ground state degeneracy d comes from the constraints 
∏s As=1 and ∏p Bp=1, and can be linked to purely topological properties like the genus g 
(number of holes) of the torus, d=2g. From the point of view of quantum computation, 2 logical 
qubits can be codified into the ground state subspace.

On the other hand, excitations come in pairs since they correspond to violations of the 
plaquette and/or vertex stabilizer operators, 

    As |Ψ〉e= -|Ψ〉e,         Bp |Ψ〉e= -|Ψ〉e,     [1.26]

for a certain number of sites s and/or plaquettes p, and these must comply with the overall 
constraints ∏s As=1 and ∏p Bp=1. Thus, excitations are represented by open strings on the 
square lattice [see Fig. 1.5(a)] and behave as anyons. They are produced by acting with Zj 

(‘electric’) or Xj (‘magnetic’) Pauli operators onto the ground state subspace, Xj |Ψ〉 or Zj´ |Ψ〉.

Figure 1.4.  
Schematical spectrum of the Toric Code Hamiltonian

Note: The ground state is the code space C where we codify our information.
Source: Own elaboration.
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These excitations satisfy anyonic statistics under braiding of different anyon types. In 
Fig. 1.5(b) we picture a braiding of an Xj excitation (plaquette violation) around a Zj excitation 
(vertex violation) along path c. The movement is induced by the application of Pauli operators 
on adjacent sites along c. After the braiding is complete, the total wavefunction picks up a eiπ 
phase. This process is equivalent to exchanging these particles twice. For bosons or fermions, 
no phase is picked by the wavefunction after this double exchange of particle excitations is 
completed, whereas for anyons we have seen that a eiπ is gained.

We would also like to stress that the toric codes are not the only family of quantum 
codes that yields topological protection. The most notable instances of topological codes with 
remarkable properties are on the one hand the surface codes (Ghosh et al., 2012; Fowler et 
al., 2012), and on the other hand the color codes (Bombin and Martin-Delgado, 2006 and 
2007). Color codes have some important differences with respect to surface codes, namely: 
(1) they perform quantum computation using only transversal gates, (2) they codify twice as 
much logical qubits than toric codes giving a certain topology, and (3) they allow for Clifford 
(Nielsen and Chuang, 2000) and universal gates depending on the dimension.

An essential feature of Hamiltonian [1.25] is its locality in terms of four-body interactions. 
This is indeed very useful for practical purposes. Another key property is that the Hamiltonian 
is gapped, which leeds to the initial expectation that all type of ‘errors’, i.e. noise-induced 
excitations will be removed automatically by some relaxation processes. Moreover, it can be 
shown that this Hamiltonian is robust under local quantum perturbations at zero temperature 
(Nielsen and Chuang, 2009): there would be a level splitting which will vanish as exp(-ak), 
where k is the length of the lattice (Kitaev, 2003).

More generally, one is interested in designing a stable quantum memory, i.e. a N -particle 
system which can support at least a single encoded logical qubit for a long time, preferably 
with this time growing exponentially with N. In Ref. (Alicki, Fannes and Horodecki, 2009) 

Figure 1.5.  
Anyonic excitations of the model

Notes: (a) The end points of the strings correspond to either As or Bp plaquette violations, as noted in Eq. [1.26]. (b) An 
anyon of type X (green) moves around an anyon of type Z (red), along path c.
Source: Own elaboration.

(a) (b)
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Alicki et al. provide a rigorous method to prove thermal instability of the 2D Kitaev model. 
They derived a master equation that describes the dynamics of the system weakly coupled to 
a thermal environment.

In publication P1 we generalise the Kitaev toric code for qudits (d -dimensional systems), 
and study the problem of thermal instability within the framework of topological orders to 
see what novelties we do get by increasing the dimensionality of the spins.

1.2.2. Symmetry-enriched topological order (SETO)

Very recently, a new type of topological order has been studied (Levin and Wen, 2005; 
Levin and Gu, 2012; Mesaros and Ran, 2013; Essin and Hermele, 2013) called symmetry-
enriched topological order (SETO).

Let us consider a system with ITO that is additionally invariant under a certain global 
symmetry G, as it is the case for SPT phases. The presence of this global symmetry induces 
charge fractionalisation of the anyons. This was shown by Levin and Gu (2012) for the double 
semion model (DSM) with a global on-site spin-flip symmetry G= 2. The DSM is an example 
of a SETO with excitations that have self-anyonic statistics (unlike the toric code (Kitaev, 
2003) where excitations only behave like anyons under braiding with anyons of different type). 
In addition, Essin and Hermele (2013) proposed the string-flux mechanism as a method to produce 
charge fractionalisation of an ITO that is invariant under a certain lattice global symmetry. 
Actually, it is possible to combine both mechanisms together as it was shown in (Ortiz and 
Martin-Delgado, 2016). These SETO phases also posses protected boundary modes because 
of the protecting global symmetry G.

Thanks to these works, the mechanism for charge fractionalisation in the FQHE for the 
Laughlin state with filling factor μ=1/n, where n is an integer, has been clearly understood. 
Due to the existence of an ITO with global symmetry G=U(1) (charge conservation), the 
quasiparticle excitations of the model are Abelian anyons with fractional charge q=e/n, where 
e is the electron electric charge.

Nowadays, SETO constitute an emerging area within the field of topological orders, that 
will surely produce many novelties in the upcoming years.
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Since the initial development of quantum theory, it was soon noticed that many of 
the fascinating properties of quantum mechanics are lost when observing macroscopic 
objects in nature. The reason behind that fact is the difficulty to isolate quantum systems, 
that have to be understood as an open system that interacts with an uncontrolled 
environment [Leggett et al., 1987; Breuer and Petruccione, 2007; Rivas and Huelga, 2011; 
Zoller and Gardiner, 2004; Milburn and  Walls, 2008]. In many cases, when a set of particles 
whose dynamics are governed by quantum mechanics is coupled and interacts with a 
thermal environment, many quantum properties such as superposition or entanglement 
[Ballentine, 1998; Galindo and Pascual, 1990] are diminished and eventually vanished.

It is inevitable to consider our quantum system coupled to an environment in 
order to have a theory that captures those effects. One may even wonder whether it 
would be possible to have a detailed microscopic description of both the system and 
environment, so that the quantum theory for closed systems would be enough. Many 
times this is impossible for two reasons. Firstly, for that statement to be fully correct, we 
would need the know the specific interaction of our system with the rest of the universe. 
Even if we restrict ourselves to the most relevant degrees of freedom of the environment, it 
is not always possible to have a complete microscopic description of the interaction 
between system and environment. Hence, an effective and probabilistic description is 
mandatory.

Some other times, a microscopic description of both the system (S) and environment (E) 
is well known. However, the amount of information that we need to process may be extremely 
large and intractable, since the environment may have infinite degrees of freedom or may 
have a very complicate structure. Therefore, it is very convenient to trace out the degrees of 
freedom of the environment and to focus on the effective dynamics acting on our system. This 
idea is depicted in Fig. [2.1].

In the following section, we follow this approach and give a microscopic derivation 
of the dynamical equations that describe the evolution of an open quantum system. These 
techniques will be key for the understanding and computation of the many results that are 
presented along this thesis.
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2.1. WEAK COUPLING LIMIT

Let us trace out the environmental degrees of freedom and restrict ourselves to the 
system dynamics. Even in that case, the solution of equations describing the system can be 
computationally very hard to obtain. Fortunately, it can be sometimes assumed that the our 
system is moderately well-isolated from the environment and that the coupling between 
the system and the environment is sufficiently weak. These conditions allow us to derive an 
effective dynamical equation by using the following reasoning. The total Hamiltonian can be 
split into three terms 

    H=HS+HE+HI,    [2.1]

where HS and HE are the Hamiltonian of the free system (S) and environment (E) respectively, 
and the interaction between the two is given by HI. The state ρ of both system and environment 
follows the Liouville-von Neumann equation 

    d
dt

ρ= _i[H,ρ].     [2.2]

It is convenient to perform the derivation in the interaction picture. Hence, we apply 
the following transformation ρI=U(t)ρU† (t) and HI (t)=U† (t)HI U(t), where U(t)=e-i(HS+HE)t.  
Note that now the interaction Hamiltonian HI (t) is time-dependent. Inserting these 
transformations into Eq. [2.2] we get 

    d
dt

ρI= _i[HI (t),ρI].    [2.3]

We can now formally integrate Eq. [2.3] obtaining 

Figure 2.1.  
General situation where a quantum system S interacts with an external environment E

Note: The state of the system ρS is affected by the surrounding environment that influences its dynamics, which are no-
longer unitary.
Source: Own elaboration.
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   ρI(t)=ρI(0) _i žt∫
0

žt∫
0
ds[HI(s), ρI(s)].  [2.4]

If we insert this equation into Eq.[2.3] and trace over the environment degrees of 
freedom, we arrive to the following expression 

           d
dt

 ρS (t)= _ žt∫
0

žt∫
0
dsTrE {[HI(t) ,[HI(s), ρI(s)]]},  [2.5]

where we have used ρS≡TrE {ρI} and assumed that the interaction does not generate first order 
dynamics in the bath, more precisely 

             TrE {[HI(t), ρI(0)]}=0.  [2.6]

The mean value of the interaction acting on the initial state of the environment equals 
to zero. Note that Eq. [2.5] still contains the density matrix of both S and E on the right hand 
side. In order to simplify the equation further, we need to perform a series of approximations. 
The first one is called the Born approximation. This states that the coupling between the 
system and the environment is sufficiently weak, so the system barely affects the environment. 
Therefore, we can approximate the state of the joint system at each time t by a tensor product 
of S and E, 

    ρI (t)≈ρS (t)⊗ρE.    [2.7]

This is justified because of the factorised initial condition ρ(0)=ρS(0)⊗ρE(0), and 
the perturbative approach from the weak coupling limit. However, Eq. [2.7] should be 
considered as an ansatz to arrive at the correct equation rather than a physical requirement 
on the evolution [Rivas and Huelga, 2011]. If we plug Eq. [2.7] in Eq. [2.5], we obtain 

  d
dt

ρS(t)=_ žt∫
0

žt∫
0
dsTrE {[HI(t), [HI(s), ρS(s)⊗ρE]]},   [2.8]

The second approximation to be performed is called the Markov approximation. The 
state ρS (s) that appears in the integrand of Eq. [2.9], is replaced by ρS (t), 

  d
dt

ρS(t)=_ žt∫
0

žt∫
0
dsTrE {[HI(t), [HI(s), ρS(t)⊗ρE]]}.   [2.9]

This equation is called the Redfield equation [Breuer and Petruccione, 2007] and is local 
in time. That means, that the evolution of ρS (t) at time t only depends on the value of the state 
at that very same time. However, the equation still depends on a particular choice of the initial 
time (t=0) and therefore it is not yet described by a dynamical semigroup. The motivation to 
look for a dynamical semigroup structure comes from its simplicity, good characterisation 
and natural properties regarding the system evolution. A dynamical semigroup is a family of 
quantum maps Tt onto the space of density matrix ρ. The maps have to be completely positive 
CP and they usually depend on one parameter (time t). They satisfy the semigroup property 
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Ts Tt=Ts+t. Moreover, the generators of the group are the so-called Lindblad Superoperators ℒ, 
and the semigroup elements can be written as 

    Tt =eℒt,    [2.10]

so that by applying the operator to a system density matrix ρS and differentiating the equation, 
the quantum evolution is given by 

    d
dt

ρS(t)=ℒρS (t).  [2.11]

 Hence, with the purpose of obtaining a final equation in the form of Eq. [2.11], we 
perform a change of variables s by t-s for the integral in Eq. [2.9], and extend the integral to 
infinity. This can be justified as long as the integrand goes to zero fast enough for s≫τE, where 
τE is the time scale at which correlation functions of environment decay. Equivalently, the 
approximation is justified if the time-scale at which the system appreciably varies τs is large 
compared to τE. The Markovian master equation finally takes this form 

  d
dt

ρS(t)=- ž∞∫
0

ž∞∫
0

dsTrE {[HI (t), [HI (t-s), ρS (s)⊗ρE]]}.  [2.12]

As we have pointed out before, this equation only makes sense for time-resolutions 
that are larger than τE. In addition, this master equation may not define the generator of 
a dynamical semigroup [Davies, 1974]. To this end, it is usually performed what is called 
the secular or rotating wave approximation RWA, which basically means averaging over rapid 
oscillatory terms in Eq. [2.12].

To understand this part, let us first analyse the structure of the interacting Hamiltonian 
HI. The most general form of HI can be written as a sum of operators A acting on the system 
and operators B acting on the environment, 

    HI= α
∑  Aα⊗Bα,    [2.13]

where Aα and Bα are hermitian. Let us decompose further the interaction into eigenoperators 
of the system Hamiltonian HS, 

   Aα (ω)≡
'ε ε ω− =
∑ Π(ε) Aα Π(ε'),   [2.14]

where Π(ε) projects onto the eigenspace defined by the system eigenvalue ε of HS. The sum is 
extended to all energies ε and ε'. Because of the form of Eq. [2.14], the following commutation 
relations are satisfied: 

[HS, Aα (ω)] = _ωAα (ω),  
          [HS, A

†
α  (ω)] =+ωA†

α
 (ω). [2.15]

 Thus, the operators A†
α

(ω) and Aα(ω) are eigenoperators of HS with frequencies ±ω 
respectively, and they straightforwardly satisfy that A†

α
(ω)=Aα(_ω). In addition they also 
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follow a completeness relation ∑α Aα (ω)=Aα. Therefore, the interaction Hamiltonian HI can 
be written as follows 

    HI = ,α ω
∑Aα (ω)⊗Bα.    [2.16]

But we are interested in computing HI in the interaction picture, where HI (t)=U† (t)HI U(t) 
with U(t)=e_i(HS+HE)t. Thus, using the commutation relations in Eq. [2.15] and doing some 
algebra, we get 

   HI (t)=
,α ω
∑e_iωt Aα (ω)⊗Bα (t),   [2.17]

where Bα(t)=eiHEt Bαe
_iHEt. From this, we can understand one of the implications of Eq. [2.6], 

   〈Bα (t)〉E≡Tr{Bα (t)ρE}=0,  [2.18]

which means that the environment average of Bα (t) is zero. Now, if we substitute Eq. [2.17] 
into Eq. [2.12], we can simplify the master equation1 

d
dt

ρS(t)=- ž∞∫
0

ž∞∫ dsTrE {HI (t-s)ρS (s)⊗ρE HI (t)-HI (t)HI (t-s)ρS (s)⊗ρE}+h.c.= 

                            =
', ,ω ω α β

∑∑ ei(ω-ω')t Γαβ (ω)(Aβ (ω)ρS (t)A†
α  (ω')-A†

α  (ω')Aα (ω)ρS (t))+h.c.            [2.19]

where Γαβ (ω)≡ ž∞∫
0

dseiωs 〈B†
α
(t)Bα (t-s)〉E. The most general form of this expression is time-

dependent, however if ρE conmutes with HE then it does not depend on time. This is 
actually the case for the states studied in publications P1 and P2, where the environment 
is given by a thermal bath, and hence ρE

E eH T

Z

/

=  where Z is the partition function.

Let us now perform the final approximation. We define τS as the typical time scale 
related to the system free evolution 

    S '
~ ,τ

ω ω−
1    [2.20]

for ω≠ω' typical frequency differences involved. If the relaxation time of the open-system τR 
is large compared to τS, then we can neglect terms in Eq. [2.19] that oscillates with frequency 
differences such that ω≠ω'. This is so, since for a time τS when the system will appreciably 
vary, these terms would have oscillated many times averaging to zero. In quantum optics 
this is in general well justified and it is called the rotating-wave approximation (RWA). In 
condensed matter it usually depends, but we can always rely on the weak coupling limit. 
Roughly speaking, the argument works as follows. If we redefine the interacting Hamiltonian 
as HI → αHI, then if α → 0, the interaction between the system and environment would be very 
weak and the relaxation time τR would be very large. A detailed proof of this argument can 
be found in [Rivas and Huelga, 2011]. Actually, a necessary condition for the weak coupling 

1 h.c. is the abbreviation for hermitic conjugate.
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limit to exist is that the environment E has infinite degrees of freedom. Moreover, a sufficient 
conditioned was given by Davies (1974) and it is related to whether correlation functions in 
the bath decay sufficiently fast [Davies, 1976].

Returning to the derivation of the master equation, we neglect the fast oscillating terms 
in Eq. [2.19] obtaining 

    d
dt

ρS(t)=
,ω α β

∑∑  Γα,β (ω)(Aβ (ω)ρS (t) A†
α

(ω)_A†
α

 (ω)Aα (ω)ρS (t))+h.c.  [2.21]

It is useful to decompose the environment correlation functions Γα,β into its real and 
imaginary parts 

    Γα,β (ω)= 1
2

γα,β (ω)+iSα,β (ω).  [2.22]

Using this last equation, we finally arrive to the final form for the master equation, 

    d
dt

ρS(t)=_i[HL,ρS (t)]+D(ρS (t))  [2.23]

where 

    HL= ,ω α β
∑∑

 Sα,β (ω) A†
α

 (ω)Aα (ω),  [2.24]

and 

         (ρS(t))=
,ω α β

∑∑  γα,β (ω)(Aβ (ω)ρS(t)A†
α

 (ω)- 1
2

{A†
α

 (ω)Aα (ω)ρS(t)}).  [2.25]

The Hamiltonian HL renormalises the unperturbed energies of HS due to the coupling 
between system and environment. From Eqs. [2.15], it follows that [HL,HS]=0. The piece 
given by (ρS(t)) is often called dissipator and it is the one that accounts for the non-unitary 
dynamics of the system. Eventually, Eq. [2.23] can be brought into a diagonal form (Lindblad 
form [Lindblad, 1976]) by diagonalising the γα,β matrix.

At this stage, we can identify the form of Eqs. [2.23], [2.24] and [2.25] with the master 
equations that we derive in publications P1, P2 and P3 when we try to understand how the 
topological properties of our systems change due to the coupling with the environment. Actually 
in publication P3, the very definition of topological properties like the Chern number or the 
edge states have been studied based on master equations of the form of Eq. [2.23].

Let us make some final comments regarding the applicability of these results. The 
general approach of the derivation and the standard literature of master equations deals with 
an environment that is usually uncontrollable and external to the system. Remarkably, thanks 
to our better understanding of the quantum world and the possibility to control single atoms 
and photons, we can sometimes construct and design environments that drive the system into 
a particular state of matter that might be of interest to us and that would be otherwise difficult 
to prepare by other means [Verstraete, Wolf and Cirac, 2009; Barreiro et al., 2011; Müller et 
al., 2012].
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On the other hand, the theory of open quantum systems has historically been used in 
the context of quantum optics and few-body physics [Rivas et al., 2010]. More recently and 
due to the quick development of quantum simulators, the theory open quantum systems has 
found applicability in quantum many-body systems [Lee, Gopalakrishnan and Lukin, 2013] 
and condensed matter [Schuetz et al., 2012; Kessler et al., 2012].

Within the same spirit, the main goal of this part of the thesis has been to extend the 
notion of topological orders (well understood at zero temperature and for pure states) to the 
realm of dissipative systems, governed by a master equation and that are generally described 
by a density matrix. In P1 and P2 we were mainly focused on the study of how topological 
properties such as the dynamics of anyons, robustness of edge states, etc, change by the 
coupling of the system to a thermal bath.

On the other hand, in P3, P4, P5 we changed the perspective and we ask ourselves whether 
it is possible to extend the definition of a topological phase of matter for a system with dissipation 
or at finite temperature. Notably in publication P9, we give a protocol to measure a topological 
phase for an open system, where we assume full control of the environment. In the upcoming 
sections, the main results of those works will be described in detail.

Finally, in publication p8 P8 we have used several numerical methods to study driven-
dissipative phase transitions described by a master equation like Eq. [2.23]. This part will be 
discussed in the appendix section of this thesis.
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3.1. MOTIVATION AND BACKGROUND

In the previous section, we have introduced the concept of SPT order. As we have seen, 
these phases can be classified according to the protecting symmetry that the system preserves 
(Kitaev, 2009; Schnyder et al., 2009; Ryu et al., 2009). Here, we will focus on a 1D model that 
has a band insulating phase with chiral symmetry. This topological insulator has a gapped 
band structure in the bulk characterised by an integer winding number or a topological Berry 
phase; while it displays zero-energy modes localised at the boundary. The model is called the 
Creutz ladder. In this chapter we try to answer the following question:

■ What happens to the topological properties of a topological insulator (e.g. edge states) 
when it is coupled to a thermal bath? 

This is a rather relevant question since most studies of topological order and topological 
phase transitions have focused on the purely quantum regime at zero temperature. There are 
however some notable exceptions (Mazza et al., 2013; Bardyn et al., 2013; van Nieuwenburg 
and Huber, 2014; Shen, Wang and Yi, 2014; Dehghani, Oka and Mitra, 2015; Hu et al., 2015; 
Linzner, Grusdt and Fleischhauer, 2016; Claeys, De Baerdemacker and Van Neck, 2016; 
Dehghani, Oka and Mitra, 2014; Lemini, et al., 2016). In order to address this question, we 
study the following situation. We need to choose a system (S), a thermal bath (B) and what is 
going to be the interaction (I) among the two:

i) The system (S) is a model in the AIII chiral-unitary class1 of topological insulators, 
called the Creutz ladder (Creutz, 1999 and 2001). The system is constructed as a ladder of 
spinless fermions that can hop to neighbouring sites with different amplitudes, 

       HS:= -
N

n=
∑

1
 [K(e-iθ an

†
+1an +eiθ bn

†
+1 bn)+K(bn

†
+1 an+an

†
+1 bn)+Man

† bn+h.c.],                [3.1]

where an and bn are fermionic operators satisfying the anticommutation relations: 
{ań   a '

†
n

}=δn,n´
, {bń   b '

†
n }=δn,n´

. K and M are hopping amplitudes, while θ is the magnetic flux per 
plaquette in natural units. It is known that for M < 2K and open boundary conditions, the 

1 The system is invariant under a π rotation with respect to the magnetic field axis. See Fig. [3.1] of P2.
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system exhibits protected end states (Bermudez et al., 2009). In 1D, the conducting edge states 
of a topological insulator get converted into localised end states at the edge of the system.

Creutz proposed this system as a toy model to understand the chiral modes of the 
Kaplan-Furman-Shamir (Kaplan, 1992) domain-wall fermions, widely used in lattice gauge 
theory simulations. Creutz wanted to shed light upon the fermion doubling problem (Nielsen 
and Ninomiya, 1981) in lattice gauge theories to simulate chiral fermions. In particular he 
studied the chiral nature of the surface modes in high dimensions (inspired by Kaplan’s 
solution [Kaplan, 1992]) using a toy model in 1D. It was latter noticed (Bermudez et al., 
2009), that this model is in fact a topological insulator in 1D. Interestingly enough, there is a 
proposal to simulate this model with cold atoms in optical lattices (Mazza et al., 2012).

ii) The bath (B) is given by a collection of local bosonic baths,

                                                B
i i i
n n n

n,i

H A A†: ,ε=∑   [3.2]

where A and A† stand for the bath bosonic operators that satisfy the canonical commutation 
relations i j† i j

n n' n,n' i,j n n'A ,A A ,A,δ δ  = =   0. Moreover, the index n denotes the position of the local 
bath on the CL, and i runs over the bath degrees of freedom.

iii) The interaction (I) between S and B is given by the interacting Hamiltonian HI, which 
in momentum space (K) reads 

              ( )( ) ( )I
i i i
kk' k k k' k' k'-k k-k'

i,k,k'

H g a +b a +b A +A
N

† † †: .= ⊗∑
1

  [3.3]

This Hamiltonian describes the interaction between the Creutz Ladder (S) and the 
thermal baths (B), and it is motivated by the electron-phonon interaction that naturally 
appears in crystal solids (Ashcroft and Mermin, 1976). The quantity i

k,k'g  regulates the boson-
fermion coupling, and it is chosen in such a way that chiral symmetry is preserved. More 
specifically, the chiral symmetry (also called sublattice symmetry) corresponds to a rotation 
of π around the magnetic field axis (Creutz, 1999 and 2001), which in momentum space 
swaps the fermion modes a and b, and changes the sign of the momentum k. Thus, we shall 
assume i i

k,k' -k,-k'g =g  so that the Hamiltonian (3.3) does not break chirality, which is indeed a 
very natural assumption for this coupling.

Once these three ingredients have been settled, we treat the system as an open quantum 
system and study its stability from the topological point of view. In publication P2, we perform 
a similar derivation of a master equation, similar to what has been done in the previous 
chapter 2. We assume weak coupling between S and B and obtain a master equation as given 
in Eq. [10] of publication P2, which is of the form of Eq. [2.2] in chapter 2. The subject of the 
manuscript is a complete theoretical and numerical analysis of the influence of thermal baths 
as a source of external noise acting on one-dimensional topological insulators. Let us recall 
that stable edge states are a defining signature of topological insulators. There is a common 
believe in the topological insulator community, that the gap defining the topological phase 
is enough to protect the system against interactions, disorder and even dynamical effects. In 
what follows, we try to analyse to what extend this belief is true in dissipative systems.



871D TOPOLOGICAL INSULATOR AS AN OPEN QUANTUM SYSTEM

A summary with the main results of P2 can be found below.

3.2. OUTLINE OF THE MAIN RESULTS

● We derive a novel master evolution equation for the fermionic (electrons) degrees of 
freedom of the topological insulator.

● The electrons play the role of the system degrees of freedom and interact in a natural 
albeit non-trivial way with the environment made up of bosonic thermal baths.

● Obtaining a master equation is a central point to study and derive many of the results 
we find in our work.

● We compute the "Edge Probability" to find fermions localized at the protected edges 
of a topological insulator as the system evolves in time (due to the interaction with 
thermal baths).

● We can compute lifetimes for the decay of edge states in particular experimental 
setups and provide figures for these lifetimes.

● We have found a remarkable result: edge states become unstable under thermal effects 
and they have a finite lifetime.

● We have shown that the gap protection does not hold against finite temperature 
effects: the topological insulator order gets lost regardless of the gap size (see Fig.2 
and Fig.4).

● We have found that the non-equilibrium thermal evolution is able to distinguish 
between topological and non-topological insulators. We have observed that the 
existence of topological order strongly influences the system-bath interaction (Fig.2).

● Notably, the interaction with bosonic thermal baths does not lead this system to 
the thermal Gibbs state. However, for the low temperature regime we find that both 
distributions are close to each other.
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We have studied the dynamical thermal effects on the protected end states of a topological insulator (TI) when
it is considered as an open quantum system in interaction with a noisy environment at a certain temperature T .
As a result, we find that protected end states in a TI become unstable and decay with time. Very remarkably,
the interaction with the thermal environment (fermion-boson) respects chiral symmetry, which is the symmetry
responsible for the protection (robustness) of the end states in this TI when it is isolated from the environment.
Therefore, this mechanism makes end states unstable while preserving their protecting symmetry. Our results
have immediate practical implications in recently proposed simulations of TIs using cold atoms in optical lattices.
Accordingly, we have computed lifetimes of topological end states for these physical implementations that are
useful to make those experiments realistic.
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I. INTRODUCTION

The stability of topological phases of matter, also known
as topological orders,1 against thermal noise has provided
several surprising results in the context of topological codes
used in topological quantum information.2,3 However, very
little is known about the behavior of a topological insulator
(TI) subject to the disturbing thermal effect of its surrounding
environment. This is of great relevance if we want to address
key questions such as the robustness of TIs to thermal noise,
existence of thermalization processes, use of TIs as platforms
for quantum computation, etc. Topological insulators have
emerged as a new type of quantum phase of matter4,5 that was
predicted theoretically to exist6–13 and has been discovered
experimentally.14–16 Exploring the possible features and uses
of TIs has become a very active interdisciplinary field. For this,
knowledge about their stability under nonequilibrium thermal
dynamics is crucial in assessing the feasibility of proposals in
quantum computation, spintronics, etc.

In this work we present a first-principles calculation to test
several thermal effects on a one-dimensional (1D) TI out of
equilibrium. In order to achieve these goals, we need first to
specify two choices: the type of TI and the type of thermal
baths. As for TIs, we work with the Creutz Ladder (CL),
which is a paradigmatic example of a quasi-one-dimensional
fermion system that exhibits the fundamental properties of
TIs;. namely, localized states in the bulk of system and end
states in the form of zero-energy modes at the boundary.17,18

It is a crucial remark that the presence of these end states is
independent of whether the system size is finite or infinite.
They constitute a clear signature of a TI in the case of
the CL. Although the first experimental realizations of TIs
are in two dimensions (2D) and three dimensions (3D),
the case of 1D TIs also appears in the so-called “periodic
table” of TIs.19–21 Moreover, there are recent proposals to
realize TIs in 1D optical lattices,22,23 and in particular the
CL.24

As for the environmental quantum noise, we model it in
the form of local bosonic thermal baths (see Fig. 1). This
is rather natural, but different since usually the bath and
system degrees of freedom are taken to be of the same type.
Here, we deal with a fermionic system but the bath is made

up of bosons. The reason for this choice is inspired by the
traditional electron-phonon interaction in crystal solids.25 The
main difference is that our thermal baths are local in order
to simplify their study. Moreover, this locality also fits into
the traditional scheme of perturbing the global properties of a
topological order by means of local external noise, as is natural
in topological quantum information. If the CL is realized with
optical lattices, then these local baths can be though of as
external photons. Therefore, the meaning of the bosonic baths
will depend on the specific realization we choose.

A common belief in TI theory is that the gap defining
the topological phase is enough to protect the system against
interactions, disorder, and even dynamical effects,26 but the
effects of dynamical thermal noise has not been addressed
thus far:

(i) We have shown that it does not hold for finite-
temperature effects: the TI order gets lost regardless of the
gap size (see Figs. 2 and 4).

(ii) Protected end states become unstable when the TI be-
comes an open quantum system coupled to thermal baths. This
is so even when the interaction with the environment respects
chiral symmetry, which is responsible for the robustness of end
states in the TI [see Eq. (4)]. This is a highly nontrivial effect.
It implies that we have found a dynamical thermal mechanism
that is relevant to the description of the robustness of end states
in TIs. Prior to this work, the robustness of end states in TIs
was solely judged on the basis of the protecting symmetries in
the isolated system.

(iii) We have observed that the existence of topological
order strongly influences the system-bath interaction (Fig. 2).
In particular, for our 1D model, the decoherence process
remarkably depends whether the system is in a topological
phase or not.

(iv) Notably, the interaction with bosonic thermal baths
does not lead this system to the thermal state. However, the
asymptotic state reached in the low-temperature regime is close
to it (see Fig. 3).

Our fundamental result is the derivation of the master
equations (10) and (11) for a TI under a bosonic thermal bath
from which the thermal instability of the end states is derived
along with other relevant consequences.

155140-11098-0121/2012/86(15)/155140(5) ©2012 American Physical Society
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FIG. 1. (Color online) The TI system is pictured in (b) as a ladder
of hopping spinless fermions with amplitudes K (horizontal and
diagonal) and M (vertical). The fermions are coupled to a magnetic
gauge field on the lattice that is perpendicular to the plaquettes. This is
a lattice gauge theory known as the Creutz Ladder (CL).17,18 The wavy
lines at each site indicate interaction with thermal bosonic baths. In
(a), the interaction vertex of fermions with the bosonic bath is shown.

The total Hamiltonian of the problem considered reads as
follows:

H = Hs + Hbath + Hint. (1)

The first term, Hs, is the Hamiltonian of the CL,

Hs : = −
N∑

n=1

[K(e−iθ a
†
n+1an + eiθb

†
n+1bn)

+K(b†n+1an + a
†
n+1bn) + Ma†

nbn + H.c.], (2)

where an and bn are fermionic operators satisfying the
anticommutation relations: {an,a

†
n� } = δn,n� , {bn,b

†
n� } = δn,n� .

K and M are hopping amplitudes, while θ is the magnetic flux
per plaquette in natural units. It is known that for M < 2K

and open boundary conditions, the system exhibits protected
end states17 that correspond to a TI in 1D.18
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FIG. 2. (Color online) Fidelities for the state of the CL with the
initial Fermi sea. Here we have taken θ = π/2, T = 1 (in units of
K , Eq. (2)), and ωc = 3/(2K) (of the order of the mean distance
between the two bands). We see the fragility of the topological phase
(m < 1) in comparison with the rest of the cases (m > 1). The main
plot corresponds to the eight-site CL, and the inset depicts the initial
decay rate in the thermodynamic limit (see main text).
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FIG. 3. (Color online) Asymptotic occupation of the fermions for
different values of m. The temperature is set to T = 1 (in units of
K , Eq. (2)). On the left side we have represented some examples
which present topological order, on the right side the system is out
of the topological phase. Note that on the left side the point 4 is
fixed whereas the point 5 is fixed on the right side. For the sake of
comparison we have depicted also the Fermi-Dirac distribution which
corresponds to the thermal state.

The second term, Hbath, is the free Hamiltonian of the local
baths,

Hbath :=
∑
n,i

�i
nA

i†
n Ai

n, (3)

where A and A† stand for the bath bosonic operators
that satisfy the canonical commutation relations [Ai

n,A
j†
n� ] =

δn,n�δi,j , [Ai
n,A

j

n� ] = 0. Moreover, the index n denotes the
position of the local bath on the CL, and i runs over the bath
degrees of freedom.

Finally, the third term in Eq. (1), Hint, describes the
interaction between the CL and the baths. In momentum space
it reads (see Fig. 1)

Hint := 1

N

∑
i,k,k�

gi
kk�(a

†
k + b

†
k)(ak� + bk�) ⊗ (

A
i†
k�−k + Ai

k−k�
)
.

(4)

The quantity gi
k,k� regulates the boson-fermion coupling, and it

is chosen in such a way that chiral symmetry is preserved. More
specifically, the chiral symmetry corresponds to a rotation of
π around the magnetic field axis,17 which in momentum space
swaps the fermion modes a and b and changes the sign of k

(see Fig. 1). Thus, we shall assume gi
k,k� = gi

−k,−k� so that the
Hamiltonian (4) does not break chirality, which is indeed a
very natural assumption for this coupling. Note that, although
the system contains free fermions in a gauge background field,
its dynamics is highly nontrivial since the coupling with the
bosonic bath involves three-body interactions (see Fig. 1).

II. MASTER EQUATION FOR ONE-DIMENSIONAL
TOPOLOGICAL INSULATOR

The evolution of system and bath is given by the Liouville-
von Neumann equation, which in the interaction picture reads
(unless otherwise stated, natural units h̄ = kB = 1 are taken
throughout the paper)

dρ̃

dt
= −i[H̃int,ρ̃], (5)

155140-2
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where

H̃int = ei(Hs+Hbath)tHinte
−i(Hs+Hbath)t

= 1

N

∑
i,k,k�

2∑
α,β=1

gi
kk�

(
f

α†
k h

αβ

k,k�e
iλkk�

αβ tf
β

k�
)

⊗(
ei�i

k�−k
tA

i†
k�−k + e−i�i

k−k� tAi
k−k�

)
. (6)

Here f 1 := c and f 2 := d are the operators which diagonalize
the CL Hamiltonian; that is, Hs = ∑

k∈BZ λk
1c

†
kck + λk

2d
†
kdk

with

λk
1,2 := 2K[− cos k cos θ ∓

√
sin2 k sin2 θ + (m + cos k)2]

(7)

and m := M/2K . Moreover, h
αβ

k,k� := Fα
k F

β

k� , where

Fα
k := xk − (−1)α√

1 + x2
k

, (8)

xk := sin k sin θ +
√

sin2 k sin2 θ + (m + cos k)2

m + cos k
. (9)

Finally, λkk�
αβ := λk

α − λk�
β are Bohr frequencies associated with

the eigenvalues of the system Hamiltonian (2) which represent
the two energy bands.

By tracing out the bath’s degrees of freedom from Eq. (5),
we aim at writing a dynamical equation for the CL density
matrix, ρs = Trbath(ρ). Under the natural assumptions of the
Born-Markov coupling to the thermal bath (Refs. 27–29 and
references therein), we arrive at the following master equation
for the TI:

dρs

dt
= −i [Hs,ρs] +

∑
k,k�
q,q �

2∑
α,β

γ,δ = 1

�
kk�qq �
αβγ δ

(
f

α†
k f

β

k� ρs(t)f
γ †
q f δ

q �

− 1

2

{
f γ †

q f δ
q �f

α†
k f

β

k� ,ρs(t)
})

, (10)

with

�
kk�qq �
αβγ δ = 1

N2
2πJ

(∣∣λqq �
γ δ

∣∣)[�(
λ

qq �
γ δ

) + n̄
(∣∣λqq �

γ δ

∣∣)]

×Fα
k F

β

k� F
γ
q F δ

q �δ
λ

k�,k
βα ,λ

q,q�
γ δ

δk�−k,q−q � . (11)

These �s are the decay rates induced by the dissipative
dynamics in our system. Here, �(ω) denotes the Heaviside step
function and n̄(ω) = [eω/T − 1]−1 is the number of bosons
with frequency ω in each local bath; T stands for the bath
temperature. For the sake of simplicity we have assumed
that gi

k,k� only depends on the difference between k and k�,
gi

k,k� ≡ gi
� , where the energy � is related to k − k� through the

dispersion relation of the baths (note this is consistent with
the chirality-preserving condition gi

k,k� = gi
−k,−k�). In such a

case, the so-called spectral density of the bath is formally
written as J (ω) := ∑

i(g
i
�)2δ(ω − �i). For definiteness and as

the CL could be realized in an optical lattice setup, we will
consider a typical spectral density for a quantum optical 1D
system, J (ω) = αωe− ω

ωc where α is a parameter that regulates
the interaction strength (typically α will be the fine-structure
constant) and ωc is a cutoff frequency. Furthermore, this

“Ohmic” spectral density is widely used in the modeling of
condensed matter systems as well.30

Despite the apparent complicated structure of �
kk�qq �
αβγ δ decay

rates, the nonvanishing contributions are well understood and
both numerical and analytical calculations can be carried out
with precision.

III. NONPERTURBATIVE THERMAL DYNAMICS

In this section we analyze the out-of-equilibrium physics
described by the master equation (10) in the case of a finite-
size CL. This allows us to retrieve nontrivial results about the
stability of the topological order and whether it thermalizes,
among other properties. In order to study the stability of the
system, we may chose different figures of merit. For instance,
the fidelity F of the evolved mixed state of the system ρs(t)
and the initial Fermi sea (FS) for the lower band of the TI
represent a measure of how the system remains correlated to
its initial state which exhibits a topological order:

F [|FS�,ρs(t)] := �FS|etL(|FS��FS|)|FS�. (12)

In fact, if this fidelity remains close to one then it is a strong
indication that the topological order is preserved. Figure 2
shows the behavior of the fidelity in a CL of size N = 8.
For some cases the fidelity may remain high, particularly for
m > 1; however, in this case the CL is out of the topological
phase.17,18 On the contrary, if m < 1 the fidelity may be
reduced up to 10% of its initial value.

A complementary criterium for the topological order to
persist is given by the evolution of the fermion occupation
numbers. Most of fermions escaping from the lower band is
a signature that the system no longer keeps the topological
order. In Fig. 3 the occupation numbers are plotted for different
values of m. The asymptotic occupation (i.e., occupation for
sufficiently large times) is close to the Fermi-Dirac statistics,
but they do not exactly fit each other. Finally, the existence of
end states is a well-defined property that characterizes a TI. If
they disappear after the TI is in contact with a thermal bath,
we may unequivocally conclude that this type of topological
order is lost. As shown in Fig. 4, they are unstable and tend
to delocalize along the chain in time. Note that if the bath
temperature is small in comparison with the gap of the CL,
the system takes a lot of time to delocalize. This fits with
the very-well-known argument that TI insulators are stable
to perturbations if they present a large gap. However, they
always delocalize under thermal noise after some sufficiently
large period of time.

Let us see the implications of our thermal evolution analysis
on the physical implementations of the Creutz ladder with
fermionic atoms in an optical lattice.24 For that purpose we
need two Zeeman sublevels attached to the fermion species an

and bn, respectively, laser-assisted tunneling for the transversal
and horizontal hopping K , and onsite Raman transitions for
the vertical hopping M . The thermal noise can be a model
for heating induced by lasers that create the optical trap (due
to fluctuating intensity profiles), or any other type of bosonic
thermal noise. We take experimental values for m = 0 and θ =
π/2 as in Ref. 22: K ∼ 3h̄ kHz, gap � = 12h̄ kHz, and bath
temperature T ∼ 56 nK which are currently reachable. We
obtain a lifetime for end states τ ∼ 67 ms which is much larger

155140-3



911D TOPOLOGICAL INSULATOR AS AN OPEN QUANTUM SYSTEM

O. VIYUELA, A. RIVAS, AND M. A. MARTIN-DELGADO PHYSICAL REVIEW B 86, 155140 (2012)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position

E
d
g
e
P
ro
b
a
b
il
it
y

t = 0
t = 102/K
t = 103/K
t = 105/K

0.7

0.8

0.9

1

θ
−π/2 0 π/2

FIG. 4. (Color online) Instability of the topological end states
against thermal noise in an eight-site CL (the six-site CL provides the
same results). Here, θ = π/2 and the bath temperature is T = 0.04
(in units of K , Eq. (2)), that is 1% of the CL gap. The x axis represents
the longitudinal position on the CL. Thus, at t = 0 all fermions are
localized at the left end, and as time increases they tend to delocalize
along the whole chain. The inset plot depicts the probability that the
fermions are in the end for several values of the magnetic flux θ .
The decay rate of the end state is smoother at θ = 0 and θ = π/2 as
the distance between bands increases for these values. Therefore, it is
clear that the topological end states are unstable for any value of the
magnetic flux. Note that for the decay of a right-end state the result
is symmetric because of the chiral symmetry of the interaction (4).

than the typical time for the system dynamics O(1/K). Hence,
considering this type of thermal noise, measuring topologically
ordered states could be possible within an optical lattice setup.

IV. FIDELITY IN THERMODYNAMIC LIMIT

The evolution of the state can be written up to second order
in time as

ρs (t) = etLρs (0) �
(

1 + tL + t2

2
L2 + · · ·

)
ρs (0) . (13)

Using (12), and after several calculations with the master
equation (10), we obtain the following result:

F(|FS��FS|,ρs(t)) � 1 − t�(1) + t2

2

(
�2

(1) + �(2)
)
, (14)

where

�(1) :=
∑
k,q

�
kqqk

2112 , �(2) :=
∑
k,q

�
kqqk

2112 �
qkkq

1221 . (15)

At short times, two rates �(1) and �(2) will determine how
fast the fidelity of the Fermi sea is lost during its evolution.

The initial linear behavior for the lost of fidelity given by
�(1) is patent in Fig. 2 for N = 8 as well. Direct processes
exciting electrons from one band to the other are dominant in
the dissipative evolution, as we might expect. Furthermore, in
the inset to Fig. 2, we can see that the initial decay of the Fermi
sea’s fidelity strongly depends on whether or not the system
is in a topological phase m < 1. More explicitly, the decay of
fidelity increases as we approach the topological crossover
point m = 1, and then the decay decreases significantly
for m > 1—out of the topologically ordered regime. This
perturbative analysis for the thermodynamic limit is in total
agreement with the exact results for N = 8 as shown in Fig. 2,
and with size N = 6 (not shown).

V. CONCLUSIONS

We have derived a master equation describing the dy-
namical thermal effects of bosonic baths coupled to a one-
dimensional TI. As this coupled fermionic-bosonic system
is not exactly solvable, our formalism is useful to address
relevant thermal effects of TIs in 1D. Let us emphasize that
our approach to studying thermal effects on TIs is beyond the
standard formalism of assuming that the system is in a thermal
state at a certain temperature T . On the contrary, our purpose
is to study the out-of-equilibrium dynamics of a TI coupled
to a thermal bath. It is this bath which has a well-defined
temperature T and disturbs the TI. Very remarkably, the
interaction with the thermal environment (fermion-boson)
respects chiral symmetry. This symmetry is responsible for
the protection (robustness) of the end states in the topological
insulator when it is isolated from the environment. Therefore,
our mechanism makes end states unstable while preserving
their protecting symmetry. In addition, we observed that the
dissipative dynamics distinguishes whether the system is in
a topological phase or not. We have also shown that thermal
noise delocalizes the topological end states into the bulk bands
of the TI for sufficiently large times and regardless of the gap
size. While this is compatible with the existence of TIs in
experiments, this thermal instability will play an important
role in detailed control manipulations needed for quantum
computation.
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4.1.  MOTIVATION

Although a lot of theory has been done on TIs, very little is known on how to 
extend topological phases to dissipative systems. In the previous section, we have studied a 
topological insulator in 1D coupled to thermal baths and hence subjected to external noise. 
We have analysed the dynamics of this topological system in the presence of dissipation, 
obtaining the following conclusion: arbitrary interactions with thermal baths can destroy the 
topological properties that define topological order at zero temperature. This is the case, even 
if the interaction with the environment preserves the protecting discrete symmetry of the 
topological insulator (chiral symmetry for the previous case). Similarly, quantum memories 
based on topological codes have also been shown to be unstable against environmental noise 
for three or less physical dimensions (Alicki, Fannes and Horodecki, 2009). This will be 
discussed in the last chapter (6) of this part of the thesis.

All these facts inspire the following fundamental questions:

■ Is it possible to define topological order in a system with dissipation? Is there a notion of 
a topological insulating phase for open quantum systems? 

The answer to these questions can be found in publication P3. The central idea of the 
paper is the following: not every dissipative dynamics gives rise to a notion of SPTO for open 
quantum systems. Actually, the very same thing happens with purely Hamiltonian systems. 
Not every Hamiltonian help us build topological phases, therefore, not every Liouvillian1 is 
well suited to define a dissipative topological phase.

Once we stablish the class of Liouvillians that are good for this purpose, the next steps 
focus on mimicking the tools that help us define an SPT phase for pure states. Thus, for 
density matrices, we need to build a connection similar to Berry for pure states (see chapter 1). 
Similar to the zero temperature case, we have to define a topological witness equivalent 
to the Chern number and see its relation with the transversed conductivity. Finally, we need to 
analyse the fate of edge states in the present case.

Very precise answers for all these claims and questions have been given in publication 
P3. A summary of all the results can be found in what follows.

1 See chapter 2 for a pedagogical derivation of Liouvillian master equations.
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4.2. OUTLINE OF THE MAIN RESULTS

● We show a way to generalise the notion of a topological insulator to dissipative 
systems.

● For this purpose, we introduce the notion of band Liouvillian as the appropriate 
structure for the dynamics to preserve topological order. It is basically the dissipative 
counterpart of a band Hamiltonian.

● We construct a new topological indicator named density matrix Chern value, that is 
able to detect topological order at finite temperature and for general quantum mixed 
states.

● Remarkably, this new topological indicator witnesses the existence of conducting 
mixed edge states.

● At finite temperature the quantum Hall conductivity splits into two terms: one 
corresponding to the density matrix Chern value (topological), and the other accounts 
for the conduction due to thermal activation of bulk electrons.

● We apply this general formalism to a two-dimensional graphene (Castro et al., 2009) 
based model -the so-called Haldane model (Haldane, 1988b)- in the presence of 
thermal dissipation. However, our results are valid for arbitrary dimensions and 
density matrices .
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Thermal noise can destroy topological insulators (TI). However, we demonstrate how TIs can be made stable
in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart
of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based
on a generalization of the Chern number valid for general mixed states (referred to as density-matrix Chern
value), which witnesses topological order in a system coupled to external noise. Additionally, we study its
relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless,
the density-matrix Chern value represents the part of the conductivity which is topological due to the presence
of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts
to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary
dimensions and density matrices.
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I. INTRODUCTION

Topological insulators have emerged as a new kind of quan-
tum phase of matter,1–4 which was predicted theoretically to
exist and has been discovered experimentally.5–7 However, the
behavior of topological insulators (TIs) subjected to dissipative
dynamics has been barely explored. This is inescapable to
address questions such as their robustness to thermal noise,
which is crucial in assessing the feasibility of these proposals
in quantum computation, spintronics, etc.

In a recent work,8 we have shown that certain one-
dimensional topological insulators (TI) lose the topological
protection of their edge states when they are coupled to bosonic
thermal baths. This is so even when the bath interaction
preserves the symmetry that protects the existence of edge
states. As a consequence, these edge states decay in time into
bulk states of a normal insulator. Thus, a very fundamental
question arises: Is it possible to have stable topological
insulating states in the presence of a thermal bath? The purpose
of this work is to explore this possibility by extending the
concept of TI to dissipative systems. Since for dissipative
systems quantum states are generally mixed and characterized
by a density-matrix operator ρ, we shall refer to these as
density-matrix TIs.

For usual TIs, the Thouless-Kohmoto-Nightingale–den Nijs
(TKNN) invariant9 provides a characterization of fermionic
time-reversal-broken (TRB) topological order in two spatial
dimensions. This is done in such a way that the transverse
conductivity is written in terms of a topological invariant,
the Chern number, which may be related to an adiabatic
change of the Hamiltonian in momentum space.10 How-
ever, the extension of this invariant to density matrices is
not straightforward.11 Actually, the problem of generalizing
geometric concepts as distances or geometric phases to
generally mixed states is highly nontrivial.12–16 We address
this problem and construct an observable that detects the
symmetry-protected topological order of a TI even if it is not in
a pure but in a general quantum mixed state. Moreover, when
this general quantum state is of the form of a Gibbs state, we
study the relation between this topological observable and the
conductivity, and show that it reduces to the usual notion of
TI in the limit of low temperature. However, we stress that the

notion of a density-matrix TI is far more general, as we shall
see.

The paper is organized as follows. In Sec. II, we introduce
the concept of band Liouvillian, which is an appropriate struc-
ture for dissipative dynamics in order to preserve topological
order. Section III is devoted to construct a topological indicator
for density matrices, which plays the same role as the TKNN
invariant for pure states. In Sec. IV, we analyze an example
of band Liouvillian dynamics for the Haldane model of two-
dimensional (2D) TI and, subsequently, in Sec. V, we study
its topological properties by using the indicator introduced in
Sec. III. Section VI focuses on the behavior of this model
under open boundary conditions; this leads to the appearance
of mixed edge states in analogy to usual (pure) edge states of a
TI in the absence of dissipation. Finally, in Sec. VII, we explain
the relation between dissipative topological order and quantum
Hall conductivity. Section VIII is devoted to conclusions.
In addition, technical details concerning the diagonalization
of the Haldane model, derivation of master equations, and
its stationary properties are left to Appendixes B, C and D,
respectively.

II. BAND LIOUVILLIAN DYNAMICS

The physical problem is defined as follows. Let Hs be the
system Hamiltonian representing a certain TI. This could be
constructed in an arbitrary spatial dimension, but we shall
restrict in what follows to the class of TRB insulators in two
spatial dimensions. Furthermore, the TI will be subjected to the
action of dissipative effects due to a thermal bath represented
by a Hamiltonian Hb. This bath could be general enough so
as to comprise fermionic or bosonic degrees of freedom and
we assume it is initially in a thermal or Gibbs state at a certain
temperature T . The system-bath interaction is described by
the Hamiltonian Hs-b.

We consider that the state ρs of the TI undergoes a time
evolution satisfying some Lindblad dynamical equation17–20

(unless otherwise stated, natural units h̄ = kB = 1 are taken
throughout the paper)

dρs

dt
= L(ρs) = −i[Hs,ρs] + D(ρs), (1)

155141-11098-0121/2013/88(15)/155141(12) ©2013 American Physical Society
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FIG. 1. (Color online) Pictorial image of the action of a band
Liouvillian L = ∑

k Lk. The vertical lines denote the only possible
processes involving the (initially empty) conduction band and
(initially filled) valence bands, i.e., those where the momentum
k is preserved. The violet fog represents some bath at a certain
temperature T which mediates such a process [see Eq. (22)] and
the plane indicates the Fermi energy EF .

where L is the so-called Liouvillian operator, which is com-
posed by a first term representing the Hamiltonian evolution
in the absence of system-bath interaction and a second
term, the dissipator D, accounting for the effect of the bath
dissipation. Concretely, we shall assume thatL is of the Davies
type, obtained under the assumption of weak system-bath
coupling.21

We are interested in searching for sufficient conditions that
the Liouvillian dynamics (1) must satisfy in order to preserve
the TI phase. In the absence of dissipation, we know that a key
ingredient is that the TI Hamiltonian Hs is a band Hamiltonian
that satisfies the Bloch theorem and can be decomposed as
Hs = ∑

k∈B.Z. Hs(k) where k denotes a crystalline momentum.
Thus, it is natural to restrict our attention to Liouvillian evo-
lutions satisfying a similar condition L = ∑

k∈B.Z. Lk, where
each Lk only involves fermionic operators with crystalline
momentum k; we shall refer to these as band Liouvillians.
Basically, a Liouvillian of this kind describes processes in
such a way that the momenta of the fermions are not changed
(up to a vector G of the reciprocal lattice) (a pictorial image is
sketched in Fig. 1). As a consequence, they present invariance
under space translations and every Lk satisfies

T (a)Lk(ρ)T †(a) = Lk[T (a)ρT †(a)], (2)

where T (a) = e−ia·k̂ is the operator that translates a point with
coordinate r to the point r + a on the lattice.

An analogy to the Bloch theorem for this kind of Liovillians
characterizes its steady states.

Theorem 1. Consider a band Liouvillian L = ∑
k∈B.Z. Lk.

If each Lk has a unique stationary state, it has the form

ρss = λ0|0��0| +
∑
k,α,β

λk
αβ |1α,k��1β,k|. (3)

Here, α and β denote additional quantum numbers (band
indexes, spin indexes, lattice indexes, etc.), and |1α,k� ≡ |uα,k�

denotes a particle in the Bloch state with momentum k and
additional quantum number α, T (r)|uα,k� = e−ir·k|uα,k�.

Proof. Consider ρss to be the steady state of some Lk:

Lk(ρss) = 0. (4)

By applying the translation operator on both sides and using
(2), we obtain

Lk[T (a)ρssT
†(a)] = 0. (5)

Thus, ρ �
ss := T (a)ρssT

†(a) is also a steady state of the
system. Since by assumption ρss is unique, ρ �

ss = ρss, so
that [T (a),ρss] = 0 and T (a) and ρss share the same set of
eigenvectors. �

It is worth noticing that as a difference with the case of
pure states, the translational symmetry of a Liovillian does not
necessarily imply steady states with well-defined crystalline
momentum k. They can be a convex mixture of states
with different well-defined momenta (3). However, since the
subspace with well-defined momentum k is invariant under the
action of Lk, if the initial state has a well-defined momentum
k (for instance, a particle with well-defined momentum in one
of the bands of the Hamiltonian), then the steady state under
Lk will have well-defined momentum as well:

ρk
ss = λ0|0��0| +

∑
α,β

λk
αβ |1α,k��1β,k|. (6)

Thus, the steady state ρss of the total Liouvillian L =∑
k∈B.Z. Lk will be of the form

ρss =
⊗

k

ρk
ss, ρk

ss := λ0|0��0| +
∑
α,β

λk
αβ |1α,k��1β,k|. (7)

The coefficients λ0 and λk
αβ depend on the particular steady

state as a result of the dissipative dynamics (1). For instance, if
the steady state turns out to be a thermal state density matrix,
then they will be given by Gibbs weights (25).

III. CHERN CONNECTIONS FOR DENSITY MATRICES

In order to construct a topological indicator for the generally
mixed state ρss, we can not use the usual Berry connection as
in the formulation of the Chern number because it is defined
just for pure states. Regarding density matrices, there is not a
unique natural extension of the Berry connection and the Berry
phase.12–16 However, the band Liouvillian structure allows for
the construction of a Berry-type connection A

ρ

i for the density-
matrix steady states, in such a way that the integral of its
curvature form F

ρ

ij gives a topological indicator which we
refer to as density-matrix Chern value. To construct such an
indicator, we use purification, which is a method that allows
us to extend quantities defined for pure states to general mixed
states.

Generally speaking, for a density matrix ρ acting in a
Hilbert space H, a purification |�ρ� is a pure state in an
extended Hilbert space |�ρ� ∈ HA ⊗ H such that

ρ = TrA(|�ρ���ρ |). (8)

In other words, mixed states can always be seen as pure states
of a larger system such that we only have access to partial
information of it.
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Given some ρ there are infinitely many states |�ρ� which
fulfill (8). Without loss of mathematical generality, we take the
ancillary space HA to have the same dimension d as H for the
system,22 then any purification |�ρ� can be written as

|�ρ� = (UA ⊗ ρ̃)|��, (9)

where UA is a unitary operator, ρ̃ρ̃† = ρ, and

|�� :=
d∑

α=1

|vα� ⊗ |vα� (10)

is a (unnormalized) maximally entangled state, with {|vj �}
an orthonormal basis of H. From the Schmidt decomposition
of |�ρ� it follows that (9) is the most general form for a
purification of ρ.23

By using the spectral decomposition of ρ =∑
α pα|ψα��ψα|, we may write ρ̃ as

ρ̃ =
∑

α

√
pα|ψα��ϕα|, (11)

where {|ϕα�} is also an orthonormal basis which is considered
to be arbitrary. Therefore, given some ρ there is a freedom for
the choice of UA and the basis {|ϕα�} for its purification |�ρ�.

The next theorem is particularly important in the construc-
tion of a Berry-type connection for density matrices.

Theorem 2. Consider the steady state of a band Liouvillian
(7): we define a Berry-type connection for ρk

ss through one of
its purifications |�ρ

k� as

A
ρ

i (k) := i
〈
�

ρ

k

∣∣∂i�
ρ

k

〉
for ρk

ss = TrA
(∣∣�ρ

k

〉〈
�

ρ

k

∣∣). (12)

Here, the notation is ∂i := ∂ki
. Under the assumption that UA

and {|ϕi�} are independent of momentum k of the steady state,
the connection (12) is unique and does not depend on the
purification. Explicitly, it takes the following form in terms of
the spectral decomposition of ρk

ss = ∑
α pk

α|ψα,k��ψα,k|:
A

ρ

i (k) = i
∑

α

pk
α�ψα,k|∂iψα,k�. (13)

Proof. Indeed, the general form (9) for a purification of ρk
ss

reads as

|�ρ

k� =
∑

α

√
pk

α(UA ⊗ |ψα,k��ϕα|)|��, (14)

where we have used (11). Taking the derivative ∂i := ∂ki
in

(14) and computing the overlap
〈
�

ρ

k

∣∣∂i�
ρ

k

〉

=
∑
α,β

√
pk

β��|[(∂i

√
pk

α

)
(1 ⊗ |ϕβ��ψβ,k|ψα,k��ϕα|)

+
√

pk
α(1 ⊗ |ϕβ��ψβ,k|∂iψα,k��ϕα|)]|��. (15)

Since ��|(1 ⊗ A)|�� = Tr(A), we obtain

A
ρ

i (k) = i
∑

α

√
pk

α

(
∂i

√
pk

α

) + pk
α�ψα,k|∂iψα,k�, (16)

which is independent of UA and {|ϕi�}. Moreover, note that
in the pure state case ρk

ss = |ψk��ψk| we recover the Berry
connection A

ρ

i (k) = Ai(k) = i�ψk|∂iψk�.24 In addition, the
first term on the right-hand side of (16) vanishes by taking into

account that
∑

α pk
α = 1. Hence, (16) can be simply written as

(13). �
Once this purified connection (13) is defined, we may obtain

the (Abelian) curvature form through

F
ρ

ij (k) := ∂iA
ρ

j (k) − ∂jA
ρ

i (k), (17)

and construct a density-matrix topological indicator nρ

Ch
associated with the steady state ρk

ss via the first Chern class25

of this connection:

nρ

Ch := 1

4π
Tr

[ ∫

T2
F

ρ

ij (k)dki ∧ dkj

]
. (18)

It is convenient to compute the different contributions that
appear in the explicit expression of (17) using (13):

F
ρ

ij (k) =
∑

α

[
pk

αF α
ij (k) + (

∂ip
k
α

)
Aα

j (k) − (
∂jp

k
α

)
Aα

i (k)
]
.

(19)

Note that from this equation is not manifestly clear the U(1)
gauge invariance of the curvature, but this can be proven by
performing a gauge transformation and making use of the
property

∑
α pk

α = 1. In addition, if N is the dimension of the
steady state ρk

ss, the curvature is not U(1)N gauge invariant,
however, that is not the case with the Chern value (18), which
is fully invariant. A proof of this fact is given in Appendix A.

Thus, one of the main results of this work is the construction
of this object nρ

Ch, which characterizes the topological structure
of insulators in the presence of dissipation. Furthermore, by
taking into account Eq. (19), nρ

Ch can be written as

nρ

Ch = 1

2π

∫

T2
F

ρ

12(k)d2k

= 1

2π

∑
α

∫

T2
pk

αF α
12(k)d2k

+ 1

2π

∑
α

∫

T2

[(
∂1p

k
α

)
Aα

2 (k) − (
∂2p

k
α

)
Aα

1 (k)
]
d2k.

(20)

A nonvanishing nρ

Ch witnesses a topological nontrivial order
present in ρk

ss. Since for the pure case the connection (13)
becomes the usual Berry connection, if the steady state is a
pure Bloch state ρk

ss = |uα,k��uα,k|, we recover the standard
TKNN topological invariant (Chern number).

The density-matrix Chern value nρ

Ch [Eq. (20)] has two
different terms. The first one is a weighted integration of
curvatures for different bands. This term has no topological
meaning on its own and it does not distinguish between phases
with or without topological order. The second term represents
a correction to the value given by the first one that provides
the topological character to nρ

Ch. In addition, both terms have
a physical meaning which will be explained in Sec. VII.

The name Chern value responds to the fact that despite
its topological origin, it may not be an integer for a general
mixed state. The reason is very fundamental: the space of
density matrices ρ is a convex space, which means that
a convex combination of density matrices ρ1 and ρ2, ρ =
p1ρ1 + p2ρ2 is also a mixed state. Due to the Abelian character
of the curvature form F

ρ

ij [Eq. (17)], nρ

Ch = p1nρ1
Ch + p2nρ2

Ch.
Therefore, since the weights p1,p2 ∈ R with p1 + p2 = 1,
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then nρ

Ch ∈ R as well. Nevertheless, this will not be an obstacle
to use the Chern value to detect topological properties of
insulator states. Note that there are other quantities in the
literature which also reflect topological properties but are not
integer numbers, for example the Aharonov-Bohm phase (see
also Ref. 26). In forthcoming sections, we will apply this
formalism to the case of the Haldane model in 2D which
is a prototype of TRB topological insulator.27

IV. BAND LIOUVILLIAN FOR THE HALDANE MODEL

We can apply our previous formalism to the Haldane
model of 2D TI. This is a graphenelike model based on a
honeycomb lattice with nearest-neighbor and next-nearest-
neighbor couplings. For periodic boundary conditions, the
Haldane Hamiltonian in the reciprocal space is given by

Hs =
∑

k∈B.Z.

(a†
k,b

†
k)H (k)

(
ak

bk

)
=

∑
k∈B.Z.

Ek
1 c

†
kck + Ek

2 d
†
kdk.

(21)

Here, ak and bk correspond to the two species of fermions as-
sociated with the triangular sublattices of a honeycomb lattice,

and ck and dk are the fermionic modes which diagonalize the
Hamiltonian with eigenvalues Ek

1 and Ek
2 , respectively. For

more details, we refer to Appendix B.
We shall assume a local fermionic bath model, with

quadratic coupling of the form

Hs-b :=
∑
i,r

gi
(
a†

r ⊗ Ai
r + ar ⊗ Ai†

r + b†r ⊗ Bi
r + br ⊗ Bi†

r

)
,

(22)

where r denotes the point in the sublattices and Ai
r and

Bi
r denote the bath fermion operators coupled with the two

species ar and br , respectively. This model could effectively
describe situations such as (i) noncontrollable tunneling of
electrons between the TI and some surrounding material,
(ii) particle losses in simulated topological phases with cold
fermionic atoms in optical lattices, or electron transitions to
high-energy levels not well described under the tight-binding
approximation.

The detailed derivation of the Liouvillian equation (master
equation) in the weak coupling limit for this systems is
explained in Appendix C; the final result turns out to be

dρs(t)

dt
=

∑
k

Lk[ρs(t)]

=
∑

k

(
−i[Hk,ρs(t)] + γ

(
Ek

1

)
n̄F

(
Ek

1

)(
c
†
kρs(t)ck − 1

2
{ckc

†
k,ρs(t)}

)
+ γ

(
Ek

1

)[
1 − n̄F

(
Ek

1

)](
ckρs(t)c

†
k − 1

2
{c†kck,ρs(t)}

)

+ γ
(
Ek

2

)
n̄F

(
Ek

2

)(
d
†
kρs(t)dk − 1

2
{dkd

†
k,ρs(t)}

)
+ γ

(
Ek

2

)
[1 − n̄F

(
Ek

2

)](
dkρs(t)d

†
k − 1

2
{d†

kdk,ρs(t)}
))

. (23)

Here,

n̄F (E) := 1

eβE + 1
, γ (ω) := 2πJ (ω), (24)

where J (ω) is the bath spectral density.
It is important to emphasize that this Liouvillian (23)

fulfills the conditions of a band Liouvillian L = ∑
k∈B.Z. Lk.

Moreover, it is quadratic in fermionic operators and its unique
steady state is the Gibbs state (β = 1/T )

ρβ = e−βHs

Z
=

⊗
k

ρk
ss =

⊗
k

(
e−βEk

1 c
†
kck

1 + e−βEk
1

)(
e−βEk

2 d
†
kdk

1 + e−βEk
2

)
,

(25)

that has the form of (7) corresponding to a band Liouvillian.
Note that in the limit T → 0, ρβ approaches the Fermi sea
where the lower band (ck) is fully occupied and the upper band
(dk) is completely empty (see Appendix D for more details).

V. CHERN VALUE OF THE STEADY STATE

We have obtained that the steady state of the Liouvillian
(23) is a product of states ρk

ss with well-defined momentum.
Thus, the (parallel) transport along k-space of each of these

states is well defined and, hence, the state characterization by
a density-matrix Chern value (20) is possible.

For the sake of computation, note that ρk
ss is diagonal in the

occupation basis ρk
ss = ∑

n,m∈{0,1} pk
nm|m,n�k�m,n|, where

|00�k = |0�|0�, |10�k = |uc,k�|0�,
|01�k = |0�|ud,k�, |11�k = |uc,k�|ud,k�.

The vacuum |0� has no particles and does not depend on k.
If we define the geometric connections for the lower (c) and
upper (d) bands

Aα
i (k) := i�uα,k|∂iuα,k�, α = c,d (26)

then it is possible to express the connection A
ρ

i (k) in terms of
the previous ones (see Appendix D):

A
ρ

i (k) = n̄F

(
Ek

1

)
Ac

i (k) + n̄F

(
Ek

2

)
Ad

i (k). (27)

Note that in the T → 0 limit, we recover the standard
Berry connection A

ρ

i (k) → Ac
i (k), as the steady state (25)

approaches the Fermi sea with the fully occupied lower band.
The Chern value can be now computed by integrating the

curvature form of A
ρ

i (k) [or by using the simplified expression
(20)]. The color map in Fig. 2 represents the Chern value for
different values of M and φ and different bath temperatures.

155141-4



101DENSITY MATRIX TOPOLOGICAL INSULATORS

DENSITY-MATRIX CHERN INSULATORS: FINITE- . . . PHYSICAL REVIEW B 88, 155141 (2013)

FIG. 2. (Color online) Color map depicting the Chern value in
the Haldane model with dissipation, for different values of φ, M , and
bath temperature T (in units of t2 = 1). As T increases, the Chern
value decreases (in absolute value), and for T = 0 we recover the
phase diagram obtained by Haldane (Ref. 27). The dashed black lines
enclose the region displaying topological order at T = 0, so that
all nonvanishing Chern values are inside of this region for any T .
Approximately T = 1 and 5 correspond to less than 10% and 50% of
the gap, respectively.

Note its nice properties: it is zero for any choice of M and
φ for all temperatures if it is zero at T = 0. This manifests
that the topological order can not be created by increasing
temperature. Moreover, as T increases, the absolute value of
the Chern value decreases, and in the limit of T → ∞ we
obtain nρ

Ch → 0 for all M and φ. This is in agreement with
the common intuition that at infinite temperature any kind of
order should be spoiled.

VI. MIXED EDGE STATES AND MASTER EQUATION

A physical signature of a TI phase is the existence of gapless
(metallic) edge states. Thus, once we have mathematically
characterized the phase diagram of the Haldane model under
dissipation by means of the density-matrix Chern value, we
wonder about the fate of the chiral edge states of the Haldane
model at finite temperature.

To that aim, we consider the Haldane model placed on
a cylindrical geometry, where we take periodic boundary
conditions just along one spatial dimension, say a2. In
such a case, the momentum k2 along the a2 direction is a
good quantum number and the Haldane Hamiltonian can be
diagonalized obtaining (see Appendix B for more details)

Hs =
∑

k2∈B.Z.

H (k2) =
∑
m

k2 ∈ B.Z.

Ek2
m f

†
m,k2

fm,k2 . (28)

Here, the diagonal modes fm,k2 mix both species of fermions
am,k2 and bm,k2 .

By imposing this geometry also in the interaction
Hamiltonian (22), we derive the following dynamical equation

for the system (see Appendix C):

dρs(t)

dt
=

∑
k2∈B.Z.

Lk2 [ρs(t)]

=
∑

k2∈B.Z.

(
− i[H (k2),ρs(t)]

+
∑
m

(
γ
(
Ek2

m

)
n̄F

(
Ek2

m

)
D

f
†
(m,k2)

[ρs(t)]

+ γ
(
Ek2

m

)[
1 − n̄F

(
Ek2

m

)]
Df(m,k2) [ρs(t)]

))
, (29)

where

DK [ρs(t)] := Kρs(t)K
† − 1

2 {K†K,ρs(t)}. (30)

Again, the Gibbs state at the same temperature as the bath
is the unique steady state of Eq. (29):

ρβ = e
−β

∑
k2

H (k2)

Z
=

⊗
k2

e−βH (k2)

Zk2

, (31)

with Zk2 = Tr
[
e−βH (k2)

]
. Therefore, as long as the values of

M , t2, and φ are such that the system exhibits symmetry-
protected topological order (see Fig. 2), two of the modes
which diagonalize each H (k2), say f(L,k2) and f(R,k2), corre-
spond to edge states and the Gibbs state is a tensor product in
k2 of states of the form

ρβ(k2) = e−βH (k2)

Zk2

= ρL
β (k2) ⊗ ρbulk

β (k2) ⊗ ρR
β (k2), (32)

where

ρ
L,R
β (k2) := e

−βEL,R (k2)f †
(L,R,k2)f(L,R,k2)

1 + e−βEL,R (k2)
(33)

are Gibbs states of the edge modes. However, as temperature
increases (see again Fig. 2), the edge modes in the steady
state of the Liouvillian (29) become delocalized along the
transverse direction to the edges. Then, the components
ρL,R(k2) approach to a maximally mixed state with vacuum
|0�. In such a situation, there is not a way to distinguish the
edge from the bulk modes because for all k2 the occupation
along the direction a1 becomes the same and equal to 1

2 . We
illustrate this behavior in Fig. 3.

It is worth stressing that in order to study the dissipative
effects on the cylindrical Haldane system we must determine
how the boundary conditions of the system affect the dissipator
operator. To that aim, we need to specify how the dissipator
is generated (constructed). In our case, this is the result of
the weak interaction of the system with local baths. However,
there are also possible scenarios where the dissipator is the
effective result of other external interactions (see, for example,
Refs. 28–33). Since the process of “opening” or “closing” a
system has a physical meaning, we stress that we need to
know how the dissipator is physically generated to obtain
its “open” and/or “closed” counterpart. Note that a dissipator
with periodic boundary conditions may split in different and
nonequivalent dissipators once the system is opened along
some direction if it is generated in different ways.
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FIG. 3. (Color online) Occupation along the direction a1 for
all particles with momentum k2 = 4

5
π

|a2| , M = 0, and φ = π/2, for
different values of T (in units of t2 = 1). Note the presence of edge
states at finite temperature [Eq. (33)] in the positions 1 and 50
along the direction a1. However, as the temperature T significantly
increases, the population of the edge modes becomes similar to the
population of the bulk modes.

VII. QUANTUM HALL CONDUCTIVITY AND CHERN
VALUE AT FINITE TEMPERATURE

We can obtain further physical meaning and implications
for the density-matrix Chern value (20) by studying the
(quantum Hall) transverse conductivity σxy and its relation to
the thermal edge states obtained for the Haldane model. Using
the Kubo formula34 in linear response theory, it is possible
to derive an expression for the transverse Hall conductivity at
finite temperature35:

σρ
xy = e2

2πh

∑
α

∫

T2
n̄F

(
Ek

α

)
Fα

xy(k)d2k. (34)

Note that this expression36 is different from the one obtained
for the Chern value (20). Indeed, the conductivity is not
topological at finite temperature, as shown in Fig. 4 where
nonzero Hall conductivity appears in regions outside the
topological regime, in contrast with Fig. 2. Nonetheless, both
quantities can be related by means of the following equation:

σρ
xy = e2

h
nρ

Ch + e2

2πh

∑
α

∫

T2

{[
∂yn̄F

(
Ek

α

)]
Aα

x (k)

− [
∂xn̄F

(
Ek

α

)]
Aα

y (k)
}
d2k. (35)

The second term on the right-hand side of (35) is the same
one that appears for the transverse conductivity of a normal
insulator with an applied magnetic field (or a pseudomagnetic
field as for the Haldane model) at T �= 0. It corresponds to the
conduction by thermal activation of excited electrons in the
bulk. For instance, for parameters t1 = 4,t2 = 1,φ = π

2 , and

FIG. 4. (Color online) Color map depicting the conductivity
Eq. (34) for different values of φ, M , and the bath temperature
T (in units of t2 = 1). As T increases, the conductivity decreases
(in absolute value), and for T = 0 we recover the Chern number
result (Fig. 2). The dashed black lines enclose the region displaying
topological order at T = 0. Thus, contrarily to the Chern value, the
conductivity is not a topological property for finite T , as it does not
vanish for every point outside this region for any T .

M = 6 in the Haldane model, this term is the only nonzero
contribution to the conductivity, as the system is outside the
topological regime, and so nρ

Ch = 0.
Notwithstanding, the first term on the right-hand side of

(35), which is nothing but the Chern value previously defined,
represents a contribution due to the topological nature of
our system and the presence of conducting edge states. For
parameters t1 = 4,t2 = 1,φ = π

2 , and M = 0 in the Haldane
model, the system is within the topological regime and this new
term shows up. Note that at T = 0 we recover the well-known
TKNN expression for the conductivity:

σρ
xy −−−→

T −→0

e2

h
νCh, (36)

where νCh denotes the standard Chern number.

VIII. CONCLUSIONS

We have studied topological insulating phases in the
presence of dissipation. After introducing the notion of band
Liouvillian, we address the characterization of the topological
order of its steady states by resorting to the density-matrix
Chern value, a topological indicator that is an extension of
the Chern number for pure states. The Haldane model of a
2D TI in contact with a thermal bath offers a nice testbed to
study these phenomena. More concretely, we compute phase
diagrams at finite temperature based on the Chern value,
and corroborate that topological order decreases as the bath
temperature increases. Thus, from a topologically disordered
state it is not possible to induce a topologically ordered phase
just by warming the system. However, a topologically ordered
state may remain ordered at finite temperature T except at
the limit T → ∞. This has to be compared with the previous
study8 where symmetry-protected topological order turned out
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to be lost for a dissipative system in the presence of noise not
generated by a band Liouvillian. Our results may also have
direct application in recent studies regarding dissipation on
Majorana fermions in topological superconductors.29,30,37

Complementarily, we study the properties of the Haldane
model coupled to a thermal bath under cylindrical boundary
conditions. We find that the the steady state splits in three
different, generally mixed, substates [Eq. (32)]. Two of them
are associated with creation or annihilation of fermionic
gapless edge modes, and the other one accounts for the same
process just in the bulk modes. In the limit T → 0, we recover
the properties of the usual Haldane model.

Finally, we examine the relation between the density-matrix
Chern value and the conductivity at finite temperature. We
show that the latter is a topological property, in contrast to
the Chern value. This fact is due to the presence of an extra
term which accounts for the conductivity generated by thermal
activation of electrons in the bulk, which has not a particular
topological meaning and is present in normal insulators. In this
regard, provided that the gap between conduction and valence
bands is large enough, the Chern value may be approximately
estimated by measuring the conductivity, as the thermal
activation would be very small. However, recent results38

suggest that a direct measurement of the density-matrix Chern
value could be possible in optical lattice realizations.
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APPENDIX A: GAUGE INVARIANCE OF THE
DENSITY-MATRIX CHERN VALUE

In this appendix, we provide a proof that the density-matrix
Chern value (18) is fully gauge invariant with respect to U(1)N

transformations of the mixed state. To that aim, consider
a U(1)N gauge transformation on the eigenstates of ρk

ss =∑N
α=1 pk

α|ψα,k��ψα,k|:
|ψα,k� −→ |ψ̃α,k� = eiφα

k |ψα,k�. (A1)

The Berry-type connection (13) and the associated purified
curvature (17) transform as

Ã
ρ

i (k) = A
ρ

i (k) −
∑

α

pk
α∂iφ

α
k , (A2)

F̃
ρ

ij (k) = F
ρ

ij (k) +
∑

α

∂j

(
pk

α∂iφ
α
k

) − ∂i

(
pk

α∂jφ
α
k

)
. (A3)

On the other hand, the translational invariance of the lattice
imposes that ρk

ss = ρk+G
ss , where G is a vector in the reciprocal

lattice. Then, since the eigenbasis of ρk
ss is single valued, we

conclude that

|ψα,k� = |ψα,k+G� (A4)

independently of the gauge. This implies

|ψ̃α,k� = |ψ̃α,k+G� ⇒ eiφα
k |ψα,k� = eiφα

k+G |ψα,k+G�. (A5)

Thus, we obtain that the gauge phase satisfies the relation

φα
k = φα

k+G (mod 2π). (A6)

The Chern value (in 2D for simplicity) is given by

nρ

Ch = 1

2π

∫

T2
F

ρ

12d
2k. (A7)

Performing a U(1)N gauge transformation and using (A3),

ñρ

Ch = 1

2π

∫

T2
F̃

ρ

12d
2k = nρ

Ch + 1

2π

∑
α

∫ π

−π

dk1

[ ∫ π

−π

dk2∂k2

(
pk

α∂k1φ
α
k

)] − 1

2π

∫ π

−π

dk2

[ ∫ π

−π

dk1∂k1

(
pk

α∂k2φ
α
k

)]

= nρ

Ch + 1

2π

∑
α

∫ π

−π

dk1
[
pα(k1,k2 = π )∂k1φ

α(k1,k2 = π ) − pα(k1,k2 = −π )∂k1φ
α(k1,k2 = −π )

]

− 1

2π

∑
α

∫ π

−π

dk2
[
pα(k1 = π,k2)∂k2φ

α(k1 = π,k2) − pα(k1 = −π,k2)∂k2φ
α(k1 = −π,k2)

]
, (A8)

where k1 and k2 are the two periodic directions along the 2-torus. The weights pk
α are periodic in the B.Z. In particular, for the

Gibbs’ state, these are functions of the energies of the system. Thus, we have pk
α = pk+G

α and then it follows that

ñρ

Ch = nρ

Ch + 1

2π

∑
α

∫ π

−π

dk1
{
pα(k1,k2 = π )∂k1 [φα(k1,k2 = π ) − φα(k1,k2 = −π )]

}

− 1

2π

∑
α

∫ π

−π

dk2
{
pα(k1 = π,k2)∂k2 [φα(k1 = π,k2) − φα(k1 = −π,k2)]

}
. (A9)

At this point, we make use of Eq. (A6) and thus

∂kx,y

(
φα

k − φα
k+G

) = 0. (A10)

Hence, we can further simplify (A9) using (A10), arriving at the fundamental result

ñρ

Ch = nρ

Ch. (A11)
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FIG. 5. (Color online) System of coordinates {a1,a2} taken to
write the Haldane Hamiltonian in real space (B1). The solid white
and black circles denote fermions a and b, respectively, and the green
enclosures highlight the two-site unit cell.

To summarize, the purified Berry curvature is only U(1)
gauge invariant, however, the Chern value is U(1)N gauge
invariant and consequently it can represent a physical observ-
able.

APPENDIX B: HALDANE MODEL GEOMETRIES

In order to write explicitly the Haldane Hamiltonian27 in
real space, we will consider the system of coordinates {a1,a2}
represented in Fig. 5, with a1 = 1

2 (3,
√

3) and a2 = 1
2 (−3,

√
3)

for lattice spacing a = 1. We write a(m,n) (b(m,n)) for the
fermionic operator of kind a (b) in the position r (m,n) =
ma1 + na2. Then, the Haldane Hamiltonian in real space reads
as

Hs :=
∑
m,n

(
M

2
[a†

(m,n)a(m,n) − b
†
(m,n)b(m,n)]

+ t1[a†
(m,n)b(m,n) + a

†
(m+1,n)b(m,n) + a

†
(m,n)b(m,n+1)]

+ t2
[
eiφa

†
(m,n)a(m+1,n+1) + e−iφa

†
(m,n)a(m+1,n)

+ e−iφa
†
(m,n)a(m,n+1) + e−iφb

†
(m,n)b(m+1,n+1)

+ eiφb
†
(m,n)b(m+1,n) + eiφb

†
(m,n)b(m,n+1)

] + H.c.

)
. (B1)

1. Toroidal geometry

By taking periodic boundary conditions in both spatial
directions, we may write the Hamiltonian (B1) in the reciprocal
space using the Fourier-transformed operators

a(n,m) = 1√
N

∑
k∈B.Z.

eik·r (m,n)ak, (B2)

b(n,m) = 1√
N

∑
k∈B.Z.

eik·r (m,n)bk, (B3)

where B.Z. stands for Brillouin zone which is a hexagon with
vertices in the k = (k1,k2) points

(
0,

4π

3
√

3

)
,

(
2π

3
,

2π

3
√

3

)
,

(
2π

3
, − 2π

3
√

3

)
, (B4)

(
0, − 4π

3
√

3

)
,

(
−2π

3
, − 2π

3
√

3

)
,

(
−2π

3
,

2π

3
√

3

)
, (B5)

and N is the total number of two-site unit cells. Thus, the
Haldane Hamiltonian is rewritten as

Hs =
∑

k

(a†
k,b

†
k)H (k)

(
ak

bk

)
. (B6)

Here,

H11(k) = M + 2t2
∑

i

cos[φ + (k · bi)],

H12(k) = H (k)∗21 = t1
∑

i

e−ik·ai , (B7)

H22(k) = −M + 2t2
∑

i

cos[φ − (k · bi)]

with

b1 = −(3,
√

3)/2, b2 = (3, −
√

3)/2, b3 = (0,
√

3).

(B8)

By diagonalizing the matrix H (k) we obtain

Hs =
∑

k

Ek
1 c

†
kck + Ek

2 d
†
kdk, (B9)

where the eigenvalues are given by

Ek
1,2 = 2t2(cos φ)ξ1(k) ∓

√
�(k) (B10)

with

�(k) := M2 + t2
1 [3 + 2ξ1(k)]

+ 4t2
2 (sin2 φ)[ξ2(k)]2 − 4Mt2(sin φ)ξ2(k), (B11)

and

ξ1(k) :=
∑

i

cos k · bi = 2 cos
3k1

2
cos

√
3k2

2
+ cos

√
3k2,

ξ2(k) :=
∑

i

sin k · bi = −2 cos
3k1

2
sin

√
3k2

2
+ sin

√
3k2.

(B12)

The operators ck and dk are related to ak and bk via the
canonical transformation

(
ak

bk

)
= 1√

1 + |xk|2
(

xk 1
−1 x∗

k

)(
ck

dk

)
, (B13)

where

xk := t1
∑

i e
−ik·ai

M − 2t2(sin φ)ξ2(k) + √
�(k)

. (B14)
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FIG. 6. (Color online) Energy bands of the Hamiltonian (B17)
as a function of the momentum k2. The red lines correspond to the
edge-state modes. The rest of the parameters are M = 0, φ = π/2,
and t1 = 4 (in units of t2 = 1).

2. Cylindrical geometry

In this case, we take periodic boundary conditions along the
direction a2 and open boundaries along a1, so that we work
with a cylindrical configuration. The inverse Fourier transform
along the a2 direction of the fermionic operators is given by

a(m,n) = 1√
N2

∑
k2∈B.Z.

eik2n|a2|a(m,k2), (B15)

b(m,n) = 1√
N2

∑
k2∈B.Z.

eik2n|a2|b(m,k2), (B16)

where the Brillouin zone corresponds to the interval k2 ∈
(−π/|a2|,π/|a2|) = (−π/

√
3,π/

√
3), and N2 is the number

of two-site basic cells along the direction a2. By using these
equations in the Hamiltonian (B1) we obtain

Hs =
∑

k2∈B.Z.

∑
m

([
M

2
+ t2 cos

(√
3k2 − φ

)]
a
†
(m,k2)a(m,k2)

+
[
−M

2
+ t2 cos(

√
3k2 + φ)

]
b
†
(m,k2)b(m,k2)

+ t1

[
a
†
(m+1,k2)b(m,k2) +

(
1 + ei

√
3k2

)
a
†
(m,k2)b(m,k2)

]

+ t2

[ (
ei(

√
3k2+φ) + e−iφ

)
a
†
(m,k2)a(m+1,k2)

+
(
ei(

√
3k2−φ) + eiφ

)
b
†
(m,k2)b(m+1,k2)

]
+ H.c.

)
.

(B17)

This Hamiltonian has the structure Hs = ∑
k2∈B.Z. H (k2),

therefore we can diagonalize H by diagonalizing each H (k2).
In Fig. 6, we have depicted the behavior of the eigenvalues of
H (k2) as a function of k2. The red lines connecting the upper
and lower bands correspond to the edge-state modes, which
are localized on the edges of the direction a1.

APPENDIX C: DERIVATION OF THE MASTER EQUATION
FOR THE HALDANE MODEL

In this section, we derive the dynamical equation (master
equation) for the Haldane model coupled to a thermal bath.
We assume the usual condition of weak system-bath coupling,
which is a standard assumption for thermalization.

The total Hamiltonian of the problem considered reads as
follows:

H := Hs + Hb + Hs-b. (C1)

The first term Hs is the Haldane Hamiltonian (B1). The second
term in (C1), Hb, is the free Hamiltonian of the local baths,

Hb :=
∑
i,r

�i
(
Ai†

r Ai
r + Bi†

r Bi
r

)
, (C2)

where A and B stand for independent fermionic bath op-
erators that satisfy the canonical anticommutation relations
{Ai

n,A
j†
n� } = δn,n�δi,j ,{Ai

n,A
j

n� } = 0 and analogously for Bi
n.

The index r denotes the position of the local bath on the lattice
and i runs over the bath degrees of freedom. Also, �i represents
the energy of each mode i of the bath which is assumed to be
independent of the lattice site. Finally, the third term in (C1),
Hs-b, is given by

Hs-b :=
∑
i,r

gi
(
a†

r ⊗ Ai
r + ar ⊗ Ai†

r + b†r ⊗ Bi
r + br ⊗ Bi†

r

)
,

(C3)

and describes an exchange of fermions between system and
bath mediated by a coupling constant gi which may depend
on the specific mode i of the baths.

The total dynamics of system and bath is given by the
Liouville–Von Neumann equation

dρ

dt
= −i[H,ρ]. (C4)

After taking the interaction picture with respect to H0 = Hs +
Hb,

dρ̃

dt
= −i[H̃s-b,ρ̃] with

{
ρ̃ := eiH0t ρe−iH0t ,

H̃s-b := eiH0tHs-be
−iH0t .

(C5)

For small H̃s-b, the system dynamics is approximately given
(see Refs. 17–20) by the equation

dρ̃s

dt
= −

∫ ∞

0
ds Trb

[
H̃s-b(t),

[
H̃s-b(t − s),ρ̃s(t) ⊗ ρ

β

b

]]
,

(C6)

where Trb denotes the trace over the bath degrees of freedom
and ρ

β

b is the initial state of the bath, which we assumed to be
the Gibbs state

ρ
β

b := e−βHb

Z
. (C7)

1. Toroidal geometry

We consider periodic boundary conditions and take Fourier
transforms in the Hamiltonian (C1). For the first term we obtain
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(B6), for the second we have

Hb =
∑
i,k

�i
(
A

i†
k Ai

k + B
i†
k Bi

k

)
, (C8)

and finally for the interaction term

Hs-b =
∑
i,k

gi
(
a
†
k ⊗ Ai

k + ak ⊗ A
i†
k + b

†
k ⊗ Bi

k + bk ⊗ B
i†
k

)
.

(C9)

Let us stress again that the strength of the coupling to each
mode of the bath is represented by gi . This, analogously to
the energy of each mode �i , is taken to be independent of the
lattice site and of the type of bath A or B, which is rather
natural.

In terms of the operators ck and dk, the Hamiltonian (C9)
reads as

Hs-b =
∑
i,k

gi
(
c
†
k ⊗ Ci

k + ck ⊗ C
i†
k + d

†
k ⊗ Di

k + dk ⊗ D
i†
k

)
,

(C10)

where
(

Ci
k

Di
k

)
= 1√

1 + |xk|2
(

x∗
k −1

1 xk

)(
Ai

k

Bi
k

)
(C11)

are new fermionic modes of the bath. Moreover, note that

Hb =
∑
i,k

�i
(
C

i†
k Ci

k + D
i†
k Di

k

)
. (C12)

Now, it is easy to write Hs-b in the interaction picture and apply
the formula (C6), which can be quite simplified by using that

Trb
(
C

j†
k′ C

i
kρβ

) = Trb
(
D

j†
k′ D

i
kρβ

) = n̄F (�i)δi,j δk,k′ ,

Trb
(
C

j

k′C
i†
k ρβ

) = Trb
(
D

j

k′D
i†
k ρβ

) = [1 − n̄F (�i)]δi,j δk,k′ ,

Trb
(
C

j†
k′ D

i
kρβ

) = Trb
(
D

j†
k′ C

i
kρβ

) = 0.

Here, n̄F (E) := 1
eβE+1 is the mean number of particles of the

Fermi-Dirac distribution, where we have taken the chemical
potential μ to be at the origin of the energy. In the continuous
limit for the bath degrees of freedom we have

∑
i

(gi)2f (�i) −→
∫

d� J (�)f (�), (C13)

for any function f (�), where J (ω) is the so-called spectral
density of the bath. Thus, the Sokhotsky’s identity

∫ ∞

0
dτ eiωτ = πδ(ω) + iPV

(
1

ω

)
(C14)

allows us to simplify further the final expression, which after
a bit long but straightforward computation reads as

dρs(t)

dt
=

∑
k

Lk[ρs(t)] =
∑

k

(
− i[Hk,ρs(t)] + γ

(
Ek

1

)
n̄F

(
Ek

1

)(
c
†
kρs(t)ck − 1

2
{ckc

†
k,ρs(t)}

)

+ γ
(
Ek

1

)[
1 − n̄F

(
Ek

1

)](
ckρs(t)c

†
k − 1

2
{c†kck,ρs(t)}

)
+ γ

(
Ek

2

)
n̄F

(
Ek

2

)(
d
†
kρs(t)dk − 1

2
{dkd

†
k,ρs(t)}

)

+ γ
(
Ek

2

)[
1 − n̄F

(
Ek

2

)](
dkρs(t)d

†
k − 1

2
{d†

kdk,ρs(t)}
))

, (C15)

in the Schrödinger picture, where γ (ω) := 2πJ (ω). In addi-
tion, in this equation we have neglected the imaginary parts of
Eq. (C14) because they represent just a small shift of energies
which do not affect the dissipative process.39

2. Cylindrical geometry

In this case, we take Fourier transform along the direction
a2 in (C1). Thus, the Haldane Hamiltonian reads as (B17), the
bath Hamiltonian becomes

Hb =
∑
k2

∑
i,m

�i
(
A

i†
(m,k2)A

i
(m,k2) + B

i†
(m,k2)B

i
(m,k2)

)
, (C16)

and the interaction Hamiltonian

Hs-b =
∑

k2∈B.Z.

∑
i,m

gi
(
a
†
(m,k2) ⊗ Ai

(m,k2) + a(m,k2) ⊗ A
i†
(m,k2)

+ b
†
(m,k2) ⊗ Bi

(m,k2) + b(m,k2) ⊗ B
i†
(m,k2)

)
, (C17)

where m runs from 1 to the number of two-site basic cells
along the direction a1, N1.

We may collect the operators am and bm of each site in a
new operator cm where c1 := a1, c2 := b1, c3 := a2, c4 := b2,
and so on. The same can be done for the bath operators A and
B with the notation Cm. Then, the interaction Hamiltonian
(C17) is written as

Hs-b =
∑

k2∈B.Z.

∑
i,m

gi
(
c
†
(m,k2) ⊗ Ci

(m,k2) + c(m,k2) ⊗ C
i†
(m,k2)

)
,

(C18)

where now m runs from 1 to 2N1.
The diagonal modes f(m,k2) of H (k2) =∑
m Em(k2)f †

(m,k2)f(m,k2), where Em(k2) is depicted in
Fig. 6, are related to c(m,k2) by some unitary transformation

c(m,k2) =
∑

�

w
k2
m,�f(�,k2) with

∑
�

w
k2∗
�,mw

k2
�,m� = δm,m� .

(C19)
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By using this equation in (C18) and after a bit of algebra we
arrive at

Hs-b =
∑
i,m,k2

gi
(
f

†
(m,k2) ⊗ F i

(m,k2) + f(m,k2) ⊗ F
i†
(m,k2)

)
, (C20)

where

F i
(m,k2) :=

∑
�

w
k2∗
�,mCi

(�,k2) (C21)

are new fermionic bath modes.
Following the same steps as for the toroidal geometry, it

is not difficult to obtain the master equation of the cylindrical
array

dρs(t)

dt
=

∑
k2∈B.Z.

Lk2 [ρs(t)] =
∑

k2∈B.Z.

(
− i[H (k2),ρs(t)]

+
∑
m

(
γ
(
Ek2

m

)
n̄F

(
Ek2

m

)
D

f
†
(m,k2)

[ρs(t)]

+ γ
(
Ek2

m

)[
1 − n̄F

(
Ek2

m

)]
Df(m,k2) [ρs(t)]

))
, (C22)

where

DK [ρs(t)] := Kρs(t)K
† − 1

2 {K†K,ρs(t)}. (C23)

APPENDIX D: STEADY STATE FOR THE HALDANE
MODEL

1. Toroidal geometry

The steady state of the previous band Liouvillian (C15) is
the Gibbs state of the Hamiltonian Hs,

ρβ = e−βHs

Z
, (D1)

where β = 1/T , with T the temperature of the fermionic
bath, and Z = Tr(e−βHs ) the partition function. To prove this,
first note that [Hs,ρβ] = 0 so we just need to care about the
dissipator in (C15). In addition, since the number operators
c
†
kck and d

†
kdk commute with c

†
k′ , ck′ , d†

k′ , and dk′ if k �= k′, and
we are left only with the part where the crystalline momenta
in Lk and ρk

ss are the same, as the others trivially vanish. Since

eβEn̄F (E) = [1 − n̄F (E)] (D2)

and

ρk
ss =

(
e−βEk

1 c
†
kck

1 + e−βEk
1

)(
e−βEk

2 d
†
kdk

1 + e−βEk
2

)
, (D3)

it is easy to prove that

Lk(ρk
ss) = n̄F (Ek

1 )

(
c
†
kρ

k
ssck − 1

2
{ckc

†
k,ρ

k
ss}

)

+ [1 − n̄F (Ek
1 )]

(
ckρ

k
ssc

†
k − 1

2
{c†kck,ρ

k
ss}

)

+ n̄F (Ek
2 )

(
d
†
kρ

k
ssdk − 1

2
{dkd

†
k,ρ

k
ss}

)

+ [1 − n̄F (Ek
2 )]

(
dkρ

k
ssd

†
k − 1

2
{d†

kdk,ρ
k
ss}

)
= 0.

(D4)

Moreover, the state ρβ is the unique steady state of (C15)
as the interaction Hamiltonian (C3) satisfies the irreducibility
condition presented in Ref. 40.

In order to analyze some properties of ρβ , let us write the
density matrix ρk

ss in the occupation basis of the two bands for
a fixed momentum k. The basis reads as |ij �k, where i = 0,1
and j = 0,1 stand for the occupation of one-particle state in
the lower and upper bands, respectively. Thus, ρk

ss is a 4 × 4
diagonal matrix

ρk
ss = diag

(
pk

0000,p
k
1010,p

k
0101,p

k
1111

)
(D5)

with

pk
0000 := [

(1 + e−βEk
1 )(1 + e−βEk

2 )
]−1

,

pk
1010 := pk

0000e
−βEk

1 ,
(D6)

pk
0101 := pk

0000e
−βEk

2 ,

pk
1111 := pk

0000e
−βEk

1 e−βEk
2 .

Since we set the origin of energy at E0 = 0 and also took
the chemical potential μ = 0 in-between the two bands Ek

1 <

0,Ek
2 > 0. Thus, at the low-temperature limit, the state ρk

ss →
|10�k as T → 0 K. This means that at T = 0 K the lower band
is fully occupied and the upper band is completely empty,
which is actually what one may expect. At the opposite limit,
for T → ∞, the system gets completely mixed, as the four
possible states can be equally populated by the environment.

For the sake of clarity, we write the members of the
occupation basis as

|00�k = |0�|0�, |10�k = |uc,k�|0�,
|01�k = |0�|ud,k�, |11�k = |uc,k�|ud,k�.

Then, by using Eqs. (26) and (13), we obtain (note that the
∂i |0� = 0 as by definition the vacuum has no particles and so
it does not depend on k)

A
ρ

i (k) = pk
1010A

c
i (k) + pk

0101A
d
i (k) + pk

1111

[
Ac

i (k) + Ad
i (k)

]
,

(D7)

where the Berry connections for the lower c and upper d bands
are provided by

Aα
i (k) = i�uα,k|∂iuα,k�, α = c,d. (D8)

Thus, the expressions for pk
ijkl given in Eq. (D6) lead to

A
ρ

i (k) = n̄F

(
Ek

1

)
Ac

i (k) + n̄F

(
Ek

2

)
Ad

i (k). (D9)

2. Cylindrical geometry

Because of the same reasons as with the toroidal geometry,
the master equation on a cylindrical geometry (C22) has a
unique steady state, which is the Gibbs state at the same
temperature as the bath:

ρβ = e
−β

∑
k2

H (k2)

Z
=

⊗
k2

e−βH (k2)

Zk2

, (D10)
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with Zk2 = Tr[e−βH (k2)]. Provided the system exhibits topo-
logical order, this state can be split as

ρβ(k2) = e−βH (k2)

Zk2

= ρL
β (k2) ⊗ ρbulk

β (k2) ⊗ ρR
β (k2), (D11)

where

ρ
L,R
β (k2) := e
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are Gibbs states involving just the gapless edge modes depicted
in Fig. 6.
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15M. Ericsson, A. K. Pati, E. Sjöqvist, J. Brännlund, and D. K. L. Oi,

Phys. Rev. Lett. 91, 090405 (2003).
16K. Singh, D. M. Tong, K. Basu, J. L. Chen, and J. F. Du, Phys. Rev.

A 67, 032106 (2003).
17R. Alicki and K. Lendi, Quantum Dynamical Semigroups and

Applications (Springer, Berlin, 1987).
18C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin,

1991).
19H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, UK, 2002).
20A. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction

(Springer, Heidelberg, 2011).

21E. B. Davies, Commun. Math. Phys. 39, 91 (1974); Math. Ann.
219, 147 (1976).

22Physically, the ancillary space may represent the thermal bath.
However, the dimension of the ancillary space has no physical
consequences, it is just restricted to be larger or equal than the
dimension of the system’s Hilbert space in order to not lose
generality.

23M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
2000).

24M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
25T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213

(1980).
26F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
27F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
28F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 (2009).
29S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat. Phys. 7, 971

(2011).
30C.-E. Bardyn, M. A. Baranov, E. Rico, A. İmamoğlu, P. Zoller, and
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In chapter 4, we have provided a very general framework to define a topological 
insulator as an open quantum system. The previous formalism allows us: (a) to characterise 
the mixed character of the edge states, (b) to define a new topological witness associated 
to the topological part of the quantum Hall conductivity at zero temperature, etc. At zero 
temperature, we have seen that the transverse conductivity of a topological insulator σxy is 
integer-quantized (Niu, Thouless and Wu, 1985) in units of e

h

2

. Actually, the integer is equal 
to the Chern number as shown in chapter 1. However, we have just seen in publication P3 
that the Chern value (the topological witness we have defined in this dissipative context) 
is not integer-quantised anymore, and the same applies for the transverse conductivity σxy. 
Therefore, there are still two questions remaining:

■ Is it possible to find topological phases that remain QUANTISED even at finite 
temperature or in the presence of dissipation? Are all quantum properties smoothly 
degraded at finite temperature? 

In publications P4, P5 and P6 we show that there are certain topological phases associated 
to density matrices of SPTOs, that remain quantised for a finite range of temperatures. 
When considering decoherent effects of the surrounding environment, we have found that 
the Uhlmann geometric phase provides us with an elegant characterisation of topological 
regimes of fermion (electron) systems. This phase is a natural generalisation of the Berry 
phase for general density matrices, based on the Bures metric (Bures, 1969; Audenaert et al., 
2007; Calsamiglia et al., 2008). Moreover, the Uhlmann phase produces a complementary 
way to extend the notion of symmetry protected topological order at finite temperature. Our 
topological measure can detect topological regimes both at zero and non-zero temperature for 
fermion systems with so different physical behavior such as insulators and superconductors in 
1D and 2D. This opens the way to future applications for more complicated systems.

Very recently, there has been a proposal (Kempkes, Quelle and  Morais, 2016) relating 
the critical temperature given by the Uhlmann phase, with that of certain thermodynamic 
potentials based on Hill thermodynamics (Hill, 1994). However, a fundamental question 
remains: how to measure a topological Uhlmann phase in a physical system?

In publication P9, we propose a state-independent protocol to measure the topological 
Uhlmann phase on a quantum simulator experiment, in particular in a platform of 
superconducting qubits (Georgescu, Ashhab and Nori, 2014). Recently, there has been an 
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increasing number of experiments performing Digital Quantum simulation of spin (Salathé, 
2015) and fermionic (Barends et al., 2015) models using transmon qubits (Koch et al., 2007) 
In addition, the topological Berry/Zak phase has been directly measured with cold 
atoms in optical lattices (Atala et al., 2013) and for a superconducting qubit (Leek et al., 2007; 
Schroer, 2014) through interferometric techniques. Therefore, we feel very confident that the 
experiment proposed in P9 will be soon carried out.

5.1. OUTLINE OF THE MAIN RESULTS

Publication P4: Topological Uhlmann phase in 1D

● We introduce the Uhlmann phase (a geometric phase for general density matrix) and 
apply it to topological many-body systems.

● We show that when applied to SPT phases in 1D, the geometric Uhlmann phase 
acquires a topological character and it can only be quantised (ΦU=π topological, ΦU=0 
trivial).

● In the small temperature limit, the Uhlmann phase witnesses the same topological 
region as the one given by the winding number of the corresponding Hamiltonian or 
the Berry phase. Hence it has a well-defined zero temperature limit.

● As temperature increases, the Uhlmann phase remains unperturbed below a certain 
temperature Tc, where the system acquires a constant quantum phase in a wide region 
of the phase diagram witnessing the topological phase (green colored volume in 
Figs. 2a-c.),

● At Tc there is a critical transition, and the Uhlmann phase vanishes ΦU=0 above that 
temperature.

● We find a universal behavior when the coupling constants are such that the models 
exhibit a flat-band structure (linked to the presence of decoupled edge modes). In 
that case, the critical temperature of the Uhlmann geometric phase becomes universal 
regardless of whether the model exhibits insulating or superconducting behavior.

● We give a geometrical interpretation of Tc along the holonomy.

● As the Uhlmann phase is a gauge invariant quantity and observable, we give two 
different m.ethods on how to measure this phase in the context of quantum simulation: 
1) purification-based method, 2) using an ancilla qubit. A detail explanation can be 
found in detail in the Supplementary material of P4.

Publication P5: Topological Uhlmann numbers in 2D

● The Chern number associated to the Uhlmann connection is identically zero, because 
the associated fiber bundle structure is trivial. However, this is not the only way to 
introduce topology in a 2D system.
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● We define a new topological invariant called the Uhlmann number, as the winding 
number associated to the Uhlmann phase of homological cycles along one of the 
directions of the BZ torus.

● The Uhlmann number is gauge invariant and it is always integer-quantised.

● At very small temperatures, the Uhlmann number tends to the Chern number and we 
obtain the same topological characterization as at T=0.

● We apply this new framework to well-established models like the topological insulator 
Haldane model and the p-wave superconductor that can host non-Abelian Majorana 
fermions. Remarkably, we always find a finite range of temperatures at which this 
topological order survives.

● Particularly, we report a model where there is a critical transition between two non-
trivial topological phases by the sole effect of the temperature. Thus, we have obtained 
purely thermal transition between different non-trivial topological regimes for the 
first time.

● These new results on stabilizing thermal topological quantum phases in 2D via the 
observable Uhlmann number may trigger experimental developments in this field 
and also have direct consequences regarding the thermal stability of Majorana fermions 
in topological superconductors and topological quantum memories.

Publication P6: Topological Uhlmann theory

● The initial part of the paper comprises a self-contained explanation of the Uhlmann 
geometric phase needed to understand the topological properties that it may acquire 
when applied to topological insulators and superconductors.

● We explain the fiber bundle structure of the Uhlmann approach from the point of 
view of amplitudes and purifications of the density matrix.

● We derive explicitly the Uhlmann connection formula by applying a very natural 
parallel transport condition inspired by the Berry one.

● We proof the invariance of the Uhlmann holonomy under general gauge 
transformations.

● We study in detail the triviality of the Uhlmann Chern classes associated to the 
Uhlmann connection.

● The discontinuous 2π-jump structure of the Uhlmann phase along homological 
circles in 2D is discussed. This gives an intuitive picture of the quantised and non-
zero character of the Uhlmann number in 2D.

● Finally, we apply the topological Uhlmann theory to another representative model 
of a topological insulator in two dimensions, the Qi-Wu-Zhang model. We have 
found a stable symmetry-protected topological (SPT) phase under external thermal 
fluctuations in two-dimensions. A complete phase diagram for this model is computed.
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Publication P9: Measurement Protocol

● We derive the topological phase diagram according to the Uhlmann phase for a 
topological qubit in the presence of noise. This is depicted in Fig.1 of the paper.

● We propose a novel state-independent measurement protocol for the Uhlmann 
phase, which does not involve prior knowledge of the system state ρ or its mixedness 
parameter r [see Eq. (5.1)].

● Using the same protocol, we can test whether the system is parallely transported in 
the Uhlmann sense when the holonomy is implemented.

● We elaborate a gate decomposition of the protocol [see Fig. 5.2], based on the available 
set of gates for superconducting qubits experiments.

● By performing a noise simulation and taking into account realistic experimental 
imperfections, we prove the feasibility of the experiment in state-of-the-art setups of 
superconducting qubits [see Fig. 5.3].
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Uhlmann Phase as a Topological Measure for One-Dimensional Fermion Systems

O. Viyuela, A. Rivas, and M. A. Martin-Delgado
Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain

(Received 2 September 2013; published 2 April 2014)

We introduce the Uhlmann geometric phase as a tool to characterize symmetry-protected topological
phases in one-dimensional fermion systems, such as topological insulators and superconductors. Since this
phase is formulated for general mixed quantum states, it provides a way to extend topological properties
to finite temperature situations. We illustrate these ideas with some paradigmatic models and find that
there exists a critical temperature Tc at which the Uhlmann phase goes discontinuously and abruptly to
zero. This stands as a borderline between two different topological phases as a function of the temperature.
Furthermore, at small temperatures we recover the usual notion of topological phase in fermion systems.

DOI: 10.1103/PhysRevLett.112.130401 PACS numbers: 03.65.Vf, 67.85.-d, 03.65.Yz, 03.67.Mn

Introduction.—Geometric phases have played an essen-
tial role in many quantum phenomena since their modern
discovery by Berry [1] (see also Refs. [2,3]). An emblematic
example is the characterization of the transversal conduc-
tivity σxy in the quantumHall effect by means of the integral
of the Berry curvature over the two-dimensional Brillouin
zone (BZ), in units of e2=h. This is the celebrated TKNN
formula [4] that has become a key ingredient in the
characterization in the newly emerging field of topological
insulators [5,6]. Recently, the experimental measurement
of a Berry phase in a one-dimensional optical lattice (Zak
phase [7]) simulating the different phases of polyacetylene
[8] has opened the way to extend the applications of
geometric phases to study topological properties beyond
the realm of condensed-matter systems.
A fundamental problem in the theory and applications

of geometrical phases is its extension from pure quantum
states (Berry) to mixed quantum states described by density
matrices. Uhlmann was the first to mathematically address
this issue [9] and to provide a satisfactory solution [10–13].
For more than a decade, there has been a renewed interest
in studying geometric phases for mixed states and under
dissipative evolutions from the point of view of quantum
information [14], and more inequivalent definitions have
been introduced [15–17]. This has culminated with the first
experimental measurement of a geometric phase for mixed
quantum states of one system qubit and one ancillary qubit
with NMR techniques [18].
In addition, the role played by external dissipative effects

and thermal baths in topological insulators and super-
conductors has attracted much interest both in quantum
simulations with different platforms and in condensed
matter [19–29]. In this Letter, we show that the Uhlmann
geometric phase is endowed with a topological structure
when applied to one-dimensional fermion systems. More
concretely, (i) we show that the Uhlmann phase allows us to
characterize topological insulators and superconductors at
both zero and finite temperatures. (ii)We find a finite critical

temperature Tc below which the Uhlmann phase is constant
and nonvanishing. At Tc there is a discontinuity, and
above it the topological behavior ceases to exist. This kind
of behavior is very relevant and not present in other
formulations. (iii) We study one-dimensional (1D) para-
digmatic models such as the Creutz ladder (CL) [30,31],
the Majorana chain (MC) [32], and polyacetylene (SSH)
[33,34]. A summary of the basic results of this Letter is
presented in Table I. Notably, at the limit of zero temper-
ature the Uhlmann phase recovers the usual notion of
topological order as given by the Berry phase. Moreover,
when the three models are in a flat-band regime the critical
temperature is universal [Eq. (15)].
The Uhlmann approach is based on the concept of

amplitude. An amplitude for some density matrix ρ is
any of the matrices w such that

ρ ¼ ww†. (1)

The key idea behind this definition is that the amplitudes
form a Hilbert space Hw with the Hilbert-Schmidt product
ðw1; w2Þ ≔ Trðw†

1w2Þ. On the contrary, the set of density
matrices Q is not a linear space. From Eq. (1), we see
that there is a UðnÞ-gauge freedom in the choice of the
amplitude (n is the dimension of the space): w and wU are
amplitudes of the same state for some unitary operator U.

TABLE I. Comparison of Hamiltonian winding number, Berry,
and Uhlmann phases for nontrivial topological regimes in the
Creutz ladder (CL), Majorana chain (MC), and polyacetylene
(SSH) 1D fermion models.

Topological measures in 1D fermion models
CL MC SSH

Winding number (T ¼ 0) 1 1 1
Berry phase (T ¼ 0) π π π
Uhlmann phase (T < Tc) π π π
Uhlmann phase (T > Tc) 0 0 0

PRL 112, 130401 (2014) P HY S I CA L R EV I EW LE T T ER S
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Note the parallelism with the usual Uð1Þ-gauge freedom
of pure states, where jψi and eiϕjψi represent the same
physical state, i.e., the same density matrix given by jψihψ j.
Thus, the usual gauge freedom can be seen as a particular
case of the amplitude UðnÞ-gauge freedom.
Anamplitude is nothingbut anotherway to see the concept

of purification. Indeed, by the polar decomposition theorem,
we parametrize the possible amplitudes of some density
matrix ρ as w ¼ ffiffiffi

ρ
p

U. Because of the spectral theorem
ρ¼Pjpjjψ jihψ jj, we have w¼Pj

ffiffiffiffiffipj
p jψ jihψ jjU. Let

us define the following isomorphism between the
spaces Hw and H ⊗ H: w ¼Pj

ffiffiffiffiffipj
p jψ jihψ jjU⟷jwi ¼P

j
ffiffiffiffiffipj

p jψ ji ⊗ Utjψ ji (here the transposition is taken
with respect to the eigenbasis of ρ). The property ρ ¼ ww†

is now written as

ρ ¼ Tr2ðjwihwjÞ: (2)

Here, Tr2 denotes the partial trace over the second Hilbert
space of H ⊗ H. In other words, any amplitude w of some
density matrix ρ can be seen as a pure state jwi of the
enlarged space H ⊗ H, with partial trace equal to ρ. Thus,
jwi is a purification of ρ.
Let us consider a family of pure states jψkihψkj and

some trajectory in parameter space fkðtÞg1t¼0, such that the
initial and final states are the same. This induces a trajectory
on the Hilbert space H, jψkðtÞi, and since the path on Q is
closed, the initial and final vectors are equivalent up to some
Φ, jψkð1Þi ¼ eiΦjψkð0Þi. Provided the transportation of the
vectors in H is done following the Berry parallel transport
condition (i.e., no dynamical phase is accumulated) Φ is
the well-known Berry phase ΦB. This depends only on
the geometry of the path and can be written as ΦB ¼ H AB,
whereAB ≔ i

P
μhψkj∂μψkidkμ is theBerry connection form

ð∂μ ≔ ∂=∂kμÞ. Similarly, we may have a closed trajectory of
notnecessarilypuredensitymatricesρk,which in turn induces
a trajectory on the Hilbert space Hw, wkðtÞ. Again, since the
path onQ is closed, the initial and final amplitudesmust differ
just in some unitary transformation V, wkð1Þ ¼ wkð0ÞV.
Hence, by analogy to the pure state case, Uhlmann defines
a parallel transport condition such that V is given by

V ¼ Pe
H

AUU0, where P stands for the path ordering
operator, AU is the Uhlmann connection form, and U0 is
the gauge taken at kð0Þ. We have illustrated this parallelism
between the Berry and Uhlmann approaches in Fig. 1.
The Uhlmann parallel transport condition asserts that for

some point ρkðtÞ with amplitude wkðtÞ the amplitude wkðtþdtÞ
of the next point in the trajectory, ρkðtþdtÞ, is the closest [35]
to wkðtÞ among the possible amplitudes of ρkðtþdtÞ. With this
rule, it is possible to obtain some explicit formulas for AU.
Concretely, in the spectral basis of ρk ¼

P
jp

j
kjψ j

kihψ j
kj,

one obtains [12]

AU ¼
X
μ;i;j

jψ i
ki
hψ i

kj½ð∂μ
ffiffiffiffiffi
ρk

p Þ; ffiffiffiffiffi
ρk

p �jψ j
ki

pi
k þ pj

k

hψ j
kjdkμ: (3)

Note that this connection form has only zeroes on its
diagonal and is skew adjoint so that the Uhlmann con-
nection is special unitary. The Uhlmann geometric phase
along a closed trajectory fkðtÞg1t¼0 is defined as

ΦU ≔ arghwkð0Þjwkð1Þi ¼ arg Tr½w†
kð0Þwkð1Þ�: (4)

By the polar decomposition theorem, we may write
wkð0Þ ¼ ffiffiffiffiffiffiffiffiffi

ρkð0Þ
p U0, wkð1Þ ¼ ffiffiffiffiffiffiffiffiffi

ρkð0Þ
p V, so that

ΦU ¼ arg Tr½ρkð0ÞPe
H

AU �: (5)

As aforementioned, in this work we shall focus on the
Uhlmann phase in 1D fermion models. For such systems,
k≡ k is the one-dimensional crystalline momentum living
in a S1-circle BZ. Thus, because of the nontrivial topology
of S1, geometric phases after a loop in k acquire a
topological sense.
Fermionic systems and Uhlmann phase.—Consider two-

band Hamiltonians within the spinor representation Ψk ¼
ðâk; b̂kÞt, where âk and b̂k stands for two species of fermionic
operators. For superconductors, the spinorΨk is constructed
out of a Nambu transformation of paired fermions with
opposite crystalline momentum [36]. The Hamiltonian is a
quadratic form H ¼PkΨ

†
kHkΨk, and Hk is a 2 × 2 matrix

Hk ¼ fðkÞ1þ Δk

2
nk · σ: (6)

Here, σ ¼ ðσx; σy; σzÞ are the Pauli matrices,Δk corresponds
to the gap of Hk, and fðkÞ denotes some function
of k. The unit vector nk ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is
called the “winding vector” where θ and ϕ are k-dependent
spherical coordinates. The band eigenvectors of Hk can be
written as

juk−i ¼
 −e−iϕðkÞ sin θðkÞ

2

cos θðkÞ
2

!
; jukþi ¼

 
e−iϕðkÞ cos θðkÞ

2

sin θðkÞ
2

!
:

(7)

FIG. 1 (color online). Comparison of the Berry and Uhlmann
approaches. The usual U(1)-gauge freedom is generalized to the
UðnÞ-gauge freedom of the amplitudes in the Uhlmann approach.
Thus, according to Berry, after a closed loop in the set Q, a pure
state carries a simple phase factor ΦB. However, for mixed states,

the amplitude carries a unitary matrix Pe
H

AU .

PRL 112, 130401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014
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If the thermalization process preserves particle number
and the Fermi energy is set in the middle of the gap, the
equilibrium (thermal) state is given by ρβ ¼

Q
kρ

β
k, with

ρβk ¼
e−Hk=T

Trðe−Hk=TÞ ¼
1

2

�
1 − tanh

�
Δk

2T

�
n̂k · σ

�
; (8)

where T ¼ 1=β denotes temperature.
By the use of Eq. (7), the Uhlmann connection (3) for ρβk

turns out to be

Ak
U ¼ mk

12huk−j∂kukþijuk−ihukþjdkþ H:c: (9)

where mk
12 ≔ 1 − sech½Δk=ð2TÞ�.

Besides, it is well known that discrete symmetries
represent a way to classify topological insulators and
superconductors [37,38]. Furthermore, for the models
considered throughout this Letter, symmetries impose a
restriction on the movement of nk to some plane as a
function of k, making only two of its components nik and n

j
k

with i ≠ j different from zero. Therefore, we have a
nontrivial mapping S1⟶S1, characterized by a winding
number ω1. This is defined using the angle α covered by nk
when it winds around the unit circle S1 and takes the form

ω1 ≔
1

2π

I
dα ¼ 1

2π

I �∂knik
njk

�
dk; (10)

where we have used that α ≔ arctanðnik=njkÞ.
Moreover, using Eqs. (7) and (10) with (9) and sim-

plifying Eq. (5) we obtain an expression for the Uhlmann
phase in terms of ω1, the temperature, and parameters of the
Hamiltonian

ΦU ¼ arg

�
cosðπω1Þ cos

�I �∂knik
2njk

�
sech

�
Δk

2T

�
dk

��
:

(11)

Particularly, in the limit T → 0,

Φ0
U ¼ arg½cosðπω1Þ�: (12)

Note that for the trivial case ω1 ¼ 0, the Uhlmann phase is
zero as well. However, for nontrivial topological regions
ω1 ¼ �1, we obtain Φ0

U ¼ π. Thus, the topological order
as accounted by Φ0

U coincides to the standard notion
measured by ω1. In the following, we compute ΦU at
finite temperature for the three aforementioned models of
topological insulators and superconductors.
Creutz ladder.—This model [30] is representative for a

topological insulator [24,31] with AIII symmetry [37,38].
It describes the dynamics of spinless electrons moving in
a ladder as dictated by the following Hamiltonian:

HCL ¼ −
XL
n¼1

½Rðe−iΘa†nþ1an þ eiΘb†nþ1bnÞ

þ Rðb†nþ1an þ a†nþ1bnÞ þMa†nbn þ H:c:�; (13)

where an and bn are fermionic operators associated to the
nth site of an upper and lower chain, respectively.
The hopping along horizontal and diagonal links is given
by R > 0 and the vertical one by M > 0. In addition, a
magnetic flux Θ ∈ ½−π=2; π=2� is induced by a perp-
endicular magnetic field. For nonzero magnetic flux Θ ≠ 0
and small vertical hoppingm ≔ M=2R < 1, the system has
localized edge states at the two ends of the open ladder
[30]. Interestingly, there exists an experimental proposal
for this model with optical lattices [39].
In momentum space, HCL can be written in the form of

Eq. (6) with (in units of 2R ¼ 1)

nk ¼
2

Δk
ðmþ cos k; 0; sinΘ sin kÞ;

Δk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ cos kÞ2 þ sin2Θsin2k

q
; (14)

which in the spinor decomposition made in Eq. (6) implies
ϕ ¼ 0, π.
By the means of Eq. (11) we compute the value of the

Uhlmann phase (which can only be equal to π or 0) as
function of parameters Θ, m, and the temperature T [see
Fig. 2(a)]. At T → 0, the topological region coincides with
the usual topological phase Φ0

U ¼ ΦB ¼ π for m ∈ ½0; 1�
and Θ ∈ ½−ðπ=2Þ; ðπ=2Þ�, as expected. However, there
exists a critical temperature Tc for any value of the param-
eters at which the system is not topological in the Uhlmann
sense anymore, and ΦU goes abruptly to zero. The physical
meaning of this Tc relies on the existence of some critical
momentum kc splitting the holonomy into two disequivalent
topological components according to the value taken by k
when performing the closed loop, ΦUðk < kcÞ ¼ 0 and
ΦUðk > kcÞ ¼ π, respectively. In the trivial topological
regime, there is only one component with ΦU ¼ 0 for every
point along the trajectory. Thus, this structure of theUhlmann
amplitudes accounts for a topological kink [40] in the
holonomy along the BZ. Further details about the presence
or absence with temperature of this topological kink can be
seen in the Supplemental Material [41].
Interestingly, atm ¼ 0 andΘ ¼ �ðπ=2Þ (see the arrows in

Fig. 2), the edge states become completely decoupled from
the system dynamics. When considering periodic boundary
conditions, this translates into having flat bands in the
spectrum. For these flat-band points (FBPs) the critical
temperature Tc only depends on the constant value of the
gap Δk ¼ 2 and can be analytically computed. The result is
the same for the three models analyzed in this work,

Tc ¼
1

ln ð2þ ffiffiffi
3

p Þ ; (15)

which is approximately 38% of the gap.
Majorana chain.—Consider a model of spinless fer-

mions with p-wave superconducting pairing, hopping on
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an L-site one-dimensional chain. The Hamiltonian of this
system introduced by Kitaev [32] is

HMC ¼
XL
j¼1

�
−Ja†jajþ1 þMajajþ1 − μ

2
a†jaj þ H:c:

�
;

(16)

where μ > 0 is the chemical potential, J > 0 is the hopping
amplitude, the absolute value of M ¼ jMjeiΘ stands for
the superconducting gap, and aj ða†jÞ are annihilation
(creation) fermionic operators.
For convenience, we may redefine new parameters m ≔

μ=ð2jMjÞ and c ≔ J=jMj and take Θ ¼ 0. It can be shown
[32] that the system has nonlocal Majorana modes at the
two ends on the chain if m < c, which corresponds to
nonvanishing ω1 and ΦB when taking periodic boundary
conditions. Thus, in momentum space, HMC can be written
in the form of Eq. (6) using the so-called Nambu spinors
Ψk ¼ ðak; a†−kÞt,

nk ¼
2

Δk
ð0;− sin k;−mþ c cos kÞ;

Δk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−mþ c cos kÞ2 þ sin2k

q
; (17)

in units of jMj ¼ 1. This in Eq. (6) implies ϕ ¼ �ðπ=2Þ.
In analogy to the CL case, we calculate the Uhlmann

phase as a function of parameters m, c, and the temper-
ature T [see Fig. 2(b)]. On the one hand, note again that
at T → 0 we recover the usual topological phase
Φ0

U ¼ ΦB ¼ π for m < c, and on the other hand, there
also exists a critical temperature Tc. The FBP corre-
sponds to m ¼ 0 and c ¼ 1 where the Majorana modes
are completely decoupled from the system dynamics.
For the FBP, we get the same Tc as before (15) as shown
in Fig. 2(b).

Polyacetylene (SSH model).—The following
Hamiltonian was introduced in Ref. [34] by Rice and
Mele, and it has a topological insulating phase

HSSH ¼ −
X
n

ðJ1a†nbn þ J2a
†
nbn−1 þ H:c:Þ

þM
X
n

ða†nan − b†nbnÞ: (18)

The fermionic operators an and bn act on adjacent sites
of a dimerized chain. If the energy imbalance between sites
an and bn is M ¼ 0, the above Hamiltonian H ≡HSSH
effectively describes polyacetylene [33], whereas for
M ≠ 0 it can model diatomic polymers [34].
For M ¼ 0 and J2 > J1, there are two edge states at the

end of the chain and the system displays topological order,
characterized by ω1 and ΦB.
In momentum space, HSSH is written in the form of

Eq. (6) with

nk ¼
2

Δk
ð−J1 − J2 cos k; J2 sin k; 0Þ;

Δk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21 þ J22 þ 2J1J2 cos k

q
; (19)

which in Eq. (6) implies fixing θ ¼ �ðπ=2Þ for all k.
In Fig. 2(c), we plot ΦU as a function of the hopping

parameters J1, J2, and the temperature T. At T → 0, the
topological region coincides again with the usual topo-
logical phase Φ0

U ¼ ΦB ¼ π for J1 < J2, and there exists a
critical temperature Tc.
For the FBP, J1 ¼ 0 and J2 ¼ 1, the gap Δk ¼ 2

becomes constant and we obtain the same critical temper-
ature as for the other two models; Eq. (15).
Outlook and conclusions.—We have shown that the

Uhlmann phase provides us with a way to extend the
notion of symmetry-protected topological order in fermion
systems beyond the realm of pure states. This comes into

FIG. 2 (color online). Uhlmann topological phases for the CL (a), MC (b), and SSH (c). They are π inside the green volume and zero
outside. The FBPs are indicated with an arrow and are universal. Natural units have been taken. In addition, for the CL and the MC we
have fixed the horizontal hopping 2R ¼ 1 and the superconducting pairing jMj ¼ 1, respectively.
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play when studying dissipative effects and particularly
thermal baths. When applied to three paradigmatic models
of topological insulators and superconductors, it displays a
discontinuity in some finite critical temperature Tc, which
limits the region with topological behavior. Interestingly
enough, a thermal-bulk-edge correspondence with the
Uhlmann phase does not exist, and the topology assessed
by it does not determine the fate of the edge modes at finite
temperature.
Although the analysis has been restricted here to 1D

models and some representative examples, we expect that
the Uhlmann approach could be extended to higher spacial
dimensions and other symmetry classes of topological
insulators and superconductors. However, more progress
on this line is required.
Finally, let us stress that the Uhlmann phase is an

observable [42,43]. Additionally, we analyze possible
experimental measurement schemes in the Supplemental
Material [41].
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Supplementary Material: Uhlmann Phase as a Topological Measure for
One-Dimensional Fermion Systems

O. Viyuela, A. Rivas and M.A. Martin-Delgado
Departamento de F́ısica Teórica I, Universidad Complutense, 28040 Madrid, Spain

I. GEOMETRICAL MEANING OF Tc

The appearance of a critical temperature Tc in the
Uhlmann phase can be better understood from a very
simple model for the behavior of the Uhlmann holonomy
in fermion systems.

For the sake of simplicity, let us represent the ampli-
tudes (or purifications) as two-dimensional arrows and
the phase between two of them as the angle between
their corresponding arrows. In Fig. 1, we sketch differ-
ent behaviors of the amplitudes (arrows) when they are
transported according to the Uhlmann’s parallel condi-
tion along a closed trajectory embracing the whole Bril-
luoin zone, i.e. from k = −π to k = π, this is left to right
on the Fig. 1. We observe several situations:

i) T = 0 in the trivial topological regime [Fig. 1(a)].
The arrow is transported with constant slope, the
initial and final arrows are parallel, so that Φ0

U =
ΦB = 0.

ii) T = 0 in the non-trivial topological regime [Fig.
1(b)]. The Uhlmann phase remains 0 until some
singular point kc, where the direction of the ampli-
tude is suddenly flipped, and so it remains up to the
final point k = π. Thus, the initial arrow and the
final arrow form an angle of π, then Φ0

U = ΦB = π.

iii) Tc > T > 0 in a non-trivial topological regime [Fig.
1(c)]. The behavior of the Uhlmann phase follows a
similar pattern as before, but now the temperature
displaces the position of kc towards the end of the
Brillouin zone.

iv) T = Tc in a non-trivial topological regime [Fig.
1(d)]. The position of kc reaches the end of the
Brillouin zone.

v) T > Tc [Fig. 1(a)]. The temperature is so high
that a kink never takes place during the trajectory
from k = −π to k = π, hence the arrow does not
flip and then the Uhlmann phase vanishes ΦU = 0.

Note that the Uhlmann phase places on equal footing
T and the parameters of the Hamiltonian H. Thus, the
position of the critical momentum kc is affected by both
H and T .

In summary, as commented in the letter, the existence
of a critical temperature Tc is connected to a topological
kink structure [1] in the Uhlmann holonomy. More pre-
cisely, the variation of temperature produces the presence

FIG. 1: Schematic plot for the behavior of the Uhlmann phase
during the parallel transport from k = −π to k = π for differ-
ent situations: T = 0 and trivial topological regime or T > Tc

(a), T = 0 and nontrivial topological regime (b), Tc > T > 0
and nontrivial topological regime (c), and T = Tc (d). See
comments on the main text of this document.

of absence of a topological kink associated to the phys-
ical critical momentum kc. In fact, there is not a con-
nection between the Uhlmann phase and the presence or
absence of edge states. The critical momentum kc splits
the holonomy into two dis-equivalent topological compo-
nents according to the value taken by k when performing
the trajectory. The first component is the region with
k < kc and ΦU = 0, and the second is the region with
k > kc and ΦU = π. Note that these two different com-
ponents cannot be smoothly connected as for that aim
the momentum has to cross the singular point k = kc.
In the trivial topological regime ΦU = 0 for every point
along the trajectory and there is only one component.
The effect of the temperature in the Uhlmann parallel
transport can be understood as a displacement of the
topological kink along k-space. The critical temperature
corresponds to the situation where kc is at the edge of the
Brillouin zone. In other words, Tc determines the admis-
sible amount of noise/disorder such that the Uhlmann
holonomy along the Brilluoin zone presents a topological
kink structure. For T > Tc, the noise is high enough
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that the kink is effectively “erased” and the Uhlmann
geometric phase becomes trivial.

II. MEASUREMENT OF THE UHLMANN
PHASE

As stressed in the letter, the Uhlmann phase is a phys-
ical observable. Thus, for the sake of completion we pro-
vide here some hints about its measurement in a real ex-
periment. The purpose of this section is to explain how
the already existing experimental proposals to measure
the Uhlmann phase in the optical domain [2, 3] could be
adapted to 1D fermionic systems.

Since the Uhlmann holonomy is defined as a relative
phase between amplitudes, in order to measure it we need
some auxiliary degree of freedom to construct them from
density matrices. We hereby present two different ways
for this to be implemented.

A. Purification approach

This method is based on the fact that amplitudes wk

can be seen as pure states |wk〉 living in an enlarged
Hilbert space H = HS ⊗ HA where both system and
ancilla Hilbert spaces are of the same dimension [2].

For instance, we may introduce two electrons in the
system with the same crystalline momentum k0 and in
the lowest energy band, differing only in a particular non-
dynamical degree of freedom. Taking the Creuzt ladder
model as an example, the two electrons could differ on
their spins (↑↓) and be prepared in their ground states.
Once this has been done, we may apply the following
steps:

1. Prepare an entangled state in the diagonal basis of
the two electrons of the following form:

|wk0
〉 =

√
1+rk0

2 |u↑k0

− 〉 ⊗ |u↓k0

− 〉

+

√
1−rk0

2 |u↑k0

+ 〉 ⊗ |u↓k0

+ 〉, (1)

where rk0 := tanhβ
∆k0

2 . Let us take for simplicity
the flat-band case where ∆k = 2. Therefore, once
the temperature is fixed, rk is a constant during
the holonomy. By taking partial trace with respect
to the ancillary electron, the reduced state for the
system electron is

ρk0
= TrA(|wk0

〉〈wk0
|) = 1

2

(
1− rk0

σz

)
. (2)

This corresponds to a thermal state of the system
written in the diagonal basis of the system Hamil-
tonian.

2. Implement the holonomy in k−space. For exam-
ple by applying the unitary operation Vk(t) on the
ancillary electron. This is determined by impos-
ing the Uhlmann’s parallel transport condition on
the trajectory {k(t)}1t=0 such that k(0) = k0 and
k(1) = k0 + G, where G stands for the reciprocal
lattice vector. This might be achieved using a spin
dependent force.

3. Interferometry to measure the relative phase. To
retrieve the Uhlmann phase, we make use of

ΦU = arg〈wk(0)|wk(1)〉. (3)

This can be implemented using atom interferom-
etry techniques similar to those in [4]. Another
example where the degree of control over fermionic
systems is at the highest level can be found in [5].

B. System plus ancillary qubit

A different approach to construct amplitudes was pro-
posed for the optical domain in [3]. The idea is again
to enlarge the Hilbert space H = HS ⊗ Hqubit. How-
ever, instead of preparing two copies of the system, it is
just required an auxiliary two-dimensional quantum sys-
tem (qubit). Then system and qubit are prepared in a
certain mixed state ρ̂. It can be shown that the ampli-
tudes associated to the state ρk = wkw

†
k appear in the

coherences of this larger state ρ̂k [3]:

ρ̂k =
1

2
ρk ⊗ |0〉〈0|+ 1

2n
1⊗ |1〉〈1|

+
1

2
√
n
wk ⊗ |0〉〈1|+ 1

2
√
n
w†

k ⊗ |1〉〈0|, (4)

where n is the dimension of the system, i.e. the number
of bands for the fermion models. Secondly, a protocol can
be designed [3] in order to implement the unitary Vk(t) on
the amplitude and retrieve the Uhlmann phase after the
holonomy using again atom interferometric techniques.

Therefore, we can envision possible measurement
schemes for the Uhlmann phase in fermionic systems
based on what has already been proposed previously for
photons in the context of geometric phases for qubits.
However, giving a precise experimental proposal for a
particular setup would require further analysis which is
beyond the scope of this paper.
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We construct a topological invariant that classifies density matrices of symmetry-protected topological
orders in two-dimensional fermionic systems. As it is constructed out of the previously introduced
Uhlmann phase, we refer to it as the topological Uhlmann number nU. With it, we study thermal topological
phases in several two-dimensional models of topological insulators and superconductors, computing phase
diagrams where the temperature T is on an equal footing with the coupling constants in the Hamiltonian.
Moreover, we find novel thermal-topological transitions between two nontrivial phases in a model with
high Chern numbers. At small temperatures we recover the standard topological phases as the Uhlmann
number approaches to the Chern number.

DOI: 10.1103/PhysRevLett.113.076408 PACS numbers: 71.10.Pm, 03.65.Vf, 03.65.Yz, 73.43.Nq

Introduction.—Intrinsic topological orders (TOs) [1–4],
and symmetry-protected topological orders (SP-TOs), like
topological insulators and superconductors in fermionic
[5–13], or more recently, bosonic [14–18] systems, have
been extensively studied and classified. Although these
studies provide a successful picture for quantum systems in
pure states, typically the ground state, very little is known
about the fate of those topological phases of matter when
the system is in a mixed quantum state represented by a
density matrix. In fact, the correct understanding of this
situation becomes particularly relevant in order to address
unavoidable thermal effects on topological phases and
nonequilibrium dynamics under dissipation [19].
Over the last few years, there have been some results

establishing the absence of stable topological phases subject
to thermal effects, like for TOs with spins [20–22], for
SP-TOs with spins [23], or SP-TOs with fermions under
certain conditions [24]. However, in a recent work [25] we
have shown that it is possible to characterize a thermal
topological phase for topological insulators and supercon-
ductors in one-dimensional systems. This thermal topological
phase, classified by Uhlmann holonomies [26,27], is sepa-
rated from a trivial phase by a critical finite temperature, at
which the topological phase abruptly disappears. This result
paves the way towards the characterization of SP-TOs with
fermions in thermal states, or more general density matrices.
In this paper, we have achieved this goal for two-

dimensional fermion systems, either insulating or super-
conducting. This extension from one to two-dimensional
systems is nontrivial in the sense that a direct generalization
of the topological invariants for pure states (Chern num-
bers) to density matrices via the Uhlmann approach leads to
trivial results. However, we have succeeded in circum-
venting this problem and introducing a suitable notion of
topological Uhlmann numbers. These are gauge invariant
and observable quantities which allows for a classification

of topological phases of density matrices in two-
dimensional quantum systems. Specifically, we have
applied this approach to determine new topological phase
diagrams including temperature for three emblematic
models of two-dimensional insulators and superconductors.
As a result, we have found a thermal topological phase for
a two-dimensional chiral p-wave superconductor, which
can host vortices with non-Abelian Majorana fermions,
and thermal-topological transitions between two nontrivial
phases in a model with high Chern numbers.
First of all, let us briefly recall the basic concepts of the

Uhlmann approach, the reader may see [25–27] for a more
detailed picture. Let Q denote the convex set of density
matrices. For some ρ ∈ Q, any of the matrices w such that
ρ ¼ ww† is called an amplitude of ρ. The set of amplitudes
generates the set Q via this equation and forms a Hilbert
space Hw with the Hilbert-Schmidt product ðw1; w2Þ ≔
Trðw†

1w2Þ. This aims to be the density-matrix analogy to the
standard situation where vector states jψi span a Hilbert
space and generate pure states by the relation jψihψ j.
Actually, the phase freedom of pure states [U(1)-gauge
freedom], is generalized to a UðnÞ-gauge freedom (n is the
dimension of the space), as w and wU are amplitudes of the
same density matrix for some unitary operator U.
Now, let kðtÞj1t¼0 define a (closed) trajectory along

a family of density matrices parametrized by k, ρk.
By defining a proper parallel transport condition on the
amplitudes wkðtÞ, ρkðtÞ ¼ wkðtÞw

†
kðtÞ, it is possible to define a

geometric phase for density matrices via the associated
holonomy. More concretely, after the parallel transportation

we have wkð1Þ ¼ wkð0ÞV, with unitary V ¼ Pe
H

AU ; where
P stands for the path ordering operator along the trajectory
kðtÞj1t¼0, and AU ¼PμA

U
μ ðkÞdkμ is the so-called Uhlmann

connection form. The geometric phase is defined from the
mismatch between the initial point wkð0Þ and final point
wkð1Þ ¼ wkð0ÞV. Specifically,
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ΦU ≔ argðwkð0Þ; wkð1ÞÞ; ð1Þ

which is a gauge-independent quantity [26,27]. In the
particular gauge where wkð0Þ ¼ ffiffiffiffiffiffiffiffiffi

ρkð0Þ
p , it takes the simple

form

ΦU ¼ argðwkð0Þ; wkð1ÞÞ ¼ arg Tr
h
ρkð0ÞPe

H
AU

i
; ð2Þ

where the components of the connection are given by [28]

AU ¼
X
μ;i;j

jψ i
ki
hψ i

kj½ð∂μ
ffiffiffiffiffi
ρk

p Þ; ffiffiffiffiffi
ρk

p �jψ j
ki

pi
k þ pj

k

hψ j
kjdkμ; ð3Þ

in the spectral basis of ρk ¼
P

jp
j
kjψ j

kihψ j
kj, with

∂μ ≔ ∂=∂kμ.
The phase ΦU, which is experimentally observable

[29–31], has a purely geometric meaning in the sense that
it depends only on the geometry of the trajectory. Although in
generalΦU maychangewith the starting point of the trajectory
kð0Þ, as we shall see, it can be used to construct topological
invariants that are independent of this starting point.
At zero temperature, the standard method to define

topological invariants in two-dimensional SP-TO systems
is by means of Chern numbers. In the simplest scenario, we
consider a time-reversal broken two-band system with the
Fermi energy between both bands. Then the Chern number
is given by

Ch ≔
1

2π

Z
BZ

d2kFxyðkÞ;

FxyðkÞ ≔ ∂xAyðkÞ − ∂yAxðkÞ; ð4Þ

where BZ stands for Brillouin zone, AjðkÞ ¼ ihukj∂juki is
the Berry connection and juki is the eigenvector corre-
sponding to the lower energy band. This number is a
topological invariant which only takes on integer values.
While this kind of constructions can be extended to higher
dimensional systems or systems with time-reversal sym-
metry [13], when attempting the generalization to density
matrices via the Uhlmann connection, one finds the
following fundamental obstruction.
Triviality of the Uhlmann Chern number.—The natural

way to generalize the Chern number to arbitrary density
matrices is to consider the first Chern class associated to
the Uhlmann curvature, which is constructed from the
Uhlmann connection AU via the standard formula for the
non-Abelian case, FU

xy ¼ ∂xAU
y − ∂yAU

x þ ½AU
x ; AU

y �. Then,
according to the theory of characteristics classes [32,33],
the (first) Chern number of the Uhlmann curvature would
be given by ChU ≔ ði=2πÞ RBZ d2kTrðFU

xyÞ; however, this
number turns out to be always zero. The reason for this is
twofold: on the one hand, the Uhlmann connection belongs
to the suðnÞ Lie algebra, so its trace vanishes and so does
the trace of its curvature; on the other hand, the Chern
number is 0 if there is a smooth gauge defined along the

whole BZ [32,33], and this is the case for the Uhlmann
UðnÞ gauge. We can take the gauge wk ¼ ffiffiffiffiffi

ρk
p

which is
well defined provided that ρk is not singular at some
crystalline momentum k, which is a rather natural condition
[34]. Therefore ChU ¼ 0 in any case.
This makes not obvious the extension of two-dimensional

topological invariants by means of the Uhlmann approach.
We hereby show the way to circumvent this obstruction.
Topological Uhlmann numbers.—The fact that ChU

becomes identically zero does not mean that all topological
properties of density matrices are trivial. If this assertion
were true, we could not claim that systems at T ¼ 0 display
topological order, as they are just a particular case of
generally mixed density matrices. Note that ChU is not the
only topological invariant that we can construct on a torus.
Actually, in the Berry case, the Chern number (4) can be
rewritten as [35–37]

Ch ¼ 1

2π

I
dkx

dΦBðkxÞ
dkx

; ð5Þ

where ΦBðkxÞ ¼
H
dkyAyðkx; kyÞ is the Berry phase along

the ky nontrivial homological circle of the torus at the point
kx, and

H
dkx denotes the integration along the kx nontrivial

homological circle. To prove the equality (5), one divides
the surface integral (4) in small slices along the kx direction
and applies the Stokes’s theorem to each of them [the U(1)
gauge, which may be ill defined over the whole BZ,
is always well defined in a sufficiently small slice].
Then, in the limit of slices with infinitesimal width, the
sum becomes an integral and one immediately obtains
Eq. (5). If ΦBðkxÞ displays some 2π-discontinuous jumps
along the kx circle, we take ΦBðkxÞ to be a smooth function
equal to

H
dkyAyðkx; kyÞ mod. 2π in to order to calculate its

derivative. Actually, what the Chern number is measuring is
the number of those 2π jumps, i.e., the number of windings
of ΦBðkxÞ as the kx circle is covered. This is clearly a
topological invariant, particularly a winding number. It
associates every state of the system with an homotopy class
of the Berry phase mapping ΦBðkxÞ∶S1 → S1, between the
nontrivial homological circle S1 and the complex
phases Uð1Þ ≅ S1.
Remarkably, in contrast to Eq. (4), the equivalent formula

(5) allows for a nontrivial generalization to density matrices.
To that aim, we proceed by substituting the Berry phase
ΦBðkxÞ by the Uhlmann phase ΦUðkxÞ, Eq. (2), in Eq. (5):

nU ≔
1

2π

I
dkx

dΦUðkxÞ
dkx

: ð6Þ

Analogously to the Berry case, this integer number is a
topological invariant which classifies the density matrices
of a quantum system according to the homotopy class of
the Uhlmann phase mapping, ΦUðkxÞ∶S1 → S1. Moreover,
since for pure states ΦU ¼ ΦB, by computing nU in a

thermal (Gibbs) state, we have that nU⟶
T→0

Ch; hence, the
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generalization is faithful. Additionally, since ΦU is an
observable, nU is also an observable. We will refer to this
topological invariant nU as the Uhlmann number.
In what follows, we classify the topological properties

of some models of two-band topological insulators and
superconductors at finite temperature according to the
topological invariant nU. We shall consider the analogous
situation to [25] where the thermalization process preserves
the number of particles and the crystalline momentum
such as the equilibrium state splits in one-particle Gibbs
states ρβk ¼ exp½−βHðkÞ�=Z. Here, HðkÞ is the one-particle
Hamiltonian represented by a 2 × 2 matrix in the band
indexes. Thus, the total Hamiltonian of these systems is a
quadratic form Hs ¼

P
k∈BZΨ

†
kHðkÞΨk. In the case of

insulators, Ψk ¼ ðak; bkÞt, where ak and bk represent
two species of fermions, while for superconductors,
Ψk ¼ ðck; c†−kÞt is the Nambu spinor for paired fermions
with opposite crystalline momentum [13]. We take lattice
spacing a ¼ 1 throughout the text.
Two-dimensional topological superconductor.—Let us

consider the chiral p-wave superconductor [13,38–40].
This system can host vortices with non-Abelian anyonic
statistics [40] that are of great relevance in proposals
for topological quantum computation [41]. The lattice
Hamiltonian for this model is

H ¼
X
ij

�
−tðc†iþ1;jci;j þ c†i;jþ1ci;jÞ −

1

2
ðμ − 4tÞc†i;jci;j

þ Δðc†iþ1;jc
†
i;j þ ic†i;jþ1c

†
i;jÞ þ H:c:

�
; ð7Þ

where μ is the chemical potential, t is the nearest-neighbor
hopping, and Δ is the superconductive pairing.
Without lost of generality, we fix t ¼ jΔj ¼ 1=2. By

means of a Bogoliubov transformation, we obtain the
Hamiltonian in the Nambu spinor basis in momentum space,

HðkÞ ¼ − fsinðkyÞσx þ sinðkxÞσy
þ ½μ − 2þ cosðkxÞ þ cosðkyÞ�σzg; ð8Þ

here, σx;y;z are the three Pauli matrices.
At T ¼ 0, the different topological phases as classified

by the Chern number, Eq. (4), are Ch ¼ 1 if 0 < μ < 2,
Ch ¼ −1 if 2 < μ < 4, and Ch ¼ 0 otherwise. For non-
trivial regions Ch ¼ �1, the system presents chiral
Majorana modes at the edges.
At finite temperature, the different topological phases as

classified by the Uhlmann number, Eq. (6), are graphically
represented in Fig. 1. The system displays nontrivial
topological phases nU ¼ �1 even at nonzero temperature
provided it is below a certain critical value Tc, where nU
goes to zero. This critical temperature Tc reaches the
maximum value at the middle points μ ¼ 1 and μ ¼ 3 of
the topological phases Ch ¼ �1 at T ¼ 0. These points are
the ones with the highest value of the gap. As expected, in

the limit of T ¼ 0 we recover the same topological diagram
as given by the Chern number.
Thus, we see that thermal topological phase transitions

are not a unique phenomenon of the one-dimensional case
[25] and they may be also found in two-dimensional
systems.
Two-dimensional topological insulator with high Chern

number.—We consider here the model proposed in [42] that
allows us to study two-dimensional topological insulators
with high values of the Chern number [43], as in multiband
models like the Hofstadter model [44], but still being
two-band and analytically solvable.
This system is realized on a triangular lattice of fer-

mionic atoms at each site with an internal orbital degree of
freedom. The Hamiltonian is given by

H ¼
X
ij

½c†iþ1;jðt1σx þ it3σzÞci;j þ c†i;jþ1ðt1σy þ it3σzÞci;j

þ c†iþ1;jþ1ðt2σzÞci;j þ H:c:�: ð9Þ

The Pauli matrices act on the orbital degrees of freedom
at each site, which give rise to an orbital dependent nearest-
neighbor hopping (t1, t2, t3). In particular, the fermions
can gain π or π=2 phases depending on the initial and
final orbital and position state when tunnelling. As in the
Haldane model (see below), there is no net magnetic flux in
the system, although time-reversal symmetry is broken.
Taking periodic boundary conditions the Hamiltonian in

momentum space turns out to be

HðkÞ ¼ 2t1 cosðkxÞσx þ 2t1 cosðkyÞσy
þ f2t2 cos ðkx þ kyÞ þ 2t3½sinðkxÞ þ sinðkyÞ�gσz:

ð10Þ
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FIG. 1 (color online). Topological Uhlmann phases for the
p-wave superconductor model as a function of the chemical
potential μ and the temperature T. At T ¼ 0, the system has
Ch ¼ þ1 for 0 < μ < 2, Ch ¼ −1 for 2 < μ < 4, and Ch ¼ 0
otherwise. As T increases, the nontrivial phases remain up to
some critical temperature Tc at which Uhlmann number goes
from nU ¼ �1 to nU ¼ 0.
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Without loss of generality we take t1 ¼ t3 ¼ 1. At zero
temperature the topological phases as a function of t2 are

Ch ¼

8>><
>>:

þ2; if t2 < −2;
þ1; if − 2 < t2 < 0;
−1; if 0 < t2 < 2;
−2; if t2 > 2:

ð11Þ

For T ≠ 0, the topological phase diagram according to
Uhlmann number, Eq. (6), is shown in Fig. 2. In this case
we obtain two very remarkable and new effects with respect
to the previous model. The first one relies on the existence
of two critical temperatures Tc1 and Tc2 . For instance, if at
T ¼ 0 the system is in a topological phase with nU ¼ 2, we
observe that for T < Tc1 the same phase is preserved. Then,
for Tc1 < T < Tc2 there is another thermal topological
phase with nU ¼ 1. If we now increase the temperature
even more, T > Tc2 , then the topological phase becomes
trivial, nU ¼ 0 (see Fig. 2). Hence, there is a critical
transition between phases with different (but nonzero)
Uhlmann numbers by the sole effect of T. Thus, we have
obtained a purely thermal transition between two different
nontrivial topological regimes.
Secondly, at zero temperature we see in Eq. (11) that

there are only nontrivial topological phases in this model.
But, by increasing T, we can always end in a trivial phase
with nU ¼ 0. This supports the intuition that at sufficiently
high temperatures the order is lost for any system.
Haldane model.—The Haldane model [5] was the first

proposal of a two-dimensional lattice of fermions without a
constant magnetic field but with quantized Hall conduc-
tivity. It is a graphenelike model based on a honeycomb
lattice with two different species of fermions (different
sublattices), nearest-neighbor hopping t1, next-nearest-
neighbor hopping t2eiϕ, and a staggered potential m. For
periodic boundary conditions the Haldane Hamiltonian in
the reciprocal space is

HðkÞ ¼
X
i

f½2t2 cosϕcosðk · biÞ�1þ ½t1 cosðk · aiÞ�σx

þ ½t1 sinðki · aiÞ�σy þ ½m− 2t2 sinϕ sinðki · biÞ�σzg;
ð12Þ

where ai are the lattice vectors defining the Bravais lattice
and bi ≔ aiþ1 − ai−1. In particular, we take t1 ¼ 4 and
t2 ¼ 1.
At T ¼ 0, the system presents topological order for

jmj < 3
ffiffiffi
3

p j sinϕj with Chern number Ch ¼ �1 depending
on the sign of m.
The topological phases at finite temperature as a function

ofm and ϕ are depicted in Fig. 3. The red and blue volumes
represent nU ¼ 1 and nU ¼ −1, respectively. Thus, an
integer topological invariant �1 is retained and a thermal
topological phase is present up to some critical temperature
Tc where nU vanishes. Note that at T ¼ 0 we recover the
well-known phase diagram for the Haldane model [5].
Interestingly enough, the thermal topological properties

of this model were first considered in [45]. There, the
topological indicator did not show a critical behavior with
T but shared the same pattern with m and ϕ as nU.
Conclusions and outlook.—We have constructed a new

topological invariant, the Uhlmann number nU, that allows
us to explore topological phases of fermion systems
separated by purely thermal transitions. Notably, we find
always a finite range of temperatures at which this
topological order survives.
We remark that the existence of critical temperatures

seems somehow natural in the Uhlmann approach. For
thermal states, it sets on equal footing the temperature and
the Hamiltonian parameters. Therefore, if there is a critical
behavior as a function of tunnelings and/or staggered
potentials, then certainly one should obtain a critical
behavior with temperature as well. Moreover, since by
increasing T, the quantum coherence properties of any state

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

FIG. 2 (color online). Uhlmann topological phase diagram for
the model of Eq. (10). The Uhlmann number is plotted for
different values of t2 and T. The dashed line highlights the purely
thermal topological transitions between regimes of nU ¼ 2,
nU ¼ 1, and nU ¼ 0 by the sole effect of increasing T.

FIG. 3 (color online). Uhlmann topological phase diagram for
the Haldane model. Red color represents nU ¼ 1 and blue
nU ¼ −1. As we see, at T ¼ 0 the two well-known lobes of
the Haldane model are obtained, and at a certain finite temper-
ature Tc the system goes to a trivial phase.
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are diminished, it is expected that the Uhlmann number
decreases by warming the system up.
As explained in [25], measurements of Uhlmann phases

and numbers may be affordable by adapting experimental
schemes such as [37,46,47], that use interferometric setups
for cold atoms in optical lattices. The mapping between
Uhlmann amplitudes and pure state vectors in an enlarged
Hilbert space should allow for measurements of the
Uhlmann phase using an ancillary system.
Based on these results, we envision the possibility of

extending the current classification of topological insula-
tors and superconductors on several spatial dimensions
[48,49] (also called the “periodic table”), to the case of
thermal topological states using the topological Uhlmann
numbers introduced here.

We are thankful for the following: the Spanish MINECO
Grants No. FIS2012-33152 and No. FIS2009-10061, the
CAM research consortium QUITEMAD S2009-ESP-1594,
the European Commission PICC: FP7 2007-2013, Grant
No. 249958, the UCM-BS Grant No. GICC-910758, and
the FPU MEC Grant and Residencia de Estudiantes.

Note added.—Recently we were informed by Z. Huang and
D. Arovas about similar extensions of Uhlmann phases to
two-dimensional models [50].
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Abstract
Wehave applied the recently developed theory of topological Uhlmann numbers to a representative
model of a topological insulator in two dimensions, theQi–Wu–Zhangmodel.We have found a stable
symmetry-protected topological phase under external thermalfluctuations in two dimensions. A
complete phase diagram for thismodel is computed as a function of temperature and coupling
constants in the originalHamiltonian. It shows the appearance of large stable phases ofmatter with
topological properties compatible with thermalfluctuations or external noise and the existence of
critical lines separating abruptly trivial phases from topological phases. These novel critical
temperatures represent thermal topological phase transitions. The initial part of the paper comprises a
self-contained explanation of theUhlmann geometric phase needed to understand the topological
properties that itmay acquirewhen applied to topological insulators and superconductors.

1. Introduction

Topological insulators and superconductors [1–9] are
novel phases of matter that cannot be described using
the standard Gizburg–Landau theory for phase transi-
tions. These novel phases are of great interest for
applications in emerging fields such as spintronics,
photonics and quantum computing. They have
opened an area of new rich physical phenomenology,
giving birth to materials that host robust metallic edge
states and the possibility for realizing Majorana
fermions [10–13], as well as a variety of new exotic
particles known as ‘anyons’ [14–17]. In fact, graphene
was the first material proposed to realize a topological
insulating phase using a mechanism of spin–orbital
coupling between two graphene sheets [2]. Unfortu-
nately, the gap due to this effect in carbon atoms is too
small and the quantum spin Hall effect was finally
achieved inHgTe quantumwells instead [18, 19]. Very
recently, bosonic topological orders have also been
proposed [20–24].

Whereas these systems have been extensively stu-
died for the idealized case of zero temperature, the
common belief was that these exotic phases are gradu-
ally destroyed as the systems are heated up [25, 26]. In
[25], it was shown that certain topological properties
such as edge states can be destroyed by a thermal bath
even when the system–bath interaction respects the

protecting symmetry of the topological insulator. It
was not until the work in [27] that a topological indi-
cator with a dependence on the temperature of the sys-
tem was introduced, which was related to the
topological part of the quantumHall conductivity and
the degree of mixedness of the edge states due to the
dissipative effect. Other attempts to understand the
interplay between topological phases and finite tem-
perature [28, 29], nonequilibrium dynamics [30] and
dissipation-engineering [31–34] have also beenmade.

The extension of the notion of symmetry-protected
topological (SPT) order for fermions to situationswhere
the system is not in a pure state, but in a quantummixed
state described by a density matrix, has been developed
very recently. The first realization of topological fermo-
nic phases in the presence of thermal effects or external
noise was proposed in [35]. There a topological invar-
iant remains quantized for afinite range of temperature/
noise for the first time in representative examples of
topological insulators and superconductors in one
dimension (1D). Since then, new advances have been
achieved for fermionic phases of matter with SPT order
in two-dimensional (2D) systems [36, 37]. The novelty
of these works relies on the introduction of two new
observables: the Uhlmann phase for wire-shaped sys-
tems (1D) [35] and the Uhlmann number for planar
ones (2D) [37] as well as a variety of extensions [36],
which are able to account for topological order even at
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non-zero temperatures. Remarkably, these recent works
report purely ‘thermal’ topological phase transitions
between distinct non-trivial topological regions driven
solely by temperature, without losing their quantum
character. It has also been shown that there always exists
a critical temperature above which the topological phase
abruptly disappears. The possibility of having several
topological thermal critical points has also been dis-
covered as a novel effect [37].

In this way, exotic topological quantum properties
can survive even in the presence of dissipative effects
and finite temperature, which are the natural condi-
tions in real life experiments. This situation for fer-
mion systems with SPT order is in sharp contrast to
some results establishing the absence of stable topolo-
gical phases subject to thermal effects, such as for
topological orders with spins1 [38–42], for SPT orders
with spins [30], or SPT orders with fermions under
certain conditions [25]. Therefore, these new results
open the way towards the characterization of fermion
quantum phases of matter with topological phases
protected by symmetry in thermal states, ormore gen-
eral density matrices. Note that other studies on ther-
mal effects and related issues in topological systems
have been recently carried out [43–52].

The aim of this paper is to provide a complete and
comprehensive derivation of the Uhlmann geometric
phase as a tool to characterize SPT orders at finite tem-
perature, performing a detailed analysis of its intrinsic
properties. First, we formally derive the expression for
the Uhlmann phase as an extension of the Berry phase
to the case of quantummixed states described by den-
sity matrices. Later, we apply the formalism to new 2D
models for topological insulators with time-reversal
broken symmetry that can be characterized using
these Uhlmann geometric concepts by the so-called
topological Uhlmann numbers [37].

The paper is organized as follows. Section 2 intro-
duces the concept of Uhlmann holonomies, giving a
detailed derivation of the Uhlmann parallel transport
condition and the geometricUhlmann phase, bymeans
of amplitudes and purifications of a density matrix. In
section 3, the topological Uhlmann phase in 1D is pre-
sented and applied to a generic 1D two-bandmodel for
a topological insulator or superconductor. In section 4,
we derive the topological Uhlmann number for 2D
topological systems, discussing some technical issues
and using it to characterize an emblematic 2D topologi-
cal insulator, namely theQi–Wu–Zhang (QWZ)model
[53, 54]. Section 5 is devoted to conclusions.

2.Uhlmannholonomies

Geometric phases have played an essential role in
many quantum phenomena since their modern

discovery by Berry [55] (see also [56, 57]). An
representative example is the description of the
quantum Hall effect using the theory of fiber bundles.
More concretely, one can relate the transversal con-
ductivity xyσ of the systemwith thefirst Chern number

Ch as [58, 59],

e

h
Ch , (1)xy

2

σ =

where e is the electron charge and h is the Planck
constant.

The Chern numbers are topological invariants
associated to characteristic classes of complex vector
bundles when working on an oriented manifold of
even dimension. The first Chern number Ch, which is
defined for the 2D case, is just the integral of the Berry
curvature over the 2D parameter space, i.e. the Bril-
louin zone (BZ) in the context of condensed-matter
systems. In addition, this topological observable can
also be related to the presence of conducting edge
states when the systemhas open boundary conditions.

The standard way to observe the properties and
implications that the Berry phase has in solids (the Zak
phase [60]), has been through indirect measurements
such as the transverse conductivity, or side effects like
the presence of conducting edge states at the bound-
ary. However, very recently the first direct experi-
mental measurement of a Berry phase in a cold atom
system has been achieved [61–63]. In particular, [61]
reports the measurement of the Zak phase in a 1D
optical lattice simulating the different phases of poly-
acetylene, characterizing the topology of the system
and observing the quantization of this phase. This
paves the way towards the extension of geometric pha-
ses to study topological properties beyond the realm of
condensed-matter systems [64–67]. Moreover, there
have been recent experiments on this context invol-
ving the architectures of superconducting qubits
[68, 69].

Although these studies provide a successful picture
for quantum systems in pure states, typically the
ground state, very little is known about the fate of these
topological phases of matter when the system is in a
mixed quantum state represented by a densitymatrix.

A fundamental problem in the theory and applica-
tions of geometrical phases is the extension from pure
quantum states (Berry) to mixed quantum states
described by density matrices. Uhlmann was the first
to mathematically address this issue [70] and to pro-
vide a satisfactory solution [71–74]. For more than a
decade, there has been a renewed interest in studying
geometric phases for mixed states and under dis-
sipative evolutions from the point of view of quantum
information [75–80]. In the rest of this section, we will
give a detailed derivation of the Uhlmann geometric
phase and the definition of Uhlmann parallel trans-
port. These two key ideas will allow us to later con-
struct two topological observables to distinguish

1
Although stable topological phases for standard topological orders

can be established at high dimensionsD=4, 6 [41].

2
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different topological phases in condensed-matter sys-
tems in both 1D and 2D.

2.1. Amplitudes and purifications
Oneof themost fundamental problemswhen applying
geometric concepts to the set  of density matrices is
its nonlinear character. That is, consider some scalars

1λ and 2λ , for all pairs of density matrices 1ρ and 2ρ ,
the linear combination 1 1 2 2λ ρ λ ρ+ is not another
density matrix unless , 01 2λ λ ⩾ and 11 2λ λ+ = . In
the case of pure states ρ ψ ψ= ∣ 〉〈 ∣, this is not a major
issue as we can immediately introduce a Hilbert space
formed by the vectors ψ∣ 〉 so that the quantum state
ρ ψ ψ= ∣ 〉〈 ∣ is the projector on the subspace spanned
by ψ∣ 〉. Then the geometric properties of the Hilbert
space can be applied to the vectors ψ∣ 〉, but keeping in
mind that ψ∣ 〉 and ei ψ∣ 〉ϕ describe the same physical
state ρ ψ ψ= ∣ 〉〈 ∣. Namely, to work with a Hilbert
space we have to pay the price of introducing an
additional degree of freedom, the phase of the vectors,
such that quantum pure states as seen in the Hilbert
space are definedmodulo a U(1) phase factor.

The key idea is to realize that an analogous con-
struction is possible for any general density matrix.
Specifically, consider a density matrix ρ and define its
amplitude as any of thematricesw such that

ww . (2)†ρ =
The amplitudes form a Hilbert space w with the
Hilbert–Schmidt product w w w w( , ) Tr( )1 2 1

†
2= .

From (2), we see that there is a nU( )-gauge freedom in
the choice of the amplitude (here n denotes the
dimension of the space), since w and wU, whereU is a
unitary operator, are amplitudes of the same state.

Note the parallelism between the usual U(1)
-gauge freedom for pure states, and the nU( )-gauge
freedom for the amplitudes, see figure 1. In the case of
pure states, one defines a projectionmap :π ↦ :

( ) , (3)π ψ ψ ψ=
so that ψ∣ 〉 and ei ψ∣ 〉ϕ represent the same physical
state, i.e. the same density matrix given by the

projection map π. In the case of amplitudes, the
projectionmap is analogously defined, : wπ ↦ :

w ww( ) . (4)†π =
Thus, the usual gauge freedom for pure states can be
seen as a particular case of the amplitude nU( )-gauge
freedom for general states.

So far the concept of amplitude seems to be just a
mathematical abstraction, however, it also enjoys a
nice physical meaning. To see this, consider what is
called the ‘square root’ section of the Uhlmann fiber
bundle, which is nothing other than the parametriza-
tion w Uρ= for amplitudes of some density matrix
ρ (note that this is also called polar decomposition of
w, see below). Then by using the spectral decomposi-
tion, p

j j j j∑ρ ψ ψ= ∣ 〉〈 ∣we have that
w p U . (5)

j
j j j∑ ψ ψ=

Now we define the following isomorphism between
the spaces w and ⊗  ,

w p U w

p U , (6)

j
j j j

j
j j j

t

∑
∑

ψ ψ

ψ ψ

= ⟷

= ⊗

where U t denotes the transposition of U taken with
respect to the eigenbasis of ρ. Then, the property

ww†ρ = is nowwritten as

w wTr ( ). (7)2ρ =
Here, Tr2 denotes the partial trace over the second
Hilbert space of ⊗ . In other words, any ampli-
tude w of some density matrix ρ can be seen as a pure
state w∣ 〉 of the enlarged space ⊗  with a partial
trace equal to ρ, (7). Thus, it is said that w∣ 〉 is a
purification of ρ. Thanks to this isomorphism between
amplitudes and purifications the whole geometric
approach by Uhlmann can be written in terms of
purifications which are objects with a clear physical
meaning. However, we shall keep on developing the

Figure 1.Comparison between the usual fiber bundle of pure states (a) and thefiber bundle proposed byUhlmann (b) for any density
matrix through the concept of amplitude.

3
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theory and explanations using amplitudes and refer to
the purification interpretationwhen needed.

2.2. Parallel amplitudes
The concept of parallel amplitude is essential to define
the Uhlmann parallel transport condition and the
holonomy. Given a pair of states 1ρ and 2ρ , we define
two of their amplitudes w1 and w2 to be parallel if they
minimize the Hilbert space distance in w , i.e. w w1 2∥
if

w w w w

w w w w

min ˜ ˜ , with

˜ ˜ , ˜ ˜ . (8)

w w
1 2

2

˜ , ˜
1 2

2

1 1 1
†

2 2 2
†

1 2

ρ ρ

∥ − ∥ = ∥ − ∥
= =

We may work further on this condition and establish
some properties of suchw1 andw2:

( )

( )

w w

w w w w

w w w w w w w w

w w w w

w w

min ˜ ˜

min ˜ ˜ , ˜ ˜

min Tr ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

Tr( ) Tr( ) max Tr( ˜ ˜ ˜ ˜ )

2 2 max Re Tr( ˜ ˜ ) .

(9)

w w

w w

w w

w w

w w

˜ , ˜
1 2

2

˜ , ˜
1 2 1 2

˜ , ˜
1
†

1 2
†

2 1
†

2 2
†

1

1 2
˜ , ˜

1
†

2 2
†

1

˜ , ˜
1
†

2

1 2

1 2

1 2

1 2

1 2

⎡⎣ ⎤⎦

ρ ρ

∥ − ∥
= − −
= + − −
= + − +
= −

Since x xRe( ) ⩽ ∣ ∣, it is clear that the condition for the
maximum is to chose w̃1 and w̃2 such that w w˜ ˜1

†
2 is self-

adjoint and positive-definite:

w w w w˜ ˜ ˜ ˜ 0. (10)1
†

2 2
†

1= >
More explicit expressions may be obtained with

the polar decomposition theorem. This theorem states
that any operator A (consider it to be finite dimen-
sional for simplicity) can be decomposed as

A A UA= ∣ ∣ , where A AA†∣ ∣ = and UA is a unitary
operator [81, 82]. Furthermore for any unitary opera-
torU the following inequality holds

( )

( )

AU AU

A UU

A A UU

A U U A UU

A

Re[Tr( )] Tr( )

Tr( )

Tr

(Tr ) Tr

Tr (11)

A

A

A A
† †⎡⎣ ⎤⎦

⩽
=
=
⩽
=

where in the penultimate step we have used the
Cauchy–Schwarz inequality A B A ATr( ) Tr( )† 2 †∣ ∣ ⩽

B BTr( )† . Since the equality is reached for U UA
†= , we

canwrite

AU Amax Re[Tr( )] Tr . (12)
U

=

Now, the polar decomposition theorem on the ampli-
tudes w U1̃ 1 1ρ= and w U˜2 2 2ρ= jointly with (12)
lead to

( )

( )

w w

U U

U

max Re Tr( ˜ ˜ )

max Re Tr

max Re Tr

Tr Tr . (13)

w w

U U

U

˜ , ˜
1
†

2

,
1
†

1 2 2

1 2

1 2 1 2 1

1 2

1 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

=

=
= =

Therefore, the Hilbert space distance between two
parallel amplitudes w1 and w2 is equal to the Bures
distance [83] between 1ρ and 2ρ ,

w w

w w

2 2Tr ,

for . (14)

1 2
2

1 2 1

1 2

ρ ρ ρ∥ − ∥ = −
∥

Finally, note that the equality in (13) is obtained
for U U †

1 2
= ρ ρ , this is the adjoint of the unitary

operator of the polar decomposition of 1 2ρ ρ =
U1 2 1 2

ρ ρ∣ ∣ ρ ρ . Such a unitary operator is not

uniquely defined unless 1 2ρ ρ is full rank (and so

1ρ , 2ρ and 1 2ρ ρ∣ ∣). In such a case, U
1 2ρ ρ is

given by the equation

U . (15)1 2

1

1 21 2
ρ ρ ρ ρ=ρ ρ

−

Since from (13) we have U U U U2 1
† †

1 2
= = ρ ρ , by

using the unitarity ofU and (15)we arrive at

U U . (16)2 1
†

2
1

1
1

1 2 1ρ ρ ρ ρ ρ= − −

Hence, (16) gives us the relation that the unitaries U1

and U2 must satisfy in order to minimize the distance
between the associated amplitudes w1 and w2, i.e. in
order to have w w1 2∥ .

2.3. Uhlmann parallel transport and
connection form
Before introducing the Uhlmann holonomy, we need
to explain some of its ingredients: the Uhlmann
parallel transport condition and the connection form.
Consider a trajectory in the density matrix space , rρ .
This induces a trajectory in the space w , via the

amplitudes wr , w wr r r
†ρ = . Since for a point rρ of 

there are several amplitudes wr , a unique trajectory on
 induces multiple trajectories in w depending on
which wr are chosen. To select one of them,we define a
parallel transport condition, i.e. for a point rρ with
some amplitude wr , we consider the amplitude
wr rd+ of the next point of the trajectory, r rdρ + , to be
the closest to wr according to the Hilbert space
distance, so w wr r rd∥ + in the sense of the previous
section, see figure 2. Such a path in w is known as a
parallel lift of path rρ in . This is analogous to the
Berry parallel transportation, where theU(1) phases of
the consecutive state vectors rψ∣ 〉 and r rdψ∣ 〉+ are
chosen such that the distance between them

( )( )r r r r r rd dψ ψ ψ ψ〈 ∣ − 〈 ∣ ∣ 〉 − ∣ 〉+ + isminimal.

Let r0
ρ be the initial state of the trajectory, under

the square root section (or equivalently by the polar
decomposition theorem) we have w Ur r r0 0 0

ρ= . For

4

2DMater. 2 (2015) 034006 OViyuela et al



133UHLMANN MEASURE IN TOPOLOGICAL SYSTEMS

the sake of clarity we shall work for the moment on a
gauge such that Ur0

=  and we shall refer to this gauge
as the ‘identity’ gauge. At some point r of the trajec-
tory we have w Vr r rρ= , where Vr is a unitary (Uhl-

mann holonomy) constructed from the initial
condition wr r0 0

ρ= by applying the parallel transport

rule along the trajectory. The infinitesimal generator
rA ( ) of this unitary transformation Vr is called the

connection form of the trajectory. Thus, if r t( ) t 0
1∣ = is a

parametrization of the trajectory r r[ (0) ]0≡ , Vr is
fully determined by the differential problem

r
V

t
A t V

V

d

d
[ ( )] ,

,
(17)

r
r

r

t
t

( )
( )

(0)

⎧
⎨⎪

⎩⎪
=

= 

whose formal solution can be written independently
of the parametrization as

V e , (18)r
r rA ( )d

r

r

0
∫= ′ ′

where  is the path ordering operator.
As we shall see, the Uhlmann connection A is not

uniquely defined unless the density matrix rρ is full
rank. In order to compute A in such a case, let us
rewrite (17) in terms of differentials

VV Ad , (19)† =
where A A rdi i i= ∑ is understood as a differential

one-form. Note that in (17), rA t A[ ( )] i i
r

t

d

d
i= ∑ .

Then, consider some full rank density matrix 1ρ ρ=
and displace it by an infinitesimal translation

d2ρ ρ ρ= + . The basic condition to compute A is
that the corresponding infinitesimally closed ampli-
tudes w V1 ρ= and w V Vd ( d )2 ρ ρ= + + fulfil
the parallel transport condition (14). Thus, (16) leads to

( )V V V( d ) d

( d ) (20)

† 1

1

ρ ρ

ρ ρ ρ ρ ρ

+ = +
× +

−

−

where we have used that for an infinitesimal transla-
tion dρ, d dρ ρ ρ ρ+ = + . Following Hübner

[73], we introduce an auxiliary real parameter smulti-
plying every differential:

( )V s V V s

s

( d ) d

( d ) . (21)

† 1

1

ρ ρ

ρ ρ ρ ρ ρ

+ = +
× +

−

−

The aim of this trick is to expand the above equation
around s = 0 and keep only the first order in s. In order
words, we have that

( )s VV
s

s

s s

d
d

d
d

( d ) , (22)
s

† 1

1

0

⎡⎣
⎤
⎦

ρ ρ

ρ ρ ρ ρ ρ

+ = + +

× +

−

−
=

 

therefore

( )A VV
s

s

s
s

d
d

d
d

d

d
( d ) .

(23)

s

s

† 1

0

1

0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ρ ρ

ρ ρ ρ ρ ρ ρ

= = +

× + +

−
=

−
=

To give a closed expression for A, we determine
its matrix elements with respect to the eigenbasis
{ }jψ∣ 〉 of ρ, which we assume to be diagonalized with

eigenvalues p{ }j . For thefirst term in (23)we have

( )
( )

( )s

s

s

s

d

d

d

d , (24)

1

1
1

1
1

1

1

⎡
⎣⎢

⎤
⎦⎥

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

+
= +

= +
= −

−

− −

− − −

−







where in the last step the inverse has been taken at first
order in s. Hence

( )
s

s
d

d
d d ,

(25)

s

1

0

1
⎡
⎣⎢

⎤
⎦⎥ρ ρ ρ ρ ρ+ = −−

=
−

and in the eigenbasis of ρ,

p
d

1
d .

(26)

i j
i

i j
1ψ ρ ρ ψ ψ ρ ψ− = −−

The second term of (23) is a bit more involved.
Define K s s( ) ( d )ρ ρ ρ ρ≔ + ; we need to com-

pute K (0)1ρ ′− . By differentiating the square,

K s K s K s K s K s{[ ( )] } ( ) ( ) ( ) ( )

d , (27)

2

ρ ρ ρ
′ = ′ + ′
=

as K (0) ρ= we have

K K(0) (0) d . (28)ρ ρ ρ ρ ρ′ + ′ =
After takingmatrix elements in the eigenbasis of ρ,

( )p p K p p(0) d .

(29)

i j i j i j i jψ ψ ψ ρ ψ+ ′ =

Figure 2.Uhlmann parallel transport condition. The ampli-
tude wr rd+ is the closest amplitude to wr among those in the
fiber at r rd+ .

5
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Thus, thematrix elements of K (0)1ρ ′− are

( )

K

p
K

p

p p p

(0)

1
(0)

d . (30)

i j

i
i j

j

i i j

i j

1ψ ρ ψ

ψ ψ

ψ ρ ψ

′
= ′

=
+

−

Now, since d d( ) (d )ρ ρ ρ ρ ρ= = +
(d )ρ ρ , we obtain

( )
( )

K

p p p

p p p

(0)

d (31)

i j

j i j

i i j

i j

1ψ ρ ψ

ψ ρ ψ

′

=
+
+

−

and finally the matrix elements of the connection
form,

( )

( )
( )

( )

A
p

p p p

p p p

p p

p p

1

d

d . (32)

i j
i

j i j

i i j

i j

j i

i j

i j

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ψ ψ

ψ ρ ψ

ψ ρ ψ

= − +
+
+

× =
−
+

×

This can be rewritten in terms of a commutator,

( )
A

p p

d ,
. (33)

i j
i

i j

i j

j
,

⎡⎣ ⎤⎦∑ ψ
ψ ρ ρ ψ

ψ=
+

Note that this connection form has only zeros on its
diagonal and is skew-adjoint, so that the Uhlmann
connection is special unitary.

For the particular case of 2 × 2 density matrices,
because of the normalization condition p p 11 2+ = ,
(33) can be written as A [d , ]ρ ρ= . This formula
was also obtained by Dittmann and Rudolph [84].
Moreover, expanding in terms of Pauli matrices

aa ·0 σρ = + , we may write a aA 2i(d ) · σ= ×
[73].

The result (33) has been obtained under the
requirement that ρ is full rank. If this is not the case,
for w wr1 = the formula (14) can be fulfilled for sev-
eral w wr r2 d= + and there is not a unique solution and
so a unique connection. One of these solutions can be
obtained from continuity if we have a family of full
rank states ρλ which approaches the desired non-full
rank state as 0λ → . Then a connection can be
obtained with the formula (33) for ρλ, taking the limit

0λ → at the end of the computation. We will come
back to this point at the end of the following section.

Once a connection form A is defined, we can con-
struct its associate curvature form via the standard
relation,

F A A Ad , (34)= + ∧
where∧ denotes the exterior product and the action of
d is understood as the exterior derivative [85]. For the
sake of clarity, let us write this equation in compo-
nents. Expanding A A rd

i i i∑= , we find the usual

expression of the field strength,

F A A A A, , (35)ij i j j i i j
⎡⎣ ⎤⎦= ∂ − ∂ +

where F F r r
1

2
d d

i j ij i j,
∑= ∧ .

This curvature form F allows us to construct the
Chern classes of the Uhlmann fiber bundle, which is
the standard way to obtain topological invariants. We
shall come back to this point in section 4.1.

2.4. Gauge transformations
In the previous subsection we obtained an expression
for the Uhlmann connection in the ‘identity’ gauge, i.e.
for the trajectory rρ , we take initially wr r(0) (0)ρ=
and construct the next point of the trajectory in w
applying the Uhlmann parallel transport rule, such
that w Vr r rρ= where Vr is the Uhlmann holonomy

of the trajectory. Now consider a change of gauge by
left-multiplying the amplitudes by some r-dependent
unitary Ur , w Ur r r0 0 0

ρ= , so that w U Vr r r rU ,ρ= ,

where V rU , is the Uhlmann holonomy in the new
gauge. To computeV rU , , wefirst obtain the connection
form in the new gauge.

Similarly to the previous section we have to impose
that two infinitesimally closed amplitudes are parallel.
Under an infinitesimal displacement w UVU1 ρ=
changes to w U U V Vd ( d )( d )U U2 ρ ρ= + + + , so
that according to (16), w w1 2∥ if

( )

U U V V V U( d )( d )

d ( d ) .

(36)

U U U
† †

1 1ρ ρ ρ ρ ρ ρ ρ

+ +
= + +− −

From (20) and subsequent equations, the right-hand
side is simply A+ , where A denotes the connection
in the ‘identity’ gauge. Moreover, the left-hand side at
first order in differentials is UU U V V Ud d U U

† † †+ + ,
sowe obtain,

UU U V V U Ad d (37)U U
† † †+ = 

Since by definition, A V VdU U U
†= is the connection

form in the new gauge, wefind the transformation rule

A U A U U Ud . (38)U
† †= −

In general, under a change of gauge U U U2 1=
w wU( )→ , we straightforwardly obtain the transfor-
mation law

A U A U U Ud . (39)U U
† †

2 1= −
Nowwe can calculate the holonomy in the new gauge,

V e . (40)r
r r

U
A

,
( )d

r

r

U
0

∫= ′ ′
To that aim, consider the parametrization r t( ) t 0

1∣ = and
compute the t-derivative of r rU t V U[ ( )] [ (0)]rU t, ( )

† :
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{ }r r

r
r

r r

t
U t V U

U t

t
V U

U t
V

t
U

d

d
[ ( )] [ (0)]

d [ ( )]

d
[ (0)]

[ ( )]
d

d
[ (0)] (41)

r

r

r

U t

U t

U t

, ( )
†

, ( )
†

, ( )

=

+
r

r

r r r

U t

t
V U

U t A t V U

d [ ( )]

d
[ (0)]

[ ( )] [ ( )] [ (0)] (42)

r

r

U t

U U t

, ( )
†

, ( )

=
+

r r rA t U t V U[ ( )] [ ( )] [ (0)], (43)rU t, ( )= 

where we have used the definition (40) and introduced
the gauge transformation (38). Since rU t V[ ( )] rU t, ( )

rU [ (0)] t
†

0∣ == ; rU t V U r{ [ ( )] [ (0)]}rU t, ( )
† satis-

fies the same differential problem as V r t, ( ) , (17), and
the uniqueness of the solution implies that:

r r

r r

V U t V U

V U V U

[ ( )] [ (0)]

( ) ( ). (44)

r r

r r

t U t

U

, ( ) , ( )
†

,
†

, 0

=
⇒ =





Therefore, the Uhlmann holonomy of the trajec-
tory is clearly gauge covariant as expected. This is a
fundamental requirement in order to define gauge
invariant quantities out of this construction.

2.5. Uhlmann geometric phase
Once the concept of Uhlmann holonomy has been
presented, it is interesting and convenient to define the
gauge invariant quantities associated to it. These are
constructed out of the relative phases of the ampli-
tudes that have been parallelly transported. Actually,
this is themost important part of the analysis, since we
want to relate the mathematical concepts to physical
observables that are represented by gauge invariants in
the theory.

First of all, consider some trajectory on , with
initial and final points 0ρ and 1ρ , respectively. For

some initial amplitude w0, w w0 0 0
†ρ = , a parallel lift

leads to some amplitudew1, w w1 1 1
†ρ = . TheUhlmann

geometric phase is defined as

w w w warg( , ) argTr( ), (45)U 0 1 0
†

1Φ ≔ =
which is a gauge-independent quantity. Indeed, in the
identity gauge, w0 0ρ= and w1 1ρ= we have

( )VargTr . (46)U 0 1Φ ρ ρ=
Under a gauge transformation w w U0 0 0→ , w w U1 1 1→
and according to (44), V U VU1

†
0→ , so argTrUΦ →

U U U VU( )0
†

0 1 1 1
†

0 Uρ ρ Φ= . Therefore UΦ is gauge
invariant.

To better visualize the geometric meaning of UΦ ,
let us consider the trajectory on  to be closed. Then

0 1ρ ρ ρ= = andwe have

( )
VargTr( )

argTr e . (47)A

UΦ ρ

ρ

=
= ∮

In the Uhlmann approach, after a closed trajectory
in  the amplitude gains an extra geometric nU( )−

phase, e A∮ . This is the equivalent to the Berry geo-
metric U(1)-phase in this non-abelian approach, see
3. The equation (47) defines a real gauge invariant
quantity extracting the non-abelian nU( )-phase
which can be understood as the relative phase between
w0 andw1. Basically, this is because by using the ampli-
tude-purification isomorphism (6), UΦ can be equiva-
lently written as

w warg . (48)U 0 1Φ =
This interpretation has in fact suggested some schemes
tomeasureUhlmann geometric phases [77].

Another important concept needs to be intro-
duced in order to understand the properties of the
Uhlmann phase. This is the difference between an
absolute holonomy and a pointed holonomy. The map-
ping

M w V: , (49)U ⟶
is a so-called pointed holonomy. Thismeans that, even
if the trajectory in  is closed, in general the holonomy
depends on the initial point of the path. Nonetheless,
we have identified cases in which the pointed holon-
omy reduces to an absolute holonomy becoming
independent of the initial point [35, 37]. In addition, it
is always true that themapping

M w V˜ : spect( ), (50)U ⟶
where Vspect( ) stands for the spectrum of the unitary
V, is an absolute holonomy.

To conclude this section, consider the case of a
pure state trajectory r r rρ ψ ψ= ∣ 〉〈 ∣. As we have already
pointed out, the Uhlmann connection in this case is
not uniquely defined because the state rρ is not full
rank. There are two approaches to overcome this
difficulty.

• As aforementioned, a first approach to compute the
Uhlmann phase factor in this situation is to
consider the connection Aλ computed via (33)
for a full rank matrix trajectory rρ

λ such that

lim r r r0ρ ψ ψ= ∣ 〉〈 ∣λ
λ→ . Thus, the Uhlmann phase

factor is obtained by formula (47) with

V lim e A
0= ∮

λ→
λ . This is a typical approachwhen

rψ∣ 〉 is seen as the ground state of someHamiltonian
andwewant to study temperature effects. Then, the
family of full rank states will be the Gibbs states
which approach the ground state in the zero
temperature limit.

• An alternative approach is to look for another
solution to the optimization problem (14). For
example, consider two pure states, 1ψ∣ 〉 and 2ψ∣ 〉,
the optimization problem (14) can be easily
solved in a gauge with amplitudes of the form
of w a e1 1

i 1ψ= ∣ 〉〈 ∣ ϕ , w a e2 2
i 2ψ= ∣ 〉〈 ∣ ϕ where a∣ 〉

is some arbitrary r-independent vector, and
the phases are chosen such that ( )1 2ϕ ϕ− =
arg 1 2ψ ψ〈 ∣ 〉. This can be directly checked in (14) and
also derived from condition (10). Thus, in this
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gauge we can satisfy the parallel transport rule just
by varying a U(1) factor, eiϕ, extracted from the
general U(n) gauge freedom. More concretely, we
associate the amplitudes w a er r

ri ( )ψ= ∣ 〉〈 ∣ ϕ with
the trajectory r r rρ ψ ψ= ∣ 〉〈 ∣. Thenwe have

( )
r

w w w

a a a

a

a a

( d )

e

d e

1 d id ( ) , (51)

r r r

r

r r
r

r r

†

i ( )

i ( )

⎡⎣ ⎤⎦

ψ ψ

ψ ψ ϕ

+
= +

×
= + +

ϕ

ϕ

−

where due to normalization, dr rψ ψ〈 ∣ 〉 is purely
imaginary. The parallel transport law in the form of
(10), with w wr1 = and w w wdr r2 = + leads to the
condition

rd ( ) i d . (52)r rϕ ψ ψ=
If we denote by r r0 0

ψ ψ∣ 〉〈 ∣ the initial and final

state, we have w a er
r

0
i ( )

0
0ψ= ∣ 〉〈 ∣ ϕ , and the parallel

transported final amplitude will be w1 =
a e er

r rd ( ) i ( )
0

0ψ∣ 〉〈 ∣ ∮ ϕ ϕ , where e rd ( )∮ ϕ is the accumu-

lated phase after the parallel translation. Thus, by
using (52) the Uhlmann phase factor

w wargTr( )U 0
†

1Φ = yields

a

a

argTr e

e e

i d mod 2 , (53)

r
r r

r r

r r

U
i ( )

d ( ) i ( )

0
0 0

0

⎡
⎣

⎤⎦
∮

Φ ψ ψ

ψ ψ π

=
×

=

∮

ϕ

ϕ ϕ

−

which is nothing other than the usual Berry
geometric phase.

Very importantly, since the Uhlmann phase is
independent of the gauge, the two approaches must
provide the same result. This is going to be crucial in
the next section in order to obtain consistent results
when taking the limits of zero temperature and pure
states.

3.Density-matrix topological insulators
and superconductors: topological
Uhlmannphase

In this section we will describe how the Uhlmann
geometric phase acquires a topological character in
certain 1D condensed-matter systems. The problem of
combining the study of topological phases with the
fact of having mixed states and finite temperature is
very relevant and had remained vaguely explored for a
long time. In a set of recent papers [25, 27, 35, 37], we
tried to deal with this issue and proposed some
methods to generalize the notion of SPT order to finite
temperature and to systemswith dissipation.

The most characteristic feature of a geometric
phase, such as the Berry phase, is the fact that it does
not depend on properties such as the gauge or the
speed at which a given path is traversed but only on the
geometry of the path. In the case of closed paths, this is
manifested by the fact that the geometric phase only
depends on the area enclosed by the trajectory on the
manifold defined as the parameter space.

There are cases, however, where the path covered
during the holonomy coincides with one of the topo-
logically non-trivial paths of a given manifold. In par-
ticular, in condensed matter, we know that due to
translational invariance, the crystalline momentum k
defines the so-called BZ and characterizes the eigen-
states of the system. Then the phase difference picked
up by the system when parallelly transported from an
initial momentum k0 to a final one k G0 + , where G
is a reciprocal lattice vector, is gauge invariant and a
geometric phase as well. This was proven by Zak [60]
and the arguments work both in 1D and in higher-
dimensional systems. This particular Berry phase is
also called the Zak phase. In fact, in 1D systems, Zak
[60] showed that the Zak phase is quantized and equal
to 0 or π in the presence of inversion symmetry.

On the other hand, the Uhlmann phase was initi-
ally proposed as a generalization of the Berry phase to
density matrices, but it can also be applied to

Figure 3.Comparison between Berry andUhlmann holonomies. In the approach of Berry, valid for pure states (a), after a closed loop
on the space , the final state vector differs by a phase BΦ with respect to the initial state vector. In the case of Uhlmann, formulated

for densitymatrices (b), the difference between initial and final amplitude is, in general, the unitarymatrix given by e A∮ .
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condensed-matter systems in the spirit of the Zak
phase. This is in fact very fundamental since it deals
with the problem of generalizing the notion of topol-
ogy to systems with dissipation and finite temperature.
Indeed, we studied this problem in detail [35] and
found that when applied to representative models for
topological insulators and superconductors, the Uhl-
mann phase acquired a topological character and is
also quantized to 0 or π depending on whether the sys-
tem is in a topological phase or not.

Specifically, we consider 1D Hamiltonians with
two bands in momentum space. We denote by a and b
two different types of fermionic band operators in
such a way that in the spinor representation of

a b( , )k k k
tψ = for insulators, while for super-

conductors c c( , )k k k
† tψ = − , is the Nambu spinor for

paired fermions with opposite crystalline momentum
[9]. We take lattice spacing a = 1 throughout the
text. The Hamiltonian of these systems can be written
as

H H , (54)
k

k k k
†∑ψ ψ=

where H is a quadratic form on ψ and Hk is a 2 × 2
matrix. We aim to study the properties of this
Hamiltonian under a displacement in k along a circuit
which encloses the whole BZ, which will be the circle
S1.

Note that Hk can be decomposed in the following
form

nH f k( )
2

· . (55)k
k

k σΔ= +

Here, ( , , )x y zσ σ σ σ= are the Pauli matrices, kΔ
corresponds to the gap of Hk and f(k) denotes
some function of k. The unit vector nk =
(sin cos , sin sin , cos )θ ϕ θ ϕ θ is called the winding
vector, where θ and ϕ are k dependent− spherical
coordinates.

For a thermalization process preserving particle
number, with the Fermi energy set in themiddle of the
gap, the connection in (33) associated to this equili-

brium (thermal) state, ( )e Tr ek
H Hk kρ =β β β− − where

T 1 β= denotes temperature, is

A m u u u u kd h.c. (56)k k
k

k k k
12= ∂ +− + − +

where m
T

1 sech
2

k k
12

⎛
⎝⎜

⎞
⎠⎟

Δ≔ − .

Moreover, making use of the discrete symmetries
[86, 87] that restrict themovement of thewinding vec-
tor nk as a function of k, only two components nk

i and

nk
j with i j= are non-zero. In order to obtain a simpli-

fied expression for the Uhlmann phase, we fix the
gauge of the eigenvectors of Hk in (55) in such a way

that the off-diagonal overlap u uk
k

k〈 ∂− + and the

winding vector components are related in themanner

u u
n

n2
. (57)k

k
k k k

i

k
j

∂ = ∂
− +

Note that as (47) is gauge invariant, we canfix themost
convenient gauge to perform the calculation of the
Uhlmann phase.

Thus, using (56) with this particular gauge choice
and simplifying (47), we obtain a more simplified
expression

n

n

T
k

arg cos( )cos
2

sech
2

d (58)

k k
i

k
j

k

U 1

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫⎬
⎭

∮Φ πω

Δ

= ∂

×

where
n

n
k

1

2
d

k k
i

k
j1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∮ω

π
≔ ∂

is the winding number

of nk [35], a topological indicator characterizing the
mapping S S1 1⟶ , from nk k⟶ .

In the case of being in a trivial phase with 01ω = ,
the Uhlmann phase is always zero. However, for non-
trivial topological regions 11ω = ± , we can obtain
either 0UΦ = or UΦ π= depending on the value of
T. Thus, the topological order as accounted by UΦ can
also be non-trivial for a range of temperatures T Tc< .
In [35] we computed the UΦ finite temperature for the
three representative models of topological insulators
and superconductors, showing this critical effect with
temperature represented in different phase diagrams.

On the other hand, the appearance of a critical
temperature Tc in the Uhlmann phase can be inter-
preted geometrically in a pictorial and intuitive way.
First of all, for the sake of illustration, we can visualize
the amplitudes (or purifications) as arrows with fixed
length. The angle between two arrows will be given by
the relative phase between the corresponding ampli-
tudes. In figure 4, we sketch different situations where
the amplitudes (arrows) are transported according to
Uhlmann’s parallel condition along a closed loop that
covers the whole BZ S1. Here we present a summary of
the different behaviors.

1. At T = 0 two things may happen. If the system is in
a trivial phase, then the arrow is transported always
pointing in the same direction, which means that
the relative phase between the amplitudes does not
change. The initial and final arrows are parallel as
in figure 4(b), so that 0U

0
BΦ Φ= = . In the case

that the system is in a topological phase, the
Uhlmann phase remains 0 (the arrows are parallel)
up to a certain critical point kc, when the direction
of the arrows is reversed and hence the relative
phase between amplitudes is equal to π. This
constitutes a topological kink. From there, the arrow
does not flip anymore until the final point of the
path k 2f π= is reached, as in figure 4(a). Thus, the

phase U
0

BΦ Φ π= = .
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2. At T 0= , we can identify three different possibi-
lities. If the system was in a trivial phase at T = 0
then T0,UΦ = ∀ , as we have already proven,
being again the case of figure 4(b). If at T = 0 the
system was in a topological phase, then at finite
temperature there are two options. Whenever
T Tc< , the situation in figure 4(a) is reproduced,
the Uhlmann phase remains 0 up to the critical
point which is a function of T. From that point, the
arrow is reversed and the Uhlmann phase is equal
to π until the close path is completed. An increase
of temperature shifts the position of kc towards the
end of the BZ. However, if T Tc> , then we recover
again figure 4(b) with no phase change 0UΦ = .
The position of kc has already reached the end of
the BZ and the topological kink can no longer
occur along the path between k 00 = and k 2f π= .

To conclude, we have derived a connection
between the existence of a critical temperature Tc and
the presence of a topological kink structure [88] in the
Uhlmann holonomy. The same relation can in fact be
established with the parameters of the HamiltonianH,
that drives the system out of the topological phase.
This is because the Uhlmann phase places on equal
footing T and these coupling constants. The reason to
call this kink topological is actually well established.
The critical momentum kc divides the holonomy into
two different topological sectors according to the value
of the final point of the path kf . The first sector covers
the region with k kf c< and 0UΦ = , and the second
sector starts when k kf c> and UΦ π= . It is clear that
these two different sections cannot be smoothly con-
nected without crossing the singular point k kf c= . In
the trivial topological regime 0UΦ = , however, we
can associate every point in the sector with the same
class. To bemore specific, UΦ is invariant under chan-
ges of the final point of the holonomy k k(0, )f c∈ .
The same happenswithin the other non-trivial topolo-
gical sector with UΦ π= once we consider
k k( , 2 )f c π∈ . The effect of the temperature in the
Uhlmann parallel transport can be understood as a

displacement of the topological kink along k-space.
When the temperature reaches the critical value Tc, the
critical momentum kc has been pushed out to the edge
of the BZ and the topological kink disappears. The cri-
tical temperature Tc can be viewed as the maximum
amount of noise/disorder such that the Uhlmann hol-
onomy along the BZ displays a topological kink
structure.

4. 2DUhlmann topological invariants

In the previous section, we have shown that in 1D
condensed-matter systems, the Uhlmann geometric
phase acquires a topological character when applied to
topological insulators and superconductors. In fact,
the relation of topological phases for pure states with
invariants of SPT order in more than 1D has been
extensively studied, in particular see [89, 90]. None-
theless, the concept of a geometric phase or a
topological phase is not at all restricted to 1D and can
be defined in higher-dimensional spaces.

The problem of generalizing the Uhlmann phase
formalism for 2D cases is not straightforward at all
[36, 37]. This has to do with the triviality of the Chern
classes associated with the Uhlmann connection of
non-singular density matrices, as was first proven in
[35]. Different but equivalent ways to solve this pro-
blem were proposed in [36, 37]. In [36] an analysis of
the spectrum of the whole holonomy matrix was car-
ried out, while in [37] a unique topological invariant
called the Uhlmann number was first proposed to
characterize the topological order of two-band topolo-
gical insulators and superconductors at finite tem-
perature in 2D.

In this section we review the theory of topological
phases formixed states in 2D and give a detailed expla-
nation of a particularly useful way to define topologi-
cal invariants inside the Uhlmann formalism. As a
concrete example, we will characterize the topological
phase diagram of the QHZ model for a topological
insulator atfinite temperature.

Figure 4.Behavior of theUhlmann phase during the parallel transport from k 00 = to k 2f π= .We identify two situations. (a)Non-
trivial topology highlighted by the presence of a topological kink at kc. (b) Trivial order where the topological kink disappears. A
detailed explanation of thefigure can be found in the text.
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4.1. Triviality of theUhlmannChern classes
At zero temperature, there is a standard way to define
topological invariants in 2D SPT order systems out of
Chern numbers. In this case, a fiber bundle is formed
out from the pure state eigenvectors uk∣ 〉 correspond-
ing to the lower energy band and the fiber is linked to
the U(1) gauge freedom that each eigenvector has. As
aforementioned, the first Chern number associated to
the first Chern class of fiber bundle can be related to
the transverse or quantum Hall conductivity of the
system by the so-called TKNN formula (1) [58].
Moreover, the presence of conducting edge states in
topological insulators, or Majorana fermions in a
topological superconductor, can also be related to the
fact of having a topological non-trivial structure in the
system.

We shall consider a time-reversal broken two-
band system with Fermi energy between both bands.
TheChern number is given by

k k

k k k

F

F A A

Ch
1

2
d ( ),

( ) ( ) ( ), (59)

xy

xy x y y x

BZ

2

B B

∫π
≔
≔ ∂ − ∂

where kA u u( ) i k kj j
B = 〈 ∣∂ 〉 is the Berry connection

and uk∣ 〉 is the eigenvector corresponding to the lower
energy band. This number is a topological invariant
which only takes on integer values. While these kinds
of constructions can be extended to higher-dimen-
sional systems or systemswith time-reversal symmetry
[9], when attempting the generalization to density
matrices via the Uhlmann connection one finds the
following fundamental obstruction.

A natural way to generalize the Chern number to
arbitrary density matrices would be to consider the
first Chern class associated to the Uhlmann curvature,
which is constructed from the Uhlmann connection A
via the standard formula for the non-Abelian case,
(35),

F A A A A, . (60)xy x y y x x y
U ⎡⎣ ⎤⎦= ∂ − ∂ +

Then, using the theory of characteristic classes
[85, 91], the (first) Chern number of the Uhlmann
curvaturewould be given by

( )k FCh
i

2
d Tr . (61)xyU

BZ

2 U∫π
≔

There is, however, a problem with this construction,
as ChU turns out to always be zero. The reason for this
is twofold.

1. First of all, the Uhlmann connection belongs to the
n( )su Lie algebra, so its trace vanishes and so does

the trace of its curvature. Hence, using (61), ChU is
zero independently of the associated state kρ . This
has more to do with the mathematical structure of
the Uhlmann construction than with physical
properties of kρ .

2. On the other hand, the Chern number is 0 as long
as there is a smooth gauge defined along the whole
BZ [85, 91]. Note that this is the case for the
Uhlmann nU( ) gauge, as we can always take the
gauge wk kρ= which is well defined provided

that kρ is not singular at some crystalline momen-
tum k . This is a rather natural condition and the
usual case in physical situations.

Additionally, the second condition also implies
that higher order Chern numbers vanish for the Uhl-
mann connection. Thus, Ch 0U = in any case. This
result wasfirst proven in [37].

In conclusion, this obscures the extension of 2D
topological invariants by means of the Uhlmann
approach. We will show specifically the way to avoid
these obstacles and define a proper topological invar-
iant for general density matrices associated to these
topological systems.

4.2. Topological Uhlmannnumbers
In this section, we explain how to construct single
topological invariants associated to density matrices of
2D topological insulators and superconductors. The
key tool for this is going to be the topological Uhlmann
phase derived previously. The 2D construction as
explained here was originally proposed in [37] and
also equivalently in [36]. A more detailed derivation
and discussion not present in previous works is carried
out in the following.

In the previous subsection, we showed that the
Chern number associated to the Uhlmann connection
was always zero. However, the fact that ChU becomes
identically zero and the associated fiber bundle
becomes trivial does not imply that all topological
properties of density matrices are trivial. If this asser-
tionwere true, we could not claim that systems atT=0
can be topologically ordered, as they are just a parti-
cular case of generally mixed density matrices. And, in
fact, we see that systems at T = 0 display topological
order in many fashions (non-zero Chern numbers,
topological edge states, Majorana fermions, magneto-
electric effect, ...). The key point in the discussion is
that ChU is not the only topological invariant that we
can construct on a torus out of a densitymatrix.

With that in mind, let us analyze the problem at
T = 0 from a different perspective. In fact, in the Berry
case, the Chern number (59) can be rewritten as
[62, 89, 90]

k
k

k
Ch

1

2
d

d ( )

d
, (62)x

x

x

B∮π
Φ=

where k k A k k( ) d ( , )x y y x yB
B∮Φ = is the Berry phase

along the ky–nontrivial homological circle of the torus
at the point kx, and kd x∮ denotes the integration along
the kx-nontrivial homological circle. See figure 5.

To prove the equality (62) from the general defini-
tion of the Chern number, one divides the surface
integral in (59) into small slices along the kx-direction,
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k kF
1

2
d ( ), (63)xy

2

BZ
∫π δ

where BZδ is an infinitesimal element of area that is
limited by one ky-nontrivial homological circle of the
torus at the point kx and another one at the point
k kdx x+ , as shown in figure 5. TheU(1)-gauge, which
may be ill-defined over the whole BZ, is always well-
defined in a sufficiently small slice, so that Stokes’
theorem is applicable. Thus,

k k

k k

F

A

k k k

k

k
k

1

2
d ( )

( )d

( ) ( d )

( )
d . (64)

xy

x x x

x

x
x

2

B

B B

B

BZ

BZ

∫
∮

π

Φ Φ
Φ

=
= − + +
= ∂

∂

δ

δ∂

Then, in the limit of slices with infinitesimal width,
summing the slices at both sides of (64) is equivalent to
performing the integral and one easily obtains (62).

Note that, (62) indeed provides a lot of informa-
tion. If k( )xBΦ is a continuous function and

k k( 0) ( 2 )x xB BΦ Φ π→ = → , then we trivially obtain
Ch 0= . If k( )xBΦ displays some 2π-discontinuous
jumps along the kx circle, thenwe can alwayswrite

k k( ) e ˆ ( ), (65)x
k k

xB
i2 ( )

B
x x

cΦ Φ= πΘ −

where kˆ ( )xBΦ is a smooth function equal to

k A k kd ( , )y y x y
B∮ mod. 2π , kx

c is the point at which the
discontinuity happens and Θ denotes the Heaviside
step function. In this way we can compute the
derivative and perform the integration along the
k nontrivialx − homological circle of the torus.
In fact, the Chern number is measuring the number of
these 2π jumps, which is equivalent to the number
of windings of k( )xBΦ as the kx circle is covered.
This is indeed a topological invariant, specifically a
winding number, that associates every state of the
system with an homotopy class of the Berry phase
mapping

k S S( ): , (66)xB
1 1Φ →

between the nontrivial homological circle S1 along kx
and the complex Berry phasesU S(1) 1≅ .

As we have seen before, (59) does not admit a
direct generalization to density matrices, however, the
equivalent formula (62) for the Chern number atT= 0
and pure states allows for a nontrivial generalization to
density matrices. To that aim, we will just replace the
Berry phase k( )xBΦ by the Uhlmann phase k( )xUΦ ,
(47), in (62):

k
k

k
n

1

2
d

d ( )

d
. (67)x

x

x
U

U∮π
Φ≔

Note that many of the properties of the Berry case are
maintained. This number nU is also an integer by the
same arguments given previously for the Chern
number. If the k( )xUΦ is a continuous function along
the kx circle and k k( 0) ( 2 )x xU UΦ Φ π→ = → , then
we trivially obtain n 0U = . Otherwise, nU measures
again the number of 2π-discontinuous jumps along
the kx-nontrivial homological circle. It is also trivially
gauge invariant, as the Uhlmann phase is gauge
invariant already.

This integer number is therefore a topological
invariant which classifies the density matrices of a
quantum system according to the homotopy class of
theUhlmann phasemapping,

k S S( ): , (68)xU
1 1Φ →

between the nontrivial homological circle S1 along kx
and the complexUhlmann phasesU S(1) 1≅ .

Furthermore, the limit at zero temperature is also
well-defined. For pure states, the Uhlmann phase
coincides with the Berry phase U BΦ Φ= . Thus, if we
compute nU in a thermal (Gibbs) state, then the fol-
lowing relation is trivially satisfied

n Ch, (69)
T

U
0⟶→

hence, the generalization is faithful.
Additionally, since UΦ is an observable and we

even discussed certain general schemes to measure it
in different platforms [35], then nU is also an obser-
vable. We will refer to this topological invariant nU as
theUhlmann number.

As was shown in [37], the Uhlmann number char-
acterizes representative models for topological insula-
tors and superconductors in 2D. Remarkably, in
models with high Chern numbers, one finds novel
thermal–topological transitions between two non-
trivial phases solely driven by temperature.

In the following, we will analyze a new model for
two-band topological insulators at a finite tempera-
ture according to the topological invariant nU.

4.3.QWZChern insulator
As an example of the applicability of this method, we
present a model for a 2D topological insulator
proposed in [53, 54]. Although themodel ismathema-
tically simple, it contains the main features of the
physics of a Chern insulator.

The model consists of a simple square lattice of
spin-1/2 fermions, with spin-dependent nearest-

Figure 5.This 2D torus represents the BZwhere the crystal-
linemomentumof the system leaves. Thefigure represents
the partition of the torus in infinitesimal slices of width kd x ;
computing the Berry (orUhlmann) phase associated to each
slice and integrating the whole homological cycle in kx, one
obtains theChern number (62) or theUhlmann number
(67), respectively.
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neighbor hoppings, and an energy imbalance between
spin up and down (see figure 6). The Hamiltonian in
real space is given by

H c c

c c

m c c

i

2

i

2

h.c.] (70)

r

r
z x

r x

r
z y

r y

r

r z r

†

†

†

⎡
⎣⎢∑

∑

σ σ

σ σ

σ

= −

+ −

+ +

⃗
⃗ ⃗+ ⃗

⃗ ⃗+ ⃗

⃗
⃗ ⃗

where c c,r r
†⃗ ⃗ are fermionic creation and annihilation

operators and x ⃗ and y ⃗ are unitary vectors along the x-
and y-directions, respectively. The Paulimatrices x y z, ,σ
act on the spin-1/2 degree of freedom. The model
describes the quantum anomalous Hall effect. The xσ
and yσ terms appear due to strong spin–orbit coupling
and the zσ part represents some ferromagnetic polar-
ization. It has been shown to be realizable in
Hg Mn Te Cd Mn Tex x x x1 1− − quantum wells with a
proper amount ofMn spin polarization [92].

In figure 6 we sketch the dynamics of the system
for a certain spin orientation as an example.
Figure 6(a) represents the on-site zσ part and
figure 6(b) shows the hopping mechanism for a cer-
tain spin state in order to visualise the dynamics.
When a fermion with spin up in the z direction− hops
along the x-direction, then z y∣ ↑ 〉 ⟶∣ ↑ 〉 . If it hops

along the y-direction, then z x∣ ↑ 〉 ⟶∣ ↓ 〉 , as shown
infigure 6(b).

Taking periodic boundary conditions the Hamil-
tonian inmomentum space reads

( )
( )

kH k k

m k k

( ) sin( ) sin

cos( ) cos , (71)

x x y y

x y z
⎡⎣ ⎤⎦

σ σ

σ

= +
+ + +

wherem is some energy imbalance between two atoms
of different species.

At T = 0, the different topological phases as classi-
fied by theChern number, (59), are:

m
mCh

1, if 2 0,
1, if 0 2,

0, if otherwise.

(72)

⎧
⎨⎪
⎩⎪

=
+ − < <
− < <

For nontrivial regions Ch 1= ± , the system pre-
sents metallic edge states at the boundary. Indeed, the
conductivity of these edge states is given by the Chern

number
e

h
ChEdge

2

σ = .

The different topological phases as classified by the
Uhlmann number, (67), are graphically represented in
figure 7 at finite temperature. The system displays
nontrivial topological phases n 1U = ± even at non-
zero temperature, provided it is below a certain critical
value Tc, where nU goes to zero. This critical tempera-
ture Tc reaches its maximum at the points m 1= ±
within the topological phases Ch 1= ± at T = 0. These
points are associated with the highest value of the gap.
This matches the common intuition that the resilience
of topological order has to do with the ratio between
the gap and the temperature, and the larger the gap,
the more stable it is. As expected, in the limit of T = 0
we recover the same topological diagram as given by
theChern number.

In fact, we can understand the discontinuity in the
Uhlmann number when crossing different topological
regions even better by looking at figure 8. We show

k( )xUΦ for different topological sectors. Namely, we
have set m 1= − which is a topological region atT= 0.
At low temperatures we see that there is still a jump in
the phase at a certain critical momentum k 0c = ,
which accounts for n 1U = . However, in the same
figure we can see what happens at higher temperatures
where the jump disappears, the Uhlmann phase is a
continuous function of kx and hence, n 0U = . This
supports the previous explanation that the topological
Uhlmann number accounts for the number of dis-
continuous jumps of the Uhlmann phase in momen-
tum space.

Figure 6.Apictorial image of theQWZmodel in real-space is shownhere. In (a), we represent the on-site zσ part of theHamiltonian
interaction, where the arrows represent the spins in the z-direction. In (b), we show an example of the effect of the spin-dependent
hopping in the interaction. In particular, z y∣ ↑ 〉 ⟶∣ ↑ 〉 when hopping along the x− axis, but z x∣ ↑ 〉 ⟶∣ ↓ 〉 when hopping along
the y-axis.
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Thus, we see that thermal topological phase transi-
tions are not a unique phenomenon of the 1D case
[35] and they are also found in 2D systems.

5. Conclusions

In this paper we have characterized a new representa-
tivemodel for a topological insulator, the QWZmodel
introduced in [53, 54] using the topological Uhlmann
number introduced in [37] in order to find a stable
SPT phase under external thermal fluctuations in 2D.
This was originally discovered in representative exam-
ples of topological insulators and superconductors in
1D [37], which later lead to higher-dimensional
constructions [36, 37]. A complete phase diagram of
the topological Uhlmann number as a function of the
parameters of the Hamiltonian in the QWZ and as a

function of the temperature of the system is shown in
figure 7. We clearly see stable thermal topological
phases in large regions of the phase diagram where the
topological invariant remains quantized and critical
temperatures where the system jumps onto a trivial
phase with zero value for the topological Uhlmann
number.

In order to apply our newly developed topological
invariant [37] to the topological insulator in 2D given
by the QWZ model, we have presented a self-con-
tained explanation of the theory of geometric phases in
quantummixed states represented by density matrices
and how they may account for new topological effects
under certain conditions. Thus, we have introduced
the main concepts and results of the Uhlmann geo-
metric theory. We have used the Uhlmann geometric
phase as a tool to characterize SPT systems such as
topological insulators and superconductors at finite

Figure 7.Topological phase diagram given by theUhlmannnumber for theQWZmodel. Varying both the energy imbalancem and
the temperatureTwe can go from a topological region to a trivial one. Note that nU remains quantized everywhere. If wefixm and
vary the temperatureT, there is always a critical point where nU goes discontinuously and abruptly to zero.

Figure 8.We represent k( )xUΦ in theQWZmodel for m 1= − . In the left panel, we setT=0.1 and observe a discontinuous jump in
the phasewhich is responsible for the robustness of the topological phase atfinite temperature. In the right panel, we take a higher
temperatureT=1.2where the system is no longer topological and the discontinuity in the phase disappears.
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temperature. The Uhlmann phase acquires a topologi-
cal character in these situations, remaining quantized
even for a finite range of temperatures. In fact, when
computed for a thermal state of generic two-band
models in 1D, the complicated expression of the Uhl-
mann phase simplifies significantly and can be related
to the winding number of the Hamiltonian and the
temperature of the system. It also has a well-defined
limit at T = 0, tending to the Berry/Zak phase, which
makes the theory consistent and dependable.

Moreover, we have presented how this tool can be
generalized to 2D systems in a detailed fashion. The
topological invariant in this case is the topological
Uhlmann number, which generalizes the Chern num-
ber for symmetry-protected time-reversal-broken
topological insulators and superconductors in 2D. In
fact, with these results, we may think of the possibility
of extending the current classification of topological
insulators and superconductors on several spatial
dimensions [86, 87] (also called the ‘periodic table’),
to the situation of thermal SPT states with fermions
using topological Uhlmannnumbers.

Let us emphasize that the existence of critical tem-
peratures seems quite natural in the Uhlmann
approach. We find that for thermal states, this
approach sets on equal footing the temperature and
the coupling constants in the original Hamiltonian.
Therefore, if there is a critical behavior as a function of
tunnelings and/or staggered potentials, then one
should obtain a critical behavior with temperature as
well. Moreover, since by raising the temperature T, the
quantum coherence properties of any state are affec-
ted, it is quite natural that the Uhlmann number
decreases bywarming the systemup.

Beyond the scope of this paper is the possible
adaptation of the Uhlmann formalism to explore
interacting topological phases at finite temperature.
They include not only bosonic/spin topological phases
but also interacting fermionic SPT phases that have
been recently proposed and classified [93–95] based
on group cohomology and supercohomology theory,
and response field theory corresponding to a non-tri-
vial fiber bundle of the symmetry group [96, 97]. In
this regard, the application of topological Uhlmann
invariants to more complicated models and higher
dimensions may lead to novel thermal topological
transitions and new effects.
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A Measurement Protocol for the Topological Uhlmann Phase

O. Viyuela1, A. Rivas1, S. Gasparinetti2, A. Wallraff2, S. Filipp3 and M.A. Martin-Delgado1
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2. Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland

3. IBM Research - Zurich, 8803 Rueschlikon, Switzerland

Topological insulators and superconductors at finite temperature can be characterised by the
topological Uhlmann phase. However, the direct experimental measurement in condensed matter
systems has remained elusive. We explicitly demonstrate that the topological Uhlmann phase can
be measured with the help of ancilla states in systems of entangled qubits that simulate a topological
insulator. We propose a novel state-independent measurement protocol which does not involve prior
knowledge of the system state. With this construction, otherwise unobservable phases carrying
topological information about the system become accessible. This enables the measurement of a
complete phase diagram including environmental effects. We explicitly consider a realization of
our scheme using a circuit of superconducting qubits. This measurement scheme is extendible to
interacting particles and topological models with a large number of bands.

PACS numbers: 42.50.Dv,85.25.-j,03.65.Vf

1. Introduction.— The search for topological phases in
condensed matter [1–6] has triggered an experimental
race to detect and measure topological phenomena in a
wide variety of quantum simulation experiments [7–12].
In quantum simulators the phase of the wave function can
be accessed directly, opening a whole new way to mea-
sure topological properties [7, 9, 13] beyond the realm
of traditional condensed matter. These quantum phases
are very fragile, but when controlled and mastered, they
can produce very powerful computational systems like a
quantum computer [14, 15]. The Berry phase [16] is a
special instance of quantum phase, one that is purely ge-
ometrical [17] and independent of dynamical effects dur-
ing the time evolution of a quantum system. When it is
invariant under deformations of the path traced out by
the system during its evolution, it becomes topological.
Topological Berry phases have also acquired a great rele-
vance in condensed matter systems. The now very active
field of topological insulators (TIs) and superconductors
(TSCs) [1] ultimately owes its topological character to
Berry phases [18] associated to the special band struc-
ture of these exotic materials.

However, when a TI or a TSC is open to an environ-
ment that can cause external noise like thermal fluctua-
tions, these quantum phases are very fragile [19–28] and
may not even be well-defined. These phases of matter are
very relevant since they are based on the Berry phase ac-
quired by a pure state. The fragility problem has been
successfully solved for one-dimensional systems [30] and
extended to two-dimensions later [31–33]. The key con-
cept behind this theoretical characterisation is the no-
tion of Uhlmann phase [34–38], a natural extension of
the Berry phase for density matrices.

Although the topological Uhlmann phase is gauge in-
variant and thus in principle observable, a fundamental
question remains: how to measure a topological Uhlmann
phase in a physical system? In this work we address this

FIG. 1: Topological measures for a single qubit in a mixed

state ρ = (1− r)|1〉〈1|+ r|0〉〈0| = 1
2

(
1+R n ·σ

)
in the Bloch

sphere representation. The mixedness parameter r between
states |1〉 and |0〉 is encoded into the degree of mixedness
R = |2r − 1| . We compute the Berry ΦB and Uhlmann ΦU

phases for non-trivial topological regimes. If r �∈ {1, 0} or
equivalently R < 1, then only ΦU is well defined and high-
lights a non-trivial topological phase (ΦU = π), provided that
R > Rc = |1− 2rc1,c2|. Here, Rc denotes the critical amount
of noise that the system can withstand while remaining topo-
logical.

challenge by: 1) proposing a new protocol to measure
experimentally this topological phase, and 2) comput-
ing the topological phase diagram for qubits with an ar-
bitrary noise parameter r [see Eq. (S1)], described by
Hamiltonian (3). To this end, we employ an ancillary
system as a part of the measurement apparatus, in such
a way that by encoding the temperature (or mixedness)
of the system in the entanglement with that ancilla, the
Uhlmann phase appears as a relative phase that can be
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The computation of the evolutions US and UA in Eq.
(S21) for Hamiltonian (3), yields the following form

US(t) = e−i
∫ t
0
h(t′)dt′σy , UA(t) = e−ipa

∫ t
0
h(t′)dt′σy , (5)

with h(t) :=
∂tn

x
t

2nz
t
. The unitary US implements the eigen-

state transport |1θ〉 = US|1〉 and |0θ〉 = US|0〉, and
UA = (US)

pa with pa ∈ [0, 1] defined as the ancillary
weight. When pa = pr := 2

√
r(1− r), the purification

precisely follows Uhlmann parallel transport. For more
details, see Sec. I and II of the SM [47].
Now, from Eq. (S21) it is possible to define the relative
phase ΦM between the initial |Ψθ(0)〉 and the final state,
i.e. |Ψθ(tf )〉. For Hamiltonian (3), density matrix (S1)
and purification (S21), we find

ΦM := arg [〈Ψθ(0)|Ψθ(tf )〉] = (6)

= arg
[
cos (If) cos (paIf) + pr sin (If) sin (paIf)

]
,

where If :=
∫ tf
0

h(t′)dt′. In particular, if pa = pr,
the relative phase ΦM is called the Uhlmann phase ΦU.
This phase is a gauge independent quantity [34], defined
through the parallel transport of the purification |Ψθ〉.
It also characterises topological order of density matrices
[30–33], (see Sec. III of the SM [47]).

For a closed path tf = 1, the integral If = πω1 = ΦB

is precisely the topological Berry phase. In that case the
Uhlmann phase simplifies to

ΦU = arg{cos[(1− 2pr)πω1]}. (7)

From this, we can deduce the topological properties of
these topological materials in the presence of external
noise, as measured by the parameter r [Eq. (S1)]. This
is depicted in Fig. 1. Namely, if M > 1 then ω1 = 0, and
ΦU = 0 for every mixedness parameter r. If M < 1 then
ω1 = 1 and hence ΦU = arg[− cos(2π

√
r(1− r))]. If the

state is pure (r = 0), then Φ0
U = π, recovering the same

topological phase given by the winding number and the
Berry phase. However, for r �= 0 there are critical values
of the mixedness rc at which pr = 0.5, and the Uhlmann
phase, according to Eq. (7), jumps from π to zero (see
Fig. 1). The first rc1 = 1

4 (2−
√
3) signals the mixedness

at which the system loses the topological character of the
ground state. Moreover, there exists another rc2 = 1−rc1
at which the system becomes topological again due to
the topological character of the excited state (r → 1).
Actually, pr(r = rc) = 0.5 implies that whenever the
state satisfies pr < 0.5, the system is topological in the
Uhlmann sense, as long as M < 1. The new reentrance
in the topological phase at rc2 was absent in previous
works [30–32].
3. State-independent protocol.— The application of US(t)
and UA(t) with pa = pr to the purification |Ψθ(t)〉 imple-
ments the Uhlmann parallel transport and hence ΦM =
ΦU. However, this would imply knowing the mixedness

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5

2

2.5

3

3.5

r

Φ
U

Theoretical value
Simulated with noise

FIG. 3: Comparison between the theoretical value of the
Uhlmann phase ΦU and a realistic noise simulation, as a func-
tion of the mixedness r. We have taken into account experi-
mental imperfections such as finite coherence time or residual
interactions. The topological transition is clearly appreciable
also in the presence of noise. Details can be found in Sec. IV
of the SM [47].

parameter r of the state beforehand, which is not al-
ways possible. Hence, we modify the previous protocol
to measure the topological Uhlmann phase without prior
knowledge of the state ρ and its mixedness parameter r
in the following way.

Firstly, we assume a linear variation θ(t) = vst, fix
vs = 2π and consider open holonomies 1

2 < tf < 1 cov-
ering more than half of the complete path. No previous
knowledge of the state is assumed to perform the evo-
lution. Hence, the ancillary weight pa might be differ-
ent than the unknown weight pr in Eq. (S21), but still
satisfying 0 ≤ pa ≤ 1. From Eq. (S24), the overlap
〈Ψθ=0|Ψθ=2πtf 〉 is always real and thus the phase ΦM has
to be 0 or π, depending on both the weight pr associated
to the state ρθ [Eq. (S1)] and the ancillary weight pa.

There is an intuitive reason why we can get topological
information out of a phase that is associated to a path
that covers more than half of the non-trivial topological
loop. Indeed, h(t) is symmetric around t = 1

2 . Then,
once we have covered half of the path, we know about the
topology of the whole system thanks to this symmetry.
Therefore, even an open path for 1

2 < tf < 1 can be
considered global.

Using Eq. (S24), we compute the value of pca (where
the superindex c stands for critical) at which ΦM goes
abruptly from π to 0 as a function of pr and If ,

pca =
−1

If
arctan

( 1

pr tan (If)

)
, (8)

which is a monotonically decreasing function of pr.
At this point, we are in position to deduce the topological
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properties for the open quantum system without a priori
knowledge of its density matrix:
(a) For the trivial case M > 1, there is no critical value
pca since ΦM = 0 – equivalent to the Uhlmann phase ΦU

– for every pr and pa.
(b) For the case M < 1 and 1

2 < tf < 1, we compute the
critical weight pT := pca(pr = 0.5) at which ΦM goes to
zero at the topological frontier pr = 0.5. A given state
is topological if pr < 0.5, and not topological if pr > 0.5.
Therefore, applying the gates US and UA with pa = pT
may give either

i) ΦM(pT) = 0 implying pca < pT and hence pr > 0.5,
as pca always decreases with pr. Thus, the system
is in a trivial phase.

ii) ΦM(pT) = π implying pca > pT, thus pr < 0.5. The
system is in a non-trivial topological phase.

Therefore we have been able to map the phase ΦM(pT)
to the topological Uhlmann phase ΦU. A more detailed
explanation is given in Sec. III of the SM [47].

Finally, in order to experimentally measure the
Uhlmann phase, we need to include an extra third qubit
acting as a probe P . The measurement protocol is de-
scribed in Fig. 2:

Step 1. Following Eq. (S24), we prepare the initial
state |Ψθ=0〉⊗|0〉P (red block of Fig. 2) using single qubit
rotations Rθ

y about the y-axis for an angle θ and a two-
qubit entangling gate, e.g. a controlled phase gate for
frequency-tunable transmons [48].

Step 2. We apply the bi-local unitary US(t) ⊗ UA(t)
on S ⊗ A conditional to the state of the probe P . This
is accomplished by single qubit rotations about an angle
determined by h(t) and pa (blue block of Fig. 2), and
two-qubit controlled-phase gates. As a consequence the
3 qubits {S,A,P} are in the superposition

|Φ〉SAP =
1√
2

(
|Ψθ=0〉 ⊗ |0〉P + |Ψθ=2πtf 〉 ⊗ |1〉P

)
. (9)

Step 3. After the holonomic evolution has been com-
pleted, we read out ΦM from the state of the probe qubit.
Tracing out the system and ancilla in Eq. (9), the re-
duced state for the probe qubit is

ρP =
1

2

(
1+Re(〈Ψθ=0|Ψθ=2π〉)σx+Im(〈Ψθ=0|Ψθ=2π〉)σy

)
.

(10)
Thus, by measuring the expectation values 〈σx〉 and 〈σy〉
(green block of Fig. 2), we can retrieve ΦM in the form
of

ΦM = arg [〈σx〉+ i〈σy〉] =
= arg [〈Ψθ=0|US(tf)⊗ UA(tf)|Ψθ=0〉],

(11)

Complementary, if we set pa = pr we are also able to test
the Uhlmann parallel transport condition by measuring
ΦM at each step along the holonomy.

Under realistic experimental conditions, decoherence
and dissipation will adversely affect the measured topo-
logical Uhlmann phase. We have thus included a real-
istic noise simulation based on modest assumptions on
the coherence of three transmon qubits. With typical
gate durations of 25 and 45 ns for single and two-qubit
gates, relaxation times of T1 ≈ 5µs and coherence times
of T2 ≈ 3µs [49], we clearly observe a phase jump of π
for the Uhlmann phase as shown in Fig. 3. More details
about the simulation are given in the supplementary ma-
terial [47].

5. Conclusions and Outlook.— We have devised an ex-
plicit protocol to perform a realistic measurement of the
Uhlmann phase in topological insulators and supercon-
ductors implementable in a minimal quantum simulator
with 3 superconducting qubits. In particular, we exploit
the quantum simulator to realize a controlled coupling
of the system to an environment represented by the an-
cilla degree of freedom. The proposed state-independent
protocol allows us to classify states of topological sys-
tems according to the Uhlmann measure. Interestingly,
some thermodynamical connections to the topological
Uhlmann phase have been recently addressed [50].

An increase of experimental resources such us the num-
ber of qubits, the speed and fidelity of the quantum gates,
etc. would allow us to study novel topological phenomena
with superconducting qubits. In particular, by includ-
ing interactions in the model Hamiltonian we could test
different new features: quantum simulations of thermal
topological transitions in 2D TIs and TSCs, the inter-
play between noise and interactions inside a topological
phase, etc. These new effects could be achieved since a
system with more interacting qubits can be mapped onto
models for interacting fermions with spin [12]. Further
details can be found in Sec. V of the SM [47]. Although
such a proposal would be experimentally more demand-
ing, it represents a clear outlook when the controllability
of more qubits and the possibility of performing more
gates with high fidelity would be at hand.
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SUPPLEMENTARY MATERIAL

I. Uhlmann phase for qubit systems

The Uhlmann phase extends the notion of the geo-
metric Berry phase from pure quantum states (Berry)
to mixed quantum states described by density matrices.
Uhlmann was first to study this problem from a rigorous
mathematical perspective [1] and to find a satisfactory
solution [2–5].
Let θ(t)|1t=0 define a trajectory along a family of single

qubit density matrices parametrised by θ,

ρθ = (1− r)|1θ〉〈1θ|+ r|0θ〉〈0θ|, (S1)

where r stands for the degree of mixedness between the
ground state |1θ〉 and the excited state |0θ〉. Note that
ρθ can always be viewed as a pure state |Ψθ〉 in an en-
larged Hilbert space H = HS ⊗ HA, where S stands for
system and A for the ancilla degrees of freedom. This
process is called purification, and satisfies the constraint

ρθ = TrA

(
|Ψθ〉〈Ψθ|

)
. The set of purifications |Ψθ〉 gen-

erates the family of density matrices ρθ. This aims to
be the density-matrix analog to the standard situation
where vector states |ψ〉 span a Hilbert space and gen-
erate pure states by the relation ρ = |ψ〉〈ψ|. Actually,
the phase freedom of pure states, U(1)-gauge freedom,
is generalised to a U(n)-gauge freedom (n is the dimen-
sion of the density matrix). This occurs since |Ψθ〉 and
V t
A|Ψθ〉 are purifications of the same density matrix for

some unitary operator V t
A acting on the ancilla degrees

of freedom. The superindex t denotes the transposition
with respect to the standard qubit basis. If the trajec-
tory defined by θ(t) is closed ρθ(1) = ρθ(0), the initial and
final purifications must differ just in some unitary trans-
formation V t

A, |Ψθ(1)〉 = V t
A|Ψθ(0)〉. Hence, by analogy to

the pure state case, Uhlmann defines a parallel transport
condition such that VA is constructed by imposing that
the distance between two infinitesimally closed purifica-
tions, ‖Ψθ(t+dt)〉 − |Ψθ(t)〉‖2, reaches its minimum value.
Then it is possible to write

VA = Pe
∫
AU , (S2)

where P stands for the path ordering operator along the
trajectory θ(t)|1t=0, and AU is the so-called Uhlmann con-
nection form [1, 6, 7].
The Uhlmann geometric phase is defined from the mis-

match between the initial point |Ψθ(0)〉 and the final point
after the parallel transportation, i.e. |Ψθ(1)〉,

ΦU := arg [〈Ψθ=0|Ψθ=1〉] = arg Tr
[
ρθ(0)VA

]
(S3)

This phase is a gauge independent quantity [1–3], that
comes from the parallel transport of the purification |Ψθ〉.

The most explicit formula for the Uhlmann connection
was given by Hübner [4],

AU =
∑

θ,i,j

|ψi
θ〉
〈ψi

θ|
[
(∂θ

√
ρθ),

√
ρθ
]
|ψj

θ〉
piθ + pjθ

〈ψj
θ|dθ, (S4)

in the spectral basis of ρθ =
∑

j p
j
θ|ψ

j
θ〉〈ψ

j
θ|. The param-

eter θ may play the role of the crystalline momentum in
condensed matter systems.
The derivative of the square-root of the density matrix

with respect to the transport parameter θ is given by

∂θ
√
ρθ =

√
(1− r)

(
|∂θ1θ〉〈1θ|+ |1θ〉〈∂θ1θ|

)
+

+
√
r
(
|∂θ0θ〉〈0θ|+ |0θ〉〈∂θ0θ|

)
. (S5)

We can simplify the connection AU in (S4), for density
matrix (S1) and Hamiltonian (3) in the main text. We
substitute Eq. (S5) in Eq. (S4), and take into account
that the summation indices in Eq. (S4) only runs over
the states |1θ〉 and |0θ〉, obtaining

AU =
[
(1− pr)〈1|∂θ0θ〉 |0θ〉〈1θ|

+ (1− pr)〈0θ|∂θ1θ〉 |0θ〉〈1θ|
]
dθ, (S6)

where pr = 2
√
r(1− r).

For computational purposes, we fix the gauge for the
eigenstates of the system Hamiltonian [Eq. (3) of the
main text] such that,

|0θ〉 =
1√

1 + g2(θ,M)

(
1

g(θ,M)

)
, (S7)

|1θ〉 =
1√

1 + g2(θ,M)

(
g(θ,M)

−1

)
, (S8)

where

g(θ,M) :=
sin θ

M + cos θ +
√
1 +M2 + 2M cos θ

. (S9)

From Eq. (S7) and Eq. (S8), we compute

〈0θ|∂θ1θ〉 =
∂θn

x
θ

2nz
θ

=
1 +M cos θ

2 + 2M2 + 4M cos θ
,

|0θ〉〈1θ| − |1θ〉〈0θ| =

(
0 −1
1 0

)
, (S10)

where ni
θ is the i−th component of the winding vector.

Finally, we insert Eqs. (S10) in Eq. (S6) and obtain

AU = −i(1− pr)
∂θn

x
θ

2nz
θ

σydθ. (S11)

As the connection in Eq. (S11) commutes for different
values of θ, we can drop the path ordering that appears
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in the expression for the Uhlmann unitary [Eq. (S2)], and
get the simplified equation

VA(θ) = e
−i(1−pr)

∫ θ
0

∂
θ′n

x
θ′

2nz
θ′

σydθ
′

. (S12)

Lastly, we substitute Eq. (S12) and Eq. (S1) in Eq. (S3)
to compute the Uhlmann phase

ΦU = arg

{
cos

[
1− 2pr

2

∫ θ

0

(
∂θ′nx

θ′

nz
θ′

)
dθ′

]}
. (S13)

II. Holonomic time evolution

At this stage, we would like to physically implement
the holonomy that has been mathematically described in
the previous section. For that purpose, we express the
parallel transport generated by parameter θ, as a unitary
time evolution over system and ancilla US ⊗ UA where
the control-parameter is varied in time θ(t). The system
unitary evolution US is defined through the relations

|0〉θ(t) := US(t)|0〉, |1〉θ(t) := US(t)|1〉, (S14)

where |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
is the standard qubit ba-

sis. Using the eigenstate equations (S7) and (S8), US(θ)
is obtained straightforwardly,

US(t) =
1√

1 + g2[θ(t),M ]

(
1 −g[θ(t),M ]

g[θ(t),M ] 1

)
,

(S15)
where g(θ,M) was defined in Eq. (S9).

At this point Eq. (S15) can be expressed as the expo-
nential of a Hamiltonian using the following relations

US(t) = e−i
∫ t
0
h(t′)dt′ , (S16)

h(t) = i

(
dθ

dt

)[
∂θUS(θ)

]
U†
S(θ). (S17)

We substitute Eq. (S15) into Eq. (S17), arriving at

h(t) =

(
dθ

dt

)
∂θ(t)n

x
θ(t)

2nz
θ(t)

σy, (S18)

where we have used Eq. (S10) as well.
The unitary for the ancilla qubit UA is determined by

combining: 1) the transport of the eigenstates |0(1)θ〉
through US(t) and 2) the Uhlmann correction VA[θ(t)],
for the purification as a whole to be parallely transported
[Eq. (S12)]; hence,

UA(t) = [U†
S(t)VU (t)]

t. (S19)

Here, the superindex t denotes the transposition with re-
spect to the standard qubit basis. Further simplifications
of Eq. (S19) using Eq. (S18) and Eq. (S12) lead to

UA(t) = e−ipa

∫ t
0
h(t′)dt′ , (S20)

with pa = pr.

III. State-independent phase mapping to the
Uhlmann phase

Let us know consider open holonomies [open trajecto-
ries given by θ(t)] with the following constraints:

1. We fix a linear ramp θ(t) = vst and units vs = 2π.

2. We consider holonomic open paths satisfying 1
2 <

tf < 1.

3. Although the Uhlmann parallel transport condition
implies pa = pr, let us consider a more general evo-
lution for the ancilla qubit pa �= pr. The ancilla
weight pa can be different than pr, but still satisfy-
ing 0 ≤ pa ≤ 1.

The evolution of the purification (system qubit S and
ancilla qubit A) can be written as

|Ψθ(t)〉 =
√
rUS(t) |0〉S ⊗ UA(t) |0〉A +

+
√
1− rUS(t) |1〉S ⊗ UA(t) |1〉A ,

(S21)

where US(t) and UA(t) were given in Eq. (S17) and
Eq. (S20) respectively.

To shorten the notation, we define If :=
∫ tf
0

h(t′)dt′

and perform the integration for Hamiltonian (3) in the
main text,

If =
1

4

{
tf + 2arctan

[
(1 +M)cot(tf/2)

M − 1

]
+

+ πsgn(1−M)
}
, if 0 < tf < 1.

(S22)

Now we compute the state |Ψθ(tf )〉 at the end of the
holonomy

|Ψθ(tf )〉 =
√
r
(
cos (If) |0〉S − sin (If) |1〉S

)
⊗

⊗
(
cos (paIf) |0〉A − sin (paIf) |1〉A

)
+

+
√
1− r

(
sin (If) |0〉S + cos (If) |1〉S

)
⊗

⊗
(
sin (paIf) |0〉A + cos (paIf) |1〉A

)
=

=
√
r
(
cos (If) cos (paIf) |0〉S ⊗ |0〉A +

+ sin (If) sin (paIf) |1〉S ⊗ |1〉A −
− sin (If) cos (paIf) |1〉S ⊗ |0〉A −
− cos (If) sin (paIf) |0〉S ⊗ |1〉A

)
+

+
√
1− r

(
sin (If) sin (paIf) |0〉S ⊗ |0〉A +

+ cos (If) cos (paIf) |1〉S ⊗ |1〉A +

+ cos (If) sin (paIf) |1〉S ⊗ |0〉A +

+ sin (If) cos (paIf) |0〉S ⊗ |1〉A
)
. (S23)

We can associate a phase mismatch ΦM between the
initial |Ψθ(0)〉 and the final state, i.e. |Ψθ(tf )〉. This is
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given by ΦM := arg [〈Ψθ=0|Ψθ=tf 〉]. After a straightfor-
ward calculation using Eq. (S23),

ΦM = arg
[
cos (If) cos (paIf) + pr sin (If) sin (paIf)

]
.

(S24)
This phase generally depends both on the weight associ-
ated to the state (pr) and the one applied to the circuit
(pa). Moreover, the overlap 〈Ψθ=0|Ψθ=tf 〉 is always real
and hence the argument gives ΦM = 0, π. In addition,
for pa = pr the phase mismatch ΦM = ΦU.

Let us now consider an ancillary weight pa �= pr. From
Eq. (S24) we can find the value pa = pca (where the su-
perindex c stands for critical) at which ΦM goes abruptly
from π to 0 as a function of pr and If ,

pca =
−1

If
arctan

( 1

pr tan (If)

)
. (S25)

If we set 1
2 < tf < 1, then pca is a monotonically decreas-

ing function of pr,

∂pca
∂pr

=
tan (If)

If [1 + p2r tan
2 (If)]

< 0. (S26)

If M > 1, then −π/2 < If < π/2, which from Eq. (S24)
implies that ΦM = 0 for any value of pr and pa. Hence,
for the trivial caseM > 1, there is no critical value pca and
ΦM = 0 always. This maps ΦM to the Uhlmann phase
ΦU at least for this case. On the contrary, if M < 1,
then π/2 < If < π which implies that tan (If) < 0. As

0 < pr < 1, then − arctan
(

1
pr tan (If )

)
< π/2. Thus,

from Eq. (S24), there is always a solution 0 < pca < 1 for
any pr of the state. As discussed in the main text, the
state ρθ in Eq. (S1) is topological in the Uhlmann sense
ΦU = π, only if M < 1 and pr < 0.5.

Next, we compute the associated critical value of pa
for the particular case of pr = 0.5, defined as

pT := pca(pr = 0.5) =
−1

If
arctan

( 2

tan (If)

)
. (S27)

Note that the true pr of the system is unknown as we
have assumed no knowledge of the state. But if pr >
0.5, then its associated critical value [from Eq. (S25)] is
pca < pT. This means that applying UA with pa = pT
and measuring the associated phase ΦM we can extract
the following conclusions:

• If we measure ΦM(pT) = 0, the system is within a
trivial phase (ΦU = 0). Because this implies pca <
pT and hence pr > 0.5 (ΦU = 0), as we have proven
that pca always decreases with pr.

• If we measure ΦM(pT) = π, the system is in a
topological phase (ΦU = π). Because in that case
pca > pT and then pr < 0.5 (ΦU = π).

Hence, we have been able to map ΦM(pT) to the
Uhlmann phase ΦU. However, this mapping only works
iff π/2 < If < π which only occurs for M < 1 and cover-
ing more than half of the path 1

2 < tf < 1. Therefore, in
order to test if the system is topological or not, we just
have to follow the following protocol:

1. We prepare the initial state |Ψθ=0〉 ⊗ |0〉P. The
state |Ψθ(t)〉 is given in Eq. (S21) and P is an extra
probe qubit. This qubit is needed to measure the
phase ΦM.

2. We set the length of the evolution tf and apply the
bi-local unitary US(t)⊗UA(t) on S⊗A conditional
to the state of the probe P . The ancilla evolution
UA(t) is carried out taking the ancilla weight pa =
pT.

3. After the holonomic evolution has been completed,
we read out ΦM from the state of the probe qubit by
measuring the argument of the expectation value of
〈σx〉P + i〈σy〉P.

Finally, we explain why covering at least half of the
entire non-trivial path allows us to access topological in-
formation, i.e. global. The Hamiltonian of the single-
qubit system Eq. (S28) is the circuit QED analog of a
topological insulator in the AIII chiral-unitary class,

Hθ =
Gθ

2
nθ · σ, (S28)

where Gθ stands for the two-level gap, and nθ is the
winding vector. Both quantities have been defined in
Eq. (3) of the main text.
For this model, there is a restriction on the movement

of of the winding vector nθ from the sphere S2 to the
to the circle S1 on the xz−plane. Hence, only two of its
components nx

θ and nz
θ are different from zero. Therefore,

there is a mapping from the family of HamiltoniansHθ on
the parameter θ ∈ S1 onto the winding vectors nθ ∈ S1.
This mapping S1 −→ S 1 is characterized by a winding
number ω1. This is a topological invariant defined as the
angle swept by nθ when the parameter θ is tuned from
0 to 2π,

ω1 :=
1

2π

∮
dα =

1

2π

∮ (
∂θn

x
θ

nz
θ

)
dθ, (S29)

where we have used that α := arctan
(
nx
θ/n

z
θ

)
. For this

model, if the parameter M < 1 the system is topological
(ω1 = 1) and if M > 1 the system is in trivial phase
(ω1 = 0). The integral If defined in Eq. (S22) equals
the area covered by the winding vector when θ is varied.
Actually, if the loop is closed (tf = 1), then If = πω1.
Moreover, h(t) in Eq. (S18) is symmetric around t = 1

2 .
So basically when half of the path has been traversed,
the information about the whole topology of the system
is unveiled. Therefore, an open path that covers more
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than half of the non-trivial topological loop (12 < tf <
1) can be considered global and we can get topological
information from the phase ΦM.

IV. Noise simulation

We have analyzed the detrimental effect of experimen-
tal noise in the proposed measurement scheme. We have
modeled this by means of some Liouvillian term Lnoise,
so that the Liouvillian L0, accounting for the idealized
dynamics, is in fact substituted by L0 + Lnoise. Specifi-
cally, if some gate is performed during a time τ via some
Hamiltonian H0, i.e. Ugate = e−iH0τ , we substitute

e−iH0τρeiH0τ ≡ eL0τρ → e(L0+Lnoise)τρ. (S30)

This noise Liouvillian includes typical sources of imper-
fections: a) some residual ZZ coupling during a C-Phase
gate, HZZ = Jσzσz; b) spontaneous emission and de-
phasing terms L−(ρ) = γ−(σ−ρσ+ − 1

2{σ+σ−, ρ}) and
Lz(ρ) = γz(σzρσz − ρ), respectively.

We have accommodated the values of γ− and γz to
the characteristic longitudinal and transverse relaxation
times of T1 ∼ 5 µs and T2 ∼ 3 µs. The residual ZZ
strength has been taken to be about J ∼ 0.5 MHz [8].
In addition, we consider τ2π ∼ 25 ns and τCP ∼ 45 ns
as characteristic times for a 2π-rotation on a single qubit
and the C-Phase gate (see Fig. 2 of the main text), re-
spectively. Waiting times of 5 ns after a single qubit gate
and 40 ns after a C-Phase gate are also included.

In Fig. 3 of the main text, we show the result of the
simulation including noise in the determination of the
topological Uhlmann phase ΦU. We plot the value of the
measured Uhlmann phase as a function of the purity of
the state r for M < 1. Despite the noise, the topological
transition is clearly noticed.

V. Interacting Systems: New Effects

The protocol to measure the topological Uhlmann
phase deals with single-qubit Hamiltonians [Eq. (3) in the
main text]. These can be mapped to free-fermion topo-
logical insulators. We may identify the ramp parameter
θ with the crystalline momentum in the Brillouin zone k.

Nonetheless, more complicated Hamiltonians involving
more qubits could be considered in a more general setup.
Actually, it has been shown in [9] that an L−qubit inter-
acting system can be mapped onto two types of systems
that will be discussed in what follows.

On the one hand, a system of 2 qubits can be mapped
to a system of two interacting fermions with spin 1/2.
Therefore, an Uhlmann experiment for interacting 2-
qubit Hamiltonians would be the first experimental mea-
surement of a topological phase associated to an interact-
ing system in a mixed state. It would be very interesting
to analyse how the interacting term counteracts or en-
hance the effect that noise produces in the system.

On the other hand, there is a complementary mapping
from a many-body interacting spin system to Haldane-
like models [10] with 2L bands. These are free-fermion
models but the fact of having more bands opens the
possibility of having higher topological quantum num-
bers. From the point of view of the Uhlmann theory
of symmetry-protected topological order at finite tem-
perature, one can clearly envision the possibility of test-
ing topological transitions between non-trivial topologi-
cal phases solely driven by noise or temperature. This is
an effect that only appears in systems with high topolog-
ical numbers as shown in [11].
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6.1. MOTIVATION

At the end of chapter 1, we have introduced the Kitaev toric code as an example of 
intrinsic topological order (ITO) displaying a degenerate ground state and quasi-particles 
with anyonic statistics. This model was originally proposed by Kitaev (2003) in the context 
of fault-tolerant quantum computation. Fault-tolerance means that quantum computation 
can be performed for an arbitrarily long-time, provided that the error rate in the system lies 
bellow a certain threshold. It turns out that topological systems provide a very natural scheme 
to support large error rates on the system, due to the intrinsic robustness of topological 
properties.

In the Kitaev model (Kitaev, 2003) the information is stored within the degenerate 
ground state subspace. The Hamiltonian is gapped, which leads to the initial expectation 
that all type of ‘errors’, i.e. noise-induced excitations, will be removed automatically by 
some relaxation processes (Nussinov and Ortiz, 2008). Moreover, it can be shown that this 
Hamiltonian is robust under local quantum perturbations at zero temperature (Nielsen and 
Chuang, 2009): there would be a level splitting which will vanish as exp(-ak), where k is the 
length of the lattice (Kitaev, 2003).

Quantum error correction has opened the possibility of correcting errors actively on a 
quantum memory. Outstandingly, small instances of topological quantum codes have been 
already constructed in the lab. A fully-protected logical qubit has been encoded (Nigg et al., 
2014) on a platform of ion traps, based on the color code (Bombin and Martin-Delgado, 2006 
and 2007). A small instance of the surface code ( Ghosh, Fowler and Geller, 2012; Fowler, 
2012) has also been achieved (Barends et al., 2014) using superconducting quantum circuits.

An alternative and even more attractive playground goes in the direction of constructing 
a quantum memory with minimal active support. Actually, passive protection schemes lie at 
the heart of functional classical technology (e.g. transistors, ferromagnetic hard disks, etc). 
Therefore, one would be interested in designing a stable quantum memory, i.e. a N -particle 
system which can support at least a single encoded logical qubit for a long time, preferably 
with this time growing exponentially with N. Unfortunately, Alicki et al. (Alicki, Fannes and 
Horodecki, 2009) provided a rigorous method showing thermal instability of the 2D Kitaev 
model. They achieved this by deriving a master equation that describes the dynamics of the 
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system weakly coupled to a thermal environment. Soon after that, the same authors (Alicki et 
al., 2010) proved that a 4D version of the toric code is thermally stable below a certain critical 
temperature Tc. Additionally, no-go theorems for certain types of 2D and 3D topological 
quantum memories have been proven (Nielsen and Chuang, 2009; Hastings, 2011; Yoshida, 
2011), but the question of whether it is possible to find a passively thermally stable topological 
quantum memory in 2D and 3D remains open (Bombin et al., 2013; Brown et al., 2014).

In publication P1, we generalise the Kitaev toric code for qudits (d -dimensional 
systems) and study the problem of thermal instability within the framework of topological 
orders. We focus on the novelties we do get by increasing the dimensionality of the spins.

6.2. OUTLINE OF THE MAIN RESULTS

● We generalise the well-known Kitaev toric code for the case of qudits, i.e. d -dimensional 
spin systems.

● A Toric code for qudits produces new types of anyonic quasiparticles with different 
braiding statistics.

● By increasing the dimension of the logic unit from 2 to d, we enlarge the number of 
possible topological charges.

● We derive a master equation that describes the dynamics of a generalised toric code 
for qudits coupled to an external heat bath.

● We show that this new system also thermalises, making the system unstable under 
thermal perturbations.

● However, we show that a toric code for qutrits can improve the dynamical stability of 
anyonic quasiparticle.

● Therefore, increasing the dimensionality of the logic unit may help improve the 
lifetimes of topological quantum memories.
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Abstract. We have studied the dynamics of a generalized toric code based on
qudits at finite temperature by finding the master equation coupling the code’s
degrees of freedom to a thermal bath. We find that in the case of qutrits, new
types of anyons and thermal processes appear that are forbidden for qubits. These
include creation, annihilation and diffusion throughout the system code. It is
possible to solve the master equation in a short-time regime and find expressions
for the decay rates as a function of the dimension d of the qudits. While we
provide an explicit proof that the system relaxes to the Gibbs state for arbitrary
qudits, we also prove that above a certain crossover temperature the qutrits’
initial decay rate is smaller than the original case for qubits. Surprisingly, this
behavior only happens for qutrits and not for other qudits with d > 3.
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1. Introduction

It is known that the fragility of quantum states in the presence of interaction with an
environment represents the main challenge for the large-scale implementation of quantum
information devices in quantum computation and communication. Quantum error correction
is the theoretical method that was devised to protect a quantum memory or communication
channel from external noise [1–8]. In these quantum error correction schemes, to improve the
stability of quantum information processing, the logical qubits should be implemented in many-
particle systems, typically N physical spins per logical qubit. This is the quantum version of the
classical method based on encoding information by repetition or redundancy of logical bits in
terms of physical bits [9, 10]. The logical qubits should be stable objects with efficient methods
of state preparation, measurements and application of gates. By efficiency we mean a certain
scaling behavior, e.g. the lifetime of a logical qubit should grow with N .

In order to implement fault-tolerant methods for quantum information processing, we need
to find a physical system with good enough properties to accomplish this protection from a
noisy environment and decoherence. One promising candidate is topological orders in strongly
correlated systems. Here, the ground state is a degenerate manifold of states whose degeneracy
depends on the topological properties of a certain lattice of qubits embedded into a surface with
nontrivial topology [11]. Many-body interacting terms in a Hamiltonian are responsible for the
existence of this topological degeneracy. The logical qubits are stored in global properties of the
system represented by nontrivial homological cycles of the surface. In these topological codes,
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the property of locality in error detection and correction is of great importance both theoretically
and for practical implementations [12–14]. It is also possible to generalize these topological
codes for units of quantum information based on multilevel systems known as qudits, i.e.
d-level systems [15–18], and study their local stability [19]. An alternative scheme to
manipulate topological quantum information is based not in the ground-state properties of the
system but in its excitations [11]. These are non-Abelian anyons that can implement universal
gates for quantum information [20]. However, being within the framework of topological codes
based on ground state properties, it is possible to formulate new surface codes known as
topological color codes (TCCs) [21] such that they have enhanced quantum computational
capabilities while preserving nice locality properties [21–23]. TCCs in two-dimensional (2D)
surfaces allow for the implementation of quantum gates in the whole Clifford group. This
makes possible quantum teleportation, distillation of entanglement and dense coding in a fully
topological scenario. Moreover, with TCCs in 3D spatial manifolds it is possible to implement
the quantum gate π/8, thereby allowing for universal quantum computation [24, 25]. Very nice
applications of topological surface codes can be seen in other fields [26, 27].

Acting externally on topological codes, in order to cure the system from external noise
and decoherence, produces benefits from the locality properties of these codes. Namely, a very
important figure of merit is the error threshold of the topological code, i.e. the critical value
of the external noise below which it is possible to perform quantum operations with arbitrary
accuracy and time. For toric codes with qubits, the error threshold is very good, about 11% [12].
This value is obtained by mapping the process of error correction to a classical Ising model
on a 2D lattice with random bonds. Interestingly enough, this type of mapping can be made
more general and applied to TCCs yielding the same error threshold [28] while maintaining
enhanced quantum capabilities [29, 30]. These results have been confirmed using different
types of computation methods [31–35]. It is also possible to carry out certain computations
by changing the code geometry over time, something called ‘code deformation’ [12, 36, 37]
that allows us to perform quantum computation in a different way. A more general type of code
can be constructed with quantum lattice gauge theories based on quantum link models [38].

In this paper, we adopt a different approach than external protection of topological codes.
Hence, instead of performing active error correction, we just rely on the robustness of a
Hamiltonian that has a gap above the ground state manifold where the quantum information
is stored. Thus, we leave the system to interact with the surrounding environment and study the
fate of the topological order under these circumstances. This source of noise is inescapable: the
microscopic interactions of the physical spins with thermal particles or excitations of the local
environment. The analogous situation for classical information processing is well understood,
but the existence of a similar mechanism for quantum information is still an open problem.
The quantum theory of open systems provides a natural framework for studying stability in
the presence of thermal noise. The particularly simple properties of Kitaev’s model allow us to
apply Davies’ theory, namely the dynamics of a quantum system weakly interacting with a heat
bath in the Born–Markov approximation [39–46]. There have also been some related studies
regarding thermal effects on adiabatic quantum computation [47, 48].

The first indication that the toric code for qubits in 2D spatial dimensions is unstable
against thermal noise was shown in [12]. Further analytical and quantitative arguments of
thermal instability were given in [49]. Later, a rigorous proof of this fact has been established
using the theory of quantum open systems [50, 51]. Subsequently, other investigations have
been conducted for Abelian models, non-Abelian models, TCCs [52–56], etc. Remarkably
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enough, while with qubits in 2D lattice models the topological protection is lost under the
action of thermal fluctuations [57], it is however possible to set up a fully fledged topological
quantum computation using certain types of TCCs in higher-dimensional lattices [58]. Under
these conditions, it is possible to prove that self-correcting quantum computation, including
state preparation, quantum gates and measurement can be carried out in the presence of the
disturbing thermal noise. Additionally, note that thermal noise does not always turn out to be
detrimental in quantum information, even for systems without topological order [59, 60].

In this work, we extend those results regarding the thermal effects on generalized toric
codes constructed out of qudits. Here in we summarize briefly some of our main results.

1. We formulate the dynamics of a generalized toric code based on qudits at finite
temperature. To this end, we find the master equation coupling the qudits of the system
code to a thermal bath.

2. We study and classify the different types of thermal processes that may occur when the
anyonic excitations are created, annihilated or diffused throughout the system. In particular,
we find that for qutrits new types of anyons and thermal processes appear that are forbidden
for qubits.

3. The master equation is too involved so as to yield an explicit expression for the decay rate
of the topological order initially present in the code. However, in a short-time regime it is
possible to solve it and find expressions for the decay rates as a function of the dimension
d of the qudits. Interestingly enough, we find that the decay rate for qutrits presents a
crossover temperature Tc that is absent for any other qudits.

4. We can give an explicit proof that for long enough times, the non-local order parameter
representing the topological order in the system decays to zero.

This paper is organized as follows. In section 2, we review the formulation of the master
equation of the 2D Kitaev code for qubits in order to establish the notation and the necessary
tools to study thermal effects in more general toric codes. We also introduce a non-local
order parameter and study the fate of topological orders for two different regimes: the short-
time regime and the long-time regime. In section 3, we find the master equation describing
topological qutrits coupled to a thermal bath. This allows us to see new energy processes
for the anyonic excitations that are not present when the toric code is made up of qubits.
Likewise, the short-time regime has a different behavior that can be seen in the initial decay rate
of the topological order. In particular, we can define a crossover temperature for qutrits where
the decay rate is better than that with other qudits. Section 4 presents the conclusions. See
appendix A for the evolution of the order parameter for qutrits and appendix B for a proof of
the irreducibility of the computational representation of the d-Pauli group needed to study the
master equation in the long-time regime.

2. Thermal stability of the Kitaev two-dimensional (2D) model

We shall not dwell upon the details of Kitaev’s toric code [4]; however, we will introduce the
basic ideas to understand how to apply a thermal stability analysis to it, as well as to establish
the notation and methods. We will consider a k × k square lattice embedded in a 2-torus. Let us
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Figure 1. Square lattice on the torus. The yellow points represent qubits.

attach a qubit, such as a spin 1/2, to each edge of the lattice. So we have N = 2k2 qubits. For
each vertex s and each face p, we denote the stabilizer operators in the following form:

As :=
∏

j∈star(s)

X j , Bp :=
∏

j∈boundary(p)

Z j , (1)

where X j and Z j are the Pauli matrices applied to the qubit on site j . As and Bp commute
among each other for they have either 0 or 2 common edges. They are also Hermitian and have
eigenvalues 1 and −1 (see figure 1). Therefore, they constitute an Abelian subgroup of the Pauli
group of n qubits that is a stabilizer group.

Let H be the Hilbert space of all n = 2k2 qubits and define the topological quantum code
or protected subspace C ⊆H as follows:

C = {|�〉 ∈H : As|�〉 = |�〉, Bp|�〉 = |�〉 for all s, p
}
. (2)

This construction defines a quantum code called the toric code. The operators As and Bp are the
stabilizer operators of this code, i.e. operators that leave trivially invariant the code space. As
we want to analyze the physical properties of this code, in particular the thermal properties of
the topological order, it is convenient to define its associated Hamiltonian in the form

H sys := −
∑

s

As −
∑

p

Bp. (3)

Complete diagonalization of this Hamiltonian is possible since operators As, Bp commute. In
particular, the ground state coincides with the protected subspace of the code C; it is fourfold
degenerate (see figure 2). All excited states are separated by an energy gap �E � 4. This is due
to the fact that the difference between the eigenvalues of As(Bp) is equal to 2. Excitations come
in pairs since they correspond to violations of the plaquette and/or vertex stabilizer operators
and these must comply with the overall constraints

∏
s As = 1 and

∏
p Bp = 1. Thus, excitations

are represented as open strings in the direct or the dual lattice of the original square lattice.
An essential feature of this Hamiltonian is its locality in terms of four-body interactions,

very useful for practical purposes. Another key property is that this Hamiltonian model
is gapped, which led to the initial expectation that all types of ‘errors’, i.e. noise-induced
excitations, will be removed automatically by some relaxation processes. Of course, this
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Figure 2. Schematic spectrum of the toric code Hamiltonian. The ground state is
the code space C where we codify our information.

requires cooling, i.e. some coupling to a thermal bath with low temperature (in addition to the
Hamiltonian (3)), as we shall describe later on. It can be shown that this Hamiltonian is robust
under local quantum perturbations at zero temperature [57]: there would be a level splitting that
will vanish as exp(−ak), where k is the length of the lattice [4].

Due to this unavoidable coupling to a thermal bath, our system is subject to thermal
errors as well. These can be seen as violations on the plaquette and vertex conditions As|�〉 =
|�〉, Bp|�〉 = |�〉. Moreover, As and Bp are unitary, and also Hermitian in the case of qubits.
Therefore, violations on the plaquette and/or vertex condition are given by

As|�〉 = −|�〉, Bp|�〉 = −|�〉, (4)

for a certain number of sites s and/or plaquettes p.
These violations cost energy to our system, thereby becoming excitations. As long as they

always come in pairs (to satisfy the conditions
∏

s As = 1 and
∏

p Bp = 1), they can be seen
(pictorially) as string operators with plaquette or vertex violations at the ends.

Errors on the system can be expressed in terms of operators σ x , σ z or products among
themselves. These operators act on each edge j where the physical qubits are placed. We use
the notation σ x for a Pauli operator of type X when it refers to an error, i.e. a bump operator
acting due to the coupling to the thermal bath. Likewise with σ z. It is just a matter of notation
to distinguish when we have an operator that defines our stabilizer operators in As, Bp and
when we have an error acting on the system. To see what effect they produce, we will see
how the ground state changes by applying these σ x,z. We will see that this corresponds to the
creation, annihilation and movement of a pair of excitations, which from now on we shall refer
to as anyons. These are called anyons since their wave function picks up a different phase than
fermions or bosons when we exchange the end-particles of string operators of x-type with z-
type. According to this notation, when we apply a bump operator from the thermal bath, it will
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act on the ground state of the system as follows:

σ z
j |�〉, (5)

where |�〉 is the ground state of the system where our information is encoded. This means that
the physical qubit at the edge j has been bumped. The energy cost will be �E = 4 in energy
units of the system corresponding to the definition of H sys.

As a first step, one is interested in designing a stable quantum memory, i.e. an N -particle
system that can support at least a single encoded logical qubit for a long time, preferably with
this time growing exponentially with N . This is the notion of stability we shall refer to from
now on. In the paper by Alicki et al [50], they provide a rigorous method to prove thermal
instability of the 2D Kitaev model and obtain a master equation that describes the dynamics
of the system weakly coupled to a thermal environment. We will study the problem of thermal
instability within the framework of topological orders obtaining complementary and interesting
results.

2.1. Davies’ formalism

Let us consider a small and finite system that is coupled to one or more heat baths at the same
inverse temperature β = (kBT )−1, leading to the total Hamiltonian

H = H sys + H bath + V with V =
∑

α

Sα ⊗ fα. (6)

Here H sys represents the Hamiltonian of the system where the quantum information is encoded
and which we want to protect from the external thermal noise. H bath is the bath Hamiltonian,
i.e. it describes the internal dynamics of the bath that is out of our control. Finally, V represents
the coupling between the system and the thermal bath. Sα and fα are operators that act on
the system and bath, respectively. Both the coupling operators Sα and fα are assumed to be
Hermitian (without loss of generality [41]).

In the weak-coupling regime that we shall assume throughout this work, the Fourier
transform ĝα of the auto-correlation function of fα plays an important role, as it describes the
rate at which the coupling is able to transfer energy between the bath and the system [39–42].
Often a minimal coupling to the bath is chosen, minimal in the sense that the interaction part
of the Hamiltonian is as simple as possible but still addresses all energy levels of the system
Hamiltonian in order to have an ergodic reduced dynamics. This last condition is ensured if
[41, 43–46]

{Sα, H sys}′ = C1, (7)

i.e. no system operator apart from those proportional to the identity commutes with all the Sα

and H sys.
The weak-coupling limit [39–42] results in a Markovian evolution for the system given in

the Heisenberg picture by the master equation

dX

dt
= G(X) := iδ(X) +L(X). (8)

The generator of the evolution G(X) is a sum of two terms: the first is a usual
Liouville–von Neumann term as in the quantum mechanics of closed systems, while the second
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|ψ
σzjσxk

Figure 3. Toric code coupled to a heat bath. Outgoing arrows in the upper part
of the figure mean information flowing from the system to the bath, and ingoing
arrows in the lower part mean information flowing from the bath to the system.

is a particular type of the Kossakowski–Lindblad generator:

δ(X) = [H sys, X ], (9)

L(X) =
∑

α

∑
ω�0

Lα ω(X) (10)

=
∑

α

∑
ω�0

ĝα(ω)
{
(Sα(ω))† [X, Sα(ω)] +

[
(Sα(ω))†, X

]
Sα(ω)

e−βω Sα(ω)
[
X, (Sα(ω))†

]
+ e−βω [Sα(ω), X ] (Sα(ω))†

}
. (11)

Here the Sα(ω) are the Fourier components of Sα as it evolves under the system Hamiltonian

eit H sys
Sα e−it H sys =

∑
ω

Sα(ω) e−iωt , (12)

where the ωs are the Bohr frequencies of the system Hamiltonian (h̄ω = E1 − E2, for two energy
levels E1 and E2).

In addition, the temperature of the environment appears in (11) through β, and this
generator is the so-called Davies’ generator [39] or the Born–Markov generator in the quantum
optics literature.

2.2. Master equation for the 2D Kitaev model with qubits

Given the simplicity of Kitaev’s model, we can apply Davies’ theory for studying its stability in
the presence of thermal noise. This is represented pictorially in figure 3.
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The interaction Hamiltonian is assumed to be local and associated with σ x and σ z errors:

V =
∑

j

σ x
j ⊗ f x

j + σ z
j ⊗ f z

j , (13)

where f x
j and f z

j are associated with two different baths. Thus, first of all, we need to compute
the Fourier transform of the system operators eit H sys

σ x
j e−it H sys

and eit H sys
σ z

j e−it H sys
in order to

define the dynamical operators of the system. Here H sys := H0 = −∑
s As − ∑

p Bp, with
[As, Bp] = 0, [As, σ

z
j ] = 0 and [Bp, σ

x
j ] = 0. Thus, stabilizers As only play a role in the Fourier

transform of σ x
j and Bp only in σ z

j . By computing this Fourier transform, we obtain the
dynamical operators of the system due to the coupling to the thermal bath. With � = 4 denoting
the gap of the Toric code Hamiltonian, then the expressions for these operators Sα(ω) that appear
in equation (11) are as follows [50].

1. Operators associated with σ x
j errors:

Sx
j (0) := b0

j = σ x
j R0

j ,

Sx
j (�) := b j = σ x

j R+
j , (14)

Sx
j (−�) := b†

j = σ x
j R−

j ,

with R0
j := 1

2(1 − Bp Bp′) and R±
j := 1

4(1 ∓ Bp)(1 ∓ Bp′) being orthogonal projectors.
2. Operators associated with σ z

j errors:

Sz
j(0) := a0

j = σ z
j P0

j ,

Sz
j(�) := a j = σ z

j P+
j , (15)

Sz
j(−�) := a†

j = σ z
j P−

j (16)

and the projectors: P0
j := 1

2(1 − As As′) and P±
j := 1

4(1 ∓ As)(1 ∓ As′).

These operators have a nice interpretation in terms of anyonic properties of the system.

1. a†
j (b

†
j) creates a pair of anyons of z-type (x-type) on the lattice at position j . See figure 4.

2. a j(b j) annihilates a pair of anyons of z-type (x-type) on the lattice at position j . See
figure 5.

3. a0
j (b

0
j) moves a pair of anyons of z-type (x-type) on the lattice. See figure 6.

Thus, the dissipator of the master equation L(X) for the system is

L(X) = Lz(X) +Lx(X),

Lx(X) =
∑

j

1

2
R(4){(−b†

j b j X − Xb†
j b j + b†

j Xb j) + e−4β(−b j b
†
j X − Xb j b

†
j

+ b j Xb†
j} − 1

2 R(0)[b0
j , [b0

j , X ]],

Lz(X) =
∑

j

1

2
R(4){(−a†

j a j X − Xa†
j a j + a†

j Xa j) + e−4β(−a ja
†
j X − Xa ja

†
j

+ a j Xa†
j } − 1

2 R(0)[a0
j , [a0

j , X ]],

where R(4) and R(0) are the exchange rates between the system and the bath associated with
each Bohr frequency, namely ω = 0, 4, assuming units of J = 1.
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σz

a†

Figure 4. Dynamics induced by the heat bath on the toric code. Creation of a
new pair of anyons. Energy increases by �E = 4.

σz

a

Figure 5. Dynamics induced by the heat bath on the toric code. Annihilation of
a pair of anyons. Energy goes down by �E = 4.

σz

a0

Figure 6. Dynamics induced by the heat bath on the toric code. Pure decoherence
by moving an anyon with no energy change.

2.3. Topological order

We shall study the evolution of the expectation value 〈GS| Xc |GS〉 as a simple order parameter,
where Xc is the tensor product of σ x Pauli operators along one non-contractible loop on
the surface of the torus and |GS〉 denotes a generic ground state of the system Hamiltonian.
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This ground state is a superposition of the degenerate states in the ground state manifold of
H sys, namely C. This gives us a sufficient measure of the topological order of the system [49].
If this quantity falls to zero during the time evolution for every element of C, there is not a
global and self-protected way to encode quantum information. The evolution of the operator Xc

is given by equation (47),

dXc(t)

dt
= iδ[Xc(t)] +L[Xc(t)].

In order to simplify the computation, we remove the free evolution by performing the
transformation

X̃c(t) = e−iH syst Xc(t)e
iH syst . (17)

Since the dissipator is invariant under this transformation, we obtain

dX̃c(t)

dt
= L[X̃c(t)]. (18)

Interestingly, for the expectation value we obtain 〈GS| Xc(t) |GS〉 = 〈GS| X̃c(t) |GS〉, as |GS〉 is
an eigenstate of H sys.

Taking into account expressions (14) and (15), the action of the dissipators on Xc can be
simplified to

Lx(Xc) = −1

2

∑
j

R(�)
(

[R j
+, [R j

+, Xc]] + e−�β[R j
−, [R j

−, Xc]]
)

+ R(0)[R j
0 , [R j

0 , Xc]] (19)

and

Lz(Xc) =
∑

j

R(�)[P j
+ σ z

j Xcσ
z
j P j

+ − P j
+ Xc + e−�β(P j

−σ z
j Xcσ

z
j P j

− − P j
− Xc)]

+ R(0)[P j
0 σ z

j Xcσ
z
j P j

0 − P j
0 Xc],

where we have used the fact that [P j
±,0, Xc] = 0 for every j , as these projectors are only

functions of vertex operators. However, the same assertion is not true for R j
±,0 in general. If

j �∈ c, i.e. j does not belong to the path where Xc is acting on, every element commutes with
each other and their contribution is zero. On the other hand, if j ∈ c, as σ z

j σ
x
j σ

z
j = −σ x

j , the
string operator yields σ z

j Xcσ
z
j = −Xc. Therefore, simplifying we obtain

Lz(Xc) = −�

2
|c|Xc{R(�)[P j

+ + e−�β P j
−] + R(0)P j

0 }, (20)

where |c| is the number of points in the path c.

2.4. Short-time regime

The solution to the master equation (18) is formally written as X̃c(t) = eL(t) Xc. However, this
expression is too involved to be computed analytically except for short and long times to be
specified hereby. In the first case, at lowest order we have

X̃c(t) � (1 + tL)Xc. (21)
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The evolution of 〈GS| Xc(t) |GS〉 is given by

〈X̃c(t)〉 � [1 − 2t |c|R(�)e−�β]〈Xc(0)〉. (22)

To arrive at this equation, we have used the fact that for all j :

P j
+,0 |GS〉 = 0,

P j
− |GS〉 = |GS〉 ,

R j
+,0 |GS〉 = 0,

R j
− |GS〉 = |GS〉 .

Thus, the contribution of Lx is zero:

〈GS|Lx(Xc) |GS〉 = −1

2

∑
j

R(�)e−�β 〈GS| [R j
−, [R j

−, Xc]] |GS〉

= −1

2

∑
j

R(�)e−�β
(
〈GS|[R j

−, Xc]|GS〉 − 〈GS|[R j
−, Xc]|GS〉

)
= 0,

(23)

whereas for Lz, we have

Lz(Xc) = −�

2
|c|R(�)e−�β 〈GS| Xc|GS〉. (24)

Finally, as 〈GS| Xc(t) |GS〉 = 〈GS| X̃c(t) |GS〉, the desired equation valid at short times is

〈Xc(t)〉 �
[

1 − �

2
t |c|R(�)e−�β

]
〈Xc(0)〉, (25)

with � = 4.
It is important to remark that R(0) does not appear in the initial decay rate, as long as short

times are concerned. The diffusion of anyons is a second-order process in time as it requires
first the creation of a pair of anyons with R(�), and later free diffusion with R(0).

2.5. Long-time regime

On the other hand, in order to analyze the thermal properties for long times, we write the Davies
generator in the Schrödinger picture through the relation Tr[L†(ρ)X ] = Tr[ρL(X)] for any X
and ρ. It is a well-known result [39–42] that the Gibbs state is a stationary state for L†,

L†(ρβ) = 0, (26)

where ρβ = e−β H sys
/Z , β is the same to the inverse temperature as the surrounding bath, and

Z := Tr(e−β H sys
) is the system partition function. To guarantee that any initial state of the system

relaxes to ρβ , we can resort to condition (7). In our case this follows from Schur’s lemma as
Sα = σ x

j , σ
z
j and {1, σ x , σ z, σ xσ z} form an irreducible representation of the Pauli group.
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Thus 〈GS| Xc(t) |GS〉 � Tr[Xcρβ] for large t , and we have Tr[Xcρβ] = 0. This is simply
due to the fact that ρβ is diagonal in any of the possible eigenbases of H sys, and it is not difficult
to choose one such that Xc vanish on diagonal elements,

Tr[Xcρβ] = 1

Z

∑
i

e−βλi 〈ψi | Xc |ψi〉 = 0, (27)

for some eigenbases {|ψi〉} of H0, Kitaev’s Hamiltonian.
In conclusion, whatever the initial value of the order parameter 〈Xc(0)〉, it decays to zero

during the time evolution of the system, provided that the temperature is finite. The decay rate at
short times is equal to �

2 |c|R(�)e−�β . Note the detrimental effect of the factor |c|: the larger size
of the system, the higher the decay rate. In order to keep the order parameter above a certain
finite value such that 〈Xc(0)〉 �= 0, this decay rate must decrease, which is not the case when
increasing the system size.

3. The Kitaev 2D model for qudits

In this section, we consider again a 2D toric code, but instead of assuming that we have a two-
level system on each site, we will consider that particles arranged on the torus have d accessible
levels. We will first derive a general theory for qudits and then consider the case d = 3 (qutrits).
A qutrit can be represented, for instance, as a particle of spin 1 or a three-level system in an
atom, etc.

This problem is very interesting since qutrits have certain advantages with respect to qubits.

1. Qutrits have a larger capacity for information storage.
2. Quantum channels are more robust for qutrits. For example, Bell inequalities are proved

with more accurate bounds. This is relevant for quantum key distribution.
3. Entanglement quantum distillation is more efficient with qutrits than with qubits [61].
4. Qutrit logic gates [62] are also capable of providing universal quantum computation, i.e.

the necessary computational power to construct all possible logic gates [8].

To build a system like that, we will try to choose the Hamiltonian and the operators acting
on the system in the same way as before. Previously, for two-level systems, we have considered
the Pauli matrix algebra to be the basis of operators in our system. Now, we have to use a
proper generalization for dimension d. As iX Z = Y gives the second Pauli matrix, it is enough
to consider X and Z in this generalization to quantum states with d multilevels. However,
the generalization of Pauli matrices to dimension d is not unique2. Thus, we shall select the
most important properties of Pauli matrices of dimension 2 for our purpose of quantum error
correction.

In d = 2, we defined a basis: |0〉 , |1〉 in the Fock space of each particle. They are defined
as the eingenstates of the Z Pauli matrix. And the X Pauli matrix takes |0〉 to |1〉 and vice versa.

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

2 Indeed, there are different generalizations for the operators X and Z . What makes simple the generalization of
the toric code to higher dimensions is to keep the action of X and Z on the computational basis to be analogous
to the case of qubits. This implies a specific structure for the anticommutation rule, namely X Z = ωZ X , where
ω is a primitive d-root of unity. Note, for instance, that another common generalization of X and Z , based on the
generators of the Lie algebra su(d), does not fulfill these anticommutation relations.
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Z |0〉 = + |0〉 , Z |1〉 = − |1〉 ,

X |0〉 = + |1〉 , X |1〉 = |0〉 .

The key important properties of these matrices for doing error correction are the following.

• They satisfy a cyclic condition (i.e. applying twice Z or X Pauli matrices is the identity),
i.e. they are unitary.

• They anticommute, which means X Z = −Z X .

Those are the properties that are generalized to the d-dimensional case. Hermiticity is not
taken into account as a basic ingredient, as we can always add the Hermitian conjugate obtaining
a Hermitian operator, e.g. Z̃ = Z + Z †, then Z̃ is Hermitian. Now we consider a basis for the
particle Fock space: |0〉 , |1〉 , . . . , |d − 1〉, which will be the eingenvectors of the generalized Z
matrix with a certain eingenvalue. We define X as the operator which takes the state |0〉 to |1〉,
then |1〉 to |2〉 and so on. We will also ask for a cyclic condition as in the previous case:

Xd = 1, Z d = 1. (28)

All these requirements can be cast on to the following defining relations:

Z |0〉 = + |0〉 , Z |1〉 = ω |1〉 , Z |2〉 = ω2 |2〉 , . . . , Z |d − 1〉 = ωd−1 |d − 1〉 ;
X |0〉 = + |1〉 , X |1〉 = |2〉 , . . . , X |d − 1〉 = |0〉 . (29)

Looking at equation (29) we can deduce the meaning of operators X and Z . X is the
displacement operator in the computational basis (i.e. in the Fock space basis of the physical
qudits). Z is the dual operator of X under a discrete Fourier transform. In other words, Z
is diagonal in the computational basis and its eingenvalues are the weights of the Fourier
transform. Thus, X plays the role of the displacement operator and Z is the dual operator on a
system with discrete states of qudits [8].

Due to the cyclic condition (28) of Z (Zd = 1), we have the relation ωd = 1 where, in
general, ω is a complex number. This implies that ω is a primitive d-root of unity,

ω = ei(2π/d). (30)

Additionally, we can easily verify that Z X = ωX Z , as follows from equation (29).
We have already the algebra of operators that we are going to use in order to built the

stabilizer operators on this qudit toric code. The problem is that if we construct the vertex and
plaquette operators as before, namely,

As =
∏

j∈star(s)

X j , Bp =
∏

j∈boundary(p)

Z j , (31)

then [As, Bp] �= 0 for all s and p. They commute with each other provided that they do not share
any common edge, but that is not the case if they share two. This happens because in this case
the operators X and Z are no longer Hermitian.

As shown in figure 7, we have

[As, Bp] = [X1 X2 X3 X4, Z3 Z4 Z5 Z6] = (1 − ω2)As Bp, (32)

which does no vanish for dimension d > 2, (1 − ω2) �= 0. The case of d = 2 is a very special
case with ω = −1 and therefore (1 − ω2) = 0. This happens because for d = 2, X and Z are
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Figure 7. New lattice for qudits showing vertex As and plaquette Bp operators:
orientation of the lattice is necessary.

Hermitian operators. We need to think of another way to define our operators to have the same
commutation rules as before, and this leads to defining an orientation on the lattice. This is
shown in figure 7. Defining an orientation on the lattice is a direct consequence of the non-
Hermiticity of operators X and Z .

Using the orientation of the lattice, we define the stabilizer operators in the following way.
To build the vertex operators As we assign an operator X or X−1 depending on the arrows of
the edges of the lattice. If an arrow is pointing towards the vertex j , we will use X−1

j to build
As, and if the arrow is pointing out another vertex, we use X j . For plaquette operators Bp, Zk is
taken if the arrow is pointing clockwise and Z−1

k for anti-clockwise, as shown in figure 7. To
see now that we obtain the correct commutation rule, we look again at figure 7 and check,

[As, Bp] = [X−1
1 X2 X−1

3 X4, Z−1
3 Z6 Z5 Z−1

3 ] = (1 − ωω−1)As Bp = 0. (33)

Then, the Hamiltonian could be written as follows:

Haux := −
∑

s

As −
∑

p

Bp. (34)

Although, according to the definition of As and Bp, this operator is unitary, it is important to note
that the operators As and Bp are no longer Hermitian, so Haux is no longer Hermitian. However,
we may redefine the Hamiltonian in the following way:

H sys := 1
2(Haux + H †

aux), (35)

where H sys is Hermitian now. The effect that H †
aux has in the system is a redefinition of the

orientation on the lattice. So we have a superposition of a lattice orientated in the way of
figure 7 (arrows up and right) and another with arrows down and left. Nevertheless, one can
always think in terms of Haux for the pictorial image and then use H sys to compute energies and
derive equations.

3.1. The anyon model

The theory developed above was done for the general case of qudits. From now on and
to be concrete concerning thermal effects, we will focus on the case where d = 3 (qutrits).
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Later on we will be able to extract conclusions for qudits as well. There are still many
important aspects to be studied about this model and its coupling to a thermal bath. We need to
compute the energy gap of the Hamiltonian, i.e. the energy difference between the ground state
where the code lies and the excited states which represent the errors. It is also important to
calculate the anyon statistics, as long as they are associated with the excitations of a topological
system with qutrits.

At d = 3, the phase factors are ω = ei(2π/3), ω2 = ei(4π/3), ω3 = 1. We will see, for this
particular case, how excitations can be created, moved and annihilated. This will give us the
properties of the anyon model that is going to be associated with the group Z3.

As before, we use a notation in which σ z
j = Z j and σ x

j = X j , except that we use the symbol
σ to denote errors acting on the system, i.e. bump operators acting because of the coupling to
the thermal bath, whereas we shall use X, Z for the Hamiltonian interactions defined by the
vertex and plaquette operators of H sys.

Errors on the system can be expressed in terms of operators σ x , σ z or products containing
them, and acting on each edge j where the qutrits are placed. And the same goes for σ z. To
see what effect these errors have on the system, we will see how the ground state changes
by applying σ x,z. We will see that this corresponds to processes in which anyons are created,
annihilated or moved throughout the torus.

Let us see what happens when we bump a qutrit in a position j from the outside and then
act with the Hamiltonian Haux,

Hauxσ
z
j |ψ〉.

Note that every operator of the Hamiltonian commutes with this σ z
j except two As operators

which share a leg with this qubit j . But, contrary to the case of d = 2, there is an orientation
defined on the lattice. So, for instance, if an error (σ z

j ) occurs in a certain vertical edge, one of
these As (the one below) is defined with an X j , thus:

Asσ
z
j |ψ〉 = ω−1σ z

j As |ψ〉 = ω2σ z
j |ψ〉 , (36)

but the As′ above the edge is defined with X−1
j , then:

As′σ z
j |ψ〉 = ωσ z

j As′ |ψ〉 = ωσ z
j |ψ〉 . (37)

Hence, we have two violations of the vertex condition, one with charge ω and the other with ω2.
This is one of the two types of anyons that we will have in this system, and we shall denote it as
an ω2–ω anyon. It is important to point out that these are only labels to classify the excitations
based on the violations of the operator As (and Bp). In principle, we could classify anyons based
on the violation of stabilizers A−1

s (and B−1
p ) that appears in H †

aux. It is just a matter of labeling;
the physics is the same.

Now we can act with σ z
j again and obtain the other anyon type called ω–ω2. Actually, they

could be considered as the same anyon type as before but with opposite orientation. However,
it is convenient to define them as two types of anyons as they will have different braiding
properties. Moving anyons of the same type around each other will be different from the case
of having anyons of different types. Likewise, it will be necessary to have anyons of different
types in order to have fusion of anyons without annihilation. We shall explain this in the next
subsection in more detail.

Note that acting twice with σ z
j is equivalent to acting with (σ z

j )
−1. Thus, although every

error can be expressed in terms of X and Z operators, it will be useful to think sometimes as if

New Journal of Physics 14 (2012) 033044 (http://www.njp.org/)



176 TESIS. SERIE INGENIERÍA, MATEMÁTICAS, ARQUITECTURA Y FÍSICA

17

σz

σz σz
σz

σx

σx

σx

ω

ω

ω2

ω2

>>>>>

>>

>

>

>>>

>
> > >

>>

>> >>

>>>

σσσσσ

σσσσσσ

Figure 8. Anyons of type x (red) on the direct lattice. Anyons of type x (green)
on the dual lattice.

we act with either X, Z or X−1, Z−1. All these arguments are exactly the same in the case of Bp

operators and σ x errors. Therefore, we have four types of anyons, two of plaquette type and two
of vertex type.

Let us study now the braiding of the anyons. We will consider two chains of different types:
plaquette anyon and vertex anyon (as in figure 8). In this case, we get something remarkably
different from the d = 2 case. Now it is not the same to let one anyon remain still and move the
other around it as it is to do it the other way around. Thus, let us move particles around each
other. For example, let us move an x-type particle around a z-type particle (see figure 9). Then,

|�initial〉 = Sz(t) |ψ x(q)〉, |�final〉 = Sx(c) Sz(t) |ψ x(q)〉 = ω2|�initial〉,
because Sx(c) and Sz(t) cross each other on just one qutrit satisfying the relation

X Z = ω2 Z X

and Sx(c)|ψ x(q)〉 = |ψ x(q)〉. We see that the global wave function, i.e. the state of the entire
system, acquires the phase factor ω2. Nonetheless, if the operation is the opposite, i.e. if we
move a z-type particle around a x-type particle, then

|�initial〉 = Sx(q) |ψ z(t)〉, |�final〉 = Sz(c) Sx(q) |ψ z(t)〉 = ω|�initial〉,
since Sx(q) and Sz(c) cross each other just on one qutrit again satisfying the relation

Z X = ωX Z (38)

and Sz(c)|ψ z(t)〉 = |ψ z(t)〉. We see that the global wave function acquires now the phase
factor ω.
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Figure 9. Anyons of type Z (red) on the direct lattice attached to a string t .
Anyons of type x (green) on the dual lattice associated with a string q. The
x-type particle moves around a z-type particle on a closed string c.

Thus, we arrive at a very important novelty for qutrits that is different from the case when
we dealt with qubits in two aspects.

1. The phase that the anyon picks up is different from −1.

2. The phase depends on the orientation in which the braiding close path is traversed.

3.2. New anyon energy processes

First of all, let us look at the gap of the Hamiltonian. We will reach our first excited state by
applying a σ z or σ x operator to the ground state. Let us see what is the energy difference between
the ground state and the first excited state. Remember that 2H sys = Haux + H †

aux. We denote by
P and S the number of plaquette and vertex operators, respectively, with P + S = N being the
number of qutrits in the lattice, and {l, l ′} are the adjacent vertices of the site of a qutrit j :

H |ψ〉 = 1

2

{
−

∑
s

As −
∑

p

Bp + h.c.

}
|ψ〉 = −(P + S) |ψ〉 , (39)

Hσ z
j |ψ〉 = 1

2

{
−

∑
s

As −
∑

p

Bp + h.c.

}
σ z

j |ψ〉 = −(P + S − 2)σ z
j |ψ〉 − 1

2
(Alσ

z
j |ψ〉

−Al ′σ
z
j |ψ〉 + A†

l σ
z
j |ψ〉−A†

l ′σ
z
j |ψ〉) =−(P + S−2)σ z

j |ψ〉−ω2σ z
j |ψ〉−ωσ z

j A†
l ′ |ψ〉

= −(P + S − 2 + ω + ω2)σ z
j |ψ〉 = −

(
P + S − 2 + 2 cos

2π

3

)
σ z

j |ψ〉

= −(P + S − 3)σ z
j |ψ〉 .

New Journal of Physics 14 (2012) 033044 (http://www.njp.org/)



178 TESIS. SERIE INGENIERÍA, MATEMÁTICAS, ARQUITECTURA Y FÍSICA

19

ωω2

>>>>> >>>
ω2ω

ωω2

>>>>> >>>
ω2ω

>

σz

ωω2

>>>>>

ωω2

>>>>>

>

σz

Figure 10. (1) Fusion of anyons (ending tied, not annihilated). (2) Movement of
an anyon. We plot just one dimension as long as the rest of the lattice is irrelevant,
i.e. the process is the same everywhere.

Thus, the energy difference is

�E = 3.

The action of σ x produces the same energy increment but we have to do the commutation
with the operators Bp.

This calculation can be easily extended to the case of qudits with arbitrary d, obtaining the
gap equation

�E = �d = 2

(
1 − cos

2π

d

)
. (40)

Note that there is a reduction of the energy gap for d = 3 in comparison with the case of
qubits, where it was 4. It is also important to point out that if we act again on the same bond
of the lattice with (σ z)−1, there would be an energy reduction of the same amount of energy.
Moreover, if at the endpoint of an anyon ω — ω2 we act with σ z, we obtain the same pair of
anyons again, and the same energy, but longer (see figure 10.(2)). In this process, the energy is
preserved, �E = 0. This means that there is no energy exchange between the thermal bath and
the system. We can understand the process as a diffusion of the anyon with no energy cost. In
analogy to the case d = 2, this is what is called moving an anyon. It is also important to remark
that for qutrits, all processes that involve moving a simple pair of anyons still have no energy
cost.

Until now, there is a complete analogy with the case of d = 2. But we are going to see now
a process that only occurs at d > 2. Imagine that there have been two excitations on the system,
and two anyons of opposite orientation have been created. Moreover, they are separated by just
one vertex operator. The situation is plotted in figure 10.(1).
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Imagine that we act now with a σ z on the bond, which is error-free, that links the anyons
ω2—ω and ω—ω2 (opposite orientation). Let us analyze the energy process.

H
∣∣ψ ′〉 = −1

2

(
−

∑
s

As −
∑

p

Bp

) ∣∣ψ ′〉 + h.c. = −(P + S − 6) |ψ〉 ,

Hσ z
j

∣∣ψ ′〉 = −1

2

(
−

∑
s

As −
∑

p

Bp

)
σ z

j

∣∣ψ ′〉 + h.c. = −1

2
(P + S − ω − ω − ω2ω2)σ z

∣∣ψ ′〉

−1

2
(P + S − ω2 − ω2 − ωω)σ z

∣∣ψ ′〉 = −
(

P + S − 6 +
3

2

)
σ z

∣∣ψ ′〉 , (41)

so the energy difference is

�E = −3/2.

What has occurred is that two anyons have been tied together, but not annihilated. This
process lowers the energy of the system by a smaller amount than the process of annihilation. If
in this situation we would act with a (σ z

j )
−1 on the point where the two pairs of anyons are tied

together, the two anyons would split apart, and this process would cost energy �E = 3/2. This
could be analyzed exactly the same way with σ x errors and Bp operators.

It is remarkable that this phenomenon cannot happen at d = 2, as at d = 2 the product
ωω = (−1)(−1) = 1. Therefore, d = 3 is the first nontrivial case to have processes like these in
a toric code with qudits.

3.3. Master equation for topological qutrits

As we have seen, all these processes are generated by the action of operators σ z, (σ z)2 and
σ x , (σ x)2; as in this case, the square of the Pauli operators is their Hermitian conjugate.
Nevertheless, the energy exchange depends on the situation of the system when we bump it with
the thermal bath from outside. Before writing the master equation that describes the dynamics
of the system, it will be useful to distinguish between these situations by local projectors. The
answer to the question whether this is possible or not in this case is not trivial. However, we
show that it is possible to classify into groups of processes that have the same energy gain from
the bath. Furthermore, they could be distinguished by certain projection operators that only
involve two adjacent vertex or plaquette operators.

We arrive at the following classification:

1−−−1 P j
++ = 4A(1)

α=+1(s)A
(1)

α=−1(s)A
(1)

α=+1(s
′)A(1)

α=−1(s)

ω−−−1 P j
+(1) = 8A(2)

α=0(s, s ′)A(2)

α=+1(s, s ′)�A(s, s ′)�A†(s, s ′)A(1)

α=−1(s)A
†(1)

α=−1(s)

1−−−ω P j
+(2) = 8A(2)

α=0(s, s ′)A(2)

α=+1(s, s ′)�A(s, s ′)�A†(s, s ′)A(1)

α=−1(s)A
†(1)

α=−1(s)

ω2−−−1 P j
0(1) = 8A(2)

α=0(s, s ′)A(2)

α=−1(s, s ′)�A(s, s ′)�A†(s, s ′)A(1)

α=+1(s
′)A†(1)

α=+1(s
′)

1−−−ω2 P j
0(2) = 8A(2)

α=0(s, s ′)A(2)

α=−1(s, s ′)�A(s, s ′)�A†(s, s ′)A(1)

α=+1(s)A
†(1)

α=+1(s)

ω−−−ω P j
0(3) = 8A(2)

α=0(s, s ′)A(2)

α=−1(s, s ′)A(1)

α=+1(s)A
†(1)

α=+1(s)A
(1)

α=+1(s
′)A†(1)

α=+1(s
′)
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Figure 11. (1) Initial state 1—1 ⇒ Final state ω2—ω. (2) Initial state ω2—ω ⇒
Final state ω—ω2. This is an example of what happens to the topological charges
when there is a bump from the thermal bath outside. The first one the energy gain
is �E = 3. The second one �E = 0.

ω2−−−ω P j
−(1) = 8A(2)

α=+1(s, s ′)A(2)

α=−1(s, s ′)�A(s, s ′)�A†(s, s ′)A(1)

α=+1(s
′)A†(1)

α=+1(s
′)

ω−−−ω2 P j
−(2) = 8A(2)

α=+1(s, s ′)A(2)

α=−1(s, s ′)�A(s, s ′)�A†(s, s ′)A(1)

α=+1(s)A
†(1)

α=+1(s)

ω2−−−ω2 P j
−− = 8A(2)

α=0(s, s ′)A(2)

α=+1(s, s ′)A(1)

α=−1(s)A
†(1)

α=−1(s)A
(1)

α=−1(s
′)A†(1)

α=−1(s
′)

(42)

In this table, we have represented all combinations of two adjacent topological charges. In
the first column, we depict a representation of the different types of anyons, with two topological
charges attached at their ends and linked by a dash. Correspondingly, all these anyons have an
intrinsic orientation. At the left side of the dash there is the eigenvalue of the operator As and
at the right side, the eigenvalue of the adjacent operator A′

s. A physical qutrit j would be in the
middle of the dash (see the example in figure 11). In the second column, we write the projector
that gives 1 for that situation and 0 for the others.

Here we have defined the following operators in order to simplify the notation:

A(1)

α=0,+1,−1(s) := (1 − ωα As),

A(2)

α=0,+1,−1(s, s ′) := (1 − ωα As A′
s),

�A(s, s ′) :=A(1)

α=0(s
′) −A(1)

α=0(s),

where s and s ′ are the two vertexes surrounding the qutrit j . The index α takes values on the
exponent of the phases ω that appear from the braiding processes. These projectors tell us which
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charges of the system surround a certain qutrit. That is why they are local projectors. Moreover,
it is easy to verify that they form a set of orthogonal projectors:

∑
α

P j
α = 1,

P j
α = P j†

α ,

(P j
α )2 = P j

α .

As we have already explained, we classify the situation of the system in terms of the charges
according to the eingenvalues of the operators As associated with the part of the Hamiltonian
Haux. One could do the same thing for A−1

s , but the situation of the system will be the same
independently of the label we assign them. So these projectors can discriminate perfectly
between eigenstates of the Hamiltonian H sys.

Now, given a certain state of the system |ψ ′〉, by applying these projectors we can figure out
which situation we have. This means that if an operator σ z or σ x (or their Hermitian conjugate)
is going to act on our system, we will know which energy process is bound to happen. Based on
this, and studying the different situations that we can encounter, one can define a set of operators
that tells us whether an anyon has been moved, created, annihilated or fused when we apply the
generalized Pauli operators (as we did in figure 10). This is done by analyzing the initial and the
final state after the action of a bump operator and seeing which would be the energy after and
before the process, as shown in figure 11. Therefore, we have:

a(1)†
j := σ z

j P j
++ + (σ z

j )
−1 P j

++,

a(1)

j := (σ z
j )

−1 P j
−(1) + σ z

j P j
−(2),

a(2)†
j := (σ z

j )
−1 P j

+(1) + σ z
j P j

+(2) + σ z
j P j

0(1)(σ
z
j )

−1 P j
0(2), (43)

a(2)

j := (σ z
j )

−1 P j
0(3) + σ z

j P j
0(3) + σ z

j P j
−− + (σ z

j )
−1 P j

−−,

a0
j := σ z

j P j
+(1) + (σ z

j )
−1 P j

+(2) + σ z
j P j

0(2)(σ
z
j )

−1 P j
0(1) + σ z

j P j
−(1) + (σ z

j )
−1 P j

−(2).

Here the upper indices of operators a j are related to the energy cost of the process.

• a(1)†
j creates a pair of anyons of z-type and a(1)

j annihilates it. The energy cost is �E = 3.

• a(2)†
j and a(2)

j are related to the process of fusion or separation, respectively, of anyons as in
figure 10.(1) and also to the process of creation (and annihilation) of a pair of anyons tied
to a previous pair. The energy cost is �E = 3

2 .

• a0
j moves anyons and also it can invert the orientation of a pair of anyons (as in figure 11.(2).

There is no energy cost in these processes.

For the plaquette operators Bp we proceed in the same way, obtaining a similar result.
The corresponding local projectors that we denote as R j are built analogously just by changing
As for Bp, where p and p′ are the adjacent plaquettes to the qutrit j . Then the operators that
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describe the analogous process for x-type anyons are

b(1)†
j := σ x

j R j
++ + (σ x

j )
−1 R j

++,

b(1)

j := (σ x
j )

−1 R j
−(1) + σ x

j R j
−(2),

b(2)†
j := (σ x

j )
−1 R j

+(1) + σ x
j R j

+(2) + σ x
j R j

0(1)(σ
x
j )

−1 R j
0(2),

b(2)

j := (σ x
j )

−1 R j
0(3) + σ x

j R j
0(3) + σ x

j R j
−− + (σ x

j )
−1 R j

−−,

b0
j := σ x

j R j
+(1) + (σ x

j )
−1 R j

+(2) + σ x
j R j

0(2)(σ
x
j )

−1 R j
0(1) + σ x

j R j
−(1) + (σ x

j )
−1 R j

−(2).

(44)

Some of these operators are associated with more than one projector, unlike for qubits. That is
because for three-level systems, the possibilities for different excitation scenarios have grown
significantly.

As we have seen in the previous section, these operators arise naturally as the Fourier
transform of the interaction Hamiltonian when a thermal bath is weakly coupled with our
system,

eit H sys
Sα e−it H sys =

∑
ω

Sα(ω) e−iωt . (45)

In this case, the interaction Hamiltonian will be of the form

V =
∑

α

Sα ⊗ fα =
∑

j

σ z
j ⊗ f z

j + (σ z
j )

−1 ⊗ ( f z
j )

† + σ x
j ⊗ f x

j + (σ x
j )

−1 ⊗ ( f x
j )†, (46)

and it is quite important to remark that there are only three Bohr frequencies this time,
ω = 0, ± 3

2 , ±3.
We can check that the dynamical operators obtained are indeed compatible with this

interaction potential as
∑

α Sα = ∑
α Sα(ω). In our case, it is trivial to check:

σ z
j + (σ z

j )
−1 =

∑
n

an
j ,

σ x
j + (σ x

j )
−1 =

∑
n

bn
j ,

with n = 0, 1, 2, using equations (44) and (45).
Moreover, [H, an] ∝ an, based on the fact that H sys is made of stabilizers, which at most

introduces a phase when they are applied to states ai |φ〉. Thus, As(Bp)ai |φ〉 ∝ ai |φ〉 and
ai As(Bp) |φ〉 ∝ ai |φ〉; therefore [H, ai ] ∝ ai , ∀ai a dynamical operator of our system. With this
proviso, the Davies generator turns out to be given by

dX

dt
= G(X) = iδ(X) +L(X), (47)
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with

δ(X) = [H sys, X ] = 1
2 [Haux + H †

aux, X ],

L(X) = Lz(X) +Lx(X),

Lx(X) =
∑

j

1

2
R(3){(−b(1)†

j b(1)

j X − Xb(1)†
j b(1)

j + 2b(1)†
j Xb(1)

j ) + e−3β(−b(1)

j b(1)†
j X − Xb(1)

j b(1)†
j

+2b(1)

j Xb(1)†
j )} + 1

2 R(3/2){(−b(2)†
j b(2)

j X − Xb(2)†
j b(2)

j + 2b(2)†
j Xb(2)

j )

+e− 3
2 β(−b(2)

j b(2)†
j X − Xb(2)

j b(2)†
j + 2b(2)

j Xb(2)†
j )} − 1

2 R(0)[b0
j , [b0

j , X ]],

Lz(X) =
∑

j

1
2 R(3){(−a(1)†

j a(1)

j X − Xa(1)†
j a(1)

j + 2a(1)†
j Xa(1)

j ) + e−3β(−a(1)

j a(1)†
j X − Xa(1)

j a(1)†
j

+2a(1)

j Xa(1)†
j )} + 1

2 R(3/2){(−a(2)†
j a(2)

j X − Xa(2)†
j a(2)

j + 2a(2)†
j Xa(2)

j )

+e− 3
2 β(−a(2)

j a(2)†
j X − Xa(2)

j a(2)†
j + 2a(2)

j Xa(2)†
j )} − 1

2 R(0)[a0
j , [a0

j , X ]]. (48)

3.4. Topological order

Similarly to the case of qubits, we will study the evolution of the expectation value 〈GS| Xc |GS〉,
where Xc is the tensor product of σ x generalized Pauli operators (d = 3) along a non-
contractible loop, and |GS〉 denotes a certain ground state in the stabilizer subspace; namely,
a superposition of the degenerate states in the ground state manifold of H sys.

In the weak-coupling limit, the master equation that describes the dynamics of this quantity
is

dXc(t)

dt
= i[H sys, Xc(t)] +L[Xc(t)]. (49)

In order to simplify the calculation, we remove the free evolution part of the equation

X̃c(t) = e−iH syst Xc(t)e
iH syst �⇒ dX̃c(t)

dt
= L[X̃c(t)], (50)

both the dissipator L and the mean value 〈GS| Xc |GS〉 being invariant under this transformation.

3.5. Short-time regime

In the short-time regime, we can approximate X̃c(t) � (1 + tL)Xc; here we denote Xc := Xc(0).
Thus, the evolution of 〈GS| Xc(t) |GS〉 is

〈X̃c(t)〉 � 〈GS| Xc |GS〉 + t 〈GS|L(Xc)|GS〉. (51)

We need to calculate 〈GS|L(Xc) |GS〉, with L(Xc) = Lx(Xc) +Lz(Xc). This calculation is
done in appendix A, obtaining

〈GS|L(Xc) |GS〉 = −�

2
R(�)e−�β |c| 〈GS| Xc|GS〉. (52)

Hence, we can define � := �

2 R(�)e−�β |c| as the initial decay rate of the system. For qutrits,
� = 3, while for qubits (see equation (25)) we have obtained an analogous expression but with
� = 4 instead.
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This result can be generalized for the case of qudits with arbitrary d. We have already seen
that, at short times, only the creation of anyons contributes to the decay of topological order. The
free diffusion of anyons and the fusion processes among them will not appear as they are second
order processes in time. However, as we increase d there are more types of anyons with different
energies. Moreover, a pair of anyons should always be compatible with the conditions

∏
s As = 1

and
∏

p Bp = 1. That means that the possible types of anyons with different energies are of the
form ωn − ωd−n with n = 1, . . . , � d

2 �, and respective energies �n = 2(1 − cos 2πn
d ). Note that

n = 1 refers to the lowest energy pair of anyons, i.e. the energy gap of the Hamiltonian. Thus,
the initial decay rate has to be the sum of all these contributions:

�d =
� d

2 �∑
n=1

�n

2
|c|R(�n)e

−�nβ. (53)

It is important to point out that in the case of qudits, an analogous expression for the interaction
with the environment to (13) involves Sα = σ x , (σ x)2, . . . , (σ x)d−1, σ z, (σ z)2, . . . , (σ z)d−1. All
nontrivial powers of σ x and σ z are included to allow for excitations of physical qudits from one
level to another, at first order in time.

Using equation (53) it will be possible to establish a crossover temperature Tc as the limit
for which the initial decay rate � will be larger for qubits than for qudits. For the sake of
comparison, we take R(�n) the same for qubits and qudits. This is reasonable since �n are
of the same order, and R(�n) are the Fourier transforms of the bath coupling that induces
the excitations on the physical qudits. Thus, we set up the condition �d(Tc) := �2(Tc). Using
equation (53) we arrive at the following expression:

4 =
� d

2 �∑
n=1

�ne−(�n−4)β >

� d
2 �∑

n=1

�n, (54)

as �n < 4 for d > 2, ∀n. Therefore, this equation only has a solution for such values of d

satisfying
∑� d

2 �
n=1 �n < 4. But, this is only true for d = 3. Thus, there exists only such a Tc for

qutrits. For other values of d, the initial decay rate for qudits will always be larger than for
qubits. This happens as

∑
n �n increases almost linearly with d, and d = 3 is the only case

when this quantity is smaller than 4, i.e. the gap in the case of qubits. Let us now compute Tc

for qutrits:

3E0 e−3E0βc = 4E0 e−4E0βc, (55)

with E0 being the natural energy unit of the system. This leads to the following crossover
temperature:

Tc = E0

kB ln 4
3

. (56)

The meaning of this temperature is the following. Above this temperature Tc, the initial decay
rate for qutrits is smaller than that for qubits, something that makes qutrits better in this
comparison. For E0 ∼ 100 kHz used in the proposal of a Rydberg quantum simulator [63] for
the operators of the 2D toric code, we obtain an estimate of Tc ∼ 20 µK.

In addition, it could be computed a Tc comparing systems with d odd and (d − 1) even.
There is always a temperature above which the system of qudits with d odd has a lower initial
decay rate than the previous (d − 1) even.
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It is also important to point out that � is only the initial decay rate. It is possible that the
dynamics of anyons, with free diffusion, etc, play an important role in the loss of topological
order. Beyond short times, our conjecture is that the new processes that appear in the case of
qutrits, i.e. fusion of anyons that end tied up, will be an obstacle to the free diffusion of anyons.
This would represent an improvement for the stability of the generalized toric code in some
intermediate time regime for this is the cause of the loss of topological order in the system.

3.6. Long-time regime

Now we want to study the master equation (49) in the opposite time regime. We are interested
in the fate of the non-local order parameter we are using to describe the topological order in
a system of qudits in a generalized toric code. We conjecture that the final state will be given
by a thermal Gibbs state. To show that our observable for the order parameter 〈Xc〉 approaches
the expectation value of Xc in the Gibbs state for times long enough, we resort again to the
condition (7). In the generalized case, it reads as

{σx , σ
2
x , . . . , σ d−1

x , σz, σ
2
x , . . . , σ d−1

z }′ = C1, for any d. (57)

This is due to the fact that if some generic operator, say A, commutes with every element
of the set {σx , σ

2
x , . . . , σ d−1

x , σz, σ
2
x , . . . , σ d−1

z }, so does it with every element of the d-Pauli
group. This follows from the Jacobi identity and the fact that σzσx = ωσxσz. Therefore, given
the irreducibility of the computational representation of the d-Pauli group (the technical details
of this proof are given in appendix B), the condition (57) holds.

With this result, we may obtain the behavior in the long-time regime

〈Xc(t → ∞)〉 = Tr(Xcρ(t → ∞)) = 1

Z

∑
i

e−βλi 〈ψi | Xc |ψi〉 = 0, (58)

which implies that the topological order is also destroyed for qudits in the generalized toric code
when times of interaction with a thermal bath are long enough.

Now, let us summarize and combine the results for both time regimes, i.e. short- and
long-time behaviours. We have proved that at short times the global order parameter we are
considering behaves as

〈Xc(t)〉β = e−�t〈Xc(0)〉, (59)

with � = �

2 R(�)e−�β |c| and � = 3 for qutrits. We have also shown that there exits a crossover
temperature Tc above which the initial decay rate for qutrits is smaller than for qubits.
Furthermore, we have shown this event only occurs in the case of qutrits, as for other values
of d, the initial decay rate is always larger than for qubits. On the other hand, far from this
initial short-time regime, the topological order of the system decays to zero for long enough
times.

4. Conclusions

We have introduced the basic concepts of the 2D Kitaev model for qubits as well as a
generalization of the code for qudits, i.e. d-level systems with the main purpose of studying
its decoherence properties due to thermal effects. To this end, we have coupled these systems to
thermal baths in order to study the thermal stability within a quantum open system’s formalism,
namely Davies’ theory.
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The generalization of the toric code leads to new physics. Indeed, we have specialized
for the case of qutrits and obtained very interesting results. First of all, new Abelian anyons
have arisen with novel braiding properties, i.e. new statistics by exchange of particles. For
instance, let us move a pair of anyons around another pair that stays still. We would pick up a
different phase, letting the first pair remain still and moving the other one around. Furthermore,
new energy processes appear which are forbidden for qubits, d = 3 being the first nontrivial
system where these new processes can be observed. Moreover, we present a master equation
that describes the dynamics of any observable of the system coupled to a thermal bath, giving a
complete description of the problem.

We have proposed a new way to study thermal stability regarding the loss of topological
order in the system. At short times, the system starts losing its order with a certain decay rate
that we are able to compute explicitly. We have checked that the system relaxes to the thermal
state for any value of d, as expected. However, we have proved that above a certain crossover
temperature, the initial decay rate for qutrits is smaller than in the original case for qubits.
Surprisingly, this behavior only happens with qutrits and not with other qudits with d > 3.

It would be very interesting to be able to generalize this study further to other topological
codes [64–70] coupled to thermal baths by deriving appropriate master equations for them.
Other challenges in this direction are to study thermal effects with non-Abelian topological
codes [71–77], higher-dimensional codes [12, 78–88] and systems with topological order based
on two-body interactions [89–92], instead of many-body interactions in the Hamiltonian. This
would facilitate the physical simulation of these topological quantum models [63, 93–99].
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Appendix A. Evolution of the order parameter for qutrits

In order to compute 〈GS|L(Xc)|GS〉 (with L(Xc) = Lx(Xc) +Lz(Xc)), we need the expressions
for the system operators that appear in equation (48) which were defined previously in
equations (44) and (45). These operators are expressed in terms of some orthogonal projectors
whose definition is given in equation (42). However, there are only two projectors that are
relevant here, namely

P j
++ |GS〉 = |GS〉 and R j

++ |GS〉 = |GS〉 , (A.1)

as the rest of them vanish when acting on the ground state. Remember that P j are the projectors
associated with the stabilizers As and R j with stabilizers Bp. Moreover, we have

b(1)

j |GS〉 = 0, b(2)

j |GS〉 = 0, b(2)†
j |GS〉 = 0, b(0)

j |GS〉 = 0. (A.2)

Thus, after doing some simplifications on equation (48):

〈GS|Lx(Xc)|GS〉 = R(�)

2
e−�β

∑
j

〈GS|(2b(1)

j Xcb
(1)†
j − b(1)

j b(1)†
j Xc − Xcb

(1)

j b(1)†
j )|GS〉

= 2|c| 〈GS| (σ x
j + (σ x

j )
−1)Xc |GS〉 = 0, (A.3)
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as Xc |GS〉 ∝ |GS〉 but σ x
j |GS〉 is orthogonal to |GS〉, and we have used the fact that [P j

±,0, Xc] =
0 for every j , as these projectors are only functions of vertex operators. This is not true for R j

±,0

if j ∈ c, i.e. j belongs to the path where Xc is acting on. In that case, since σ z
j σ

x
j (σ

z
j )

−1 = ωσ x
j ,

we obtain σ z
j Xc(σ

z
j )

−1 = ωXc for the string operator. In addition, by making use of

a(1)

j |GS〉 = 0, a(2)

j |GS〉 = 0, a(2)†
j |GS〉 = 0, a(0)

j |GS〉 = 0, (A.4)

the result for 〈GS|Lz(Xc) |GS〉 turns out to be

〈GS|Dz(Xc) |GS〉 = R(�)

2
e−�β

∑
j

〈GS| (2a(1)

j Xca
(1)†
j − a(1)

j a(1)†
j Xc − Xca

(1)

j a(1)†
j ) |GS〉

= R(3)

2
e−3β

∑
j

〈GS| (σ z
j + (σ z

j )
−1)Xc(σ

z
j + (σ z

j )
−1) |GS〉 − 〈GS| P j

++ Xc |GS〉

−1

2
〈GS| P j

++(σ
z
j + (σ z

j )
−1)P j

++ Xc |GS〉 − 〈GS| Xc P j
++ |GS〉

− 〈GS| Xc P j
++(σ

z
j + (σ z

j )
−1)P j

++ |GS〉

= R(3)

2
e−3β

∑
j

δ j �∈c(〈GS| (2 + σ z
j + (σ z

j )
−1)Xc |GS〉 − 〈GS| Xc |GS〉

−1

2
〈GS| (σ z

j + (σ z
j )

−1)Xc |GS〉 − 〈GS| Xc |GS〉

−1

2
〈GS| (σ z

j + (σ z
j )

−1)Xc |GS〉)
+ δ j∈c(〈GS| (σ z

j + (σ z
j )

−1)(ω2σ z
j + ω(σ z

j )
−1)Xc |GS〉 − 2 〈GS| Xc |GS〉

− 〈GS| (σ z
j + (σ z

j )
−1)Xc |GS〉) = −3

2
R(3)e−3β |c| 〈GS| Xc |GS〉

= −�

2
R(�)e−�β |c| 〈GS| Xc |GS〉 ,

where |c| is the number of points in the path c.

Appendix B. Irreducibility of the computational representation of the d-Pauli group

The d-Pauli group is generated by products of σx and σy such that σ d
x = σ d

z = 1 and σzσx =
ωσxσz, where ω is a primitive d-root of unity. Its order is d3, which is a direct consequence that
any element of the group can be written as ωnσ m

x σ k
z for some n, m and k.

We take the representation of the d-Pauli group when acting on the computational basis:

σx |n〉 = |n + 1〉 mod. d, (B.1)

σz|n〉 = ωn|n〉, (B.2)

and we want to show that this representation is irreducible. We proceed by computing the
character χ of every one of its elements, which is given by the trace of the matrices. Using
the computational basis when taking the trace, from the above relations, χ(σ m

x ) = 0 for m ∈
{1, . . . , d − 1}. Similarly χ(σ m

z ) = 0 for m ∈ {1, . . . , d − 1} as the sum of the roots of unity
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vanishes. On the other hand, because σzσx = ωσxσz and the cyclic property of the trace, we
conclude that the character of every element of the form σ m

x σ k
z is zero for any representation.

The rest of the terms are proportional to the identity ωn1, and so χ(ωn1) = ωnd.
The irreducibility criterion asserts [9, 100] that a representation of a group G is irreducible

if and only if the scalar product of characters is the identity, that is

(χ , χ) = 1

|G|
∑
g∈G

χ∗(g)χ(g) = 1, (B.3)

where |G| is the order of the group. For the computational representation of the d-Pauli group
we have

(χ , χ) = 1

d3

d−1∑
n=0

(ωnd)∗ωnd = 1

d

d−1∑
n=0

|ω|n = 1, (B.4)

thus, the representation is irreducible.
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Superconductivity (Tinkham, 2004; Ashcroft and Mermin, 1976; Kittel, 1963; 
Abrikosov, Gorkov and Dzyaloshinski, 1975; Annett, 2004) is generally defined as a property 
of certain materials that present exactly zero resistance to the movement of electrons, below 
a certain critical temperature Tc. It was first discovered by Onnes in Leiden in 1917 (Onnes, 
1911). He showed that at very low temperatures,1 the resistance of mercury drops to zero. 
Superconductivity can also be viewed as a paradigmatic example of how purely quantum 
properties operate at the macroscopic level. A finite fraction of electrons do truly condensate 
into a superfluid macrostate, that extends all over the system.

There is another equally surprising experimental property that was observed a few years 
latter by Meissner and Ochsenfeld (1933), the so-called Meissner effect. This accounts for the 
screening of a magnetic field by a superconductor, i.e. the superconductor expels the magnetic 
field from its interior.2 A direct consequence of this effect is the existence of persisting electric 
currents that compensate the applied external magnetic field.

From the theoretical side, after a first trial by Gorter and Casimir (1934), the first 
phenomenological description of superconductivity was London theory. It was proposed 
by brothers Fritz and Heinz London in 1935 (London and London, 1985) based on simple 
arguments using Newton’s second law and Faraday’s law. A major achievement of the theory 
is the capability to explain the Meissner effect.

The next big leap in the theory of superconductivity didn’t arrive until 1950, when 
Ginzburg and Landau (1950) gave a macroscopic description of the phenomena. Their 
theory combines Landau theory of second-order phase transitions with a Schrödinger-
like wave equation, and had a great success in explaining the macroscopic properties of 
superconductors. They proposed the existence of an effective wave function that corresponds 
to the local density of condensed electrons, which they treat as an order parameter. Lately, 
Abrikosov showed that Ginzburg-Landau theory predicts the division of superconductors into 
two categories now referred as Type I and Type II (Abrikosov, 1957).

Despite those successful trials, a microscopic description of the physical mechanism 
behind superconductivity was still missing. The first hint shedding light over this problem 

1 At liquid Helium temperatures, i.e. around 4K.
2 Sometimes this effect is also referred to as perfect diamagnetism.
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came from the experimental side. Maxwell (1950) and independently Reynolds et al. (1950) 
realised that the critical temperature Tc for superconductivity depends on the isotope mass 
MI of the sample. This is called the isotope effect, Tc~1/MI

δ , where δ is a certain exponent. 
With the exception of several transition group elements, for most of superconductors δ=1/2. 
There is a direct implication of this effect. If Tc depends on MI, it means that phonons (created 
by lattice vibrations) have to play an essential role in the physical mechanism that explains 
superconductivity. Actually, the coupling constant ge-p that describes electron-phonon 
interaction explicitly depends on MI through a power-law with exponent δ=1/2 (Kittel, 1963).

Based on this idea, Cooper (1956) showed that an arbitrarily small attraction between 
two electrons, placed right above the Fermi surface, induces a bound state with a lower energy 
than the Fermi energy. The state that is formed out of the two paired electrons is commonly 
called Cooper pair. Actually, the argument that favours the formation of a Cooper pair works 
even if the mediating interaction is different from electron-phonon interaction. This aspect 
will become important when we will try to explain unconventional superconductivity in the 
next chapter. Anyhow, when Cooper published his paper, he was clearly influenced by 
the isotope effect and the interaction between electrons and lattice vibrations.3

Finally, the microscopic BCS theory of superconductivity was proposed by Bardeen, 
Cooper and Schrieffer in 1957 (Bardeen, Cooper and Schrieffer, 1957). They proposed a 
variational ansazt for the many-body wave function which is basically a condensate of Cooper 
pairs. The ansatz was later found to be exact in the dense limit of pairs. Moreover, it predicts 
extremely well most properties of superconductors. In the following section we will present a 
brief introduction to this theory.

7.1. BCS SUPERCONDUCTIVITY

The BCS theory is a beautiful example of how a simple (but non-trivial) theory is able 
to explain with precision the essential effects linked to superconductivity. In this chapter, 
we do not intend to give a complete and self-contained derivation of BCS theory;4 but to 
explain its main ingredients and to show what we can learn in order to describe topological 
superconductors later on. The BCS theory is based on 3 key ideas:

● The direct interaction between two electrons is repulsive. However, inside a solid, the 
effective force between electrons can sometimes be attractive when it is mediated by 
lattice phonons. This is due to the screening that positively-charged ions produce on 
the electron-electron repulsive interaction.

● Above the Fermi surface, if one puts two electrons, they tend to form a bound state 
below the Fermi energy of a free electron gas. This statement holds no matter how 
weak the attractive force is (Cooper, 1956).

3 Cooper (1956): “Consider a pair of electrons which interact above a quiescent Fermi sphere, with an interaction of the 
kind that might be expected due to the phonon and the screened Coulomb fields. If there is a net attraction between 
the electrons, it turns out that they can form a bound state..."

4 A detailed and pedagogical description of BCS theory can be found in Refs. (Tinkham, 2004;. Ashcroft and 
Mermin, 1976; Kittel, 1963; Annett, 2004).
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● Schrieffer showed that actually all electrons near the Fermi surface tend to form 
Cooper pairs. Moreover, there is a gap5 linked to the breaking up of a Cooper pair 
into two free electrons. This is one of the main reasons that make superconductivity 
possible, the robustness under scattering processes of Cooper pairs.

Remarkably, BCS theory provides a microscopic description of the phenomenon, that goes 
far beyond the previous theory proposed by Ginzburg and Landau. BCS explains almost all the 
general features of superconductivity. It predicts the existence of a critical temperature Tc for 
the superconductive transition to occur. But it also predicts the dependence of Tc with the Debye 
temperature of the metal and the coupling strength of the electron-phonon interaction (which 
in the standard theory is assumed to be small). In the light of BCS, the effective wave function in 
Ginzburg-Landau theory represents the centre-of-mass distribution of Cooper pairs.

Let us now give the main hints for the microscopic derivation of BCS theory. The total 
Hamiltonian for the electrons, phonons and the interaction among them is given by 

          H=H0+HI= k,s
∑εk ak,s

†  ak,s+ q
∑ωq bq

†  bq+iD
k,q,s
∑ a

k+q,s
† ak,s (bq 

_ b† ),  [7.1]

where the index k/q is the crystalline momentum, s=↑,↓ stands for spin up or down, aj (a j
†) are 

annihilation (creation) fermionic operators (electrons), and bj(b j
†) are annihilation (creation) 

bosonic operators (phonons). The coupling constant D mediates an indirect interaction 
between two electrons. One of the electrons polarises the lattice while the other electron 
interacts with this polarisation. At the end of the day, we can derive an effective interaction 
between two electrons a mediated by phonons b.

As explained in (Kittel, 1963) in great detail, it is possible to perform a canonical 
transformation over Hamiltonian (7.1), trace out the bosonic degrees of freedom and keep 
terms up to O(D2) (assuming the interaction is weak enough). Then, the interacting part of H 
can be written as 

   ( )I k+q,s k -q,s k ,s k,s
k,k,q k k qs,s

wqH D a a a a
q w

† †

ε ε
′ ′ ′

′

=
− − −

∑2
2 2   [7.2] 

As we can see from Eq. [7.2], the interaction is attractive as long as |εk±q-εk |<ωq. But 
even within the attractive sector, the interaction is screened by Coulomb repulsion between 
electrons. However, we can confidently assume that the attraction is dominant around the 
Fermi energy 

             εF-ωD<εk,εk±q<εF+ωD,   [7.3]

where ωD is the Debye energy.6 The repulsive region in Eq. [7.2] can be safely 
neglected, and the attractive coupling can be taken as a constant for simplicity, 

5 There are several ways to observe the energy gap in the excitation spectrum of a superconductor. For instance, 
the threshold in frequency for absorbing light gives a value for the energy gap. Another method is to measure the 
electron tunneling current. No current will flow until the applied voltage exceeds the energy gap V>ΔE.

6 Roughly speaking, the Debye energy gives the maximum phonon frequency of oscillation in the low temperature limit.

ω

ω
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   I k+q,s k -q,s k ,s k,s
k,k,q
s,s

H a a a a† †V ′ ′ ′ ′

′

= − ∑   [7.4]

where the sum is over all values of k, k', q, s and s' with the restriction that the electron 
energies involved are all within the range ±ωD of the Fermi surface.

In addition, the formation of a Cooper pair (k,-k) whose center of mass momentum is 
zero (KCM=0) minimises the energy of the pair. Regarding the spin part of the wave function, 
it can be either in a spin singlet (s⊗s'=0) or a spin triplet (s⊗s'=1) state. Superconductors 
described by BCS theory form spin singlet Cooper pairs. On the other hand, those 
phases described by spin triplet states are known as unconventional superconductors and 
they will be described in the next section.

Taking into account the previous assumptions, we restrict Eq. [7.2] to electron pairs (k,-k) 
and spin singlet channel, 

   H=
k,s
∑ εk a k,s

† ak,s-V
k,k
∑a

k
†
↑

a
-k
†
↑↓a-k'↓ak'↑.   [7.5]

Although we have very much simplified the original Hamiltonian [7.1], the interaction 
in Eq. [7.8] is still quartic in fermionic operators and cannot be solved exactly. In order to 
overcome this problem, Bardeen, Cooper and Schrieffer (1957) proposed the following 
variational ansatz for the ground state, 

          |ΨBCS〉=
k
∏ (uk+vk k ka a† †

↑ − ↓
)|0〉,   [7.6]

where |0〉 is the state with no electrons at the Fermi surface, and the parameters uk and vk 
(|uk |

2+|vk |
2=1) have to be determined by energy minimisation (variational method). Actually, 

Eq. [7.6] describes a coherent state of Cooper pairs with a lower energy than the Fermi energy 
of a free electron gas.

Equivalently, one can find that |ΨBCS〉 is also the mean field ground state solution of H.  
The mean field is performed assuming a non-vanishing off-diagonal expectation value 〈a-k↓ ak↑〉, 
for which the superconducting gap Δ is given by 

    Δ=V
k
∑ 〈a-k↓ ak↑〉.    [7.7]

After some straightforward calculations (Tinkham, 2004; Ashcroft and Mermin, 1976; 
Kittel, 1963; Annett, 2004), the mean-field Hamiltonian (up to some zero point energy offsets) 
casts the form 

   Hmf= k,s
∑ εkak,s

† ak,s
_

k
∑ (Δ k ka a† †

↑ − ↓+Δ*a-k↓ak↑).   [7.8]

One can study the quasiparticles excitation spectra applying a Bogoliuvov-Valatin 
transformation7 to Hamiltonian [7.8], 

7 A canonical transformation that diagonalises the Hamiltonian and preserve the anticommutation rules of the 
original operators.
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    Hmf=
k
∑ Ek (ck ka a† †

↑ − ↓ ck↑+ck ka a† †
↑ − ↓ c-k↓)  [7.9]

where Ek= kε ∆+2 2  and the operators 

                     ck↑ =u *
k  ak↑ 

_ v *
k  ak ka a† †
↑ − ↓ , 

                   c
k ka a† †
↑ − ↓

=vk ak↑ + uk ak ka a† †
↑ − ↓ ,   

[7.10]

satisfy the canonical fermionic anticonmutation relations as well. The new quasi-particles 
created and annihilated by these operators are not found in the BCS ground state given in 
Eq. [7.6]. We can easily check that 

       ck↑ |ΨBCS〉   =0,

       c-k↓ |ΨBCS〉   =0.   
[7.11]

Thus, the BCS ground state is the vacuum for these Bogoliuvov quasi-particles. At 
finite temperature T, the occupation number of these modes will be given by the Fermi-
Dirac distribution instead. Finally, the superconducting gap Δ can be determined by a self-
consistent equation. The computation of this quantity can be found in the literature (Kittel, 
1963), although it is not of particular interest for the purpose of this thesis.

Summarising, we have derived a mean-field Hamiltonian (Eq. [7.8]) that is able to 
describe the main features of superconductivity. From Eq. [7.6], we can see that the ground 
state of this Hamiltonian is given by a condensate of Cooper pairs of electrons with opposite 
crystalline momentum (k,-k) forming a spin singlet. The Bogoliuvov quasiparticles (Eq. [7.10]) 
represent the excitations of the system. In BCS theory, the pairing terms Δ k ka a† †

↑ − ↓ arise from 
electron-phonon interactions (Eq. [7.2]). This term breaks the U(1) gauge symmetry of 
Hamiltonian [7.8] linked to charge conservation.

In the next section, we will consider different (unconventional) forms of superconducting 
pairing, that are not captured by standard BCS theory. That will form the basis to define 
topological superconductors.

7.2. UNCONVENTIONAL AND TOPOLOGICAL SUPERCONDUCTIVITY

The majority of superconducting materials that were known until the 70’s were 
described by an attractive interaction among electrons mediated by phonons. According to 
BCS, the interacting channel is the most symmetric one (l=0 or s-wave) and spin singlet. 
In these superconductors, the electron-phonon interaction overcomes Coulomb repulsion 
through the retardation effect.8 However, in several transition metals where electrons are 
tight to atomic orbitals, Coulomb interaction dominates over the attractive electron-phonon 
coupling and novel mechanisms are needed to explain superconductivity.

8 Conduction electrons are not well localised within atomic orbitals in a normal metal, and they move much faster 
than the ions, behaving basically as free particles.
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The first example that could not be fitted into the BCS paradigm was the A and B 
phases of superfluid 3He discovered by Osheroff, Richardson and Lee in 1972. In 3He, Cooper 
pairs of fermionic atoms are characterised by p-wave (l=1) pairing and a spin-triplet state. 
The pairing mechanism is of non-phononic nature, and it is mediated by Van der Waals 
and spin fluctuation interactions (Leggett, 1975). The later discovery of high-temperature 
superconductivity in cuprate compounds (Bednorz and Müller, 1986) definitely popularised 
the field of unconventional superconductivity.

With this increasing interest in the field, there has been mainly two different lines of 
research. The first approach focuses on understanding the microscopic mechanism that leads to 
more exotic forms of pairing than in standard BCS theory. The second approach is concerned 
with the new quasi-particle phenomena the appears in these systems, in the spirit of Eq. [7.10].

The field of topological superconductors follows this second path (Hughes and Bernevig, 
2013). They have received a lot of attention since they produce novel quasi-particles that 
behave as Majorana fermions9 (Wilczek, 2009). Topological superconductors have been shown 
to be realisable by means of proximity effect of a normal superconductor to a topological 
insulator (Fu and Kane, 2008), in graphene (San-Jose et al., 2015), etc. Actually, there has been 
recent groundbreaking experiments (Mourik et al., 2012; Deng et al., 2012; Das et al., 2012; 
Nadj-Perge et al., 2014; Albrecht et al., 2016; Sun et al., 2016) providing strong evidence for 
the presence of Majorana fermions, and thus topological superconductors.

From now on, we suppose that there exists some source of underlaying pairing 
mechanism that can be well described using a mean-field formulation. Therefore, we are 
interested in non-interacting quasi-particles dressed by a background pairing potential. We 
will not analyse additional effects that may arise from a self-contained microscopic description 
of every element of the problem.

The first theoretical proposal of a topological superconductor, displaying Majorana 
fermions as zero-energy modes at the boundary, was done by Kitaev (2001). In what follows, 
we will analyse the simple but non-trivial model that he proposed. We will show how these 
new quasi-particles arise, and the reason to call these systems topological.

Consider a model of spin-polarised fermions hopping on a L-site one-dimensional 
chain, with p-wave superconducting pairing. The Hamiltonian of this system introduced by 
Kitaev (2001) is 

               HMC=
L

j=
∑

1
(_Ja j

† aj+1+Majaj+1 
_ µ

2 a j
† aj+h.c.),   [7.12]

where μ is the chemical potential, J>0 is the hopping amplitude, the absolute value of 
M=|M|eiθ stands for the superconducting gap, and aj (a j

†) are annihilation (creation) fermionic 

9 A Majorana fermion is a fermionic particle that is its own antiparticle. It was originally proposed by Ettore Majorana 
(2008) in 1937, while looking for real solutions of the Dirac equation. There is however a difference between the original 
Majorana fermion proposed in the context of particle physics and the quasi-particle that appears in condensed matter. 
In particle physics, a Majorana fermion follows Dirac statistics, the same as electrons and other usual Dirac fermions. In 
condensed matter, Majorana fermions follow non-abelian anyonic statistics, although they satisfy the fermionic 
anticommutation relations and they are their own anti-particle too. In order to state that difference with respect to particle 
physics, they are often called Majorana zero modes, as they appear as mid-gap zero energy states.
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operators. Note the analogy of this Hamiltonian to the BCS one in Eq. [7.8] in chapter 7. 
Both are quadratic Hamiltonians with aa and a† a† terms, where the U(1) charge conservation 
symmetry has been broken to Z2 (fermion parity conservation). The symmetry of the pairing 
term in Eq. [7.12] is of p-wave type, different from Eq. [7.8] (s-wave). This becomes clear by 
writing the pairing term Maj aj+1 in Fourier space Msin(k)ak a-k, which is and odd function 
(p-wave) of k. On the contrary, in BCS theory, the pairing potential is even (s-wave).

The model in Eq. [7.12] can effectively reproduce a semiconductor nano-wire in the 
vicinity of an s-wave superconductor (Mourik et al., 2012), where the p-wave pairing is 
induced by proximity effect. It is now convenient to express Hamiltonian [7.12] in terms of 
Majorana fermion operators 

    c2j-1= j ja a
i i

†e  e ,
θ θ

− 



+  


2 2

2
1    

      c2j= j ja a
i i

†ei  e ,
θ θ

− 
−  

 
2 2

2
   [7.13]

satisfying the Majorana anticommutation relation {ci,cj}=δij and c j
† =cj. Majorana fermions in 

these systems usually pair locally in such a way that they constitute an ordinary Dirac fermion. 
However, for open boundary conditions, and particular values of the coupling constants (J, 
M and μ), two Majorana fermions at the boundary remain unpaired. These transformations 
are the equivalent ones to the Bogoliuvov-Valatin transformations introduced in chapter 7 in  
Eq. [7.10]. For simplicity, let us take θ=0 and |M|=J. This model belongs to the BDI symmetry 
class10 and can also be realised by coupling a topological insulator in the chiral-unitary AIII 
class to a normal s-wave superconductor (He et al., 2014). We now express Hamiltonian [7.12] 
in the Majorana basis [7.13], obtaining 

        H=iJ
L-

j=
∑

1

1
c2j c2j+1 

_ iμ
L

j=
∑

1
c2j-1 c2j,    [7.14]

Let us first study the two limiting cases. If J=0, then each Majorana pairs locally with 
another Majorana within the same site. This is the standard topologically trivial phase. We 
now focus on the opposite limit, where J=0 but μ=0. In that case, each Majorana couples 
with another Majorana belonging to a neighbouring site. However, the Majorana operators 
at the edges c1 and c2N do not appear in the Hamiltonian, being zero energy modes. They 
are decoupled from the dynamics. These Majorana zero modes (MZMs) are topologically 
protected and represent a hallmark of topological order in the system. A pictorial image is 
shown in Fig. [7.1]. Actually, as long as |μ|<J the system remains in the topological phase, and 
the two Majoranas are exponentially localised at the ends of the chain. 

But a question remains: Why is this superconducting phase called topological?

In what follows, we elaborate on the answer to this pertinent question. Along the 
first part of this thesis, we have seen simple models for topological insulators that can be 
characterised by a two-band Hamiltonian separated by a gap. The mathematical description 
relies on the fact that in momentum space, the Hamiltonian of a topological insulator can be 
written in an spinor basis such that 
10 Hamiltonians that belong to the BDI symmetry class of topological superconductors (Ryu et al., 2009; Kitaev, 2009) 

are invariant under particle-hole, time-reversal and chiral symmetry transformations. Additionally, they conserve 
the fermion parity, which is the total number of fermions modulo 2.
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    H=∑kΨ k
†  Hk Ψk,     [7.15]

where Ψk=(ak,bk)
t is the spinor, {ak,bk} stand for two different fermion species, and Hk is a 2×2 

matrix. The diagonalisation of Hk yields the ground state of the system, that corresponds to 
the lower band eigenvector |uk〉 (valence band). The upper band eigenvector |vk〉 represents the 
excitations to the conduction band. The two bands are well separated by an energy gap, which 
turns the system into an insulator. As we have shown in chapter 1, the Berry phase ΦB picked 
up by |uk〉 along the holonomy covering the entire BZ, acquires a topological and quantised 
character. It helps us distinguish between trivial and non-trivial topological phases, also 
highlighted by the presence of edge states.

For topological superconductors, an analogous situation occurs. The Hamiltonian 
in Eq. [7.12] can be written in momentum space as H=∑kΨ k

†  Hk Ψk (similar to Eq. [7.15]). 
However, Ψk=(ak,a k

†
−

)t stands for the Nambu-spinor basis of paired fermions (Altland and 
Simons, 2010). The system also has a gap that represents the cost of creating a Bogoliuvov 
quasi-particle. The Berry phase ΦB picked up by the ground state |GS〉k along the holonomy 
covering the entire BZ also classifies the topology of the system. In the particular case of 
Hamiltonian [7.14] for the Kitaev chain, there is a trivial phase (ΦB=0) with no edge states, 
and a non-trivial topological phase (ΦB=π) linked to the unpaired MZMs at the edges.

In the next chapter, based on publication P7, we include long-range deformations in 
the hopping and pairing terms of Eq. [7.12], and study how the topological phase diagram 
is modified. Moreover, we prove that new topological quasi-particles are created: non-local 
massive Dirac fermions.

Figure 7.1.  
The big blue dots stand for the original Dirac fermions. Red dots stand for Majorana 
operators as defined in Eq. [7.13]

Notes: (a) The first chain represents the trivial superconductor where Majorana fermions pair locally into a standard Dirac 
Fermion. (b) The second chain is a topological superconductor where the Majoranas pair between adjacent sites. The two 
Majoranas at the edge remain unpaired and decoupled from the dynamics.
Source: Own elaboration.
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8.1. MOTIVATION

More than 70 years ago, Peierls (Peirls, 1923 and 1935) and Landau (Landau, 1937; 
Landau and Lifshitz, 2000) showed that no classical (finite temperature) second order phase 
transition can occur in 1D with short range interactions, due to the absence of long-range 
order and spontaneous symmetry breaking. For instance, this occurs with the classical Ising 
model in 1D (Ising, 1925). The idea behind the absence of a FM phase transition is that the 
energy cost to create an excitation is independent of the length of a magnetic domain; however, 
the entropy grows logarithmically with the length of the chain.

Nevertheless, these arguments are only valid as long as purely short range interactions 
are considered. In 1969, Dyson proposed a modified Ising model with a pairwise coupling, that 
decreases algebraically with the distance between spins (Dyson, 1969a and 1969b). Because of 
long-range interaction, he demonstrated that depending on the power-law decaying exponent, 
the model can display phase transitions and long-range order even in 1D.

The previous example illustrates that the inclusion of long-range interactions can 
qualitatively modify the phase diagram of a system, with respect to purely short-range 
interacting terms. It may happen that long-range effects lead to drastic changes and not only 
to a mere reshaping of the phases that already exited for purely short-range interactions. 
A detail and comprehensive discussion on the role of long-range interactions in statistical 
mechanics can be found in (Mukamel, 2009).

With that motivation, we will try to answer the following question:

■ What happens when we consider long-range effects in topological superconductors?	

To this end, we consider the 1D Kitaev chain (Kitaev, 2001) and study the result of 
incorporating long-range couplings (Vodola et al., 2014) (hopping and pairing deformations 
of Eq. [7.12] in the spirit of the pioneering work by Dyson (1969a and 1969b). Despite the 
simplicity of this topological superconductor model, it produces many novelties with respect 
to the standard short-range version (Kitaev, 2001).

8.2. OUTLINE OF THE MAIN RESULTS

● We propose the most general extension of the Kitaev chain including long-range couplings.
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● Deformation of the hopping terms (kinetic) allows us to significantly increase the 
region in the phase diagram where Majorana modes are present (Fig. 1 of the paper).

● This Hamiltonian may be realisable in simulations of topological superconductors 
using cold atoms in optical lattices. Here, the penetration length of the hopping can 
be tuned by changing the optical depth of the lattice.

● We consider pairing amplitudes decaying with a power-law of the distance between 
fermions. For sufficiently slow decaying pairing terms we find non-local massive 
Dirac edge states. These are new physical quasiparticles that are absent in the standard 
Kitaev model.

● An immediate consequence of these new topological massive Dirac edge states is the 
appearance of a new platform for topological quantum computation based on Dirac 
particles.

● We present the complete phase diagram of the model based on analytical and 
numerical methods (Fig. 3 of the paper).

● The topological structure of the winding number is changed by the long-range, 
although it is still able to discriminate between different topological phases.

● Interestingly enough, we find a crossover sector where it is possible to have both 
Majorana quasiparticles and non-local Dirac quasiparticles depending on the 
chemical potential of the system.

● In the SM of the paper, we have shown how to analytically construct the new edge 
modes in the presence of long-range.

● We have shown by means of finite size scaling, that the non-local Dirac modes remain 
massive in the thermodynamic limit. Thus proving, that this is not a finite size effect 
but a purely long-range one.

● By incorporating static disorder into the system, we show the robustness of the new 
massive Dirac quasiparticles, due to their topological character.
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1Departamento de Fı́sica Teórica I, Universidad Complutense, 28040 Madrid, Spain
2icFRC, IPCMS (UMR 7504) and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
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We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian
deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order
measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians.
For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the
penetration length increases, something experimentally achievable. For power-law decaying superconducting
pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion
localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion.
This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible
applications to current experimental setups and topological quantum computation are also discussed.

DOI: 10.1103/PhysRevB.94.125121

I. INTRODUCTION

The quest for the experimental realization of topological
superconductors has turned out to be far more elusive than for
their insulating counterparts. Simple models for topological
superconductors have been proposed [1,2], but yet their
unambiguous implementation is challenging in condensed
matter or with quantum simulations. Here we address the
issue as to whether those simple models [3,4] are in fact
very specific in hosting their long sought-after topological
properties. Quite on the contrary, we find that these properties
can not only be generic with respect to natural extensions
of the model-Hamiltonian terms, but also that Hamiltonian
deformations can give rise to unconventional topological
edge-mode physics that is novel per se and for applications
in topological quantum computation.

The appearance of topological superconductors is having
a strong impact [5–10] in condensed matter physics and
quantum simulators. A tremendous effort is now directed at
the experimental demonstration of existing topological models
and at the development of new ones that may be easier to
realize. What makes a topological superconductor interesting
is the presence of Majorana modes as zero-energy localized
modes at the edges or boundaries of the material. These
modes lie within the superconducting gap and are rather
exotic since Majorana fermions are their own antiparticles
(holes). Standard (nontopological) superconductors do not
exhibit such modes in their energy spectrum. Thus, topological
superconductors represent new physics: Majorana modes are
topologically protected against local perturbations disturbing
the system and cannot be removed unless a topological phase
transition occurs. This robustness makes them useful for
storing and manipulating quantum information in a topological
quantum computer.

In this paper we focus on the Kitaev chain model and
propose novel modifications of the basic Hamiltonian, in order
to enrich the appearance of Majorana physics (see Fig. 1)
and even new topological excitations (see Fig. 2, Fig. 3).
These modifications come in two ways: (i) exponentially
decaying kinetic terms and (ii) long-range (LR) interaction
terms. They produce novel beneficial topological effects and

new unconventional topological physics, respectively. In case
(ii), we propose a hopping deformation that allows us to
significantly increase the region in the phase diagram where
Majorana zero modes (MZMs) are present. Interestingly
enough, this modification may result in a realistic description
for cold atoms in optical lattices. In case (ii), we study
the topological properties of another complementary mod-
ification of the Kitaev model based on long-range pairing
terms decaying algebraically with a certain exponent α. We
discover novel topological effects not found in any simple
model before (see Fig. 2): for α < 1 the model suffers a
major qualitative change manifested in the absence of MZMs
that are transmuted onto Dirac modes, which are massive
nonlocal edge states. These new edge states are topologically
protected against perturbations that do not break fermion parity
nor particle-hole symmetry. These modes appear as midgap
superconducting states that cannot be absorbed into bulk states.
These topological massive Dirac edge states are new physical
quasiparticles that are absent in the standard Kitaev model.
They represent a new unconventional topological phase.

II. LONG-RANGE DEFORMATIONS OF
SUPERCONDUCTING HAMILTONIANS

We consider a model of spinless fermions on an L-site
one-dimensional chain, with p-wave superconducting pairing
and a hopping term. The Hamiltonian of the system is

H =
L∑

j=1

(
−J

L−1∑
l=1

1

rl,ξ

a
†
j aj+l + M

L−1∑
l=1

1

Rlα

ajaj+l

− μ

2

(
a
†
j aj − 1

2

)
+ H.c.

)
, (1)

where μ is the chemical potential, J > 0 is the hopping ampli-
tude, the absolute value of M = |M|ei� stands for the super-
conducting gap, aj (a†

j ) are annihilation (creation) fermionic
operators. The Hamiltonian deformations are rl,ξ ,Rl,α . They
are generic functions of an integer distance l, and parameters ξ

and α, respectively. The total number of fermions modulo 2 is
called the fermion parity and it is a conserved quantity for all
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FIG. 1. (a) Topological phase diagram for the Kitaev chain
with exponentially decaying hopping. As the penetration length ξ

increases, the topological phase (�B = πω = π ) gets enlarged. For
ξ → 0 we recover the well-known Majorana chain with nearest-
neighbour hopping only. (b) Energy spectrum for ξ = 0.8. The region
with MZMs μ ∈ (−1,1) in the original model has been augmented in
one to one correspondence with a nontrivial Berry phase and winding
number.

models in (1). Considering only nearest-neighbors hopping
and pairing, we recover the famous model introduced by
Kitaev [4]. This model is topological displaying MZMs at
the edges like in Fig. 2(a). In the topological phase, the ground
state of the Kitaev model is twofold degenerate: a bulk of with
even fermion parity, while populating the two Majorana modes
at the edges amounts to a single ordinary fermion and odd
parity. The conservation of fermion parity and the nonlocal
character of the unpaired Majoranas at the edges make the
system an ideal candidate for a topological qubit out of the
twofold degenerate ground state [11,12].

FIG. 2. Left: We plot the spectrum for the Kitaev chain with
long-range decaying pairing, for L = 60 sites. On the right-hand
side we show the probability distribution PE of the edge modes
for different topological phases. (a) Majorana sector with α = 3.
We can see MZMs for μ ∈ [−1,1] localised at the edges of the
chain, as plotted on the right-hand side for μ = −0.5 (PM1 and
PM2). Notice that each Majorana mode is decoupled, represented
with different colors. (b) Massive Dirac sector with α = 0.5. Within
the new topological phase (μ < 1), there are topological massive
Dirac fermions localised at both edges at the same time, as shown on
the right-hand side for μ = −1.5. (c) Crossover sector with α = 1.3.
There are both MZMs and massive Dirac fermions depending on
the value of μ. We plot the probability for a massive Dirac fermion
at μ = −1.2.

Without loss of generality, we may fix the pairing amplitude
to be real and M = J = 1

2 . Assuming periodic boundary
conditions, we can diagonalize the Hamiltonian deforma-
tions (1) in Fourier space and in the Nambu-spinor basis
representing paired fermions [13]: H = 1

2

∑
k �

†
kHk�k , where

�k = (ak,a
†
−k)t and Hk is of the form Hk = Eknk · σ . The

energy dispersion relation is given by Ek,σ is the Pauli matrix
vector and nk is a unit vector called winding vector. Explicitly,

nk = − 1

Ek

(0,fα(k),μ + gβ(k)),

Ek =
√

(μ + gξ (k))2 + f 2
α (k), (2)

with

gξ (k) =
L−1∑
l=1

cos (k · l)

rl,ξ

and fα(k) =
L−1∑
l=1

sin (k · l)

Rl,α

. (3)

Particular instances of the functions rl,ξ and Rl,α have been
considered in Refs. [14,15], where long-range deformations of
the Kitaev chain were first considered.

These models (2) belong to the BDI symmetry class
of topological insulators and superconductors [16,17], with
particle-hole, time-reversal, and chiral symmetry. The inclu-
sion of long-range effects do not break these symmetries,
nor the conservation of fermion parity. This is an important
condition for the topological character of the original short-
range model to be preserved. These symmetries impose a
restriction on the movement of the winding vector nk from
the sphere S2 to the circle S1 on the yz plane. Thus, we
have a mapping from the reduced Hamiltonians Hk on the
Brillouin zone k ∈ S1 onto the winding vectors nk ∈ S1. This
mapping S1 −→ S1 is characterized by a winding number ω, a
topological invariant defined as the angle swept by nk when the
crystalline momentum k is varied across the whole Brillouin
zone (BZ) from −π to +π ,

ω := 1

2π

∮
dθ = 1

2π

∮ (
∂kn

z
k

n
y

k

)
dk, (4)

where we have used that θ := arctan (nz
k/n

y

k ).
As a complementary tool in 1D systems, we can use the

Berry/Zak phase [18–20] to characterize topological order.
When the system is adiabatically transported from a certain
crystalline momentum k0 up to k0 + G, where G is a reciprocal
lattice vector, the eigenstate of the lower band of the system
|u−

k � picks up a topological Berry phase given by

�B =
∮

AB(k)dk. (5)

The Berry connection AB(k) = i�u−
k |∂ku

−
k � connects by means

of a parallel transport two infinitesimally close points on the
manifold defined by |u−

k � in k space. For the standard Kitaev
chain [4], the resulting gauge-invariant phase �B is quantized
(0 or π ) due to the particle-hole symmetry that characterizes
distinct topological phases in one-to-one correspondence with
the winding number [21].
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III. AUGMENTED TOPOLOGICAL PHASES INDUCED BY
EXPONENTIALLY DECAYING HOPPINGS

This remarkable effect is obtained choosing nearest-
neighbor pairing, i.e., R1,α = 1 and Rl>1,α = ∞ and rl,ξ =
e

(l−1)
ξ , where ξ is the penetration length of the exponentially

decaying hopping terms. This Hamiltonian may be realizable
in simulations of topological superconductors using cold
atoms in optical lattices [22–24], where the exponential decay
of the hopping terms with distance can be tuned, e.g., by
varying the depth of the lattice potentials [25].

In Fig. 1 we plot the complete phase diagram by computing
the winding number and the topological Berry phase from
Eqs. (4) and (5). For ξ → 0 we recover the usual Kitaev
chain. The system is topological for μ ∈ [−1,1], displaying
MZMs at the edges. Interestingly enough, when we increase
the penetration length ξ , the region where we observe MZMs
is augmented. In fact, this widening effect is purely due
to the hopping deformation since we find that including an
exponentially decaying pairing deformation does not change
the topological phases. In the thermodynamic limit L →
∞, the phase separation between the trivial and nontrivial
topological phases can be computed analytically from Eq. (2),
obtaining

μc1 = e
1
ξ

1 + e
1
ξ

, μc2 = e
1
ξ

1 − e
1
ξ

. (6)

Thus, increasing the penetration length of the deformed
hopping, we can arbitrarily enlarge the topologically nontrivial
sector (see Fig. 1). Although symmetry-protected topological
order is usually associated with local interactions, we have
shown that nonlocal terms can favor the formation of a
topological phase. Related studies for the Kitaev chain with
long-distance hopping were carried out [26] and qualitatively
similar effects have been recently observed in Ref. [27] for the
spin-1 long-range Haldane model [28].

IV. UNCONVENTIONAL TOPOLOGICAL
SUPERCONDUCTIVITY WITH DIRAC TOPOLOGICAL

MASSIVE STATES

Long-range deformations may not only enlarge topological
phases but also produce new types of topological phases. To
this end, let us now consider pairing terms that decay alge-
braically with a power-law exponent α, and no deformation of
the hopping terms. That is, r1,ξ = 1,rl>1,ξ = ∞ and Rα,l = lα .

In the thermodynamic limit L → ∞, the function fα(k) in
Eq. (3) is divergent at k = 0 for α < 1. This function defines
the long-range pairing and appears in the energy dispersion
relation and the winding vector of Eq. (2). Thus, the dispersion
relation and the group velocity also become divergent at k = 0
if α < 1. Nevertheless, ω [Eq. (4)] and �B [Eq. (5)] are still
integrable. Moreover, it is not possible to gauge away the
divergence from k = 0 by means of a gauge transformation, as
in the ordinary Kitaev chain. Therefore, the divergence behaves
as a topological singularity. A detailed discussion of this effect
at k = 0 on the topological indicators is carried out in Sec. I
of the Supplemental Material [29]. According to the behavior
of fα(k) at k = 0, we find three different topological sectors
depending on the exponent α:

FIG. 3. Topological phase diagram for the Kitaev chain with long-
range pairing. The wavy lines at the border of certain phases indicate
that they extend endlessly. Fractional topological numbers highlight
the appearance of an unconventional topological phase with massive
nonlocal Dirac edge states. The topological characterisation of the
crossover sector is discussed in the main text and the Supplemental
Material [29].

(i) Majorana sector [α > 3/2]

This sector is topologically equivalent to the one of
the short-range Kitaev chain [4]: For |μ| > 1, the phase is
topologically trivial and we do not find MZMs. In the region
μ ∈ (−1,1), we find that MZMs are always present [see
Fig. 2(a)]. The function fα(k) is not divergent and we can
compute the winding number ω of Eq. (4) and the Berry
phase �B of Eq. (5) obtaining �B = πω = π . The lower-band
eigenvector |u−

k �, thus, shows a U (1) phase discontinuity at
k = 0. The corresponding topological phase is depicted in
blue in the phase diagram of Fig. 3.

(ii) Massive Dirac sector [α < 1]

An unconventional topological phase appears for suffi-
ciently slow decaying pairing. As an example, in Fig. 2(b)
we see for α = 1/2 two clearly different phases as a function
of μ. For μ > 1 the system is in a trivial phase, with no
edge states. However, for μ < 1 the system has a topological
massive Dirac fermion at the edges, as shown in the wave
function plot in Fig. 2(b). The two Majorana modes at the
two distant edges have paired up onto a single massive
Dirac fermion. Notice that the fermion is highly nonlocal
and its nature is deeply rooted in the long-range/nonlocal
character of the pairing term (see Sec. III of the Supple-
mental Material [29] for details). We notice that if we had
considered imaginary pairing amplitudes within D symmetry
class (particle-hole symmetric), the nonlocal massive Dirac
fermions would persist. This topological quasiparticle is still
protected by fermion parity: the ground state has still even
parity, whereas the first excited state populates this nonlocal
massive fermion and has odd parity. One cannot induce a
transition between these two states without violating the
fermion parity conservation of the Hamiltonian, and applying
a nonlocal operation is needed. Moreover, the subspace of
these two edge states is still protected by the bulk gap from
bulk excitations. The conservation of fermion parity and the
nonlocal character of the massive Dirac fermion make these
two states ideal to define a topological qubit using two copies
of the Kitaev chain [30–33]. Further details are detoured to
Sec.V of the Supplemental Material. Additionally, in Sec. II
of the Supplemental Material [29], by means of finite-size
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scaling we show that the mass of the Dirac fermion stays finite
in the thermodynamic limit for μ < 1 and α < 1. This way
we can prove that the effect is purely topological and caused
by the long-range deformation.

When we close the chain, the edge states disappear as we
may expect for a topological effect. Despite the long-range
pairing coupling, the system still belongs to the BDI symmetry
class [16,17], since no discrete symmetry has been broken. The
winding number ω can still be formally defined using Eq. (4).
However, the topological singularity at k = 0 deeply modifies
the value of ω. For the trivial phase μ > 1, the winding number
is ω = −1/2, whereas for the new unconventional topological
phase is ω = +1/2 if μ < 1. The semi-integer character of
ω is associated to the integrable divergence at k = 0, which
modifies the continuous mapping S1 −→ S1. Notwithstanding,
in this region there is still a jump of one unit between the
two topologically different phases, �ω = ωtop − ωtrivial = 1
(see Fig. 3). Moreover, the topological indicators take on the
same value within the whole phase until the bulk gap closes
at μ = 1, giving rise to a topological phase transition, and the
new massive topological edge states disappear. Therefore, we
can still establish a bulk-edge correspondence.

There is a novelty in this case regarding the parallel
transport for the Berry phase. Namely, at k = 0 the adiabatic
condition breaks down since both the energy dispersion
relation Ek and the quasiparticle group velocity ∂kEk diverge.
Moreover, the singularity at k = 0 of the lower-band eigenvec-
tor |u−

k �, cannot be removed by a simple gauge transformation
as it is not just a U (1) phase difference, but a phase shift unitary
jump,

|u−
k→0+� = eiπP±|u−

k→0−�, (7)

where P± = 1
2 (1 ± σz). More explicitly,

eiπP− =
(

1 0
0 eiπ

)
, eiπP+ =

(
eiπ 0
0 1

)
. (8)

The difference in sign ± of the projector P± depends on the
topological regime. For μ > 1, the system is in a trivial phase
with no edge states and the long-range singularity of |u−

k � at
k = 0 is given by eiπP− . On the other hand for μ < 1, the
system is in a topological phase with massive and nonlocal
edge states. The singularity of |u−

k � at k = 0 in that case is
given by eiπP+ .

(iii) Crossover sector [α ∈ (1,3/2)]

This is a crossover region between sectors (i) and (ii).
Within this sector, there are massless Majorana edge states for
−1 < μ < 1 like in sector (i), but for μ < −1 the edge states
become massive like in sector (ii). This is shown through
finite-size scaling in Sec. II and III of the Supplemental
Material [29]. The intuition behind this result is that the
gap closes in the thermodynamic limit at μ = −1 also for
α ∈ (1, 3

2 ). The dispersion relation Ek is no longer divergent,
however its derivative ∂kEk (the group velocity) is still singular
at k = 0 and the structure of the topological singularity
changes accordingly. The winding number is not able to
capture the mixed character of this sector. However, as detailed
in Sec. I of the Supplemental Material [29], we can clearly see
that the behavior of the winding vector and the lower-band
eigenstate is different from the other two sectors.

In Fig. 3, we present a complete phase diagram summariz-
ing the different topological phases of the model as a function
of μ and α.

V. OUTLOOK AND CONCLUSIONS

We have found that finite-range and long-range extensions
of the one-dimensional Kitaev chain can be used as a resource
for enhancing existing topological properties and for unveiling
new topological effects. In particular, for long-range pairing
deformations, we observe nonlocal massive Dirac fermions
characterized by fractional topological numbers. Hamiltonians
with long-range pairing and hopping may be realized in
Shiba chains as recently proposed in Refs. [34,35], where
edge states can be detected, e.g., by scanning tunneling spec-
troscopy [36]. Alternatively, next-nearest neighbor hopping
may be harnessed in atomic and molecular setups [23], where
massive edge modes should be observable via a combination
of spectroscopic techniques and single-site addressing [37,38].
The extension of existing models for qubits, constructed by
topologically protected gapped modes, may boost the search
for long-range deformations in more complicated topological
models with symmetry-protected or even intrinsic topological
order.
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SUPPLEMENTARY MATERIAL

I. Winding vector and Berry phase in the presence
of a Topological Singularity

In the thermodynamic limit L → ∞, the function
fα(k) in (3) tends to

fα(k) =
i

2

(
Liα(e

−ik)− Liα(e
ik)

)
. (S1)

where Liα(e
ik) is a polylogarithmic function. This func-

tion defines the long-range pairing and is divergent at
k = 0 for α < 1. As a consequence, the energy gap
in (2) diverges if α < 1, and the particle group veloc-
ity vg = ∂kEk diverges for α < 3/2 at k = 0. In line
with this, we can trace the effect of this divergence over
the winding vector and the topological phases within the
different topological sectors:

i/ Majorana Sector [α > 3/2]— There is no topologi-
cal singularity in this sector. The winding number and
the Berry phase can be computed using (4) and (5). We
find the same topological indicators and the same type of
edge states physics as for the short range Kitaev model
(α → ∞). In Fig. S1 we plot the winding vector for
L = 201 sites and for different values of the chemical po-
tential µ belonging to different topological regimes. We
can see that for trivial regions |µ| > 1, the winding vec-
tor winds back and forth and never covers the entire S1

circle. On the other hand, when the system is within a
topological phase µ ∈ (−1, 1), the winding vector winds
around S1 completely. The lower band eigenvector

∣∣u−
k

〉

can always be chosen to be periodic. If the system is in
the trivial phase,

∣∣u−
k

〉
is also continuous, whereas inside

the topological phase, there is a U(1) phase discontinuity
at k = 0, i.e.,

∣∣u−
k→0+

〉
= eiπ

∣∣u−
k→0−

〉
. (S2)

This phase shift can be gauged away from k = 0, and it
represents the Berry phase gained by the system after an
adiabatic transport from a certain crystalline momentum
k0 up to k0 +G, where G is a reciprocal lattice vector.

ii/ Massive Dirac Sector [α < 1]— The topological
singularity at k = 0 makes the winding vector ill-defined
at that point, although its contribution to the winding
number can still be integrated. In Fig. S2 we plot the
winding vector for L = 301 sites and for different values
of µ. In particular, for µ > 1 the winding vector covers
the entire lower half of the S1 circle, explaining the value
ω = −1/2 of the winding number. On the contrary, for
µ < 1, the winding vector just covers the entire upper
half of S1 as shown in the figure. The function fα(k) at
k = 0 diverges as

fα(k → 0−) −→ −∞ , fα(k → 0+) −→ ∞. (S3)

FIG. S1: Trajectories of the winding vector for different re-
gions within the Majorana sector, for L = 201 sites and α = 3.
The red spots represent the movement of the winding vector
along the unit circle S1. As we see, for µ > 1 and µ < −1, the
vector never winds around the whole S1, just moving back and
forth twice. However, if µ ∈ (−1, 1) the vector winds around
S1. The darker regions highlight a larger density of points.

Hence, in the transition from k < 0 to k > 0, the winding
vector skips the entire lower part of the S1 circle because
of the topological singularity at k = 0. This explains
the value of the winding vector ω = +1/2 in this new
topological phase. Complementary, the adiabatic condi-
tion breaks down at k = 0 as the quasi-particle group
velocity diverges. Therefore, we can no longer say that
the system picks up a U(1) phase after a close loop in
momentum space. Actually, the singularity at k = 0 of
the lower band eigenvector

∣∣u−
k

〉
, cannot be removed by

a simple gauge transformation as it is not just a U(1)
phase difference, but a phase shift unitary jump,

∣∣u−
k→0+

〉
= eiπP±

∣∣u−
k→0−

〉
, (S4)

where P± = 1
2

(
1± σz

)
. More explicitly,

eiπP− =

(
1 0
0 eiπ

)
, eiπP+ =

(
eiπ 0
0 1

)
. (S5)

The difference in sign ± of the projector P± depends on
the topological sector. For µ > 1, the system is in a
trivial phase with no edge states and the singularity of
the eigenstate at k = 0 is given by eiπP− . On the other
hand for µ < 1, the system is in a topological phase with
massive and non-local edge states. The singularity of the
eigenstate at k = 0 in that case is given by eiπP+ .

iii/ Crossover Sector [α ∈ (1, 3/2)]— This is a crossover
region between the previous two sectors i/ and ii/. In this
case, the structure of the topological singularity at k = 0
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FIG. S2: Trajectories of the winding vector for different re-
gions within the massive Dirac sector, for L = 301 sites and
α = 0.5. The red spots represent the movement of the wind-
ing vector along the unit circle S1. For µ > 1, the winding
vector covers the lower half of S1. However, if µ < 1 the
vector covers only the upper half of the circle. The darker
regions highlight a larger density of points.

has changed. The components of the winding vector are
continuous, but their derivatives diverge. Therefore, the
population of points close to k = 0 is extremely disper-
sive. The winding vector does not cover the entire south
pole sector due to the divergence in the derivatives of
its components in the thermodynamic limit. Hence, the
behaviour of the winding vector is different than in the
other two previous sectors i/ and ii/. This might be
linked to the mixed character of the sector with the pres-
ence of MZMs (−1 < µ < 1) and massive Dirac fermions
(µ < −1). Regarding the lower band eigenvector, it is
continuous but its derivative is still divergent at k = 0
breaking the adiabatic condition.

II. Edge mass gap finite-size scaling

In Sec. IV of the main text, we claimed that the pair-
ing of the MZMs into a massive non-local Dirac fermion
cannot be explained as a simple interaction between the
Majorana fermions at the edges due to a finite size ef-
fect. Actually, its nature is deeply rooted into the long-
range/non-local character of the pairing deformation of
the Kitaev chain. The absence of a degenerate zero en-
ergy subspace avoids a wave function superposition to
localise a single Majorana mode at one edge only. On
the contrary, the two edges are inevitably coupled to
each other, pairing to a non-local massive Dirac mode
as shown in Fig. 2.

In order to proof this claim more rigorously, we have

computed the mass of the edge states through a finite-
size scaling for different values of the decaying exponent
α and the chemical potential µ.

In Fig. S3(a) we perform a finite-size scaling for the
masses of the MZMs for the Majorana sector. Within
the topological sector µ ∈ (−1, 1), the edge mass gap
clearly goes to zero with L as we expected. In Fig. S3(b)
we perform the same finite-size scaling analysis for the
massive Dirac sector. In this case, there are edge states
for µ < 1. As we can see, the masses of the edge states
depend on both µ and α, and go to a finite value even in
the thermodynamic limit. This proves that the topologi-
cal nature of the non-local massive Dirac fermions purely
comes from the long-range deformation of the original Ki-
taev Hamiltonian and not from a finite size effect.

On the other hand, Fig. S3(c) and Fig. S3(d) show
the finite-size scaling for the edge mass gap within the
crossover sector. Although there are edge states all over
µ < 1, they can be either massive or massless depending
on the chemical potential µ. If −1 < µ < 1 the edge
states are massless as shown in Fig. S3(c), whereas for
µ < −1 the edge states become massive as shown in
Fig. S3(d). Hence, this sector displays a mixed character
between a Majorana and a massive Dirac phase.

Lastly, we have investigated the edge properties of the
model by studying the wavefunction probability density
|ψ(0)|2 for the lowest-energy single-particle eigenstate at
one of the edges. Fig. S4 shows |ψ(0)|2 for different µ
as a function of α. The results can be summarised as
follows: i/ for µ > 1 (purple line) there are no edge
states regardless of α. ii/ If −1 < µ < 1 (blue line)
there is always a finite edge-state density. In addition,
from Fig. S3 we obtain that if α > 1 the edge states
are massless, whereas if α < 1 they are massive. iii/ If
µ < −1 (green line) there are edge states if α < 3

2 . Then,
from Fig. S3 we conclude that they are always massive
in this case. Actually, we can even monitor how one of
the Dirac bulk states gets transmuted into a non-local
massive Dirac edge mode by lowering α.

The results are in complete agreement with Fig.3 from
the main text and the finite size scaling analysis in
Fig. S3.

III. Analytical Structure of the Edge States

We take the Hamiltonian defined in Eq. (1) of the main
text, where only long-range pairing terms are considered.
For the parameter choice θ = 0 and J = |M | = 1

2 as-
sumed along the paper, we can separate the short-range
and long-range contributions:

H := HSR +Hµ +HLR, (S6)
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FIG. S3: Finite size scaling of the edge mass gap for different
values of the exponent α and the chemical potential µ. In (a)
we plot the case for α = 2.0 belonging to the Majorana sector.
The edge mass gap closes with L for every µ within the topo-
logical phase. In (b) we take α = 0.75 in the massive Dirac
sector. For µ < 1 the edge mass gap tends to a finite value
in the thermodynamic limit. In (c) and (d) we perform the
finite-size scaling for α = 1.3 within the crossover sector. If
−1 < µ < 1 (c), there are massless edge states. If µ < −1 (d),
there are massive edge states up to our numerical precision.

where

HSR :=
L∑

j=1

(
−a†jaj+1 + ajaj+1 + h.c

)
,

Hµ := −µ
L∑

j=1

(
a†jaj −

1

2

)
,

HLR :=
L∑

j=1

L−j∑

l=2

1

Rl,α
ajaj+l + h.c (S7)

In order to uncover the different topological phases of
the model, we will rewrite this Hamiltonian in terms of
Majorana operators

cj =
1√
2

(
a†j + aj

)
, dj =

i√
2

(
a†j − aj

)
, (S8)

satisfying the fermionic anticommutation relation
{ci, cj} = δij , but also the Majorana condition c†j = cj
and the same for dj .
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0.6

0.8
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|ψ
(0
)|2

α

µ = 2.00
µ = −2.00
µ = 0.45

FIG. S4: We plot the wavefunction probability density |ψ(0)|2
for the lowest-energy eigenstate at one of the edges for differ-
ent µ as a function of α: i/ µ > 1 (purple line) there are no
edge states regardless of α. ii/ −1 < µ < 1 (blue line) there
is always a finite edge-state density. iii/ µ < −1 (green line)
there are edge states if α � 3

2
.

Substituting Eq.(S8) in Eq.(S7), we get

HSR = i
L−1∑

j=1

djcj+1,

Hµ = −iµ
L∑

j=1

cjdj ,

HLR =
i

2

L∑

j=1

L−j∑

l=2

1

Rl,α

(
djcj+l + cjdj+l

)
. (S9)

Short-range Kitaev chain

Let us first consider the purely short-range Kitaev
chain with a chemical potential. Majorana fermions usu-
ally pair locally in such a way that they constitute a
regular Dirac fermion. However, for open boundary con-
ditions and certain values of the coupling constants, two
Majorana fermions at the boundary remain unpaired.
The Majorana operators at the edges c1 and dN do not
appear in the short-range Hamiltonian HSR, hence, if we
set µ = 0 they become zero energy modes (see Fig. 1(b)
in the main text) as they decouple from the dynamics.
These MZMs are topologically protected and represent a
hallmark of topological order in the system.

Note that if µ �= 0, then c1 and dN do appear in
HSR +Hµ, however we will show that these modes have
an exponentially small energy and are exponentially lo-
calised at the edges. Hence, in the thermodynamic limit
they become exact zero energy modes.

In order to prove this, we will elaborate on an ansatz
method [1] in order to construct the edge modes ana-
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lytically for the short-range Kitaev chain. A fermionic
zero mode Ψ is an operator that commutes with the
Hamiltonian: [H,Ψ] = 0, anticommutes with (−1)F ,
i.e. {(−1)F , H} = 0 and it is conveniently normalised.
The second property guarantees that the operator Ψ
maps the odd and even parity sectors. The first one
instead imposes the condition for a zero energy mode,
based on the Heisenberg equation dΨ

dt = −i[H,Ψ].

First of all, we note that the fermionic mode con-
structed out of the two unpaired Majoranas c1 and dN ,
namely,

ãE =
1√
2
(c1 + idN ), (S10)

clearly commutes with HSR + Hµ for µ = 0, [HSR +
Hµ, ãE] = 0. Moreover, ãE destroys a fermionic mode
in the system, thereby mapping the even and odd parity
sectors. For µ �= 0 instead, the fermionic operator ãE
does not conmute with H, however, the new edge mode
can still be determined.

Let us propose an ansatz wavefunction for the modi-
fied left Majorana mode Φleft. We know that Φleft(µ =
0) = c1 and the Hamiltonians defined in Eq. (S9), HSR,
Hµ, HLR have only mixing terms cidj . Hence, the most
general ansatz would be:

Φleft =
L∑

j=1

mjcj (S11)

where cj are Majorana operators and mj are real coeffi-
cients to be determined. Namely,

[HSR +Hµ,Φleft] = i

L−1∑

j=1

(
mj+1 + µmj

)
dj + µmLdL,

(S12)
where we have used the anticonmuting properties of the
Majorana operators,

[dkcj , cl] = δj,ldk, and [cjdk, cl] = −δj,ldk. (S13)

If we want to make Φleft a MZM, then we should im-
pose the commutator in Eq. (S12) to be zero. Hence,

mj+1 + µmj = 0 ∀j = 1, ..., L− 1. (S14)

Note that the coefficient accompanying dL will be deter-
mined with the L− 1 previous equations. For continuity
with the µ = 0, we take m1 = 1 up to normalisation of
the final wavefunction. It is now very easy to see that
the solution to the recursive equation (S14) is

mj = (−µ)j−1 ∀j = 2, ..., L. (S15)

Thus,

Φleft = c1 − µc2 + µ2c3 − µ3c4 + ... (S16)

FIG. S5: Finite size scaling of the mass indicator ∆M within
the crossover sector, α ∈ ( 3

2
, 1), for the massless phase (−1 <

µ < 1) where we expect MZMs. As we can see, ∆M goes to
zero when L increases.

and

[HSR +Hµ,Φleft] = µmLdL = µ(−µ)L−1dL. (S17)

The same equation holds for the right edge Majorana
mode,

Φright = dL − µdL−1 + µ2dL−2 − µ3dL−3 + ... (S18)

Hence, the two new Majorana (almost) zero modes lo-
calised around the left and right edges for |µ| < 1,
can be combined into a Dirac fermionic edge mode,

ΨE = 1√
2

(
Φleft + iΦright

)
. This edge fermion doesn’t

commute exactly with HSR +Hµ,

[HSR +Hµ,ΨE] = µ(−µ)L−1 1√
2
(c1 + idL). (S19)

However, this coefficient is exponentially small in L as
long as |µ| < 1. Hence, in the thermodynamic limit
L → ∞, the fermionic mode ΨE commutes with the
Hamiltonian, satisfying the condition to be a zero energy
mode, and the new Majorana fermionic operators Φleft

and Φright are unpaired.
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FIG. S6: The plot shows the energy spectrum of the Hamil-
tonian with long-rang pairing Eq. (1) of the main text and a
random chemical potential term Eq. (S25) as a function of the
chemical potential µ for two values of the disorder strength δµ.
The states plotted in green are separated by a finite gap from
the band of bulk states plotted in red.

Kitaev chain with long-range couplings.

Let us now include the long-range deformations given
by HLR,

[HLR,Φleft] =

=
i

2

L∑

j=1

L−j∑

l=2

L∑

k=1

mk

Rl,α

(
[djcj+l, ck] + [cjdj+l, ck]

)
=

=
i

2

( L−2∑

j=1

L−j∑

l=2

mj+l

Rl,α
dj −

L−2∑

j=1

L−j∑

l=2

mj

Rl,α
dj+l

)
.

(S20)

The commutator of total Hamiltonian, H = HSR+Hµ+
HLR, can be regrouped into a similar fashion as for the
short-range case, but with more complicated contribu-
tions,

[H,Φleft] = i
L−1∑

j=1

(
mj+1 + µmj +

L−j∑

l=2

mj+l

2Rl,α
−

−
j−2∑

k=1

mk

2Rj−k,α

)
dj + i

(
µmL −

L−2∑

k=1

mk

2RL−k,α

)
dL.

(S21)

Proceeding as in the previous section, we now impose
all the coefficients accompanying the operators dj to be
zero, except the one coming from dL, which will be auto-
matically determined by these equations. Then, if the co-
efficient accompanying dL goes to zero as L increases, we
can claim that we still have unpaired Majorana modes.
Otherwise, a massive non-local Dirac mode will appear.

Therefore, we need to solve the following discrete equa-

tion:

mj+1+µmj+

L−j∑

l=2

mj+l

2Rl,α
−

j−2∑

k=1

mk

2Rj−k,α
= 0, ∀j = 1, ..., L−1

(S22)
Note that the first sum only contributes from j = 3 and
the last sum only runs up to j = L − 2. Once we solve
Eq. (S22), the edge mass indicator of the system is de-
termined from Eq. (S21), by computing

∆M := µmL −
L−2∑

k=1

mk

2RL−k,α
(S23)

Note that ∆M is not exactly the edge mass gap, how-
ever, it distinguishes the region where we have MZM or
when they turn into a non-local massive Dirac fermion,
[H,ΨE] = ∆M

1√
2
(c1 + idL). If ∆M goes to zero as L

increases, then we will certainly have a MZM. Note the
analogy with the short-range case with a non-zero chem-
ical potential µ.

Although a complete analytical solution might be in-
volved, this process can be easily programmed in a com-
puter as a set of linear equations. In Fig. S5, we compute
the finite-size scaling of ∆M within the crossover sector
for −1 < µ < 1 where we expect MZMs. Up to our nu-
merical precision, ∆M goes to zero in perfect accordance
with the phase diagram of Fig. 3 in the main text and
the finite-size scaling for the energy of the edge modes in
Fig. S3.

Before concluding, we would like to give an intu-
itive picture to explain the mechanism that pairs MZMs
non-locally via the long-range coupling. At first sight,
one might think that long-range interactions would cou-
ple every Majorana fermion with each other, mixing
them all. However, c1 and dN commute with HSR =
i
∑L−1

j=1 djcj+1, and the long-range Hamiltonian HLR

only couples the two of them together (up to exponential
and algebraic tails). This can be indeed inferred from the
commutator of ãE = 1√

2
(c1 + idN ) and HLR:

[HLR, ãE] = − 1

2RL−1,α
ãE −

L−2∑

j=2

1

2RL−j,α
ãj , (S24)

where ãj = 1√
2
(cj + idL+1−j) are new bulk fermionic

modes, and the edge Majoranas c1 and dN only appear
in ãE .

Actually, a complementary way to construct the new
fermionic edge mode ΨE is by incorporating corrections,
term by term, to ãE that cancel the contribution coming
from ãj in Eq. (S24) up to a higher order. However,
this method is even more involved than the one we have
proposed along this section.
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FIG. S7: Spatial probability distribution |ψ(x)|2 for the mas-
sive Dirac edge mode for different chemical potentials µ and
disorder strengths δµ. The wave functions are localised at
the ends of the chain, even in the presence of a disordered
potential.

IV. Robustness of the massive Dirac edge states to
disorder

In this Section we show that the massive Dirac states
are robust against the presence of a disordered potential.
To this end, we add a random chemical potential

Hδµ =
∑

i

εia
†
iai (S25)

to the Hamiltonian (1) of the main text with only long-
range pairing terms. The coefficients εi ∈ [−δµ, δµ] are
chosen from a random uniform distribution with zero
mean value and width 2δµ.
Figure S6 shows the energy spectrum En (averaged

over 100 disorder realizations) of the total Hamiltonian
H +Hδµ for α = 0.5 in the massive Dirac sector for two
values of δµ. It is possible to see that, when µ < 1, one
state (plotted in green) is separated by a finite gap from
the band of the bulk states (plotted in red). This state
is still an edge state as Fig. S7 shows. There we plot the
spatial distribution |ψ(x)|2 of the wave function of the
mode lying outside the band of the bulk states for two
values of δµ and µ for a system of L = 100 sites. Even in
the presence of a random potential term, this state is a
Dirac massive edge state as it is always localised at the
ends of the chain.

V. Topological Quantum Memory

As stated in the main text, it is possible to define a
topological qubit using the new non-local massive Dirac
fermions. In the short-range Kitaev chain, the topolog-
ical protection of the unpaired Majoranas is related to
the conservation of fermion parity and the gap isolating
the MZMs from the bulk states. We want to stress that
these same features also hold true for non-local massive
Dirac fermions.

As depicted in Fig. S8, we can still define even and odd
parity states {|+〉 , |−〉}, respectively. These two states

FIG. S8: At the l.h.s. we have depicted the construction
of a qubit within the even parity sector for the short-range
case. The two level system |+〉 , |−〉 represent whether the
two MZMs at the edge are populated or not. At the r.h.s.
we can see a similar scheme for a qubit in the even parity
sector within the Dirac phase. The only difference comes at
level of the states |+〉 , |−〉, representing whether the non-local
massive Dirac fermion is populated or not.

have different fermion parity F , physically depending on
whether we populate the non-local Dirac fermion or not:

ãE |+〉 = 0, |−〉 = ã†E |+〉 . (S26)

The fact that the effective two level system is gapped
is irrelevant in that respect. Additionally, as we show in
Fig. S6, this effective two level system is separated from
the bulk eigenstates by an energy gap and it is robust
against disorder perturbations. Using these states, we
can define a qubit using two copies of the Kitaev chain.
The reason behind is the impossibility to have a qubit
without a definite fermion parity [2, 3]. Therefore, the
qubit can be defined either in the even or odd parity
sector. As shown in Fig. S8 of the SM, we define a qubit
with even fermion parity, as |0〉 = |+〉 |+〉 and |1〉 =
|−〉 |−〉.

Furthermore, proposals to perform topological quan-
tum gates with Majorana fermions based on their braid-
ing properties have been recently proposed [4, 5]. All the
physical operations needed can be written in terms of
fermionic degrees of freedom, involving on-and-off switch-
ings of the different coupling constants. For the present
case with long-range couplings, a more detailed analysis
in order to elaborate a concrete proposal would be re-
quired. This is out of the scope of the present work but
it is left as an outlook of the paper.
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A.1. DISSIPATIVE PHASE TRANSITIONS

In equilibrium systems, phase transitions between different states of matter (e.g., that 
between liquid water and ice) are very-well understood. As we saw in the introduction of this 
thesis, Landau theory (Landau, 1937) characterises phase transitions by defining a local order 
parameter, i.e. a local property with a finite expectation value in one phase and a vanishing 
expectation value in the other one. In most cases, symmetry (Gross, 1996) also plays an 
essential role to identify different phases of matter, and usually a symmetry-breaking process 
is involved. Nonetheless, there are some other phases of matter that cannot be characterised 
by a local order parameter and symmetry breaking. Instead, they are described by a global 
order parameter associated to a topological invariant. These are the so-called topological 
phase transitions, which have been the centre of attention of this thesis.

When they are at equilibrium, topological and non-topological phase transitions have been 
extensively studied in the literature: at zero temperature, or when the system arrives to thermal 
equilibrium with the bath. The theory of equilibrium phase transitions shows that apparently 
distinct physical systems undergo transitions in the same way; invoking renormalisation group 
(RG) arguments (Wilson, 1975), details on small length scales do not matter.

Phase transitions can also occur in out-of-equilibrium situations. In classical systems, 
many examples have been found: moving cars into traffic jams, individual flying birds 
exhibiting collective flocking, etc. These situations can be related to each other by the fact that 
the appearance of different steady-state ordering is of purely dynamical origin and cannot be 
reduced to the equilibrium results.

In quantum mechanics, phase transitions away from thermal equilibrium may 
occur when an interacting system is driven by some external coherent source acting as an 
environment. Due to this external driving, the environment takes the system into a steady 
state. If the Hamiltonian and the dissipative dynamics do not commute, the steady state may 
change abruptly by varying the different coupling constants involved. A sudden change in 
the static properties1 of the system may happen, e.g. the spin polarisation. This leads to the 
so-called driven-dissipative phase transitions (DDPT).

1 There are other studies (Lesanovsky et al., 2013) that characterise DDPT using purely dynamical observables based 
on time correlations, or spin-spin correlations (Patanè et al., 2009).
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In the field of statistical mechanics at equilibrium, there several toy models that capture 
the physics of a wide range of physical systems. These models can even be classified within 
different universality classes (Sachdev, 2000), according to their behaviour close to the phase 
transitions point. On the contrary, only a few models for DDPT have been analysed. The main 
difficulty relies on the exponential growth of the Hilbert space dimension of a many-body 
system, which leads to density matrices of dimension dN x dN (where d is the dimension of the 
local degrees of freedom, e.g., a spin, and N is the number of particles).2

Therefore, approximated methods are needed in order to tackle with a formidable 
problem like this one. Nowadays, the amount of analytical and numerical tools available to 
study dissipative phase transitions in open quantum systems is highly limited. Remarkable 
examples are: the use of mean-field approximations (Diehl et al., 2010; Kessler et al., 2012; 
Lee, Gopalakrishnan and Lukin, 2013), Keldysh formalism (Sieberer, Buchhold and Diehl,  
2016), Matrix product operators (Chaitanya, Nissen, and Keeling, 2013), etc.

In this appendix section, we will describe several of these tools and propose new 
ones (yet never used for dissipative phase transitions). The power and combination of 
these different methods allow us to find new features of these transitions that had not been 
previously observed, namely the key role of short-range fluctuations in DDPT.

A.1.1.  Matrix product operators

The first numerical method that we present is based on the ideas of Density Matrix 
Renormalization Group (DMRG) (Schollwöck, 2005). This method was introduced by Steve 
White in 1992 (White, 1992).

The success of DMRG and its generalisations relies on the fact that certain many-body 
states in 1D systems can be accurately described in terms of the so-called matrix product states 
(MPS), i.e. a states of the form 

   ( )T N

N

d
ss
N N

s ,...,s

r A A s s... , ..., .ψ = ∑ 1

1

1 1
   [A.1]

The coefficients describing the state |ψ〉 are given in terms of the matrices An, whose 
dimension is bounded by a certain number χ, and d is the dimension of the local Hilbert space 
associated to the physical sites (e.g. spins).

DMRG can be understood in essence as an iterative variational method: given a fixed 
bond dimension χ, it computes the matrices An whose state |ψ〉 minimises the energy.

More than a decade later, Guifré Vidal developed the Time-Evolving Block Decimation 
(TEBD) method (Vidal, 2003 and 2004) to implement real time evolution of Matrix Product 
States. In other words, it gives a particular receipe to update the matrices An as a function of 

2 This problem has already been explained in more detail in chapter 2, when introducing the theory of open quantum 
systems.
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time. Subsequently, a new method was devised to compute real time evolution within the 
DMRG formalism (Feiguin and White, 2005). More recently, new proposals have been put 
forward to extend the method to 2D and 3D, extending the definition of Matrix Product 
States into the more general framework of Tensor Networks (Cirac and Verstraete, 2009).

Although these methods were initially proposed to deal with Hamiltonian systems 
and pure states, the extension of TEBD to open systems is possible (Zwolak and Vidal, 2004; 
Verstraete, García-Ripoll and Cirac, 2004). With this method, dissipative systems governed 
by master equations can be efficiently simulated (Verstraete, García-Ripoll and Cirac, 
2004), provided that entanglement does not grow very much and spatial correlations decay 
exponentially. For simplicity, we will focus on interacting spins although the method can also 
be applied to bosonic and fermionic systems.

A generic many-body mixed state on a L-site lattice can be written as 

   ρ= ž
i j,
∑
 

 Ci1⋯iL
,j1⋯jL

|i1⋯iL〉 〈j1⋯jL| ,   [A.2]

where we define i


={i1…iL}. The density matrix ρ can be recast in the super-operator language 
|ρ〉 as an MPS [Eq. (A.3)] in the enlarged Hilbert space of dimension dL⊗dL, where d is the 
dimension of the onsite Hilbert space, 

   |ρ〉= ž
i j,
∑
 

 Ci1⋯iL
,j1⋯jL

||i1⋯iL , j1⋯jL〉〉 ,  [A.3]

where the super-ket ||i1⋯iL,j1⋯jL〉〉=⊗L
a=1 |ia〉〈ja|  is used in order to deal with the super-operator 

formalism, i.e. with linear operators acting on vector spaces of linear operators.

We can use the singular value decomposition (SVD) or equivalently the Schmidt 
decomposition (Greiner et al., 2002) to write the tensor Ci1

⋯iL,j1⋯jL in Eq. [A.2] in terms of a 
product of local tensors associated to each site i. We start by computing the SVD of ρ into the 
first spin and the N-1 remaining ones, 

            |ρ〉=
α
∑

1

 λ
α

  
1

1  ||Φ
α

  
1

1 〉〉||Φ ...N
α

  
1

2 〉〉=
i j
∑

1 1 α
∑

1

 Γ i j,
,α
   1 1

1

1
1  λα

  
1

1  ||i1 j1〉〉||Φ ...N
α

  
1

2 〉〉 ,   [A.4]

where each Schmidt vector ||Φ
α

  
1

1 〉〉=∑i1
 j1

||i1 j1 Γ i j,
,α
   1 1

1

1
1 〉〉 has been expanded into the basis 

vector ||i1 j1〉〉, and λα

  
1

1  are the corresponding Schmidt coefficients. For every interaction, the 
maximum Schmidt rank is limited by χ, which sets the dimension of the tensors Γ '

n nn i ,j
,α α

   . We 
now proceed with site 2 of the chain. We expand the Schmidt vector ||Φ N...

α

  
1

2 〉〉 into the local 
basis of the second spin ||i2 j2〉〉,

      ||Φ N...
α

  
1

2 〉〉=
i j
∑

2 2

||i2 j2〉〉||τ N
i j
...

α

  
1 2 2

3 〉〉 ,     [A.5]
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and project ||τ N
i j
...

α

  
1 2 2

3 〉〉 onto the at most χ Schmidt vectors {||Φ N...
α

  
2

3 〉〉} χ
α =2 1 with their corresponding 

Schmidt coefficients λα

  
2

2 , 

      ||τ N
i j
...

α

  
1 2 2

3 〉〉=
α
∑

2

 Γ i j,
,α α

   2 2

1 2

2  λα

  
2

2  ||Φ N...
α

  
2

3 〉〉 .   [A.6]

Now, if we substitute Eq. [A.6] in Eq. [A.5], and this last equation into Eq. [A.4], we obtain 

  |ρ〉=
i i j j
∑

1 2 1 2

 
α α
∑

1 2

 Γ i j,
,α
   1 1

1

1
1  λα

  
1

1  Γ i j,
,α α

   2 2

1 2

2  λα

  
2

2  ||i1 i2 j1 j2〉〉||Φ N...
α

  
2

3 〉〉 .  [A.7]

By iterating this process for all sites (Vidal, 2003), we finally arrive to the MPO 
representation of the state 

 |ρMPO〉=
d

i j, =
∑

1
 

χ

α=
∑

1

(Γ i j,
,α
   1 1

1

1
1 λα

  
1

1 )(Γ i j,
,α α

   2 2

1 2

2 λα

  
2

2 )…(λ L

L
α −

 − 
1

1
Γ L L

L

L i ,j
,α −

  
1 1 )||i1⋯iL, j1⋯jL〉〉 .       [A.8]

The bond-link dimension χ of the MPO [A.8] can be kept under a given threshold by cutting 
the smallest singular values. Hence, it is proportional to the amount of quantum correlations 
between the system sites, that can be encoded in |ρMPO〉. Starting from χ=1 (separable state) and 
increasing χ, quantum correlations can be taken into account at increasing distance.

At this stage, the TEBD scheme can be naturally embedded in the Ansatz given in 
Eq. [A.8], by performing a Suzuki-Trotter decomposition (Hatano and Suzuki, 2005) of the 
Liouvillian super-operator ℒ# of a Lindblad master equation 

    d
dt

|ρMPO〉 (t)=ℒ# |ρMPO〉.   [A.9]

For a one-dimensional system with only local and nearest-neighbour interactions, 

  ℒ#= i odd∈
∑ (ℒ i

# +ℒ i i,
#
+1 )+

i even∈
∑ (ℒ i

# +ℒ i i,
#
+1 )=ℒ#odd+ℒ#even,  [A.10]

where ℒ i
#  are linear operators acting on a local site i, and on the r.h.s equality we have divided 

the lattice into even and odd sites. This division is useful since all terms inside ℒ#odd (ℒ#even) 
commute with each other. Thus, performing a Suzuki-Trotter decomposition, the evolution 
of |ρMPO〉 at each time t+dt can be written as 

|ρMPO〉(t+dt)=eℒ#dt|ρMPO〉(t)=(
oi dd∈
∏ eℒ o

i dt
# dd 2 )(

oi dd∈
∏ eℒ e

i dt# ven )(
oi dd∈
∏ eℒ o

i dt
# dd 2 )|ρMPO〉(t)+O(dt3). [A.11]

Fortunately, updating the description [A.11] of ρMPO at time t+dt involves a product of 
local ℒ

n
#  and nearest-neighbour ℒ n,n

#
+1 operators acting on site n. Thus, they only change 
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the local tensor Γ[n] λ[n] Γ[n+1], whose associated computational cost is of O(χ2) basic 
operations.

Finally, we are mainly interested in computing stationary state properties of the system. 
The time needed to reach the steady-state is of the order of the inverse of the Lindbladian gap.3 
Close to a phase transition point, the gap necessarily goes to zero and the method is not very 
well-suited, due to the unavoidable growth of the computational time needed to reach the 
steady state. The same problem appears in closed systems when finding the ground state of a 
certain configuration, using imaginary time evolution. Finally, one should also pay attention 
to the stability of the resulting steady state solution with respect to the bond dimension χ. If 
the MPO is faithfully capturing most of the correlations present in the system, the steady state 
solution should not vary by increasing χ.

A.1.2. Quantum trajectories

The method of quantum trajectories (QT) (Dalibard, Castin and Mølmer, 1992) describes 
a protocol to numerically simulate dissipative dynamics. It was initially used in quantum 
optics as a technique to compute the time evolution of a density matrix following a Lindblad 
master equation.4 It was first introduced (Dalibard, Castin and Mølmer, 1992) as a Monte 
Carlo method to study laser cooling.

Instead of addressing directly the master equation, we solve the dynamics as a stochastic 
average over individual trajectories, which can be numerically evolved in time as pure states. 
We only perform a stochastic evolution protocol over a pure state vector of size 2L (L spins-
1/2), instead of a density matrix ρ(t) of dimension 2L X 2L. The QT approach requires to 
manipulate N X 2L elements, N being the number of trajectories. Typically, N << 2L is sufficient 
to get reliable results (small statistical errors).

The QT protocol (Daley, 2014) works as follows. Let us consider a interacting spin-1/2 
chain, governed by a Lindblad master equation 

    i H
t

ˆ ,ρ ρ
 ∂

= −  
∂   

+
j
∑

 ℒj [ρ] .  [A.12]

The first term in the r.h.s. describes the coherent unitary time evolution (ruled by the 
system Hamiltonian Ĥ ). The second term, corresponding to a sum of local Lindbladian 
superoperators ℒj [ρ], takes into account the coupling to the external environment. In 
particular, we assume the following form 

   
j
∑ ℒj [ρ]=γ

j
∑ { } j j j j

ˆ ˆ ˆ ˆ ,σ ρσ σ σ ρ− + + − 
− 

 

1
2 ,   [A.13]

3 The Lindbladian gap is given by the non-zero eigenvalue with the smallest real part of the Liouville super-operator 
in Eq. [A.10].

4 In chapter 2 we explained the structure and the main properties of a Lindblad master equation.
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where γ is the dissipative rate that tends to flip all spins down, j
ˆ ασ (α=x,y,z) denote the Pauli 

matrices on the j-th site of the system, and ( )x y
j j j

ˆ ˆ ˆσ σ σ± = ±
1
2

 stand for the corresponding raising 
and lowering operators along the z axis.

The unitary time evolution part of Eq. [2.23], together with the anti-commutator term 
in Eq. [2.25], can be regarded as if the evolution were performed by means of an effective non-
Hermitian Hamiltonian effH = H +i Kˆ ˆ ˆ , with j jj

K̂ ˆ ˆγ σ σ+ −= − ∑2
. The remaining term in Eq. [A.13] 

originates the so-called quantum jumps. If the density matrix at some reference time  t0 is 
given by the pure state ρ(t0)=|ψ0〉〈ψ0|, after an infinitesimal amount of time δt, it will evolve 
into the statistical mixture of pure states j j L, ,{ , }ψ ψ = …0 1

 | j j L, ,{ , }ψ ψ = …0 1
 〉〈 j j L, ,{ , }ψ ψ = …0 1
  |j j L, ,{ , }ψ ψ = …0 1
   (the tilde indicates states at time 

t0+δt) (Daley, 2014), 

  ρ(t0+δt)=(1-
j
∑ dpj)|ψ 0〉〈ψ 0|+ j

∑ dpj |ψ j〉〈ψ j| ,   [A.14]

where dpj=γ2 〈ψ0| jσ̂ +
jσ̂ − |ψ0〉 and 
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   [A.15]

Figure A.1.
Sketch of the cluster mean-field approach in a dissipative system of interacting 
spin-1/2 particles

Note: The figure refers to 2x2 cluster on a two-dimensional square lattice.
Source: Own elaboration.
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Therefore, if we prepare an initial pure state |ψ0〉 at time t0:  

● With probability dpj, the state evolves or “jumps" to state |ψ j〉 at time δt. 

● With probability 1-∑j dpj , there are no jumps and the state |ψ0〉 unitarily evolves 
according to effĤ . The state at time δt would be |ψ0〉. 

Assuming there is a single steady state ρSS for Eq. [A.12], 

   Tr(Ô ρSS)= lim
T

T T

TT∞

+

→
∫ 0

0

1 〈ψ(t)|Ô |ψ(t)〉dt,    [A.16]

for any observable Ô  and for a sufficiently long waiting time T0 (Dalibard, Castin and Mølmer, 
1992). In practical situations, one usually takes T0 to be the typical time-scale to relax to 
the steady state (about the inverse of the Lindbladian gap). The state |ψ(t)〉 is stochastically 
chosen among those in Eq. [A.15], according to the statistical mixture [A.14], after iterating 
the above algorithm for (T-T0)/δt times. The time interval δt has to be much smaller 
than the relevant dynamical time scales. If the trajectory is randomly chosen, it is possible to 
compute the asymptotic average for a single trajectory; however, Eq. [A.16] is only exact at  
T → ∞. Therefore, we can speed up the convergence of Eq. [A.15] for a sufficiently large T, by 
averaging over different trajectories.

A.1.3. Cluster mean-field approximation

Mean-field theory is a very useful and extended approximation to deal with hard-to-
solve many-body problems in physics. The main idea of this method can be summarised 
in the following way: mean-field theory transforms an interacting many-body system into a 
single-particle problem, embedded inside a background field generated by the other particles. 
In other words, if we focus on a single-particle of the system, the effect of all interactions 
among particles can be averaged out into a background field.

This is actually a very crude approximation, since we are neglecting fluctuations at all 
orders by considering only a uniform background field. Mean-field theory is based on the 
assumption that fluctuations around the average value of the order parameter are small 
enough to be neglected. For low dimensional equilibrium systems, specially close to a phase 
transition point, fluctuations become important and mean field theory may give qualitatively 
wrong predictions. Dimensionality plays a big role in determining whether a mean-field 
approach will work for any particular problem. Generally, the larger the dimension the more 
accurate the mean-field approximation becomes. Notorious examples where mean-field gives 
qualitatively good predictions are the BCS theory of superconductivity (Bardeen, Cooper and 
Schrieffer, 1957), liquid crystals (Maier and Saupe, 1958) magnetic models in large spatial 
dimensions (Sanchez-Velasco, 1987), etc. For the the 2D Ising model (Onsager, 1944), mean-
field theory correctly predicts the existence of a phase transition, despite not yielding the 
correct critical exponents.
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On the other hand, one of the most famous examples where mean-field theory 
completely fails is the 1D Ising model (Ising, 1925). This classical spin model is exactly 
solvable and has no phase transition. However, mean-field theory predicts a paramagnetic 
(PM) to ferromagnetic (FM) phase transition at some critical temperature Tc. As the model is 
exactly solvable, there is no doubt that the mean-field result is wrong. A complementary way 
to show the absence of a phase transition within the mean-field philosophy can be done by 
incorporating short-range fluctuations (Yamamoto, 2009). This method is referred to in the 
literature as cluster mean-field.

Let us consider the Hamiltonian of a 2D spin model with nearest-neighbour interactions 
Ĥ ij

i,j
ˆĤ h

〈 〉
=∑ . We isolate a given subset C of contiguous lattice sites (cluster), from the rest 

of the lattice forming the system [see Fig. A.1]. The decoupled cluster mean-field (CMF) 
Hamiltonian with respect to the cluster can be written as 

    ( )CMF C B C
ˆ ˆ ˆH H H= + ,    [A.17]

where 

    C ij

i,j i,j C

H h
|

ˆˆ
〈 〉 ∈

= ∑ ,    [A.18]

faithfully describes the interactions inside the cluster, while 

    ( )
( )

eff
jjB C

j B C

Ĥ ˆB σ
∈

= ⋅∑     [A.19]

effectively represents the mean-field interactions of the cluster C with its neighbors 
[ ( )x y z

j j j j
ˆ ˆ ˆ ˆ, ,σ σ σ σ= ]. The sum is restricted to boundary sites B(C) of the cluster. The parameter 

( )eff x y z
j j j jB B ,B ,B=  in Eq. [A.19]) is related to the average magnetisation of the neighboring spins 

of i belonging to the cluster Ć  adjacent to C. The effective field needs to be computed self-
consistently.

In equilibrium systems, the self-consistency determination of the average magnetisation 
usually relies on the free-energy minimisation, based on the Gibbs-Bogolyubov inequality (Okubo, 
1971). We will give some intuition for this variational method. Let us consider a Hamiltonian 

    H=H0+H1,     [A.20]

that can be divided into an easy solvable part H0 and a more difficult (probably non-solvable) 
part H1. We now replace H by a trial Hamiltonian 

    Ĥ =H0+〈H1〉0,    [A.21]

where 〈〉0 stands for the average over the canonical ensemble defined by H0. By 
averaging H1, the resulting Hamiltonian Ĥ  can be solved. It is clear that 〈H〉0=〈 Ĥ〉0, which 
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implies (Okubo, 1971) that the following inequality holds F≤ F̂ , where F̂  is the free energy for  
Ĥ . By minimising F̂ with respect to the mean-field parameters (e.g. the magnetisation), 
we obtain the self-consistency equations for those same parameters. In general, the 
approximation of Hamiltonian H byĤ tends to be better, the larger the spatial dimension is.

For non-equilibrium systems, the situation is quite different. Once the mean-field 
or cluster mean-field approximation in the Liouvillian has been performed, the spin 
magnetisation (or any other local observable) is determined dynamically. We compute the 
steady state value of the magnetisation by dynamically solving the master equation (e.g. Eq. 
[A.12]). During the evolution, the value of eff

jB  is hence determined self-consistently in time. 
The full problem is eventually simplified into the evolution of the density matrix ρC of the 
cluster in the presence of a time-dependent effective field eff

jB (t).

Finally, in order to improve the accuracy of the method and to have a reliable scaling 
of the correlations, clusters of sufficiently large dimensions need to be considered. For small 
clusters a direct integration of the cluster master equation is feasible, while larger clusters can 
be faithfully treated by combining the cluster mean-field approach with quantum trajectories 
and tensor-network techniques.

This new method for self-consistency determination of the mean-field eff
jB (t) is a 

crucial difference between equilibrium and non-equilibrium systems. Actually, this is the 
fundamental reason why me may expect qualitatively different behaviour from the inclusion 
of short-range fluctuations in non-equilibrium situations.

As commented before, the cluster mean-field (CMF) method can be combined with 
quantum trajectories (QT) techniques. For each time evolving quantum trajectory, one finds 
the corresponding mean fields for each site j inside the considered cluster. The mean field eff

jB  
that appears in the effective Hamiltonian in Eq. [A.19]), to be used in the master equation 
for the cluster density matrix, is obtained by averaging over all the N trajectories. For 1D 
dissipative many-body systems, it is also possible to combine CMF with the master-equation 
dynamics simulated by means of the TEBD scheme using MPOs. The only novel ingredient is 
provided by the mean fields computed at the two edge sites of the chain. These can be easily 
evaluated self-consistently in time within the TEBD scheme.
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A.2. OUTLINE OF THE MAIN RESULTS

● We study a magnetic system of spin-1/2 particles located on a two-dimensional 
square lattice. The interactions of the system are described by the so-called Heisenberg 
XYZ model, and we allow for spin-flip transitions associated to some external dissipative 
coupling.

● The unitary dynamics induced by the Hamiltonian (XYZ model) compete with the 
dissipative ones generated by a Lindbladian (spin flips), thus giving rise to non-
equilibrium effects.

● We extend the cluster mean-field method widely used in equilibrium situations, to a 
new out-of-equilibrium scenario in open quantum systems.

● Contrary to equilibrium thermodynamics, the inclusion of short-range fluctuations, 
by means of the cluster mean-field method, deeply modifies the steady-state phase-
diagram topology of driven-dissipative quantum systems.

● We combine powerful numerical methods together with the cluster mean-field 
approach. Namely, we employ tensor-networks (like matrix-product operators) and 
quantum trajectories techniques.

● For standard single-site mean-field, where correlations are completely neglected, the 
system displays a ferromagnetic (FM) phase. However, when short-range correlations 
are taken into account, they produce a reentrance of the paramagnetic (PM) phase 
that changes the topology of the single-site mean-field phase diagram.

● We perform a stability analysis showing the robustness of these results against 
perturbations.

● Our results are amenable to experimental verification using novel quantum-
simulation platforms like trapped ions, highly excited Rydberg states of ultracold 
atoms, and arrays of coupled optical or microwave cavities.
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We show that short-range correlations have a dramatic impact on the steady-state phase diagram of
quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that
ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in
thermodynamic equilibrium it arises from the properties of the (free) energy. To this end, by combining the
cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network
techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We
analyze in detail a model of spin-1=2 on a lattice interacting through an XYZ Hamiltonian, each of them
coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram
derived from our cluster approach, the location of the phase boundaries and even its topology radically
change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where
correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility
towards a possible incommensurate ordering, not present if short-range correlations are ignored.

DOI: 10.1103/PhysRevX.6.031011 Subject Areas: Condensed Matter Physics,
Statistical Physics

I. INTRODUCTION

In thermodynamic equilibrium, a transition to a state
with a spontaneous broken symmetry can be induced by a
change in the external conditions (such as temperature or
pressure) or in the control parameters (such as an external
applied field). The most widely studied examples are for
systems at nonzero temperature, in the framework of
classical phase transitions [1]. Here, equilibrium thermal
fluctuations are responsible for the critical behavior asso-
ciated with the discontinuous change of the thermodynamic
properties of the system. Transitions may also occur at zero
temperature, as a function of some coupling constant [2]; in
that case, since there are no thermal fluctuations, quantum
fluctuations play a prominent role. For many decades, the
study of phase transitions and critical phenomena has

attracted the attention of a multitude of scientists from
the most diverse fields of investigations: Phase transitions
are present at all energy scales, in cosmology and high-
energy physics, as well as in condensed matter.
Moving away from the thermodynamic equilibrium,

collective phenomena and ordering also appear in open
systems, upon tuning the rate of transitions caused by the
environment [3]. For example, they emerge in most diverse
situations [4] ranging from the synchronous flashing of
fireflies [5] to the evolution of financial markets [6]. The
classical statistical mechanics of such driven systems
(including traffic models, active matter, and flocking) has
attracted increased attention over the years; see, e.g.,
Refs. [7,8]. Such interest is in part due to the remarkable
possibility of achieving ordered states that are not possible in
equilibrium systems, displaying, for example, long-range
order in two-dimensional flocking [9], something forbidden
by the Mermin-Wagner theorem [10] in equilibrium.
Thanks to the recent impressing experimental progresses

(see, e.g., Refs. [11–13]), the investigation of nonequili-
brium properties of driven-dissipative systems has entered
the quantum world. Rydberg atoms in optical lattices [14],

Published by the American Physical Society under the terms of
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systems of trapped ions [14], exciton-polariton condensates
[15], cold atoms in cavities [16], and arrays of coupled
QED cavities [17,18] are probably the most intensively
investigated experimental platforms in relation to this aim.
The predicted steady-state phase diagram of these driven-
dissipative systems becomes incredibly rich, displaying a
variety of phenomena. Just as for classical statistical
mechanics, phases, which are not possible in an equilib-
rium phase diagram, may appear [19]. The steady state
itself need not be time independent, and the system may
end up in a limit cycle [20–24]. Renormalization-group
(RG) calculations using the Keldysh formalism have
been performed [25]; in some cases, the universality class
of the transitions may be modified both by the presence of
the external environment and by nonequilibrium effects
[26,27]. A judicious engineering of the system-bath cou-
plings can lead to nontrivial many-body states in the
stationary regime [28,29]. The field of dissipative many-
body open systems embraces a much wider class of
problems, ranging from transport to relaxation dynamics
to quantum information processing (just to mention a few
examples). A more comprehensive panorama of the recent
literature can also be found in Refs. [30–49] and citations
therein.
In condensed matter systems, most notably in Josephson

junction arrays, the impact of an external bath on the phase
diagram and the relative critical properties have been
thoroughly studied over the last 20 years; see, e.g.,
Refs. [50–53]. In all of those studies, the system and the
bath were in an overall equilibrium situation at a given
(possibly zero) temperature. In quantum driven-dissipative
systems, such as the one considered here, nonequilibrium
conditions and the flow of energy through the system play a
major role.
Our work focuses on an important aspect of the physics

of many-body open systems: the determination of the
steady-state phase diagram. We consider systems in which
the coupling to the environment leads to a Markovian
dynamics. In these cases, the evolution of the correspond-
ing density matrix ρðtÞ obeys the Lindblad equation

∂ρ
∂t ¼ −

i
ℏ
½Ĥ; ρ� þ

X
j

Lj½ρ�: ð1Þ

The first term in the rhs describes the coherent unitary time
evolution (ruled by the system Hamiltonian Ĥ). The second
term, corresponding to a sum of Lindbladian superoper-
ators Lj½ρ�, takes into account the coupling to the external
bath(s). The steady-state phase diagram is obtained by
looking at the long-time limit (t → ∞) of the solution to
Eq. (1) and computing appropriate averages hÔi ¼
Tr½Ôρt→∞�≡ Tr½ÔρSS� of local observables Ô, in order
to determine the (possible) existence of phases with broken
symmetries (space, time, spin, …) [54].

Nearly all the results obtained so far on the phase
diagram (with the notable exception of the works based
on Keldysh RG mentioned above) rely on the (single-site)
mean-field approximation, where all the correlations are
ignored. Very little is known beyond that limit about
the interplay between many-body correlations and dissi-
pation, although there are some contributions in this
direction [55–57]. While quasi-exact numerical methods
exist for open one-dimensional (1D) systems, unfortunately
no true phase transitions are expected to occur in that
context. Beyond one dimension, such methods are much
harder to apply. However, it is well known that the mean-
field decoupling, while important to grasp the salient
features of the system, is not at all accurate in locating
the phase boundaries.
An improvement in the determination of the phase

diagram can be obtained by a systematic inclusion of
short-range correlations (up to a given cluster size). In
equilibrium, this has been achieved within the cluster
mean-field approximation [58–60] and using linked cluster
expansions [61]. In the cluster mean-field approach, the
accuracy of the diagram is obviously related to the size
of the considered cluster. Even though it is still mean field
in nature, a suitable scheme that combines it with finite-size
scaling may, in principle, allow us to extract nonclassical
critical exponents [62]. In higher dimensions (above the
lower critical one) where one expects spontaneous sym-
metry breaking, cluster methods lead only to quantitative
corrections (a mere shift) to the mean-field predictions.
These corrections become smaller on increasing the
dimensionality.
For equilibrium phase transitions, the topology of the

phase diagram is well captured at the mean-field level, and
the short-range fluctuations considered by cluster methods
only lead to shifts in the location of the transition lines
or points. Normally, they do not cut an ordered phase into
two separate parts, divided by a disordered region. The
possibility to have a radical change of topology is, however,
permitted out of equilibrium, where the spontaneous
breaking of symmetry is of pure dynamical nature:
Terms that are formally irrelevant in the RG sense can
nonetheless modify the flow of RG-relevant terms, so as to
move a point in parameter space from one side to the other
side of a phase boundary. Such a scenario is rarely, if ever,
seen in equilibrium.
We demonstrate that the above picture is indeed verified

in the open many-body context, and ordering with a
nontrivial spatial pattern may emerge (see Fig. 1). The
most natural way to show this is to include correlations
through a cluster mean-field analysis which, to the best of
our knowledge, has never been systematically applied in
the open many-body context. Although the general strategy
is the same as for equilibrium systems, there are several
peculiarities emerging in this scenario, which need to be
carefully addressed. The steady-state solution typically
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needs to be obtained dynamically via Eq. (1) (and not
through a solution of a self-consistent equation [63]). To
increase the cluster size, we introduce a new approach that
combines the cluster mean field with quantum trajectories
[64] and with matrix-product operators [65,66].
We apply our technique to a spin-1=2 XYZ model with

relaxation (as previously studied by Lee et al. [19]) and
show that the short-range correlations captured by the
cluster approach can have a dramatic effect on the phase
diagram. This last point is exemplified in Fig. 1 (which
summarizes one of our main results). A mean-field analysis
predicts a transition from a paramagnet to a ferromagnet
(upper panel) in the whole region of large couplings
Jy > Jcy. The lower panel sketches the outcome of the
cluster analysis. The ferromagnetic regime has shrunk to a
finite region disappearing in the limit of large couplings.
For an equilibrium system, such behavior would be very
strange: Large coupling strengths increase the tendency

toward ferromagnetic order, yet here we find that the
ordered state is destroyed by strong couplings.
Furthermore, indications from a stability analysis hint at
a different type of ordering at large values of Jy.
The paper is organized as follows. In the next section, we

define the spin-1=2 model with nearest-neighbor XYZ
interactions coupled to a local bath, which will be consid-
ered in the following. We then introduce the cluster mean-
field approach to driven-dissipative systems and show how
to combine it with quantum trajectories (Sec. III B) and
with the matrix-product-operator (Sec. III C) formalism.
We see this method at work by looking at the steady-state
phase diagram and comparing its rich features with those
pointed out in Ref. [19] at the single-site mean-field level.
Specifically, in Sec. IV, we discuss how the location of
the transition lines is qualitatively changed in the cluster
approach. Our aim is to highlight the key role of short-
range correlations in driven-dissipative systems. For this
purpose, we concentrate on a specific region of the diagram
where a paramagnetic-to-ferromagnetic transition takes
place. In one dimension (Sec. IVA), the cluster approach
with appropriate scaling restores the absence of symmetry
breaking. While the one-dimensional results presented here
are as expected, we believe they are, however, useful as a
benchmark of the numerical methods employed in the rest
of this paper. Surprises appear in the two-dimensional case
(Sec. IV B), where a ferromagnetic phase is possible.
Including cluster correlations gives rise to a phase diagram
that is radically different from what was derived within a
single-site mean field. The extent of the ferromagnetic
region becomes finite. The nature of such transitions is
discussed in Sec. IV C, where a stability analysis around
the mean-field solution is performed. The finite extent of
the ordered phase appears to persist in higher-dimensional
systems (Sec. IV D), even though the mean field progres-
sively becomes, as expected, more accurate. The under-
lying dynamical mechanism responsible for such dramatic
modifications in the phase diagram will be discussed in
Sec. IV E, where we provide a more physical intuition of
the results obtained in this work. Finally, in Sec. V, we
conclude with a brief summary of our results.

II. THE MODEL

We consider a spin-1=2 lattice system whose coherent
internal dynamics is governed by an anisotropic XYZ-
Heisenberg Hamiltonian,

Ĥ ¼
X
hi;ji

hij ¼
X
hi;ji

ðJxσ̂xi σ̂xj þ Jyσ̂
y
i σ̂

y
j þ Jzσ̂

z
i σ̂

z
jÞ; ð2Þ

with σ̂αj (α ¼ x, y, z) denoting the Pauli matrices on the jth
site of the system. The Lindbladian for this model reads

J
x
 / γ
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FIG. 1. A sketch of the phase diagram of the model defined by
Eqs. (2) and (3), for Jz ¼ 1. The single-site mean field as
worked out in Ref. [19] would predict the emergence of
different phases: paramagnetic (PM), ferromagnetic (FM),
antiferromagnetic (AFM), and spin-density-wave (SDW)
phases (inset to the top panel). Here, we focus on the region
highlighted by the red box, which displays a transition from PM
to FM states (magnified in the top panel). A proper inclusion of
short-range correlations (through the cluster mean field) shrinks
the ferromagnetic region to a small “island,” thus suppressing
the order at large couplings and hinting at a possible incom-
mensurate (inc) ordering (bottom panel).
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X
j

Lj½ρ� ¼ γ
X
j

�
σ̂−j ρσ̂

þ
j −

1

2
fσ̂þj σ̂−j ; ρg

�
; ð3Þ

where γ is the rate of the dissipative processes that tend to
flip all the spins down independently [σ̂�j ¼ 1

2
ðσ̂xj � σ̂yjÞ

stand for the corresponding raising and lowering operators
along the z axis]. In the rest of the paper, we set ℏ ¼ 1 and
work in units of γ. The (single-site) mean-field phase
diagram of the model defined in Eqs. (2) and (3) has been
worked out in Ref. [19]; for orientation, we summarize the
main results of this analysis here.
It is important to remark that an in-plane XY anisotropy

(Jx ≠ Jy) is fundamental to counteract the dissipative spin
flips along the orthogonal direction [19]. In the case in
which Jx ¼ Jy, Eq. (2) reduces to an XXZ Heisenberg
model. Since this latter conserves the global magnetization
along the z axis, the steady-state solution ρSS of Eq. (1)
would trivially coincide with the pure product state having
all the spins aligned and pointing down along the z
direction. This corresponds to a paramagnetic state where
the dissipation is dominant, and such that hσ̂xjiSS ¼
hσ̂yjiSS ¼ 0 and hσ̂zjiSS ¼ −1, where hÔiSS ¼ TrðÔρSSÞ
denotes the expectation value of a given observable Ô
on the steady state.
The steady-state phase diagram presented in Ref. [19]

is particularly rich and includes, for strongly anisotropic
spin-spin interactions, ferromagnetic, antiferromagnetic,
spin-density-wave, and staggered-XY states. Hereafter, we
concentrate on the regime of parameters Jx, Jy ≥ 1 and
Jz ¼ 1, where the single-site mean field predicts a single
ferromagnetic (FM) to paramagnetic (PM) phase transition.
Indeed, by changing the various coupling constants, the PM
phase may become unstable and the system can acquire a
finite magnetization along the xy plane (hσ̂xjiSS, hσ̂yjiSS ≠ 0),
thus entering a FM phase. This fact is associated with the
spontaneous breaking of the Z2 symmetry, which is present
in the model and corresponds to a π rotation along the z axis
(σ̂x → −σ̂x, σ̂y → −σ̂y). The picture changes dramatically
when local correlations are included.
As already mentioned in the Introduction, in an open

system the stationary state may also break time-
translational invariance (the steady state is time periodic)
[20–24]. Our numerics suggests that a time-independent
solution exists for all parameters we study, and so we will
not consider this last case and instead concentrate on
stationary time-independent solutions. This corresponds
to the stationary point of Eq. (1), ∂tρSS ¼ 0, irrespective of
the initial condition. In the remainder of the paper, we
always implicitly refer to this occurrence.

III. METHODS

Solving Eq. (1) for a many-body system is a formidable
task, even from a numerical point of view. The exponential

increase of the Hilbert space makes a direct integration of
the master equation unfeasible already for relatively small
system sizes. Indeed, one needs to manipulate a density
matrix of dimensions 2L × 2L, which becomes a computa-
tionally intractable task already for quite a small number of
sites (L≳ 10). In order to access systems as large as
possible and to perform finite-size scaling up to reasonable
sizes, we employ a combination of strategies.
In this section, we discuss how to use cluster mean-field

methods for driven-dissipative systems; these will be
employed to determine the phase diagram of the model
defined by Eqs. (2) and (3). In order to keep the notation as
simple as possible, we describe the cluster approach in the
spin-1=2 language for nearest-neighbor Hamiltonians. A
straightforward extension of our formalism allows us to
consider generic short-range Hamiltonians of the form

Ĥ¼Piĥ
ð0Þ
i þPhi;jiĥ

ð1Þ
ij þP⟪i;j⟫ĥ

ð2Þ
ij þ��� (with the various

terms including on-site, nearest-neighbor, next nearest-
neighbor, …, couplings, respectively) and a generic dis-
sipator containing more than one Lindblad operator on
each site.

A. Cluster mean field

Let us isolate a given subset C of contiguous lattice sites,
hereafter called cluster, from the rest of the lattice forming
the system (which is supposed to be at the thermodynamic
limit). This is pictorially shown in Fig. 2. The decoupled
cluster mean-field (CMF) Hamiltonian with respect to the
cluster can be written as

ĤCMF ¼ ĤC þ ĤBðCÞ; ð4Þ

where

ĤC ¼
X

hi;jiji;j∈C
ĥij ð5Þ

faithfully describes the interactions inside the cluster, while

ĤBðCÞ ¼
X

j∈BðCÞ
Beff

j · σ̂j ð6Þ

FIG. 2. Sketch of the cluster mean-field approach in a dis-
sipative system of interacting spin-1=2 particles. The figure refers
to a 2 × 2 cluster on a two-dimensional square lattice.
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effectively represents the mean-field interactions of the
cluster C with its neighbors [σ̂j ¼ ðσ̂xj ; σ̂yj ; σ̂zjÞ]. The sum is
restricted to the sites on the boundary BðCÞ of the cluster.
The parameter Beff

j ¼ ðBx
j; B

y
j ; B

z
jÞ in Eq. (6) is related to

the average magnetization of the neighboring spins of i
belonging to the cluster C0 adjacent to C. The effective field
needs to be computed self-consistently in time.
This reduced description arises from a factorized Ansatz

for the global density matrix

ρCMF ¼ ⊗
C
ρC; ð7Þ

where ρC is the density matrix of the Cth cluster. Inserting
such Ansatz into Eq. (1) and exploiting the translational
invariance with respect to the cluster periodicity (ρC ¼ ρC0 ,
∀C, C0), we get an effective master equation of the form

∂ρC
∂t ¼ −

i
ℏ
½ĤCMF; ρC� þ

X
j∈C

Lj½ρC�: ð8Þ

We recall that the standard mean-field treatment derives
from assuming that the cluster is formed by a single site.
The mean-field approach represents a crude approxima-

tion for a many-body interacting system since all the
correlations are effectively neglected. The decoupling on
a larger structure described above partially overcomes
this problem: The idea is that interactions among the sites
inside a cluster are treated exactly [see Eq. (5)], while those
among neighboring clusters are treated at the mean-field
level [see Eq. (6)]. As a consequence, short-range corre-
lations inside the cluster are safely taken into account. The
full problem is eventually simplified into the evolution of
the density matrix ρC of the cluster in the presence of a
time-dependent effective field Beff

j ðtÞ.
So far, what we discussed equally applies to any cluster

mean-field approximation, either classical or quantum.
The only nontrivial modification in the present case is that
one has to study the evolution of Eq. (8) in the presence
of a time-dependent field that has to be determined self-
consistently. In order to improve its accuracy and to have a
reliable scaling of the correlations, clusters of sufficiently
large dimensions need to be considered. For small clusters,
a direct integration of the cluster master equation is
feasible, while larger clusters can be faithfully treated by
combining the above explained approach with specific
techniques designed to deal with open systems.
Specifically, we integrate the cluster mean-field approxi-
mation together with quantum trajectories and with
tensor-network approaches. The idea and procedure is
straightforward, but some practical details need to be stated
explicitly. We present such details in the next sections.

B. Quantum trajectories

There is a simple procedure that allows us to avoid
simulating the mixed time evolution of the full master
equation (1) [which would need to store and evolve a
2L × 2L matrix ρðtÞ]. Indeed, it can be shown that one can
equivalently perform a stochastic evolution protocol of a
pure state vector of size 2L, according to the quantum-
trajectory (QT) approach [64] [which requires one to
manipulate N × 2L elements, N being the number of
trajectories (typically N ≪ 2L is sufficient to get reliable
results)]. The unitary time evolution part of Eq. (1),
together with the anticommutator term in Eq. (3), can be
regarded as if the evolution were performed by means of an
effective non-Hermitian Hamiltonian Ĥeff ¼ Ĥ þ iK̂, with
K̂ ¼ −ðγ=2ÞPjσ̂

þ
j σ̂

−
j . The remaining term in Eq. (3) gives

rise to the so-called quantum jumps. It can be shown that, if
the density matrix at some reference time t0 is given by the
pure state ρðt0Þ ¼ jψ0ihψ0j, after an infinitesimal amount
of time δt, it will evolve into the statistical mixture of the
pure states fj ~ψ0i; j ~ψ jigj¼1;…;L (the tilde indicates states at
time t0 þ δt):

ρðt0 þ δtÞ ¼
�
1 −

X
j

dpj

�
j ~ψ0ih ~ψ0j þ

X
j

dpjj ~ψ jih ~ψ jj;

ð9Þ

where dpj ¼ γhψ0jσ̂þj σ̂−j jψ0i and

j ~ψ0i ¼
e−iĤeffδtjψ0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

P
jdpj

q ; j ~ψ ji ¼
σ̂−j jψ0i

∥σ̂−j jψ0i∥
: ð10Þ

Therefore, with probability dpj a jump to the state j ~ψ ji
occurs, while with probability 1 −

P
jdpj, there are no

jumps and the system evolves according to Ĥeff . Assuming
that there exists a single steady state ρSS for Eq. (1), one
has [64]

TrðÔρSSÞ ¼ lim
T→∞

1

T

Z
T0þT

T0

hψðtÞjÔjψðtÞidt; ð11Þ

for any observable Ô and reference time T0. The state
jψðtÞi is stochastically chosen among those in Eq. (10),
according to the statistical mixture (9), after iterating the
above algorithm for ðt − t0Þ=δt times, where the time
interval δt has to be much smaller than the relevant
dynamical time scales.
It is possible to combine the QT method with the above-

described CMF approach at the cost of some moderate
modifications. In order to do that, it is necessary to perform
a simulation of a sufficiently large number N of trajectories
in parallel. For each trajectory k, the mean-field expectation
value hσ̂jðtÞik ≡ khψðtÞjσ̂jjψðtÞik on each site j of the
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considered cluster C is computed iteratively in time. The
average over all the trajectories gives the correct mean field
at time t,

Beff
j ðtÞ ¼ 1

N

XN
k¼1

hσ̂jðtÞik; ð12Þ

which has to be self-consistently used to describe effective
interactions between adjacent clusters [see Eq. (6)]. Note
that this approach corresponds to performing the stochastic
unraveling of the cluster mean-field theory. Such an
approach is different from performing a cluster mean-field
decoupling of a stochastic unraveling of the original
equation (i.e., each trajectory would evolve according to
its own mean field).
Eventually, one gets an effective non-Hermitian cluster

mean-field Hamiltonian

Ĥeff;CMF ¼ ðĤC þ iK̂CÞ þ ĤBðCÞ; ð13Þ

which, together with the possibility of having quantum
jumps, governs the time evolution of each trajectory for the
next time step, as in Eqs. (9) and (10). The idea of this
combined approach is schematically depicted in Fig. 3 and
turns out to be effective to deal with clusters containing
L≳ 10 sites.

C. Matrix product operators

Quantum trajectories are not the only method that can
be fruitfully combined to cluster mean-field techniques.

Tensor networks are also ideally suited to this aim. Below,
we consider matrix product operators (MPO) that work
very well for 1D systems. It would be highly desirable to
also have tensor-network approaches in higher dimensions.
We believe that in combination with the cluster mean field,
this will represent a significant step forward in an accurate
analysis of this class of nonequilibrium critical points.
For 1D systems, the long-time limit of Eq. (1) can be

faithfully addressed using a MPO Ansatz for the density
matrix [65,66]. The solution ρSS is reached dynamically by
following the time evolution according to Eq. (1), using an
algorithm based on the time-evolving block decimation
(TEBD) scheme [67] adapted to open systems.
The starting point is based on the fact that a generic

many-body mixed state on an L-site lattice, ρ ¼
P

~i;~jCi1…iL;j1…jL ji1…iLihj1…jLj (we defined ~i ¼
fi1…iLg), can be written as a matrix product state in the
enlarged Hilbert space of dimension dL ⊗ dL, where d is
the dimension of the on-site Hilbert space. By means of
repeated singular-value decompositions of the tensor
Ci1���iL;j1���jL , it is possible to obtain

ρMPO ¼
Xd

~i;~j¼1

Xχ

~α¼1

ðΓ½1�i1;j1
1;α1

λ½1�α1 ÞðΓ½2�i2;j2
α1;α2 λ½2�α2 Þ…

× ðλ½L−1�αL−1 Γ
½L�iL;jL
αL−1;1

Þ∥i1…iL; j1…jL⟫; ð14Þ

where the super-ket ∥i1…iL; j1…jL⟫ ¼⊗L
a¼1 jiaihjaj is

used in order to deal with the superoperator formalism,
i.e., with linear operators acting on vector spaces of linear
operators. The bond-link dimension χ of the MPO (14) can
be kept under a given threshold by cutting the smallest
singular values and is proportional to the amount of
quantum correlations between the system sites that can
be encoded in ρMPO. Starting from χ ¼ 1 (separable state)
and increasing χ, quantum correlations can be taken into
account at increasing distance.
The TEBD scheme can be naturally embedded in the

Ansatz given in Eq. (14), by performing a Trotter decom-
position of the Liouvillian superoperator [67] which
describes the master equation (1) [this can be easily
handled for Hamiltonian and Lindbladian equations written
as sums of local terms, as in Eqs. (2) and (3)]. In the case of
translationally invariant systems, it is even possible to adopt
an infinite version of the TEBD (the i-TEBD), using the
same approach that has been successfully applied to pure
states [68]. Indeed, this can be generalized to encompass
arbitrary 1D evolution operators that can be expressed as a
(translationally invariant) tensor network [69]. The TEBD
method has been proven to be very effective in many
different open 1D quantum systems, such as coupled cavity
arrays [44,70], Bose-Hubbard chains with bond dissipation
[71], and driven or dissipative spin systems [72].
Alternative approaches based on the variational search of

FIG. 3. Quantum trajectories combined with the mean-field or
cluster mean-field method. Colored boxes along a given line
stand for the time-evolved state of the kth trajectory, which is
stochastically chosen among the set of pure states
fjψ0ðtÞik; jψ jðtÞikg according to Eq. (9). For each of those
states, one finds the corresponding mean fields on each site j
inside the considered cluster, hσ̂jðtÞik. The mean field Beff

j ðtÞ
parametrizing the effective Hamiltonian in Eq. (13), to be used in
the master equation for the cluster density matrix, is obtained by
averaging over all the N trajectories.
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the Liouvillian superoperator [73,74] or on the local
purification of the density matrix [75] have been proposed
recently.
The description of 1D dissipative many-body systems in

terms of MPO and the search for the steady state by time
evolving the Liouvillian superoperator can be combined
with the CMF approach in a natural way (see Fig. 4 for a
sketch of the idea). We consider a linear cluster of L sites
with open boundary conditions (OBC); its master-equation
dynamics can be simulated by means of the TEBD scheme.
The only novel ingredient is provided by the mean fields
that have to be applied only at the two edge sites of the
chain (the leftmost and the rightmost site). These can be
easily evaluated in a self-consistent way in time, by
computing the average expectation values:

Beff
1 ðtÞ ¼ Tr½σ̂LρðtÞ�; Beff

L ðtÞ ¼ Tr½σ̂1ρðtÞ�; ð15Þ

respectively, on site 1 and site L of the chain, at regular time
intervals, as outlined above for the other methods. Such
fields are inserted in the effective Hamiltonian (6), which is
used to build up the Liouvillian operator for the time
evolution up to the next iterative step.
As mentioned at the beginning of this subsection, the

extension of all these ideas to two-dimensional systems
would be very intriguing. For example, one could think
to combine the cluster mean-field approach with MPOs
using a mapping of the lattice to a one-dimensional
structure with long-range interactions, through an appro-
priate wiring-up strategy. This method has already been
successfully employed in the context of equilibrium

systems, where impressive results on wide strips have been
obtained (see, e.g., Ref. [76]). In higher dimensions, these
methods suffer from problems related to the computational
cost of the tensor network contraction [77], which is
common to all planar structures. The presence of dissipa-
tion could help reduce the amount of correlations in the
steady state, so it might be possible that relatively good
accuracies will be reached even with small bond links.

IV. RESULTS

Let us now put into practice the methods outlined
above and study the PM-FM dissipative phase transition
of the interacting spin model described by Eqs. (1)–(3). As
detailed in Sec. II, this is associated with a Z2-symmetry-
breaking mechanism, whose location in the phase diagram
we would like to accurately unveil.
The full phase diagram at the single-site MF level has

already been obtained in Ref. [19]. By writing the mean-
field equations of motion for the magnetization along the
different axes, it is possible to analytically evaluate the
critical point separating the PM from the FM phase. For
fixed values of Jx, Jz, it is located at

Jcy ¼ Jz −
1

16z2ðJx − JzÞ
; ð16Þ

where z is the coordination number of the lattice, i.e.,
the number of nearest neighbors of each lattice site. As in
any single-site mean field, the only effect of the system’s
dimensionality enters through the integer z. From the
theory of critical phenomena, we know that the role of
dimensionality is crucial, particularly in low dimensions.
Below, we show that, under a more careful treatment of the
short-range correlations, the cluster mean field produces
important qualitative and quantitative changes to the phase
diagram. In the following subsections, we address the cases
of increasing dimensionality. In one-dimensional systems,
where we do not expect any phase transition, the cluster
mean field, together with quantum trajectories and MPO,
allows us to recover this result.

A. One dimension

The 1D case represents the most suitable situation to
benchmark our methods. Here, due to the reduced dimen-
sionality (the system has a coordination number z ¼ 2),
the MF predictions are known to fail, and no symmetry-
breaking mechanism should occur (as already stated in
Ref. [19]). Using a combination of strategies as described
in Sec. III, we numerically verify the absence of symmetry
breaking, thus gaining confidence on how accurate our
methods can be for driven-dissipative systems.
We are able to perform a direct integration of the master

equation (1) for systems with up to L ¼ 9 spins, by
employing a standard fourth-order Runge-Kutta (RK)

FIG. 4. One-dimensional TEBD scheme for 1D systems with
open boundaries, combined with the cluster mean-field method.
Circles denote the sites of the lattice. The many-body state
corresponding to the OBC cluster made up of L black circles
inside the orange box is written in a MPO representation and
evolved in time with the TEBD scheme. The cluster is coupled to
the rest of the system (gray circles) through the mean field at the
edges. At regular small time intervals, the mean fields Beff

1 ðtÞ ¼
Tr½σ̂LρðtÞ� on the leftmost site and Beff

L ðtÞ ¼ Tr½σ̂1ρðtÞ� on the
rightmost site are self-consistently evaluated and used to con-
struct the Hamiltonian for the next TEBD iteration.
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method, without applying consistent MF terms at the
boundaries. For larger systems, with 10 ≤ L ≤ 16, we
use the quantum trajectory approach (the time evolution
of each trajectory is computed by means of a fourth-order
RK method) obtaining reliable results already with a
number of trajectories not exceeding N ¼ 500, for all
the values of the parameters we have probed. For even
larger clusters (L≲ 40), we resort to a MPO approach
combined with the cluster mean field.
In order to check for the (possible) existence of an

ordered FM phase, we calculate the steady-state ferromag-
netic spin-structure factor SxxSSðk ¼ 0Þ, where

SxxSSðkÞ ¼
1

L2

XL
j;l¼1

e−ikðj−lÞhσxjσxl iSS: ð17Þ

A nonzero value of SxxSSð0Þ indicates the stabilization of a
FM ordering in the thermodynamic limit. We do not look
directly at the order parameter hσxjiSS since we are studying
finite-size systems and the Z2 symmetry may not sponta-
neously break [78].
In Fig. 5, we show the behavior of SxxSSð0Þ for small

systems (L ≤ 16) with open boundary conditions, for fixed
values of Jx ¼ 0.9, Jz ¼ 1 and varying Jy (analogous
results are obtained by taking different values of
−1 ≤ Jx ≤ 1). Data have been obtained with RK and with
QT approaches. According to Eq. (16), the MF approach
predicts a critical point at Jcy ¼ 37=32 ≈ 1.156 separating a

PM (for Jy < Jcy) from a FM region (for Jy > Jcy). In
striking contrast with this, our numerics displays a decrease
of the xx correlations with the system size. We also observe
a nonmonotonic behavior with Jy, and the fact that SxxSSð0Þ
vanishes for Jy ¼ 0.9 and Jy ¼ 1. This result can be
explained as follows. For Jx ¼ Jy, the Hamiltonian (2)
conserves the magnetization along z. Since the dissipative
spin-flip processes occur along the same direction, it is
clear that they cannot be counteracted by the unitary
dynamics, so the steady state is a pure product state,
having all the spins aligned and pointing down along the
z direction, making the xx and yy correlations vanishing
at any distance. On the contrary, for Jy ¼ Jz, the total
magnetization along the x axis is conserved by the
Hamiltonian. In this case, because of the different privi-
leged axis with respect to the dissipation process, the steady
state is not a product state. The correlators are generally
different from zero; however, the spin-structure factor of
Eq. (17) at k ¼ 0 sums to zero. It is worth noticing that, on
the contrary, SyySSðk ¼ 0Þ is not affected by the Hamiltonian
symmetry and is different from zero (not shown).
Coming back to the data in Fig. 5 on the spin-structure

factor SxxSSðk ¼ 0Þ, we can pinpoint the emergence of two
peaks at Jy ≈ 0.4 and 1.3. Before commenting on the
behavior of the spin-structure factor in proximity of such
peaks, let us analyze in more detail their dependence
on L by performing a finite-size scaling of our data.
This dependence is provided in Fig. 6. Black data sets
correspond to those in Fig. 5. We observe a systematic drop
of the correlations with L for both peaks, which can be
nicely fit with a power law,

SxxSSð0Þ ∼ κL−α; ð18Þ

where the exponent α depends on the value of Jy as
indicated in the various panels.
We were able to reach longer sizes by employing a MPO

approach for considerably larger chain lengths (L ≤ 40).
We applied a cluster mean field at the edges of the chain, in
order to better mimic the thermodynamic limit. The results
obtained with this method are displayed in Fig. 6 by the
blue sets of data, and they qualitatively agree with the
previous results without a mean field (black data). In
particular, an analogous power-law behavior (18) emerges.
Notice that, in correspondence to the peak that is a remnant
of the ferromagnetic phase (Jy ¼ 1.3), a nonmonotonic
behavior in the combined MPO-CMF approach emerges.
This has to be ascribed to the mean-field corrections that
become very effective for very short clusters.
Further evidence of the remnants of the Z2-symmetry

breaking predicted at the mean-field level is provided by
analyzing the two-point correlation functions hσxjσxjþriSS as
a function of the distance r. Figure 7 shows results for
parameters corresponding to the two distinct phases
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FIG. 5. Ferromagnetic spin-structure factor along the x direc-
tion, in a 1D setup, as a function of Jy. The various curves and
symbols stand for different system sizes from L ¼ 6 to L ¼ 16,
as indicated in the plot. The two arrows point at the positions of
the two peaks (Jy ¼ 0.4 and Jy ¼ 1.3), for which we provide a
finite-size scaling (Fig. 6) and an analysis of the two-point
correlation functions (Fig. 7). Here, we have set Jx ¼ 0.9 and
Jz ¼ 1, and we work in units of γ. Note that for Jy ¼ 0.9 and
Jy ¼ 1, the spin structure factor is rigorously zero.
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predicted by the mean-field theory. In particular, we
observe that, in the cases where the symmetry is not
broken in the MF, correlations of the order parameter
exhibit a clear exponential decay with the distance, as one
can recognize in the upper panel (Jy ¼ 0.4). This is evident
already at very small sizes L ∼ 12. A more intriguing
situation occurs in the case where the MF would predict a
symmetry-broken phase (see the lower panel for Jy ¼ 1.3).
In such case, an instability of the PM phase at short lengths
emerges, in the sense that a bump in the correlators clearly
emerges at r≲ 10 and the exponential suppression of
correlations is not immediately visible. Longer sizes are
needed to observe the absence of quasi-long-range
correlations.
To corroborate our analysis, we also performed simu-

lations by directly addressing the thermodynamic limit. We
employed a TEBD numerical approach based on a trans-
lationally invariant Ansatz for the MPO [69]. Here, the
mean field need not be used. The results are in perfect
agreement with those obtained with the cluster mean field,
thus validating our approach. In all the cases that we
considered, we clearly see an emergence of exponential
decay at large distances, thus signaling the absence of

ferromagnetic order in any parameter range. Remarkably,
the data obtained with MPO simulations (both in the finite
and the infinite case) converge with a relatively small bond-
link dimension (χ ≤ 120).

B. Two dimensions

We now proceed with the discussion of the model in a
two-dimensional square lattice (z ¼ 4). Here, there is no
chance to solve Eq. (1) exactly for any thermodynamically
relevant system size; therefore, we resort to approximate
techniques combined with a CMF approach. In this
framework, we are able to highlight a number of significant
modifications to the steady-state phase diagram predicted
by the single-site MF. Clearly, such differences must arise
from taking into account the effect of short-range corre-
lations inside the cluster. The shape of the considered
clusters always respects the square-lattice geometry (i.e.,
they have a number of sites L ¼ l × l). With the numerical
capabilities at our disposal, we are able to deal with clusters
up to size l ¼ 4. The l ≤ 3 data have been computed by
numerically integrating the time evolution of the cluster
master equation with a standard RK method. In order to
address the case l ¼ 4, we employed the quantum trajec-
tories approach explained in Sec. III B.

10
-5

10
-4

10
-3

10
-2

10
-1

〈σ
x j
σx j+

r〉
0 5 10 15 20 25

r
-0.02

0

0.02

0.04

0.06

0.08

〈σ
x j
σx j+

r〉

L = 12    (exact, no MF)
L = 24    (MPO, MF)
L = +∞   (i-MPO)

J
y
 = 0.4

J
y
 = 1.3

SS
SS

FIG. 7. Spatial decay of the correlation functions hσxjσxjþriSS
with the distance r. Correlators have been chosen in a symmetric
way with respect to the center of the chain. In the upper panel,
Jy ¼ 0.4 (left peak in Fig. 5), while in the lower panel, Jy ¼ 1.3
(right peak in Fig. 5). The various data sets correspond to
different system sizes: Results for L ¼ 12 have been obtained
for systems with PBC by means of RK integration or the QT
approach to the master equation; those for L ¼ 24 are, with MPO,
used to simulate OBC and combined with the CMF; the
thermodynamic limit L → ∞ (diamonds-solid blue lines) has
been addressed with a translationally invariant i-MPO method.
The other parameter values are set as in Fig. 5.
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FIG. 6. Scaling of SxxSSð0Þ as a function of the inverse system
size L, for two values of Jy in proximity of the peaks (see the
arrows in Fig. 5). The symbols denote the numerical data, while
the continuous lines are power-law fits performed for the data
points to the left of the vertical dashed line. The black sets
correspond to those of Fig. 5, obtained by simulating a small
system with RK and QT approaches. The blue sets have been
obtained with MPO simulations, where the CMF has been
applied to the two edges. The other parameters are set as in Fig. 5.
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Our main result is reported in Fig. 8, which displays
the phase diagram in a region of the parameter space where
the MF analysis would predict the occurrence of a Z2-
symmetry-breaking mechanism. It is immediately visible
that, under a CMF treatment of the system, the extent of the
FM phase is drastically reduced. Specifically, we contrast
the single-site MF predictions (black line) with the results
obtained using a 3 × 3 cluster size (blue circles). On the one
side, the single-site MF analysis predicts a symmetry-
broken phase in a large and extended portion of the phase
space [fixing Jz ¼ 1, for −1≲ Jx ≲ 1, the ferromagnet
extends for any Jy ≳ 1 according to Eq. (16), and dis-
appears only in the asymptotic limit Jy → ∞]. On the other
side, the latter analysis indicates a tendency to confine the
FM phase into a finite-size region in the parameter phase,
which is surrounded by the PM phase, thus modifying the
topology of the diagram.
Our CMF numerics shows that the disappearance of the

ordered phase at large Jy is accompanied by the progressive
shrinkage of the Bloch vector for the single-site density
matrix, by increasing the coupling strength. This effect can
already be seen from the Bloch equations of the single-site
MF [19], which predict a saturation of the spins in the
limit of infinite coupling—see Eqs. (20) and (21), and

analogously for ½My
SS�MF. It is however important to remark

that, even though the left and upper boundaries of the FM
phase shrink with the cluster size while the right and bottom
ones are almost unaffected, our results support the exist-
ence of a finite region for the symmetry-broken phase even
in the thermodynamic limit l → ∞, as we will detail below.
Since the calculations with large clusters are very demand-
ing, we considered few (representative) couplings. Our
analysis performed with clusters of size up to 4 × 4
indicates that the ferromagnet will survive in the limit
l → ∞, for fixed Jx ¼ 0.9 and for 1.04≲ Jy ≲ 1.4 (see
Fig. 10). We expect that for other values of Jx, the behavior
will be similar.
Before commenting on the scaling with the cluster

size, let us point out the fact that the CMF data for l ¼ 2
(red squares in Fig. 8) evidence an intermediate sit-
uation. Indeed, taking into account only nearest-neighbor
interactions, the extent of the FM phase is slightly
reduced as compared to the single-site MF, yet it is
not sufficient to confine the symmetry-broken phase into
a finite-size region surrounded by the PM phase.
Nonetheless, after a more careful analysis of the magni-
tude of the order parameter, we are able to detect a clear
tendency toward a topological modification of the dia-
gram. Specifically, we fixed several values of the
coupling Jx, while varying Jy, and investigated the
FM-PM phase transition by looking at the steady-state
on-site magnetization along the x axis:

Mx
SS ¼ 1

l2

Xl2

j¼1

hσxjiSS; ð19Þ

so as to explore the phase diagram of Fig. 8 along
certain vertical cuts. Notice that we do not need to
calculate the correlators SxxSSð0Þ of Eq. (17) as we did in
the 1D geometry since the self-adaptive mean-field
method automatically breaks the symmetry in the
FM phase.
The different panels of Fig. 9 refer to four values of Jx, as

indicated by the first four green arrows on the left in Fig. 8,
and they display Mx

SS as a function of Jy, for different
cluster sizes l. The 1 × 1 MF data (black lines) can be
found by working out the steady-state limit of the MF
Bloch equations for the magnetization [19], giving the
following result:

½Mx
SS�MF ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Mz

SS�MFð½Mz
SS�MF þ 1Þ Jy − Jz

Jx − Jy

s
; ð20Þ

with

½Mz
SS�MF ¼ −

1

4z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðJz − JxÞðJy − JzÞ

s
: ð21Þ
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FIG. 8. Two-dimensional cluster mean-field phase diagram in
the Jx − Jy plane (with fixed Jz ¼ 1). The single-site MF (1 × 1)
predicts a ferromagnetic steady state in the top left region with
respect to the black curve. The extent of this region appears to be
very fragile to a more accurate cluster mean-field treatment. At
the 2 × 2 level (red squares), the boundaries of the two phases are
slightly deformed, while with a 3 × 3 analysis, the FM phase
shrinks down to a region of finite size (blue circles). The darkest
color filling indicates the region that is PM in all simulations,
while the lightest indicates that which is FM in all cases. The FM
region shrinks with increasing cluster size, as indicated by the
varying shades of color but, as discussed in the text, appears to
converge with increasing cluster size. The five arrows denote the
cuts along different values of Jx, which will be analyzed in detail
in Figs. 9 and 10.
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These curves exhibit a finite magnetization for all Jy ≳ 1,
with a maximum at a given value of Jy (dependent of Jx),
and they eventually go to zero in the limit Jy → þ∞. This
vanishing order at strong coupling is similar to the absence
of ordering on resonance in the Dicke model [12] and the
suppression of ordering in the degenerate limit of the Rabi
model [24]. The nonmonotonicity of Mx

SS as a function of
Jy also emerges in the CMF analysis: The 2 × 2 data signal
a strong suppression of the order parameter for Jy ∼ 2,
which, however, remains finite. Going further with a 3 × 3
cluster, we see the sharp disappearance of the FM in an
intermediate extended region where Mx

SS ¼ 0 (for
1.5≲ Jy ≲ 3, depending on the value of Jx, the system
is not ferromagnetically ordered along x or y). The revival
of the FM phase at large values of Jy (Jy ≳ 3) is outside the
parameter range of Fig. 8. We analyze this feature later in
Sec. IV C.
Let us now have a closer look at the vertical cut of Fig. 8

for Jx ¼ 0.9; the magnetization is shown in Fig. 10 for
clusters up to l ¼ 4. Both for the 3 × 3 and the 4 × 4 CMF
analysis, we do not see any reappearance of the FM
ordering at large Jy (we numerically checked this statement
up to Jy ¼ 10). The symmetry-broken phase is confined
to a finite-size region that shrinks with increasing l. While
the left boundary is basically unaffected by the role of

correlations (JcðleftÞy ≈ 1.04� 0.01), the right boundary is
strongly sensitive to l. Our simulations indicate a transition

point JcðrightÞy ≈ 2.04� 0.005; 1.67� 0.01; 1.57� 0.03, for
clusters, respectively, with l ¼ 2, 3, 4. A scaling with l of
these data for the right boundary indicates a behavior that is

compatible with JcðrightÞy ≈ 1.40þ 2.54l−2, and thus which

supports the existence of the FM phase in the limit of large
cluster size l → ∞, for 1.04≲ Jy ≲ 1.40. In the data for
l ¼ 2, a discontinuity ofMx

SS seems to appear immediately
before the right transition point (at Jy ≈ 2), which requires a
further analysis (a similar behavior is observed in the lower
right panel of Fig. 9, for Jy ¼ 0.5). We will return to this
point in Sec. IV C.
We also checked that, close to the transition, our

numerics predicts a growth of the order parameter that is
well approximated by

Mx
SS ∼m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jy − Jcy

p
; ð22Þ

as displayed in the inset of Fig. 10, around the left critical

point JcðleftÞy . We repeated a similar analysis for other
vertical (fixed Jy) and horizontal (fixed Jx) cuts and
obtained qualitatively analogous results. This evidences
the fact that the CMF remains a mean-field analysis and
leads to the same critical exponents as those of its single-
site version. In order to get the correct exponents, one
would need a more careful finite-size analysis [62], which
requires slightly larger values of l and is unfortunately out
of reach for the present computational capabilities.

The stability of the symmetry-broken phase for JcðleftÞy <

Jy < JcðrightÞy up to 4 × 4 clusters is corroborated by the
behavior of the correlation functions hσxjσxjþriSS and
hσyjσyjþriSS with the distance r, as reported in Fig. 11 for
three different values of Jy. As discussed in Sec. IVA for
the 1D case, in the parameter region where we predict a
PM, the correlators decay exponentially with r (black data
set at Jy ¼ 1). On the opposite side, the point at Jy ¼ 1.2
(red data) displays a marked distance independence of
correlations with the distance, thus signaling the presence
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FIG. 9. Cluster mean-field analysis of the ferromagnetic order
parameter in two dimensions, for four different vertical cuts of
Fig. 8, at constant Jx (the corresponding values of Jx are indicated
in the various panels). The various data sets denote different sizes
of the clusters, up to l ¼ 3.
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of a FM phase (notice that this point lies well inside the
closed region in Fig. 8). The case Jy ¼ 1.7 (blue data)
shows a subtler behavior and corresponds to a point for
which the single-site and the 2 × 2 mean-field analysis
would predict a symmetry-broken phase, contrary to our
l ≥ 3 CMF calculations which display no evidence of this
type. The reminiscence of a kind of quasiordering at short
distances is indeed forecast by a slow decay of correlations.
While we are not able to see a clear exponential decay with
r, because of our limited numerical capabilities, we expect
that this would be visible for clusters appreciably longer
than l ¼ 4. Nonetheless, we stress that xx correlations here
are 1 order of magnitude smaller than in the FM point.
A sketch of the phase diagram summarizing all our

results is provided in Fig. 1.

C. Two dimensions—stability analysis

As anticipated in the previous subsection, the 2 × 2
analysis reveals a discontinuity of the order parameter
inside the first FM phase, very close to the transition point

JcðrightÞy to the disordered phase. Such a jump, between
two symmetry-broken states, is known as a metamagnetic
transition. The jump is visible for certain values of Jx and
seems to vanish quickly with increasing cluster size
(already for l ¼ 3, it is barely recognizable from our data).
On the one hand, the latter observation suggests that this
jump could be an artifact of the CMF analysis. On the other
hand, a deeper investigation is required to understand its
origins.
To highlight the existence of this feature, in Fig. 12 we

show a magnification of the relevant parameter region of

Fig. 10. We only consider the 2 × 2 case since this is the
situation where it is mostly relevant. We observe the
presence of a first-order phase transition within the first
ordered phase, where the order parameter exhibits a
discontinuity. This is corroborated by a bistability effect:
Specifically, we calculated the magnetization Mx

SS starting
from different initial states, and we observed a slight
difference in proximity to the jump, as is visible from
the figure [79].
At this point, we perform a linear stability analysis, in

order to check whether and how the system becomes
unstable in correspondence to the jump. We start from
the CMF factorization Ansatz given in Eq. (7), where each
cluster density matrix ρC obeys the mean-field master
equation (8). The stability analysis is performed directly
on the factorized density matrix, as detailed in Ref. [33].
Let us first rewrite the equation of motion for a single
cluster, say the nth one, in the superoperator formalism as

∂t∥ρn⟫ ¼ M0∥ρn⟫þ
X
j

ðEj · ∥ρnþej⟫ÞMj∥ρn⟫; ð23Þ

where we omitted the index c. Here, ∥ρn⟫ denotes a super
ket, i.e., a vectorized form of the density matrix, and Mi
denote superoperators. In this equation, M0 represents
all the on-cluster terms, while Mj is the on-cluster part of
an off-cluster term and Ej the corresponding off-cluster
expectation. For example, in the term JxhσxNiσx1, we have
Mj ¼ −iJx∥σx1⟫, and Ej ¼ E½σxN � is the superoperator
form of the expectation. Moreover, ej is the direction to
the neighboring cluster involved.
When performing linear stability analysis, we expand the

fluctuations in terms of plane waves
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FIG. 11. The two-point xx (left panel) and yy (right panel)
correlations as a function of the distance r in a two-dimensional
square-lattice geometry. The calculations have been performed on
a square lattice of size l ¼ 4, while the point j has been chosen to
be at one of the corners of the more-square cluster. The three sets
of data refer to different values of Jy according to the legend: two
inside the PM phase (Jy ¼ 1 and Jy ¼ 1.7) and one inside the FM
phase (Jy ¼ 1.2). We fixed Jx ¼ 0.9, Jz ¼ 1.
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values, where the initial conditions for each point are based on the
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∥ρn⟫ ¼ ∥ρ0⟫þ
X
k

eik·rn∥δρk⟫ ð24Þ

so that the resulting equation of motion for ∥δρk⟫ is

∂t∥δρk⟫ ¼
�
M0 þ

X
j

ðEj · ∥ρ0⟫ÞMj

�
∥δρk⟫

þ
X
j

eik·ejMj∥ρ0⟫ðEj · ∥δρk⟫Þ: ð25Þ

The last term is a sum of rank-one matrices (sinceMj∥ρ0⟫
is a vector, like Ej). Thus, we obtain

∂t∥δρk⟫ ¼
�
M0;eff þ

X
e

eik·eM1;e

�
∥δρk⟫; ð26Þ

where in the second part, we have grouped terms with the
same vector e together, as these all get the same k-
dependent factor. We then numerically compute the eigen-
values of the effective superoperator in Eq. (26) for each
value of k ¼ ðkx; kyÞ. The most unstable eigenvalue is the
one with the largest positive real part. Since for an l × l
cluster the vectors ej must be l times the elementary lattice
vectors, the range of lattice momenta coming from the
l × l cluster stability analysis are restricted to the first
Brillouin zone of the superlattice, jkjj < π=l.
In Fig. 13, we plot the real part of the most unstable

eigenvalue as a function of the momentum kx and the
coupling Jy (for fixed Jx ¼ 0.9). We notice that the jump
inside the FM phase occurs when there is an instability at
finite k, around jkj ¼ π=4. This suggests that the finite
cluster size is responsible for the particular metamagnetic
transition seen, and it explains why the extent of the
ordered phase reduces as larger clusters (capable of
describing such short-range fluctuations) are used. The
transition to the normal state also occurs from a finite-
momentum instability, at small jkj. We also see an
incommensurate finite-momentum instability at the rebirth
of the FM phase, for large Jy, thus signaling that the
reappearance of the ordered phase is probably an artifact of
the translationally invariant CMF Ansatz. Finally, we
checked that the dispersion is almost isotropic in kx, ky.

D. Three- and four-dimensional systems

For completeness, we also consider the case of higher
dimensions. Although not relevant for direct experimental
realizations, it helps in completing the picture achieved so
far; it may also be possible to study (finite-sized) four-
dimensional systems by using synthetic dimensions as
proposed recently by Ozawa et al. [80]. Mean-field results
are expected to improve their validity by increasing the
coordination number z in the lattice. It is therefore tempting
to investigate systems in higher dimensionality by means of
CMF techniques. Obviously, on increasing d, our ability in

considering larger clusters drastically decreases. We
checked the dependence on d of the PM-FM transition
by means of a mean-field analysis with clusters of size
L ¼ 2d. In these cases, we looked again at the average
on-site magnetization along the x axis. The results are
displayed in Fig. 14.
Naturally, the extent of the symmetry-broken phase

region is increasing with the dimensionality, as is apparent
from Fig. 14 (even though the value of the order parameter
does not necessarily become larger). This supports the
common wisdom of the validity of a single-site mean field
in high dimensions. What is surprising from Fig. 14 is that
even the four-dimensional system shows a critical value of
Jy beyond which the phase is paramagnetic. This result is in
sharp contrast with the mean-field result that does not
capture this second critical point. Our limited analysis up to
four dimensions and for very small clusters does not allow
us to draw conclusions in determining how or if the second
critical point moves in higher dimensions. It is, however, an
interesting point to be understood.
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FIG. 13. Upper panel: Real part of the most unstable eigenvalue
(negative is stable) as a function of Jy and kx (for ky ¼ 0). The
parameters are set as in Fig. 10. Lower panel: High-resolution
plot with the same range of Jy as in Fig. 12, corresponding to
upward trace.
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E. Short-range correlations and Lindblad dynamics:
Origin of the reentrant paramagnetic phase

As discussed in detail in Sec. IV B, our calculations
show that, on improving the Ansatz for the steady-state
density matrix by including short-range correlations, the
critical points may shift from Jy ¼ þ∞ to a finite value
of Jy. This situation may appear as counterintuitive. It is
indeed unlikely to occur at equilibrium, where the inclusion
of short-range fluctuations may only lead to a shift of the
boundary position of the order of the energy fluctuations
inside the cluster [OðzJyÞ in this case]. In this section, we
want to explain the mechanism responsible for this behav-
ior. This will also help us to elucidate the nature of the PM
phase observed at large Jy within the CMF approach and,
consequently, the reentrance to a disordered phase. To this
aim, it is sufficient to compare the single-site with the
2 × 1 (two-site) cluster cases. We consider this minimal
cluster dimension for simplicity, since taking larger clusters
would not add new ingredients to the understanding of the
mechanism.
First, it is important to stress that, already at the single-

site MF, a steady state with vanishing spontaneous mag-
netization in all the directions is predicted in the limit
Jy → þ∞. As shown in the top panel of Fig. 15 (for
fixed Jx ¼ 0.9 and Jz ¼ 1), two phases emerge: a PM for
Jy < Jcy and a FM for Jy > Jcy, with magnetization along y

(or equivalently along x) initially increasing but then
decreasing asymptotically toward zero as Jy is increased.
This phenomenon is related to the progressive deterioration
of the purity of the steady-state density matrix, P ¼
Tr½ρ2SS�, for Jy > Jcy. This comes as a consequence of the
out-of-equilibrium nature of the steady state resulting from
the interplay of driving and dissipation and cannot occur at
equilibrium, where an increasing coupling typically sta-
bilizes the ordering. A similar kind of behavior can be seen
in a driven two-level system [81,82], where increasing
driving enhances the population but suppresses the purity
of the system, leading to a suppression of the homodyne
amplitude jhσ−ij and of the purity when driven on reso-
nance. We see that P ¼ 1 in the PM phase, and then it
decreases toward its minimal value (P ¼ 1=2 in the case of
a single-site cluster) as Jy is increased beyond the critical
value Jcy. This suggests the fact that the disordered phase
detected for Jy < Jcy is different in nature compared to the
one reached in the large-Jy limit for the cluster mean-field
simulation. The former is due to the stabilization of a fully
polarized one along the z direction, which coincides with
the single-site MF solution for any Jy < Jcy (while it is the
exact solution to the problem only for Jx ¼ Jy). The latter
PM phase is a consequence of the fact that the steady state
for Jy → þ∞ is fully mixed.
What is the effect of including short-range correlations?

In order to understand this point, let us consider in more
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detail the smallest cluster where this feature can be
observed, namely, a 2 × 1 plaquette. As shown in the
lower panel of Fig. 15, the FM phase now shrinks to a finite

region going from JcðleftÞy to JcðrightÞy , so the PM for Jy →

þ∞ stabilizes over an extended region Jy > JcðrightÞy . The
steady-state purity indicates a nearly pure state in the left

PM region, Jy < JcðleftÞy , that has to be contrasted with a

nearly fully mixed state in the right PM region, Jy >JcðrightÞy

(the minimal value for a two-site cluster is P ¼ 1=4). Thus,
the exact inclusion of the nearest-neighbor correlations

allows for the reentrance of a PM phase for Jy > JcðrightÞy . At
the single-site MF level, such a PM phase appears only in
the limiting case Jy → þ∞ and then is never detectable for
any finite value of the couplings. We remark that decreasing
the purity, and the consequent reduction of the magnetiza-
tions, as Jy is increased is a common nonequilibrium
feature of the two Ansätze (1 × 1 and 2 × 1). While in the
1 × 1 case the purity reduction is not enough to kill the FM
order, in the 2 × 1 plaquette, this reduction of purity is more
prominent and the latter phenomenon (suppression of
magnetization) occurs.
The equations of motion in the Heisenberg picture for

magnetization hσβj i (β ¼ x, y, z) are

∂thσβj i ¼ −2
X

α¼x;y;z

Jαϵαβγ½hσγjihσαjþ1i þ hσγjσαjþ1i�

−
γ

2
½hσβj i þ δβzðhσβj i þ 2Þ�; ð27Þ

where ϵαβγ is the Levi-Civita symbol and δαβ is the
Kronecker delta. The steady-state density matrix in the

2 × 1 plaquette for Jy > JcðrightÞy can be analytically com-
puted and is almost fully mixed. Therefore, it can be written

as ρ½2þ1�
SS ≈ ρ½1� ⊗ ρ½2�. The two-point spin correlator appear-

ing in Eq. (27) can thus be decomposed as

hσγjσαjþ1i ¼ hσγjihσαjþ1i þ hΣγ;α
j;jþ1i; ð28Þ

where jhΣγ;α
j;jþ1ij ≪ 1. Inserting this expression into

Eq. (27) and exploiting translational invariance, we get

∂thσβj i ¼ Lβ
½1×1� − 2

X
α

JαϵαβγhΣγ;α
j;jþ1i; ð29Þ

where Lβ
½1×1� are the terms one would get from the single-

site MF. Equation (29) shows that spin-spin correlations
correct the single-site MF equations of motion only through
the small term hΣγ;α

j;jþ1i. On the other hand, we know that,

for Jy > JcðrightÞy , the steady-state properties can change
dramatically when considering a single site or a plaquette
as a cluster: In the former case, one gets a ferromagnet,
while in the latter case, one gets a paramagnet. Spin-spin

correlations, even if very weak, cannot be neglected and
drastically modify the structure of the density matrix at long
times. These conspire with the dynamically induced reduc-
tion of purity at large Jy, already visible for the single-site
mean field, to suppress the ordering altogether. This is the
key to understanding the dramatic changes in the phase
boundaries we presented in the previous sections.
We believe that the mechanism is generic and should be

relevant for other driven-dissipative models as well.

V. CONCLUSIONS

In this work, we introduced a cluster mean-field
approach combined with quantum trajectories and tensor-
network techniques to the study of the steady-state phase
diagram in driven-dissipative systems. This approach
allowed us to analyze the effect of short-range correlations.
The result is somewhat unexpected. The whole structure of
the phase diagram is radically modified, in clear opposition
to what typically happens in equilibrium phase transitions.
In particular, we observed that the location of critical points
may shift from infinite to finite values of the system
parameters. The reason underlying this behavior is related
to the fact that, differently from equilibrium, spontaneous
symmetry breaking is of pure dynamical nature and is not
determined through a free-energy analysis. It is already
known that in dissipative systems, energy-minimizing
ferromagnetic phases may be destabilized and replaced
by incommensurate or antiferromagnetic order. Such
behavior has been extensively studied in classical pat-
tern-forming systems [4], including examples such as
active matter and flocking [7–9]. As such, short-range
correlations can be expected to play a much greater role in
dissipative than in equilibrium systems. Accordingly, the
topology of the phase diagram can significantly change.
This appears clearly in Fig. 1, where the results from the
single-site and the cluster mean-field analysis are com-
pared. Furthermore, the cluster method hints at ordering
with a nontrivial spatial pattern, a possibility that is not
detected within the single-site mean-field Ansatz.
The results that we highlighted here are amenable to an

experimental verification. As discussed in Ref. [19], the
model considered in this paper can be implemented using
trapped ions. Moreover, by changing external controls, it is
possible to explore the phase diagram, thus allowing us to
check the results of the present work. Besides the examined
system, we think that cluster approaches may be powerful
in the general context of driven-dissipative systems, rang-
ing from Rydberg atoms in optical lattices to cavity or
optomechanical arrays. Our findings point out the impor-
tance of the interplay between short-range fluctuations and
dissipation in the physics emerging in such devices.
All the present analysis has been performed by consid-

ering a static mean field. It would be of great interest to
extend these calculations so as to also include self-energy
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corrections as in the dynamical mean field, already
extended to nonequilibrium for the single-site case [83].
Finally, we believe that a very interesting development,

left for the future, is the determination of the non-Landau
critical exponents. When successful, this will be an
important step to also establish the power of cluster
techniques in many-body open systems. On this perspec-
tive, the combination of our approach with the corner space
renormalization method developed in Ref. [55] looks
promising, and some encouraging results have already
been obtained [84].

The research data supporting this publication can be
accessed Ref. [85].
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In this thesis we have studied a wide range of relevant phenomena associated to 
topological orders and open quantum systems. The results presented in this thesis have been 
covered in a series of publications [P1 - P9] where they are explained and discussed in detail. 
The content of this thesis has been distributed over two parts and an appendix section.

In the first part I, we have analysed to what extent topological phases of matter can 
be characterised when they are considered as open quantum systems. When we focus 
on symmetry-protected topological orders (SPTOs) like topological insulators and 
superconductors, the following results are found. Initially, we have derived a novel master 
evolution equation for the electrons of a topological insulator in 1D when they are coupled 
to thermal baths. We have found a remarkable result: edge states become unstable under 
thermal effects and they have a finite lifetime. This is so, regardless of whether the interaction 
with the bath respects the protecting symmetry of the topological insulator (in our case chiral 
symmetry). The usual gap protection does not hold against finite temperature effects: the 
topological insulator order gets lost regardless of the gap size, although their lifetime increases.

Next, we have constructed a scheme to generalise the idea of a topological insulator  
to dissipative systems. With this line, we have introduced the notion of band Liouvillian (the 
dissipative counterpart of a band Hamiltonian) as a fundamental ingredient for the topological 
order to be preserved. We have constructed a new topological invariant (the density matrix 
Chern value) that is able to detect topological order at finite temperature and for general 
quantum mixed states. The Chern value can be related to the mixed character of the edge 
states, and accounts for the topological contribution to the quantum Hall conductivity at 
finite temperature. As an example, we have analysed a 2D model for a topological insulator  
–the Haldane model– in the presence of thermal dissipation.

Finally, we have wondered whether quantised topological phases can exist even at finite 
temperature and in the presence of dissipation. For this very ambitious purpose, we have 
introduced the Uhlmann phase (a geometric phase for general density matrix) in topological 
systems. We showed that when applied to topological insulators and superconductors in 1D 
the geometric Uhlmann phase acquires a topological and quantised character. Based on this 
phase, we have constructed another topological invariant valid for 2D systems called Uhlmann 
number. At zero temperature, the Uhlmann phase witnesses the same topological sector as the 
one given by the winding number of the corresponding Hamiltonian or the Berry phase, and 
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the Uhlmann number tends to the Chern number. As temperature increases, the Uhlmann 
phase/number remains quantised and different from zero below a certain temperature T_c, 
above which it vanishes. In 2D, we have reported a model where there is a critical transition 
between two non-trivial topological phases solely driven by temperature. Furthermore, we have 
discussed several options to measure this new topological phase, but in particular we  
have proposed a state-independent protocol to measure the topological Uhlmann phase in the 
context of quantum simulation. In particular, we have shown the feasibility of the protocol for a 
superconducting qubit setup considering realistic experimental imperfections and noise effects.

We have also studied intrinsic topological orders as open quantum systems from the 
perspective of topological quantum memories. We have derived a master equation that describes 
the dynamics of a generalised toric code for qudits coupled to an external heat bath. Interestingly, 
a toric code for qudits produces new types of anyonic quasiparticles with different braiding 
statistics. Moreover, we have proven that the system is unstable under thermal perturbations, 
similar to what happens for the qubit version of the code. However, we have shown that a toric 
code for qutrits can improve the dynamical stability of anyonic quasiparticles.

In the second part II, we have dealt with long-range extensions of topological 
superconductors. In particular, we have proposed the most general extension of the 1D 
Kitaev chain including long-range couplings. Through this procedure we have found two very 
surprising and even counterintuitive effects. Firstly, we considered finite-range deformation 
of the hopping (kinetic) amplitudes. By increasing the penetration length of the hopping we 
have significantly increased the region in the phase diagram where Majorana modes appear. 
Secondly, for sufficiently slow-decaying pairing terms we have found a new topological 
quasiparticle that we called non-local massive Dirac fermion, that is localised at both edges 
of the chain at the same time. By means of finite size scaling, we have shown that there is an 
edge gap even in the thermodynamic limit. Moreover, we have incorporated static disorder 
into the system to prove the robustness of the new massive Dirac quasiparticles due to their 
topological character. All these interesting results provide further evidence of the relevance of 
topological effects within the field of unconventional superconductivity.

In the appendix section A, we have presented different numerical methods to deal with 
driven-dissipative quantum phase transitions. We have applied the cluster mean-field method 
widely used in equilibrium situations, to a new out-of-equilibrium scenario in open quantum 
systems. In particular, we have studied the XYZ Heisenberg model of interacting spins on a 2D 
square lattice subjected to dissipative effects. Remarkably, we have shown that the inclusion of 
short-range fluctuations deeply modifies the steady-state phase-diagram topology of driven-
dissipative quantum systems, contrarily to what happens in equilibrium thermodynamics.

 As a final remark, we can clearly envision that the results presented in this thesis shed 
light upon the fields of topological orders and open quantum systems. Furthermore, we have 
shown that the combination of the two leads to surprising and novel results. Throughout this 
thesis, we have also proposed realistic implementations and experimental proposals to test 
these effects. The versatility of quantum simulation platforms, together with the great effort 
and interest on topological condensed matter experiments, make us confident that many of 
the new findings in this thesis will be soon realised in the lab.
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