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Conical refraction is a phenomenon occurring in biaxial crystals that was predicted 
theoretically by Hamilton in 1832 and observed by Lloyd few months later. During many 
years, this optical e� ect was considered as a curiosity and almost fell into oblivion until the 
last quarter of the 20th century. One of the reasons for this is that crystal technology was not 
developed enough to o� er high quality biaxial crystals cut perpendicular to one of the optic 
axes. � is issue has been solved during the last decades and, at the beginning of the 21st century, 
the community started studying the conical refraction phenomenon both experimentally and 
theoretically. � ere are three main reasons that make conical refraction so attractive:

1) When using a focused Gaussian input beam the conical refraction beam forms an 
optical bottle, i.e. it opens and closes itself symmetrically along its propagation leaving a 
central region without intensity.

2) At the intermediate region of the optical bottle –the focal plane–, the transverse 
intensity pattern is formed by a pair of concentric bright rings split by an exactly null dark 
ring known as Poggendor�  ring.

3) � e state of polarization of the rings is linear and unique at every point in a way 
such that every two diametrically opposite points of the ring have orthogonal polarizations. 
� is polarization distribution di� ers from the well known radial and azimuthal polarization 
distributions.

Inspired by these features, with the present thesis we have the aim of analyzing in 
detail the phenomenon of conical refraction and to exploit it in di� erent areas of science and 
technology. � e organization of the thesis does not follow the temporal line of development 
of our work but we have tried to � nd the most constructive way to understand the conical 
refraction phenomenology and its applications.

� e thesis can be divided in two main parts in which 1) we analyze in detail the 
phenomenon of conical refraction (Chapters 1–5), and 2) we apply it in di� erent � elds of 
fundamental science and technology (Chapters 6–10). Unless otherwise stated, all the work 
presented here has been performed in the Conical Refraction Laboratory at the Optics Group 
of the Universitat Autònoma de Barcelona in collaboration with Dr. Yury V. Loiko, Dr. Todor 
K. Kalkandjiev and Prof. Jordi Mompart.

Chapter 1 is devoted to introduce conical refraction historically: From Hamilton’s 
prediction and the � rst experiments from Lloyd to the di� ractive theory of Belsky, Khapalyuk 
and Berry and the last reported experiments. We also give a brief introduction to crystal 
optics in order to understand the fundamental physics of the phenomenon.

� en, in Chapter 2 we present the theory of conical refraction for both a single crystal 
and a cascade of them. We divide the theory in three complementary views: � e di� ractive 
theory developed by Belsky and Khapalyuk and reformulated in an elegant way by Berry 
(Chapter 2.2) and our group, the dual-cone model introduced by Sokolovskii and co-workers 
and reformulated by our group (Chapter 2.4), and the wave-vector and polarization 
interpretation introduced by our group (Chapter 2.3).
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19INTRODUCTION

non-linear crystal can be adjusted independently on the optic axis of the crystal giving rise 
to conical refraction. We show the beam evolution of the SHG beams when the non-linear 
crystal is placed at the ring plane of conical refraction and give a formula for the intensity 
pattern at the focal plane.

In Chapter 9 we present the � rst proposal of combining conical refraction with quantum 
optics. Firstly, we analyze the transformation of a spontaneous parametric down-conversion 
beam generated in a non-linear crystal, which leads photons entangled in linear momentum. 
� en, we propose a method to demonstrate such entanglement through a polarization 
measurement, i.e., we swap linear momentum entanglement into polarization entanglement 
by means of the conical refraction phenomenon. � is proposal was developed during a short 
research stay that was carried out at the group of Prof. Miles Padgett from the University of 
Glasgow and funded by the MICINN.

In addition to all the implementations at a fundamental science level, conical refraction 
also has technological applications, as it is shown in Chapter 10. In particular, we report 
a free space optical communication system for multiplexing and demultiplexing multiple 
polarization channels with a cascade of 3 biaxial crystals.

Finally, Chapter 11 gives a summary of the work presented in this thesis.

Libro 1.indb   19 11/12/2017   16:31:41



Libro 1.indb   20 11/12/2017   16:31:41



21

AGRADECIMIENTOS      11

INTRODUCTION       15

CHAPTER 1. HISTORY OF CONICAL REFRACTION  25

1.1. THE TRIUMPH OF THE WAVE THEORY OF LIGHT   27

1.2. ELEMENTS OF CRYSTAL OPTICS    29

1.2.1. Uniaxial crystals      31

1.2.2. Biaxial crystals      32

1.3. THE SUBTLE PHENOMENON OF CONICAL REFRACTION 34

1.4. NOT EVERYTHING WAS SAID: NEW OBSERVATIONS 
      ON CONICAL REFRACTION     35

1.5. FROM HAMILTON’S MODEL TO THE DIFFRACTIVE THEORY 
      OF CONICAL REFRACTION     36

1.6. CONICAL REFRACTION OUT OF CRYSTAL OPTICS  38

BIBLIOGRAPHY       38

CHAPTER 2. THEORY AND FUNDAMENTAL 
                         EXPERIMENTS ON CONICAL REFRACTION 41

2.1. INTRODUCTION       43

2.2. DIFFRACTIVE SOLUTION     46

2.2.1. Cylindrically symmetric solution    46

2.2.2. Non-cylindrically symmetric solution    48

2.3. WAVE-VECTOR AND POLARIZATION DESCRIPTION 
      OF CONICAL REFRACTION     51

2.3.1. Conical refraction of spatially anisotropic beams revisited  51

2.3.2. Transformation rules of conical refraction   53

2.3.3. Application of the transformation rules of CR to an axicon beam 56

2.4. DUAL-CONE MODEL OF CONICAL REFRACTION  58

2.4.1. Dual-cone theory and its relation to the wave-vector interpretation             58

2.4.2. Experiments      62

2.5. CASCADED CONICAL REFRACTION    66

2.5.1. Coordinates system and single crystal con� guration  67

2.5.2. Multiple crystals      68

2.6. CONCLUSIONS      72

Libro 1.indb   21 11/12/2017   16:31:41



22 ESTUDIOS DE LA FUNDACIÓN. SERIE INGENIERIA

BIBLIOGRAPHY       73

CHAPTER 3. BEAM SHAPING WITH CONICAL 
                         REFRACTION     75

3.1. INTRODUCTION      77
3.2. GENERATING A 3D DARK FOCUS WITH CONICAL REFRACTION     78

3.2.1. Axial intensity for ρ0 ≈ 1     80
3.2.2. Characteristics of the 3D dark focus beam   81

3.3. A SUPER-GAUSSIAN CONICAL REFRACTION BEAM   83
3.3.1. Characteristics of the Super-Gaussian conical refraction beam 84

3.4. CONCLUSIONS      86
BIBLIOGRAPHY       87

CHAPTER 4. NOVEL VECTOR BEAMS AND OPTICAL 
                         SINGULARITIES IN CONICAL REFRACTION 91

4.1. INTRODUCTION      93
4.2. THEORETICAL BACKGROUND    94

4.2.1. Analysis of the B0 and B1 functions    94
4.2.2. Stokes vector formalism     97

4.3. STATE OF POLARIZATION FOR ρ0 ≫ 1   98
4.4. STATE OF POLARIZATION FOR ρ0 ≲ 1    101
4.5. DISCUSSION IN TERMS OF SPIN-ORBIT COUPLING   105
4.6. CONCLUSIONS      107
BIBLIOGRAPHY       108

CHAPTER 5. CONICAL REFRACTION HEALING AFTER 
                         PARTIALLY BLOCKING THE INPUT BEAM 111

5.1. INTRODUCTION      113
5.2. CR HEALING OF GAUSSIAN BEAMS FOR ρ0 ≫ 1  114
5.3. CR HEALING OF GAUSSIAN BEAMS FOR ρ0 ≈ 1  117
5.4. CONCLUSIONS      120
BIBLIOGRAPHY       120

CHAPTER 6. AN OPTICAL VAULT FOR 
                         ABSORBING PARTICLES    123

6.1 INTRODUCTION      125

Libro 1.indb   22 11/12/2017   16:31:41



23CONTENTS

6.2. THE PHOTOPHORETIC FORCE    126

6.3. EXPERIMENTAL PROPOSAL     128

6.4. EXPERIMENTAL RESULTS     130
6.5. CONCLUSIONS      131
BIBLIOGRAPHY       132

CHAPTER 7. TRAPPING BOSE–EINSTEIN CONDENSATES 
                         WITH CONICAL REFRACTION   135

7.1. INTRODUCTION      137
7.2. TRAPPING OF BECS IN A 3D DARK FOCUS   138

7.2.1. � eoretical formulation for the 3D dark focus to atom trapping 138
7.3. EXPERIMENTAL TRAPPING OF A 87RB BEC IN THE 
       3D DARK FOCUS      141
7.4. BLUE-DETUNED OPTICAL RING TRAPS FOR BECS BASED 
       ON CONICAL REFRACTION     143

7.4.1. Asymptotic solution close to the Poggendor�  dark ring   144
7.4.2. Harmonic potential approximation    147
7.4.3. Numerical simulations of a BEC of 87Rb atoms   148

7.5. CONCLUSIONS      151
BIBLIOGRAPHY       153

CHAPTER 8. SECOND HARMONIC GENERATION 
                         OF A CONICALLY REFRACTED BEAM  157

8.1. INTRODUCTION      159
8.2. EXPERIMENTAL SET-UP     160
8.3. TRANSVERSE INTENSITY PATTERNS AT THE FOCAL PLANE 161
8.4. BEAM EVOLUTION OF THE SHG BEAMS   164
8.5. INFLUENCE OF THE POSITION OF THE NON-LINEAR CRYSTAL     165
8.6. CONCLUSIONS      165
BIBLIOGRAPHY       166

CHAPTER 9. TESTING QUANTUM MECHANICS 
                          WITH CONICAL REFRACTION   167

9.1. INTRODUCTION   169
9.2. CONICAL REFRACTION OF A SPONTANEOUS PARAMETRIC 
       DOWN-CONVERTED BEAM     171

Libro 1.indb   23 11/12/2017   16:31:41



24 ESTUDIOS DE LA FUNDACIÓN. SERIE INGENIERIA

9.3. DETECTION OF LINEAR MOMENTUM ENTANGLEMENT 
       WITH CONICAL REFRACTION    173
9.4. CONCLUSIONS      175
BIBLIOGRAPHY       176

CHAPTER 10. CONICAL REFRACTION FOR FREE-SPACE 
                           OPTICAL COMMUNICATIONS   179

10.1. INTRODUCTION      181
10.2. THE FORWARD-BACKWARD CONICAL REFRACTION 
         TRANSFORMATION      182
10.3. MULTIPLEXING AND DE-MULTIPLEXING PROPOSAL 
        AND EXPERIMENTAL RESULTS    183
10.4. CONCLUSIONS      186
BIBLIOGRAPHY       187

CHAPTER 11. SUMMARY AND CONCLUSIONS  189

BIBLIOGRAPHY      195

Libro 1.indb   24 11/12/2017   16:31:41



HISTORY OF CONICAL REFRACTION1

Libro 1.indb   25 11/12/2017   16:31:41



Libro 1.indb   26 11/12/2017   16:31:41



27

� is Chapter serves to introduce the phenomenon of Conical Refraction and its 
meaning to the theory of light. Our aim is to show the historical evolution of the phenomenon, 
including both the development of the theory of conical refraction and milestone experiments, 
as long as we brie� y discuss some ideas of crystal optics. � e organization of the Chapter is 
the following. In Section 1.1 we show the relevance of the conical refraction phenomenon for 
the acceptance of the wave nature of light. � en, a� er a short introduction of crystal optics 
given in Section 1.2, we discuss how Hamilton discovered conical refraction in biaxial crystals 
(Section 1.3), the new observations of the phenomenon reported by Voigt, Poggendor�  and 
Raman (Section 1.4); and show the development of the di� ractive theory of conical refraction 
introduced by Lalor and further developed later by Belsky and Khapalyuk and reformulated 
by Berry (Section 1.5). Finally, in Section 1.6 we discuss other areas of knowledge in which 
conical refraction plays a role.

1.1. THE TRIUMPH OF THE WAVE THEORY OF LIGHT

� e prediction of conical refraction (CR) in biaxial crystals by William Rowan Hamilton 
is closely related to the triumph of the wave theory of optics over its corpuscular picture. At 
the beginning of the 19th century there was a � ght between backers of both theories. However, 
the corpuscular-minded scientists had some advantage because Sir Isaac Newton, one of 
the fathers of scienti� c thought, was one of the major contributors to that theory (Newton, 
1704). Among all the known phenomenology related to light by that time, double refraction 
observed in anisotropic uniaxial crystals was one of the candidates to tip the balance towards 
one of the two theories.

� e e� ects of anisotropic media over a light beam are known since the 17th century, 
when Rasmus Bartholin in 1669 reported the observation of the splitting of an incident light 
beam into two sub-beams a� er passing through a plate of the Iceland mineral (Bartholin, 
1669). Bartholin observed that while one of the two sub-beams refracted following the 
ordinary Snell’s law, the other sub-beam followed a new extraordinary law. � is phenomenon 
is known as double refraction and it is a consequence of the birefringence of the medium 
generated by an anisotropy in the material structure. Some years a� er, in 1690, Christiaan 
Huygens presented a novel description of light propagation in anisotropic media where light 
is assumed to be a wave that, when passing through a uniaxial crystal, refracts as two internal 
waves (Huygens, 1690). In Huygens’ description, the ordinary wave refracts as a sphere, i.e., 
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following Snell’s law in all directions, but the extraordinary wave refracts as an ellipsoid. 
Both the sphere and the ellipsoid touch each other at only two points and the line that connects 
these points gives the direction of the optic axis of the material. Along this direction, the input 
beam into the crystal propagates without splitting at all. � is new theory established the roots 
for the wave theory of light that came in the following centuries. In fact, the wave theory 
of double refraction was revised in detail during the 19th century by George Gabriel Stokes 
among others, who could nothing else than verify it.

Although Huygens’ theory described well all the double refraction experiments 
carried out by that time, it was rejected by Newton because the origin of the two orthogonal 
polarizations in waves was unclear. In addition, David Brewster in 1813 discovered that 
the mineral topaz has two di� erent directions along which no refraction was observed, 
i.e., two optic axes. Accordingly, these type of crystals were named biaxial crystals. Further 
investigations showed that aragonite, borax or mica also behave as biaxial crystals. � e theory 
of Huygens could not explain the behavior of light in these materials, what weaken even more 
the wave theory of light against the corpuscular theory. In addition, Pierre Simon Laplace and 
Etienne Louis Malus were able to deduced double refraction e� ects from a corpuscular point 
of view.

However, not everything was lost for the wave theory of light. At the beginning of the 
19th century, � omas Young was convinced that light was a wave and in 1801 presented his 
milestone contribution on the interference of light waves and the slit experiment (Young, 
1802). Nevertheless, the shadow of Newton was so large that Young’s experiment and its wave 
explanation was not accepted by the community. In 1819, Agustin-Jean Fresnel presented 
an independent description of the wave theory of light to a competition launched by the 
Académie des Sciences to explain the properties of light. Fresnel’s theory of light included 
the e� ects of interference, di� raction and double refraction both in uniaxial and biaxial media 
(Fresnel, 1819). Concretely, in that work, he predicted that a beam of light passing through a 
pinhole creates an interference intensity pattern such that an on-axis maximum intensity spot 
is found. In contrast, the corpuscular theory of light predicted a dark intensity region at that 
point. � e experimental observation of Dominique-François-Jean Arago (who was the head 
of the comitee of the Académie des Sciences) of Fresnel’s prediction was the � rst big victory of 
the wave theory of light.

Regarding double refraction, Fresnel’s theory states that, in general, a wave of light 
propagating through a medium does it di� erently in any of the three Cartesian directions. 
As a consequence, the wave surface does not form an ellipsoid nor a spheroid but a surface 
of the 4th order formed by two sheets whose points of contact with the tangent planes at 
any point give the direction of the two refracted beams in the crystal. Note that, although 
being similar, this new law di� ers with Snell’s law and Huygens’ law, in general. If the wave 
refracts identically in all three Cartesian directions, i.e., if the medium is isotropic, Snell’s law 
governs the propagation of light. If two of the three Cartesian directions of refraction are equal, 
then the medium is uniaxial, it possesses an optic axis through which no double refraction 
is observed and Huygens’ law can be applied. Finally, if all three directions are di� erent, the 
medium possesses two optic axes through which light does not double refract, while in any 
other direction double refraction is observed.
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29HISTORY OF CONICAL REFRACTION

One of the problems of Fresnel’s theory of light was that the procedure that he followed 
to obtain it was involved and inelegant and this did not give the � nal victory to the wave 
theory of light. Anyway, the Fresnel wave surface and its properties were studied exhaustively 
during all the 19th century by scientists such as André-Marie Ampère, Augustin Louis Cauchy, 
Lord Rayleigh and William Rowan Hamilton, who was the culpable of the � nal triumph of the 
wave theory of light, as we will discuss in Section 1.3.

1.2. ELEMENTS OF CRYSTAL OPTICS

In the previous section we have highlighted the relevance of the Fresnel surface for the 
triumph of the wave theory of light. In what follows we present the Fresnel surface formally in 
order to understand CR in that context. We do not follow the procedure developed by Fresnel 
since we have the possibility of using Maxwell equations, which were established decades a� er 
Fresnel’s theory. A deeper analysis of crystal optics is presented in Chapter 15 of Ref.  (Born 
and Wolf, 1999) and in Chapter 11 of Ref. (Landau, Li� shi�  and Pitaevskii, 1984).

We consider the propagation of an electromagnetic monochromatic plane wave through 
an electrically linear anisotropic medium with permittivity

0
ˆ ,

xx xy xz

yx yy yz

zx zy zz

ε ε ε
ε ε ε ε ε

ε ε ε

 
 

=  
 
 

  [1.1]

where εij are constants, and permeability µ̂ = µ0 Î , where Î  is the identity matrix. � e 
diagonalized form of the permittivity tensor f r o m Eq. [1.1] reads as follows

1

0 2

3

0 0
ˆ 0 0 .

0 0

ε
ε ε ε

ε

 
 =  
 
 

  [1.2]

An electromagnetic � eld E applied to the medium forces the charges of the latter to re-
organize. � is re-organization can be described by means of the displacement vector D 
through the identity

D = ε̂  E.   [1.3]

A similar relation is found for the magnetic � eld H and the magnetic inductance B:

H = 1µ̂− B.    [1.4]
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Eqs. [1.3] and [1.4] are the constitutive equations of electromagnetism. In order to have 
complete information of the propagation of an electromagnetic � eld passing through a 
medium, Maxwell equations must be also considered:

∇ . E = ρ,    [1.5]

∇ . B = 0,    [1.6]

∇ . E = – 
t

∂
∂
B  ,   [1.7]

∇ . E = J + 
t

∂
∂
E .   [1.8]

For a linear dielectric anisotropic medium, there are neither free charges (ρ = 0) nor 
currents (J = 0). � e propagating electromagnetic � eld we consider is a monochromatic 
transverse plane wave with angular frequency ω propagating at speed c/n (being n 
the refractive index) with electric � eld in the form:

E = E0 exp [ iω n
c





 k . r – t 1
2




 + δ ] e0,  [1.9]

where E0 is a constant, k = (kx, ky, kz) is the unitary wave-vector, and e0 = (aex+bey+cez) 
is a unit vector in Cartesian coordinates. By combining Eq. [1.9] with Eqs. [1.3]–[1.8] 
Maxwell equations can be rewritten as follows:

k . E = 0, [1.10]

k . B = 0, [1.11]

nk × E = B, [1.12]

nk × H = –E. [1.13]

Now we can combine Eqs. [1.3], [1.12] and [1.13] to obtain:

ε̂ E = n2 [E – (k . E) k]. [1.14]

Eq. [1.14] forms a system of three linear equations that can be solved only if the 
associated determinant vanishes, i.e.:

( )
( )

( )

2 2 2 2
1

2 2 2 2 2 2
2

2 2 2 2
3

1

det 1 0.

1

x x y x z

ij i j ij y x y y z

z x z y z

n k n k k n k k

n n k k n k k n k n k k

n k k n k k n k

ε

δ ε ε

ε

− −

− − = − − =

− −

 [1.15]

Evaluation of Eq. (1.15) gives

( ) ( ) ( ) ( )4 2 2 2 2 2 2 2 2
1 2 3 1 2 3 2 1 3 3 1 2 1 2 3 0x y z x y z xn k k k n k k k kε ε ε ε ε ε ε ε ε ε ε ε ε ε ε + + − + + + + + + =  .   [1.16]
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Eq. [1.16] is a surface of the 4th order known as Fresnel’s equation and it is probably 
the most relevant equation of crystal optics, since it describes light propagation in isotropic, 
uniaxial and biaxial media. Eq. [1.16] has, in general, two di� erent real roots for a � xed k, 
i.e., every input plane-wave into an anisotropic medium propagates as two plane-waves with 
di� erent wave-vectors within the medium.

Let us here note that Fresnel’s wave-surface describes phase propagation within the 
material. At variance with isotropic homogeneous media, in anisotropic crystals the direction 
of propagation of the energy, i.e., the direction of the Poynting vector, does not coincide with 
the direction of propagation of the phase, in general. An equivalent equation to Eq. [1.16]
can be obtained analogously for propagation of rays within the crystal (Born and Wolf, 1999; 
Landau, Li� shi�  and Pitaevskii, 1984).

1.2.1. Uniaxial crystals

Uniaxial crystals are optical media with only two di� erent permittivity constants є1 = ε2 
≡ εo and ε3 = εe, being εo parallel to the optic axis of the crystal and εe orthogonal to it. Under 
this condition, Eq. [1.16] reads as:

( ) ( )2 2 2 2 2 2 0.o e z e x y o en n k n k kε ε ε ε ε − − + + − = 
 [1.17]

It is straightforward to realize that Eq. (1.17) has two possible solutions: a spheroid and 
an ellipsoid:

2 2 2
2 ,o

x y zk k k
n
ε

+ + =  [1.18]

2 22

2

1 .x yz

o e

k kk
e nε

+
+ =  [1.19]

� at is to say, the wave-vector surface of the 4th order becomes two independent surfaces of 
the 2nd order. Fig. 1.1 gives cuts in the (a) xy, (b) xz and (c) yz planes and also (d) the three-
dimensional surface of Eq. [1.17] for εo = 1 and εe = 2. Refraction of an input plane-wave by a 
uniaxial crystal is depicted in Fig. 1.1(e) by the direction of the normals of the tangent planes 
with red and blue lines at the crossing points between the input ray (black dashed line) with 
the Fresnel surfaces. One of the refracted plane waves follows usual laws of refraction in a 
medium with refractive index n = oε  and is called as the ordinary wave, depicted in red in 
Fig. 1.1(e). In contrast, the direction of propagation of the other refracted wave depends on the 
angle that the input plane-wave makes with the optic axis and is known as the extraordinary 
wave, depicted in blue in Fig. 1.1(e). As it can be appreciated, the spheroid and the ellipsoid 
touch each other at two points. � e line that connects these two points gives the direction 
of the optic axis of the crystal. Note that the refracted waves from a plane-wave propagating 
along the optic axis overlap and therefore only a single plane-wave is observed. If the spheroid 
is contained within the ellipsoid, the material is said to be a positive uniaxial crystal, while 
if the case is the opposite, the material is a negative uniaxial crystal. Note additionally that at 
the crossing point between the two surfaces there can be found only one tangent plane that 
touches the surfaces at a single point.
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� e state of polarization of the ordinary and extraordinary waves can be easily visualized 
through the construction depicted in Fig. 1.1(e). From Eq. [1.10] it is clear that E  k. Let’s 
consider the plane containing the wave-vector k of a propagating plane-wave through the 
crystal and the optic axis. � is plane is known as the principal plane (depicted in color blue). 
� e section of the plane perpendicular to k at the origin with the surface of wave normals 
forms an ellipse (depicted in color red) whose principal semi-axes are one perpendicular and 
one parallel to the principal plane. At the same time, the semi-axis of the ellipse perpendicular 
to the principal plane has the same radius than the spheroid, i.e., it is in the direction of 
the ordinary wave. � erefore, the electric � eld of the ordinary wave vibrates orthogonal to the 
principal plane, while the electric � eld of the extraordinary wave vibrates parallel to this plane 
being both electric � elds mutually orthogonal. Note that for a given input plane-wave, the 
ordinary and extraordinary refracted waves are always linearly polarized. � e combination of 
both waves gives a total elliptically polarized wave, in general.

1.2.2. Biaxial crystals

Biaxial crystals are anisotropic optical materials with three di� erent permittivity 
constants, i.e., ε1 ≠ ε2 ≠ ε3. In this case, further simpli� cations of Eq. [1.16] cannot be applied 
and the wave-surface is of the 4th order. All the phenomenology associated to refraction 

Figure 1.1. 

Transverse cuts in the (a) xy, (b) xz and (c) yz planes of the wave-surface. 
(d) Three-dimensional representation of the wave-surface of Eq. [1.17] for єo = 
1 and єe = 2. (e) An input plane-wave (depicted with a black dashed line) refracts 
into an ordinary (red) and extraordinary (blue) plane waves, which are in the 
direction of the normal vectors to the tangent plane at the crossing point between 
the input wavevectorand Fresnel’s surface. (f ) The ordinary and extraordinary 
waves are mutually orthogonally polarized.
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of an input plane wave when it propagates within a biaxial crystal along any direction and 
described by Fresnel’s surface is analogous to a uniaxial crystal: the input plane-wave refracts 
as two orthogonally linearly polarized waves that propagate along di� erent directions given 
by the normals to the tangent plane of the surfaces at the crossing point with the input plane-
wave. However, at variance with uniaxial crystals, the two wave surfaces generated in a biaxial 
crystal cross each other at 4 points. � e two lines that connect each pair of diametric crossing 
points of the surfaces give the direction of the optic axes of the crystal. Fig. 1.2 gives cuts in 
the (a) xy, (b) xz and (c) yz and also (d) the three-dimensional surface of Eq. [1.16] for ε1 = 1, εe 
= 2 and εe = 3. Fig. 1.2(e) shows only an octant of the total volume to facilitate the visualization 
of the crossing point between the two surfaces. and Fig. 1.2(f) depicts refraction in a biaxial 
crystal. From Fig. 1.2(b) it is clear that at the crossing points de� ning the optic axes, a tangent 
plane cannot be de� ned. Nevertheless there can be found a tangent plane enclosing the optic 
axis, that it is expected to touch the surface at two points. However, the octane from Fig. 1.2(e) 
shows that when one shines light in the direction of the optic axis (see white illumination), 
the re� ected light forms neither a spot nor a double-spot but a ring. As a consequence, the 
tangent plane enclosing the optic axis does not touch the surface at two points but at a ring. In 
what follows we will show that this apparently small di� erence between uniaxial and biaxial 
crystals is more relevant than it seems at � rst sight.

Figure 1.2. 

Transverse cuts in the (a) xy, (b) xz and (c) yz planes of the wave-surface. (d) 
Three-dimensional representation of the wave-surface surface of Eq. [1.16] for 
є1 = 1, є2 = 3 and є3 = 5. (e) A single octane of the wave surface to see properly 
the crossing point between both surfaces. We have used illumination parallel to 
the optic axis to show that instead of a point, a ring is reflected. (f ) An input 
plane-wave (depicted with a black dashed line) refracts into an ordinary (red) 
and extraordinary (blue) plane waves, which are in the direction of the normal 
vectors to the tangent plane at the crossing point between the input wave-vector 
and Fresnel’s surface.
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1.3. THE SUBTLE PHENOMENON OF CONICAL REFRACTION

As commented in the previous section, there are two types of anisotropic optical media: 
uniaxial and biaxial crystals. In both types of crystals, an incident light beam su� ers, in 
general, from double refraction at the exit of the crystal. However, there exist a signi� cant 
di� erence that escaped to Fresnel between the two types of media when the beam propagates 
parallel to the optic axis. Fresnel found correctly that the general form of the wave surface 
is a doubled sheeted surface of the 4th order and that the crossing points between the two 
sheets give the optic axes of the crystal. According to the experimental observations, he stated 
that light propagating parallel to the optic axis does not su� er from double refraction. � is 
statement, which is true for uniaxial crystals, does not hold for biaxial crystals or, at least, not 
completely.

William Rowan Hamilton was one the � rst great mathematicians of the 19th century 
and one of the fathers of the modern formulation of physics as we recognize it nowadays. 
He was very interested on the properties of the Fresnel wave surface and studied it in detail, 
discovering new properties that were misapprehended by all previous researchers. It was clear 
that the direction of the refracted beams in biaxial crystals can be described by the normal 
vector to the tangent planes to the surface at any point. � e subtle realization of Hamilton 
was that at the crossing points of the Fresnel surface, i.e., at the points de� ning the optic axes, 
there is not a unique tangent plane. As shown in Fig. 1.2(a), the crossing points form conoidal 
cusps where the tangent plane is not well de� ned. In contrast, at that singular points a tangent 
cone can be found. Additionally, Fresnel assumed that each of the four singularities could be 
completely covered over by a tangent plane that touches the wave surface at two single points, 

Figure 1.3. 

The fathers of CR: (a) W. R. Hamilton and (b) H. Lloyd. (c) Model of the 
wave surface of a biaxial crystal reproduced by the Göttingen Collection 
of Mathematical Models and Instruments. Bottom sequence of images: 
transition from double refraction of CR reproduced from Lloyd report 
(Lloyd, 1833).
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as suggested by the two points a and b from Fig. 1.2. However, the complex structure of the 
wave surface when imaged in three dimensions [Fig. 1.2(b)] shows that a closing tangent 
plane touches the wave surface along a ring, as Hamilton discovered. � erefore, a bundle of 
waves of light propagating parallel to one of the optic axes of a biaxial crystal should refract 
internally as an slanted cone within the crystal and emerge from it as an hollow light cylinder 
whose transverse cross-section forms a ring of light. But not only this, there is one more 
solution in which a bundle of waves forming a cone of light propagate as a pencil within the 
crystal and emerge externally as a cone of light. � ese two new phenomena were called as 
internal and external conical refraction (CR) respectively by Hamilton. Hamilton’s theory of 
CR was presented together with a general method to solve optical problems in his Essay on the 
theory of systems of rays in 1832 (Hamilton, 1837).

� e two new phenomena predicted elegantly by Hamilton needed to be observed 
experimentally. For that reason, Hamilton contacted Humphrey Lloyd and asked him to carry 
out the corresponding experimental observations. He took aragonite as biaxial material and 
succeeded in observing, � rst, external and, secondly, internal CR few weeks a� er Hamilton’s 
prediction (Lloyd, 1833) from sunlight and by arranging a metallic pinhole at the entrance of 
the crystal. In addition to the novel refraction phenomena, Lloyd observed that all the rays 
of the light cone were polarized in di� erent planes so that every two diametrically opposite 
points have orthogonal polarizations. � is new law of polarization in CR was deduced 
a� erwards by Hamilton from his theory. Lloyd also observed that the light cylinder appeared 
displaced with respect to the transverse position of the pinhole.

Hamilton’s discovery together with Lloyd’s observations was the de� nitive � st on the 
table of the wave theory of light and it meant its acceptance over the corpuscular theory. It 
had the relevance of being one of the � rst mathematical predictions of physical phenomena, 
at variance with previous theoretical contributions to the wave theory of light that were 
explanations of already observed e� ects. However, this was not the last word in CR since, as 
we show in the next section, new phenomena escaping Hamilton’s theory were observed later. 

1.4. NOT EVERYTHING WAS SAID: NEW OBSERVATIONS 
ON CONICAL REFRACTION

It seemed that Hamilton’s theory was able to predict any phenomena regarding light 
propagation in optical media and, in particular, that all the phenomenology associated to 
CR had been reported. However, in 1839 Johann Christian Poggendor�  (editor of Annalen 
der Physik) reported new observations on light propagation under internal CR conditions 
(Poggendor� , 1839). As Lloyd, he used aragonite as biaxial material but as a light source 
he used a � re lamp, which tends to be more monochromatic than sunlight, and a lens. In 
addition to the transition from double refraction to conical refraction as the optic axes of the 
crystal and the direction of the beam approach each other and the polarization distribution 
along the ring, Poggendor�  realized that the ring of light was split by a ring of complete 
darkness. Two years a� er, similar observations were reported by R. Potter (1851), although he 
resisted to accept that his experimental results con� rmed the wave nature of light.
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� e work of Poggendor�  caused some impression in their German colleagues Beer 
and Haidinger, who reported independently very detailed experimental works on the 
phenomenology of internal CR: the transition from double to internal conical refraction, 
the state of polarization of the ring, the dispersion relation for di� erent wavelengths and 
even some calculations on the refractive indices of aragonite but they did not say anything 
regarding the dark ring observed by Poggendor�  (Beerr, 1852; Haidinger, 1855).

During the following years, it seems that interest on studying CR and on explaining the 
novel observations from Poggendor�  disappeared. In 1905, Voigt presented an exhaustive 
50 pages long article with both an experimental and a theoretical analysis of CR in Annalen der 
Physik, where he discussed all the phenomenology known and gave a theoretical explanation 
for the Poggendor�  dark ring (Voigt, 1905). He gave a guide of all types of crystallographic 
groups and included also crystals with optical activity. Voigt’s proposal for the Poggendor�  
dark ring was not too far from reality: the biaxial crystal generates a conical wave for 
the ordinary and the extraordinary polarizations and each of the two bright rings split by the 
Poggendor�  dark ring correspond to one of that ordinary and extraordinary conical waves. In 
addition, Voigt reported that the lateral shi�  of the light cylinder observed by Lloyd depends 
on the orientation of the plane of optic axes of the crystal. Finally, he also realized that if the 
incident beam is linearly polarized, the ring lacks of one sector.

Hamilton was not the only big presence in CR. In 1941 the Nobel prize winner Sir 
Chandrasekhara Venkata Raman published a series of works on internal CR in naphthalene 
crystals (Raman, Rajagopalan and Nedungadi, 1941a and 1941b; Ramani, 1942), a biaxial 
material with almost 10 times larger birefringence than aragonite. He con� rmed the presence 
of the Poggendor�  dark ring and reported a new observation: the transverse intensity pattern 
along the beam propagation direction changes. � ere is one plane at which the Poggendor�  
ring can be observed clearly and as the imaging plane is moved from that plane the bright 
rings become wider. Far enough from the plane of observation of the Poggendor�  ring, the 
inner ring becomes a bright axial spot. � ese observations had to wait for a di� ractive theory 
of CR to have a theoretical explanation.

1.5. FROM HAMILTON’S MODEL TO THE DIFFRACTIVE THEORY 
OF CONICAL REFRACTION

� e born of non-linear optics brought a new hope for the study of CR mainly by two 
di� erent reasons: (1) the requirement of good quality non-linear crystals, being many of them 
biaxial, and (2) the use of a coherent, monochromatic and easily addressable light source, i. e., 
the laser. In this sense, we � nd the � rst proposal of a new generation of experiments in CR 
in the work of Goyal and Prakash (Goyal and Praksh, 1970), where they discuss the possibility 
of observing CR in a non-linear medium whose refractive index is modi� ed by means of an 
additional high intense light beam. Almost at the same time, Portigal and Burstein made the 
� rst big step towards a complete description of the CR phenomenon (Portigal and Burstein, 
1969). Starting from Maxwell equations, they were able to give a quantitative analysis of 
internal CR by calculating the phase velocities, polarization modes and Poynting vector of a 
bundle of waves entering into the biaxial crystal.
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Soon a� erwards, Lalor presented a series of works in which he calculated � e Angular 
Spectrum of Electromagnetic Fields in Crystals both for uniaxial and biaxial crystals (Lalor, 
1972a and 1972b). � is was, up to our knowledge, the � rst attempt to describe light 
propagation in anisotropic media with a di� ractive formalism. � e summit of his series of 
three papers was An Analytical Approach to the � eory of Internal Conical Refraction, where 
the Fourier transform has a central role in the description of the phenomenon (Lalor, 1972c). 
Closely related to this work is the one from Schell and Bloembergen (Schell and Bloembergen, 
1978). In addition to the di� ractive equations for the light � eld out of the biaxial crystal, they 
also showed for the � rst time experimental images of CR for linearly polarized input beams 
with a clear dark ring splitting the ring of CR into two bright rings. Similar observations were 
reported by Perkal’skis and Mikhailichenko (1979) and by Velichkina et al., (1980).

In 1978 Belsky and Khapalyuk presented the holy grail of CR: the full di� ractive theory 
of both external (Belskii and Khapalyuk, 1978a) and internal CR (Belskii and Khapalyuk, 
1978b) in biaxial crystals. � is work is very related to Lalor’s calculations but the equations 
at which Belsky and Khapalyuk arrived were much more compact. In this formalism, the 
electric � eld behind the crystal is obtained from the transverse plane-wave decomposition 
of the input beam transformed by a Fourier-like operation that includes beam propagation. 
� ese results describe in detail all the phenomenology associated with CR, which were 
demonstrated by Fève et al., with spheres of KTP (Féve, Boulanger and Marnier, 1994). � e 
Beslky and Khapalyuk theory of CR was explored in detail by Belsky and Stepanov (Belsky and 
Stepanov, 1999) (including gyroscopic crystals [Belsky and Stepanov, 2002]), who recognized 
the relevance on the CR beam evolution of the ratio between the ring radius and the waist 
radius of the input beam, and also by Bela� al for the asymptotic case of R0 ≫ w0 (Bela� al, 
2000), where R0 is the geometric approximation of the CR ring radius and w0 is the waist 
radius of the input beam.

172 years a� er Hamilton’s prediction of CR, Sir Michael Victor Berry developed 
the de� nitive theory of CR (Berry, 2004). He considered di� ractive paraxial optics 

Figure 1.4. 

Diabolo-like geometry near the cusp point of the Fresnel’s surface of a biaxial 
crystal defining one of the optic axis.
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and the biaxial crystal acting as a unitary transformation over the angular plane wave 
spectrum of the input beam impinging the crystal. He presented analytical formulas for 
the Poggendor�  dark and bright rings and for the Raman axial spot. � is approach was a 
breakthrough in biaxial crystal optics and, together with some illustrative experiments 
on CR with high quality KGd(WO4)2 biaxial crystals (Kalkandjiev and Bursukova, 
2008), opened a new era for the study of the phenomenon and the applications 
of CR.

Finally, it is worth saying external CR has not been reported clearly. � e only related 
experiments are the � rst one reported by Lloyd (1833) and the work from Féve, Boulanger 
and Marnier (1994). In this thesis we will always deal with internal CR.

1.6. CONICAL REFRACTION OUT OF CRYSTAL OPTICS

CR has been also studied out of the domain of optics. As in many other topics, CR has 
its analogous in sound waves by considering sonic crystals (Musgrave, 1970). Most related 
works are purely theoretical (Srinivasant and Lakshmi, 1973; Al’shits, Darinskii and Shuvalov, 
1989; Boulanger and Hayes, 1998; Zaitsev and Kuznetsova, 1998; Skab, Martynyuk-Lototska 
and Vlokh, 2011; Alshits and Lyubimov, 2011) and only preliminary experiments have been 
reported (KlerKd and Musgrave, 1955; McSkimin and Bond, 1966; Artman, 1966). However, 
all the phenomenology related to CR has been recovered for the acoustic case; namely the 
generation of conical structures when the incident bundle of waves propagate nearly parallel 
to the optic axis of the sonic crystal such that the state of polarization along the ring is linear, 
with the azimuth varying as eCR = (cos(ϕ2), sin(ϕ2)). A similar approach has been discussed in 
plasma physics by Tsiklauri, who reported theoretically CR of magnetohydrodynamical waves 
in a collisionless plasma with anisotropic thermal pressure (Tisklauri, 1996). As it has been 
discussed in previous sections, CR is associated to a diabolo-like cusp in the Fresnel’s surface 
of a biaxial crystal, see Fig. 1.4. � ese type of surface singularities are conical intersections, 
which have studied en chemistry for instance (Aapplegate, Barckholtze and Miller, 2003). 
In the line of conical intersections, CR has been discussed recently in honeycomb lattices 
(Ablowitz, Nixon and Zhu, 2009; Ramezani et al., 2012) and in Lieb lattices (Leykam, Bahat-
Treidel and Desytnikov, 2013). In particular, CR and gap solitons in photonic honeycomb 
lattices have been reported both experimentally and theoretically by Peleg et al., (2007). 
Additonally, Bulgakov and Fedorin discussed CR in periodic semiconductors under the 
in� uence of an external magnetic � eld (Bulgakov and Fedorin, 2012). Finally, note that both 
these works and our work only consider non-magnetic biaxial crystals. However, it could be 
interesting to study all the phenomenology associated to the the case of biaxial crystals with 
μ ≠ μ0, as it has been introduced by Matos and co-workers Matos, Paiva and Barbosa, 2011).
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In this Chapter we introduce theory of CR that will be the base of all the following 
Chapters and which can be divided in three main contributions. Firstly, we brie� y introduce 
the development of the CR theory, see Section 2.1. In Section 2.2 we present the di� ractive 
theory of CR developed by Belsky, Khapalyuk and Berry (BKB) and show the cylindrically 
symmetric solution that is the base of almost all the CR-related works. Our contribution to this 
Section is the demonstration that the BKB solution can be used to predict the transformation 
of beams with non-cylindrically symmetric electric � eld amplitude propagating both along 
and out of the optic axis of a biaxial crystal. � en, Section 2.3 we propose a simple formulation 
based on splitting of linearly polarized wave-vectors that can be used to predict the CR 
transverse intensity pattern of arbitrary input beams at the focal plane, and demonstrate it for 
an axicon beam. In Section 2.4 we reformulate the dual-cone model of CR, give an intuitive 
explanation based on the wave-vector and polarization dependence of the CR phenomenon 
and demonstrate the former experimentally. � e wave-vector and polarization CR formalism 
is extended to a cascade of multiple biaxial crystals with aligned optic axis, including linearly 
polarized input beams, in Section 2.5. We show that, in the general case, a cascade of N crystals 
generates 2N−1 concentric rings at the focal plane. Finally, in Section 2.6, we discuss the main 
conclusions of the Chapter. 

� e research contained in this chapter has been published in (Turpin, Loiko et al., 
2015; Turpin, Vargas et al., 2015; Turpin, Loiko, Kalkandjiev et al., 2013; Turpin, Loiko, 
Kalkandjiev and Mompart, 2013, and Turpin, Loiko, Kalkandjiev et al., 2015) and has been 
done in collaboration of Alba Peinado, Ángel Lizana, Irene Estévez and Juan Campos from 
the Universitat Autònoma de Barcelona; Hiromitsu Tomizawa from the Japan Synchrotron 
Radiation Research Institute, Asticio Vargas and Fabián A. Torres-Ruiz from the Universidad 
de Concepción; and Ignacio Moreno from the Universidad Miguel Hernández.

2.1. INTRODUCTION

As stated in the previous Chapter, CR was predicted theoretically by Hamilton by analyzing 
in detail Fresnel’s surface corresponding to a biaxial crystal. He considered a collimated 
bundle of plane-waves propagating within the crystal and parallel to one of the optic axes and 
deduced that the bundle would refract as an slanted cone within the crystal and emerge as 
a hollow light cylinder whose transverse pro� le forms a light ring. Although this is precisely 
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Figure 2.1. 

Basic parameters in CR. R0 is the geometric approximation of the CR light ring 
that can be calculated as R0 = lα, where l is the length of the biaxial crystal and α 
the semi-angle of the light cone or conicity. ρ0 measures the ring radius in units of 
waist radius of the input beam w0. G is a vector that can be attached to the crystal 
to describe both the direction and the magnitude of the lateral displacement that 
the CR ring suffers. ϕ also gives the orientation of the plane of optic axes of the 
crystal.

what was found by Lloyd, further experiments carried out by Poggendor� , Voigt and Raman 
showed that Hamilton theory could not describe completely all the phenomenology associated 
to CR. � ese results surpassing Hamilton’s theory come from the fact that a collimated beam 
is an idealization without real equivalent. In any experimental situation, beams have always 
a plane at which their width is minimum. In other words, real beams are focused in a greater 
or lesser extent. � e description of the transformation of focused beams by optical systems 
was far from Hamilton’s age and was not well established until the middle of the 20th century. 
� at is the reason why the di� ractive theory of CR, capable of predicting all the observed 
phenomena, had to wait until the last quarter of the last century. � is theory was presented 
by Belsky and Khapalyuk (1978a and 1978b) and then reformulated in an elegant way by 
Berry (2004). Recently, we have shown that the reformulation of the di� ractive theory of CR 
carried out by Berry can be used to predict the beam evolution of light propagation in biaxial 
crystals along any direction and not only along the optic axis (Turpin, Loiko, Kalkandjiev and 
Mompart, 2015) and also in case of non-homogeneously polarized beams (Turpin, Vargas, 
Lizana et al., 2015). Note that alternatively Dreger (1999) and Garnier (2001) have reported 
the solutions of optical beam propagation in biaxial crystals, although in both cases the 
theory presented is very involved. On the other hand, Sokolovskii and co-workers showed 
that the Belsky–Khapalyuk–Berry equations can be re-arranged so that they describe CR in 
terms of the interference between two co-propagating cones (Sokolovskii et al., 2013), being 
this theory demonstrated experimentally and newly re-formulated by us (Turpin, Loiko, 
Kalkandjiev, Tomizawa and Mompart, 2015), as it is shown in Section 2.4. Alternatively, 
we have also presented a novel proposal that can be used to easily predict the CR pattern 
at the focal plane by means of a wave-vector and polarization formalism (Turpin, Loiko, 
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Figure 2.2. 

Conical refraction for a Gaussian input beam with left handed circular 
polarization [images (a)–(c) and (g)] and linear horizontal polarization [images 
(d)–(f ) and (h)]. Images (a) and (d) are transverse cuts at the focal plane (Z = 
0) of the intensity pattern. Images (b) and (e) are the transverse electric field in 
the X direction, while images (b) and (e) are the transverse electric field in the Y 
direction. (g) and (h) are transverse cuts in the Z–ρ plane at φ = 0.

Kalkandjiev, Tomizawa and Mompart, 2013) that can be also used in a cascade of biaxial 
crystals, as we have also shown in (Turpin, Loiko, Kalkandjiev and Mompart, 2013). In this 
chapter, we present these three theories and study in detail all the characteristics associated to 
CR both for single and multiple crystals.

Let us � rstly brie� y outline geometrically the CR annular pattern observed at the focal 
plane with an input Gaussian beam. While the complete CR ring is observed for circular 
polarization of the input Gaussian beam, as it is shown in Fig. 2.2(a), a crescent ring with 
one point of the ring being of zero intensity appears for linear polarization, see Fig. 2.2(d). 
In both cases, the center of the CR ring is laterally shi� ed with respect to the incident beam, 
as sketched in Fig. 2.1. � is shi�  can be represented by a vector G = R0 (cos ϕG, sin ϕG) that 
belongs to the plane of the crystal optic axes (Kalkandjiev and Bursukova, 2008). Its modulus 
is equal to the ring radius |G| ≡ R0. � e latter is the product of the crystal length, l, and the CR 
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semi-angle α or conicity, i.e., R0 = lα (Kalkandjiev and Bursukova, 2008). � e CR semi-angle 
α depends on the principal refractive indices of the crystal as α = ( )( )2 2 2 2 2

2 1 3 2 2/ ,n n n n n− −  
where we have assumed n1 < n2 < n3. For the KGd(WO4)2) biaxial crystals that we will use in 
all our experiments, α(λ = 633 nm) = 16.9 mrad (Kalkandjiev and Bursukova, 2008 and Pujol 
et al., 1999).

2.2. DIFFRACTIVE SOLUTION

2.2.1. Cylindrically symmetric solution

We will present the theory as re-formulated by Berry, since, in our opinion, it is very 
compact and clear in terms of operators. In what follows, we will consider normalized 
coordinates to the waist radius w0 and and Rayleigh length zR of the input beam, i.e., X ↔ x/
w0, Y ↔ y/w0 and Z ↔ z/zR. In the parabolic approximation, a� er passing through a medium 
or optical element, a light beam can be described by means of its displacement vector D as a 
superposition of plane waves k = (kx, ky), which are generated from a unitary transformation 
provided by the optical element Û (k) applied over the Fourier transform vector of the input 
light beam A(k). In other words,

D = 
( )2

1
2

∞

− ∞π
∫ ∫ eik.r Û(k) A (k) dk. [2.1]

where A(k) = [Ax(k),Ay(k] is the 2D Fourier transform of the transverse amplitude of the 
input electric � eld E(r) = [Ex(r),Ey(r)]:

Ax(k) = 
( )2

1
2

∞

− ∞π
∫ ∫  Ex(r)e-ik.rdr, [2.2]

Ay(k) = 
( )2

1
2

∞

− ∞π
∫ ∫  Ey(r)e-ik.rdr, [2.3]

For a low birefringent biaxial crystal, Berry showed that the unitary transformation 
provided by the medium is Û (k) = e-iΓ(k) with (Berry, 2004)

Γ( ) ( )k I2 2
0 3 1

1 ˆ ˆ ˆ, ,
2

k Z kρ σ σΓ = + ⋅  [2.4]

where 3σ̂  and 1σ̂  are the Pauli matrices and Î is the 2 × 2 identity matrix. ρ0 is the ratio 
between the geometric ring radius of the CR ring R0 and the waist radius of the focused input 
beam w0, i.e., ρ0 ≡ R0/w0. We would like to note that this transformation is assumed in the 
formulation of Belsky and Khapalyuk, (1978a, 1978b). It is straightforward to demonstrate 
that for a given vector v = vn with |n| = 1, the evaluation of ( )ˆ ˆiv ne σ⋅  gives Î cos(v) + i(n · 
σsin(v)), where σ = ( 1σ̂ , 2σ̂ , 3σ̂ ) is the vector of Pauli matrices. By recalling the latter identity 
and a� er evaluation of Û (k) = e−iΓ(k) by using Eq. [2.4], the unitary transformation provided 
by the crystal can be obtained:
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Û (k) ( )
2 21

2
0cos

i k Z
ne kρ

−
=  Î+i ( )0sin k

k
ρ

k . ( )3 1ˆ ˆ,σ σ  , [2.5]

where k ≡ 2 2
x yk k+  y is the transverse magnitude of the wave-vector in cylindrical coordinates 

and n is the mean refractive index of the crystal. By using Eq. [2.5], Eq. [2.1] becomes

D
( )2

1
2π

∞

− ∞

= ∫ ∫ eik.re
2 21

2
i k Z

n
− ( ) ( ) ( ) ( )I+ k A k k0

0 3 1

sinˆ ˆ ˆcos , ,
k

k i d
k
ρ

ρ σ σ
 

⋅ 
 

 [2.6]

which can be written in cylindrical coordinates (k = k(cos(ϕk), sin(ϕk)), r = r(cos(φ), sin(φ))/w0 
= ρ(cos(φ), sin(φ))) as

( )
( ) ( ) ( )

( ) ( ) ( )ikD A k k
2 21

cos 2
2

cos sin1 .
sin cos2

k
i k Z k kn

k k

e e kdρ φ ϕ φ φ
φ φπ

−−  
=   − 

∫∫eikρcos

( )
( ) ( ) ( )

( ) ( ) ( )ikD A k k
2 21

cos 2
2

cos sin1 .
sin cos2

k
i k Z k kn

k k

e e kdρ φ ϕ φ φ
φ φπ

−−  
=   − 

∫∫  [2.7]

Now, we simplify the system by considering a uniformly polarized and cylindrically symmetric 
input beam E = E(r)e0 with cylindrically symmetric Fourier transform too, i.e., Ax(k) = Ay(k) 
= a(k), where

( ) ( ) ( )0
0

, 0 ,a k kE r Z J rk dr
∞

= =∫   [2.8]

where Jn(x) is the nth-order Bessel function of the � rst type. With this assumption, we can 
integrate over ϕk by using the following expressions:

( ) ( )ik
2

cos
0

0

,k
ke d J k

π
ρ φ ϕ φ ρ− =∫ eikρcos( ) ( )ik

2
cos

0
0

,k
ke d J k

π
ρ φ ϕ φ ρ− =∫  [2.9]

( ) ( ) ( ) ( )ik
2

cos
1

0

cos cosk
k ke d J k

π
ρ φ ϕ φ φ ϕ ρ− =∫ eikρcos( ) ( ) ( ) ( )ik

2
cos

1
0

cos cosk
k ke d J k

π
ρ φ ϕ φ φ ϕ ρ− =∫  [2.10]

and obtain a 1D integral for the � eld D:

D e0 1 1
0

1 0 1

cos sin
sin cos

B B B
B B B

ϕ ϕ
ϕ ϕ

+ 
=  − 

, [2.11]

where B0 = B0(ρ, Z, ρ0) and B1 = B1(ρ, Z, ρ0) are the Belsky–Khapalyuk–Berry integrals that 
describe the evolution of the CR beam in both the radial and axial directions:

( ) ( ) ( ) ( ) ( )
2 2

2
0 0 0 0

0

1, , cos ,
2

k Zi
nB r Z ka k e k J kr dkρ ρ

π

∞
−

= ∫  [2.12]

( ) ( ) ( ) ( ) ( )
2 2

2
1 0 0 1

0

1, , sin .
2

k Zi
nB r Z ka k e k J kr dkρ ρ

π

∞
−

= ∫  [2.13]

For an input beam of circular polarization (CP) (also for random polarization, RP) and 
of linear polarization (LP), the intensity distribution behind the crystal becomes, respectively:

( )   2 2
0 1, | | | | ,CPI Z B Bρ = +  [2.14]

( ) ( )( ) *
0 1, 2Re cos 2 - ,LP CP CI Z I B Bρ ϕ ϕ = + Φ +   [2.15]

where Φ is the polarization azimuth of the LP input beam with ein = (cos Φ, sin Φ).
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To explore the main features of the CR beam, let’s consider the case of a Gaussian input 
beam, with electric � eld and Fourier transform

( ) 0 0E r e e
2 2 2

0/
0 0 ,r wE e E e ρ− −= ≡  [2.16]

( ) 2 /4
0 ,ka k a e−=  [2.17]

where E0 and a0 are constants. Additionally, we consider that the dimensions of the CR ring 
are much larger than the waist radius of the input beam, i.e., ρ0 ≫ 1. For a circularly polarized 
beam with e0 = 1/ 2 (1, i), at the focal plane (Z = 0) the transverse intensity pattern is formed 
by two bright rings with the characteristic Poggendor�  dark annular splitting, see Fig. 2.2(a). 
Fig. 2.2(b) and (c) show the absolute value of the transverse electric � eld in the horizontal 
and vertical directions at the focal plane. As it can be observed, both transverse intensity 
patterns have a nodal point at diametrically opposite azimuthal positions, which indicates 
the characteristic polarization distribution of the CR beam, i.e., the angular variation of the 
azimuth of the linear polarization along the ring is π rad for a full turn. As a consequence, if 
the input beam is linearly polarized, e.g., for e0 = (1, 0), the transverse intensity pattern forms 
an azimuthally crescent ring with a point of null intensity coinciding with the point of the ring 
with orthogonal polarization to the input beam, see Fig. 2.2(d). Fig. 2.2(e) shows a density 
plot in the Z − ρ plane. Out of the focal plane, along the axial direction, the CR rings become 
wider and the Poggendor�  splitting disappears as the on-axis intensity (Raman spot) grows 
up from zero to two axial maxima placed at

04 / 3 .Z ρ= ±  [2.18]

Although being the case of a Gaussian input beam the most studied situation in CR for 
cylindrically symmetric beams (Kalkandjiev and Bursukova, 2008; Berry, Je� rey and Lunney, 
2006; Phelan et al, 2009; Peet, 2010a, 2013; Peet and Zolotukhin, 2010; Loiko et al., 2013; 
Grant and Abdolvand, 2014; Turpin, Loiko, Kalkandkiev, Tomizawa and Mompart, 2014; 
Turpin, Loiko, Peinado, Lizana, Kalkandjiev, Campos and Mompart, 2015), other works have 
investigated CR for Laguerre–Gauss beams (Peet, 2011, 2014) and for top-hat beams (Darcy 
et al., 2014).

2.2.2. Non-cylindrically symmetric solution

Recently, we have demonstrated that the Belsky–Khapalyuk–Berry solution can be 
also implemented in non-cylindrically symmetric beams (Turpin, Loiko, Kalkandjiev and 
Mompart, 2015). Since Eq. [2.5] gives information about the operation of the crystal over 
an input beam, Eq. [2.11] can always be applied, independently on the transverse pro� le of 
the input beam. Additionally, if one realizes that the propagation direction of a beam with 
transverse amplitude E(r) can be described by the product of this amplitude and a factor 
exp(−iδ · r) (where δ = (δx, δy) and r = (x, y)), it is straightforward to state that Eq. [2.11] can 
be implemented with arbitrary beams both in transverse shape and propagation direction. 
From Eq. [2.11], there can be obtained two main integrals similar to Eq. [2.12] and Eq. [2.13]
that describe the beam evolution behind the biaxial crystal (Turpin, Loiko, Kalkandjiev and 
Mompart, 2015):
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( )
( )

( ) ( )
k r

r k k2
0, 0 02, sin ,

2

Zi yn
j j

kiB e k A d
k

ρ ρ
π

 ∞ − ⋅ − 
 

− ∞

= ∫ ∫  [2.19]

( )
( )

( ) ( ) ( )
k r

r k k
2

2
1, 0 0 02

1, cos sin ,
2

Zi k
n x

j j
kB e k i k A d
k

ρ ρ ρ
π

 ∞ − ⋅ − 
 

− ∞

 = + 
 ∫ ∫  [2.20]

being j = (x, y). � e expressions for the D � eld in terms of Eqs. [2.19] and [2.20] are

Dx = B0,y (rρ0) + B1,x (r, ρ0) , [2.21]
Dy = B0,x (rρ0) + B1,y (r, – ρ0) . [2.22]

Eqs. [2.19]–[2.22] can be used to predict the transformation of any input beam, no matter 
its state of polarization or its shape, as long as its Fourier transform can be obtained. For input 
beams with non-homogeneous polarizations, it must be taken into account that the beam and 
the polarization can always be decomposed in the (x, y) basis, so that the theoretical formalism 
presented above is always suitable for predicting light propagation in biaxial crystals.

In what follows we discuss the transformation of input beams that propagate within a 
biaxial crystal non-parallel to one of the optic axes, i.e., under conditions of double refraction. 
We consider homogeneously le�  handed circularly polarized input beams, i.e., with normalized 
electric � eld e0 = (1, i)/ 2 , and we look at the transverse patterns at the focal plane (Z = 0). 
We will discuss the already shown case of an input beam with Gaussian transverse pro� le and 
also of an elliptical input beam. � eir electric � eld amplitudes are described by

( ) ( ) ( )2 2

0E , e ,x y x yi x y
G x y e eδ δ − +− +

=  [2.23]

( ) ( )
22

2 2

EB 0E , e ,x y

yx
i x y a bx y e eδ δ

 
− +  − +  =  [2.24]

where a and b are constants and δx and δy give the angular separation of the input beam’s 
propagation direction with respect to the optic axis of the crystal.

Fig. 2.3 shows transition from double refraction to CR for the Gaussian input beam (� rst 
and second rows) and the elliptical input beam (third and fourth rows) both experimentally 
(second and fourth rows) and numerically calculated by using Eqs. [2.19]–[2.24] (� rst 
and third rows). For simplicity, we consider only angular displacement of the input beam 
in the vertical direction, i.e., δx = 0. � e experiments have been performed by employing a 
KGd(WO2)4 biaxial crystal with a length of l = 28 mm, yielding a CR ring radius of R0 = lα = 
475 mum. � e Gaussian input beam used was focused by a spherical lens with 100mm of focal 
length. � e elliptical input beam was obtained by focusing the same Gaussian beam with a 
cylindrical lens with 100 mm of focal length. � e biaxial crystal was mounted on an angular 
micrometric positioner that allowed to change the ϕ and θ angles in spherical coordinates 
and to observe the transition from double refraction to CR as the optic axis and the beam 
propagation direction approached each other.
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Figure 2.3. 

Transverse intensity patterns showing the transition from double refraction to conical 
refraction for a Gaussian input beam (fi rst and second rows) and an elliptical input beam 
(third and fourth rows) both experimentally (second and fourth rows) and numerically 
calculated by using Eqs. [2.19]–[2.24] (fi rst and third rows).

� e transformation of a Gaussian input beam propagating parallel to one of the optic 
axes of a biaxial crystal as described by Eq. [2.23] (parallel propagation implies δx = δy = 
0) is the case analyzed in the previous Subsection. When δx,y ≠ 0 double refraction instead 
of CR is found. Double refraction in uniaxial crystals is associated with the splitting of the 
input beam into two beams with identical transverse pattern and orthogonal polarizations, 
corresponding to the ordinary and the extraordinary polarizations. However, in biaxial 
crystals, a Gaussian input beam propagating out of the optic axes splits into two azimuthal 
sectors placed at diametrically opposite positions of the otherwise expected CR ring, provided 
that the angular propagation deviation with respect to the optic axis is small. Only when δx,y ≫ 
1 the output split beams preserve the input beam’s pattern, as in uniaxial crystals. As the beam 
propagation direction approaches to the optic axis, the split beams occupy a larger azimuthal 
angle and eventually both interfere, see Figs. 2.3(a3)–(a5). � e fact that the two split beams 
interfere implies that both beams possess regions of non-orthogonal polarizations. For 
parallel propagation with respect to the optic axes, the interference between both split beams 
is maximum and the two bright rings with Poggendor�  splitting are formed.

For an elliptical input beam, there is a competition between the ellipticity of the shape of the 
beam and the refraction induced by the crystal. We consider an elliptical beam described by 
Eq. [2.24] with a = 1, b = 0.1, i.e., with wx < wy. Since the misalignment with respect to the 
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optic axis is only along the y direction, the two split beams are expected also to appear in that 
direction. Due to the non-symmetrical nature of the elliptical beam and the double refraction 
provided by the biaxial crystal, which induce opposite e� ects, the two refracted beams for 
beam propagation out of the optic axis are wider than for the Gaussian input beam case, see 
Fig. 2.3(c1). As the misalignment of the input beam is reduced, the refracted beams expand 
along the azimuthal direction and at some point both interfere. For parallel propagation to 
one of the optic axis, the pattern is formed by two lobes each of which with Poggendor�  
splitting, see Fig. 2.3(c5). � e two lobes are slightly connected between each other but we 
have checked that the connection points tend to disappear as the ratio of the axes of the ellipse 
increases. We have additionally checked that there is a continuous evolution of the double-
concentric ring structure from Fig. 2.3(a5) into the double-lobe pattern from Fig. 2.3(c5) as 
the ratio of the axes of the ellipse increases. In the next section we use strongly elliptical beams 
to give a formalism capable to predict the transformation of plane waves in CR.

2.3. WAVE-VECTOR AND POLARIZATION DESCRIPTION OF CONICAL 
REFRACTION

Up to this point, we have shown the di� ractive theory of CR and we have demonstrated 
that it is capable to predict light propagation through biaxial crystals. However, the resulting 
equations are involved and their computational cost is high. Additionally, they do not o� er 
intuition about the CR pattern obtained for an arbitrary beam. In this section we present 
a simple analytical formulation capable of predicting the transverse intensity pattern at the 
focal plane a� er a light beam propagates along or near the optic axis of a biaxial crystal. We 
experimentally address this by analyzing the wave-vector and polarization dependence of the 
CR phenomenon and present a phenomenological formulation that easily describes refraction 
of a bundle of plane-waves passing through a biaxial crystal. Since the two bright rings of CR 
have the same polarization distribution, in what follows we will neglect Poggendor�  splitting 
and consider a single bright ring. Our experimental scheme is based on the propagation of 
elliptical beams (EBs) along the optic axis of a biaxial crystal. EBs do not posses continuous 
cylindrical symmetry, at variance with Gaussian beams typically used in CR experiments. � e 
approach follows the transformation law pointed out by Loiko et al., (2011) for CR � ltered 
beams, which di� ers from the well known Malus law for double refraction in uniaxial crystals.

2.3.1. Conical refraction of spatially anisotropic beams revisited

CR has been mostly reported for input beams with intensity pattern possessing 
continuous cylindrical (rotation) symmetry around the propagation axis. � is has been 
motivated by Hamilton’s prediction of the CR within the ray optics description, where rays 
are always associated with cylindrically symmetric collimated beams. Real beams of � nite 
size can be modeled as a bundle of rays with propagation directions isotropically distributed 
around the beam axis. On the one hand, according to the modi� ed Hamilton theory (Berry 
and Je� rey, 2007), CR can be interpreted as a wave-vector and polarization dependent type 
of double refraction, when each ray of the input bundle refracts into two rays at the entrance 
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crystal surface and all refracted rays form a cone. In this process, the two refracted rays go to 
opposite points on the CR ring. On the other hand, it has been also demonstrated that in CR 
the transverse wave-vector components are conserved (Berry and Je� rey, 2007). � is means 
that all input rays (plane waves) with wave-vectors con� ned in a certain plane de� ned by an 
azimuthal angle φ refract to a plane with the same azimuthal angle at the focal plane, i.e., 
into two opposite points on the CR ring. � erefore, double refraction along the optic axis of 
a biaxial crystal and, in particular, the wave-vector and polarization dependence of the CR, 
can be studied with linearly polarized beams formed by plane waves whose wave-vectors are 
con� ned in a certain plane. Such beams are known as cylindrical beams and EBs provide 
their � nite size approximation. � e latter ones can be obtained from collimated Gaussian 
beams focused by a cylindrical lens. In Fig. 2.4 we compare the transverse pattern obtained 
at the focal plane for a Gaussian and an elliptical input beam. For a Gaussian input beam, the 
transverse pattern behind the crystal is formed by the well known pair of bright rings with 
Poggendor�  splitting, see Fig. 2.4(d). In contrast, an EB passing through a biaxial crystal 
does not generate the CR ring, but splits into two beams (in case of circularly polarized input 
beams) oppositely placed along the otherwise expected CR ring and tangent to it, see Fig. 
2.4(b). � e form and orientation of the refracted beams resemble the transverse intensity 
pattern and orientation of the input EB. Below, using EBs we show how phenomenological 
laws that describe double refraction along the optic axis in biaxial crystals can be deduced.

Figure 2.4. 

Experimental set-up of light refraction along the optic axis of a biaxial crystal (BC): the 
input beam is focused by a lens and passes through the BC. The refraction pattern is 
obtained at the focal plane of the system, which coincides with the focal plane. (a) An 
input Gaussian beam focused with a spherical lens (focal length of 150 mm) yields the well-
known ring of CR (c) at the focal plane of the system. (b) An elliptical beam (EB) beam, 
obtained with a cylindrical lens (focal length of 150 mm) that focuses in the horizontal 
direction, yields the the double refraction pattern shown in fi gure (d).
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Figure 2.5. 

(a) An elliptical beam with linear polarization is generated when a circularly 
polarized collimated Gaussian beam passes through the linear polarizer (with 
polarization plane given by azimuthal angle ϕE) and is focused by a cylindrical 
lens (focal length of 150 mm), which determines the wave-vectors plane (given 
by azimuthal angle ϕK). The resulting patterns are captured by a CCD camera at 
the focal plane behind the BC. The orientation of the crystal is characterized by 
the orientation of the plane of its optic axes (given by azimuthal angle ϕG). (b) 
Elliptical beam at the focal plane of the lens when the BC is removed. The beam 
is parameterized by the azimuthal angles ϕE and ϕK related to the polarization 
and wave-vector planes, respectively. All angles are measured from the horizontal 
x-axis of the laboratory system of coordinates.

2.3.2. Transformation rules of conical refraction

In this subsection, we present the position and the relative intensity of the two refracted 
beams produced when an input EB propagates along the optic axis of a BC. � e experimental 
set-up shown in Fig. 2.5(a) is used. � e initial circularly polarized Gaussian beam with waist 
radius of w = 1mm is obtained from a 640 nm diode laser coupled to a monomode � ber. 
� en a linear polarizer is introduced to � x the polarization plane in a well de� ned direction. 
� e resulting linearly polarized beam is focused by a cylindrical lens of 150mm focal length 
with its � at face oriented strictly perpendicular to the beam propagation direction. � e 
cylindrical lens only focuses the Gaussian beam in one direction, so that it transforms its 
transverse circular shape to an elliptical one with a ratio 3/100 of the semi-axes of the ellipse. 
As a consequence, the divergence of the generated EB is di� erent along the focused and 
unfocused directions (wf = 30 μm, θf = 6.8 mrad; wuf = 1000 μm, θuf = 0.2 mrad, where f and uf 
subscripts refer to focused and unfocused directions, respectively). � e EB is characterized by 
its polarization plane, represented by the azimuthal angle ϕE, and by its plane of wave-vectors 
(or Kplane), represented by azimuthal angle ϕK; see Fig. 2.5(b). Di� erent EBs are obtained by 
rotating either the cylindrical lens or the linear polarizer. � e KGd(WO4)2 BC is 28 mm and, 
therefore, R0 = 475 μm. Both the orientation of the optic axis of the BC and the cylindrical 
lens are well controlled in the θ and φ directions in 3D spherical coordinates by a micrometer 
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positioning system. � e resulting pattern is captured by a CCD camera at the focal plane 
behind the BC.

Position of the refracted beams

Now we will experimentally deduce the lateral shi�  of the refracted beams for EBs 
propagated through a BC. In Fig. 2.6 two series of images present the transverse intensity 
pattern at the focal plane recorded varying either ϕE (ϕK = 0º) (b) or ϕK (ϕE = 0º) (c) from 0 to 
157.5º in 22.5º intervals, when the crystal orientation remains � xed at ϕG = 0º. � e geometric 
center of the refracted beams coincides with the center of the otherwise expected CR ring, 
since it is shi� ed from the position of the initial EB by the vector G. � is shi�  is shown 
schematically in Fig. 2.6(a), and it is subtracted in Fig. 2.6(b) and Fig. 2.6(c).

From Fig. 2.6 it is clear that in a local frame with origin at the ring center, the positions 
of the two refracted beams do not depend on the input beam polarization, ϕE, but rotate 
linearly with ϕK. Moreover, the azimuthal angles ϕ± of the refracted beams are de� ned by the 
wave-vector plane, ϕK, of the input EB, namely,

ϕ+ = ϕK, ϕ- = ϕK + π. [2.25]

Figure 2.6. 

Transverse intensity patterns obtained after rotating (b) the polarizer, i.e., varying 
ϕK, or (c) cylindrical lens, i.e., varying ϕK. ϕ means ϕE in (b) and ϕK in (c) and 
it is varied in the range [0º, 157.5º] with steps of 22.5º, while ϕG = 0º. Yellow 
(b) and green (c) lines at the bottom right corner indicate the polarization E-plane 
(b) and the wave-vector K-plane (c), respectively. (a) Splitting of an input EB 
beam (dashed ellipse), where R± denote the position of the two output refracted 
beams at the focal plane. Dashed ring in (a) denotes the otherwise expected CR 
in case of input beam of Gaussian profile.
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Since ϕK and ϕK + π describe the same wave-vector plane, the latter expressions mean 
conservation of the K-planes of wave-vectors. Rotation of the crystal, i.e., change of ϕG, 
does not a� ect the angles ϕ±, but it a� ects the position of the center of the refracted beams 
and redistributes the intensity between the refracted beams as it will be shown in the next 
subsection. Summarizing, in the xy laboratory coordinates, the positions of the refracted 
beams R± at the focal plane can be written as follows:

R± (ϕK) = S (ϕK) + G ± R0u (ϕK), [2.26]

where u(ϕK) ≡ (cos (ϕK) , sin (ϕK)). S denotes the position at the focal plane where the initial EB 
would be focused in the absence of the BC, see Fig. 2.6(c). In other words, the two refracted 
beams are located at diagonal positions of the otherwise expected CR ring. EBs obtained from 
the same Gaussian beam have the same initial position S, i.e., S does not depend on ϕE,K,G in 
this case. As a � nal comment, Eqs. [2.26] generalize the geometrical approach given in (Berry 
and Je� rey, 2007).

Relative intensity distribution of the refracted beams

Now we report how the intensity of the input EB is distributed between the two 
refracted beams. In the experiments, three parameters can be varied independently: ϕG, ϕE 
and ϕK, associated to the crystal orientation represented by G and to the polarization and 
wave-vectors planes of the incident EBs. Below we show that only one combination of these 
angles governs the relative intensity distribution between the two refracted beams. With this 

Figure 2.7. 

Transverse intensity patterns obtained after rotating (b) the polarizer, i.e., varying 
ϕK, or (c) cylindrical lens, i.e., varying ϕK. ϕ means ϕE in (b) and ϕK in (c) and it 
is varied in the range [0º, 157.5º] with steps of 22.5º, while ϕG = 0º. Yellow (b) 
and green (c) lines at the bottom right corner indicate the polarization E-plane (b) 
and the wave-vector K-plane (c), respectively. (a) Splitting of an input EB beam 
(dashed ellipse), where R± denote the position of the two output refracted beams 
at the focal plane. Dashed ring in (a) denotes the otherwise expected CR in case 
of input beam of Gaussian profile.
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purpose, we have repeated the experiments shown in Fig. 2.6(b) and Fig. 2.6(c) for di� erent 
orientations of the BC.

Symbols (black crosses and red circles) in Fig. 2.7(a) Fig. 2.7(b) show the corresponding 
experimental results for the intensities I± of the two refracted beams normalized with respect 
to the intensity of the incident beam. Black solid and red dashed curves represent their 
analytical � ttings given by the following expressions:
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I+ and I− are the intensities of the beams refracted at angles ϕ+ and ϕ− and located diagonally 
at the both ends of the CR ring at positions R+ and R− respectively, following Eq.[2.26]. Eqs. 
[2.28] and [2.30] can be rewritten in a uni� ed simple form, giving the next formula for the 
relative intensity distribution between the two refracted beams with only one governing 
parameter ω:
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 [2.31]

From Eq. [2.31] it follows that, with respect to the relative energy distribution the only sig-
ni� cant parameters of the input EB is ϕχ. � erefore, the intensity splitting under CR can be 
expressed in terms of the di� erence between the parameter ϕχ and the orientation of the BC, 
given by ϕG.

Eqs. [2.26] and [2.31] constitute the Transformation Rules of Conical Refraction. For 
di� erent polarization of the input beams they allow explaining the ratio of intensities for 
any pair of diagonally opposite points of the CR ring. � ese results agree with experimental 
observations that the complete CR ring appears only for beams with azimuthally continuous 
symmetric distribution of wave-vectors. As a proof of usefulness of the formalism introduced 
in this work, in the next subsection we apply the derived transformation rules to an axicon 
input beam.

2.3.3. Application of the transformation rules of CR to an axicon beam

� e experimental set-up is sketched in Fig. 2.8. A linearly polarized conical beam is 
prepared when an initial circularly polarized Gaussian beam passes through a linear polarizer 
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Figure 2.8. 

Experimental set-up for axicon beam propagation along the optic axis of a biaxial 
crystal. The axicon lens (apex angle of 179.5º) generates a conical beam from an 
input linearly polarized Gaussian beam which is then focused by a spherical lens 
(focal length of 150 mm) along the optic axis of the BC.

and an axicon lens. � e axicon beam is focused by a spherical lens into the BC. � e resulting 
pattern is captured with a CCD camera at the focal plane. As in previous experiments, the 
orientation of the optic axis of the BC, the spherical lens and the axicon lens are well controlled 
in the θ and φ directions in 3D spherical coordinates by a micrometer positioning system. Each 
in� nitesimally thin azimuthal sector of the axicon lens characterized by azimuthal angle ϕ forms 
a thin prism that produces a wave with particular wave-vector whose transverse projection 
comprises an angle ϕk = ϕ. � e axicon lens generates, therefore, a continuous collection of 
beams with ϕ  [0, 2π). A� er the axicon, the refracted beams, following Snell law, have the 
same inclination angle θ0 with respect to the z-axis. At the focal plane of the lens they form 
a ring such that each point can be characterized by wave-vector plane, ϕk, and polarization 
plane, ϕE. In other words, each point of the axicon ring is an EB. In this case all these EB have 
their polarization plane � xed at ϕE and their wave-vector plane ϕ is varying continuously 
along the ring as shown in Fig. 2.9(a). Behind the BC, the refraction pattern can be calculated 
by applying Eq. [2.26] to every point of the input axicon annular beam taking into account 
the initial positions as given by S (ϕ) = Rax (cos ϕ, sin ϕ) (where Rax is the radius of the axicon 
light ring). � erefore, from Eq. [2.26] one can obtain the refracted pattern for an axicon beam:

R± (ϕ) = G+ (|Rax| ± |R0|) u (ϕ). [2.32]

� ese expressions, with ϕ scanned from 0 to 2π, parametrize two concentric rings with radii 
Rax ± R0 laterally shi� ed by G relatively to the axicon ring axis. � e intensity distribution is 
calculated from Eq. [2.31]. All points of the incident axicon beam have the same intensity, 
which is distributed between the two refracted rings as follows:
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where we have taken ω = ϕ − ϕ0 being ϕ0 ≡ 2ϕE − ϕG a constant parameter. In addition, since 
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Figure 2.9. 

Refraction of linearly polarized axicon annular beam along optic axis of a 
biaxial crystal. (a) Schematic representation of linearly polarized axicon annular 
beam with each point characterized by the azimuthal angles ϕk = ϕ (short green 
lines) and all of them have the same polarization plane ϕE (short orange lines). 
(b) Experimentally observed transverse intensity pattern at the focal plane 
consisting of two concentric rings when a linearly polarized axicon beam with ϕE = 
0 propagates along the optic axis of the biaxial crystal with ϕG = 0. (c) Corresponding 
theoretical simulation from Eqs. [2.32] and [2.33].

both rings have di� erent radii, normalization factors R0/R± have been introduced to I± to 
assure energy conservation.

Fig. 2.9(a) shows the intensity pattern of the axicon beam with its polarization and 
K-plane distribution. � e experimental refraction pattern behind the BC is shown in 
Fig. 2.9(b). � e pattern is formed by two concentric rings oppositely polarized, with 
polarization distribution analogous to that one obtained in a cascaded CR con� guration 
(Kalkandjiev and Bursukova, 2008). Polarization of the ring points with minimum (zero) 
and maximum intensities are orthogonal and parallel respectively to that of the input axicon 
beam. Fig. 2.9(c) presents the theoretical prediction of the light refraction pattern from Eqs.
[2.32] and [2.33]. Comparison between Fig. 2.9(b) and Fig. 2.9(c) shows that the theoretical 
prediction and the experiment (see Fig. 2.9(b)) are in complete agreement.

2.4. DUAL-CONE MODEL OF CONICAL REFRACTION

2.4.1. Dual-cone theory and its relation to the wave-vector interpretation

Following the dual-cone model of CR, which can be obtained by re-arranging the 
Belsky–Khapalyuk–Berry B0 and B1 equations i.e., Eqs. [2.12] and [2.13], for a uniformly 
polarized input light beam with axially symmetric intensity distribution, the electric � eld 
behind the biaxial crystal can be represented as a sum of two CR cones C±(ρ, φ, Z):
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E (ρ, φ, Z) = C+ (ρ, φ, Z) + C– (ρ, φ, Z), [2.34]
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where dot in Eq. [2.35] means scalar product of two vectors and a (k) is given by Eq. (2.8). 
e± describe the CR polarization basis. For a circularly polarized input beam with helicity 
σ = ±, the two CR cones Cq

σ  (q = ±) and the total CR electric � eld E = [Ex,Ey] can be written 
as follows:
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where Aqs with q, s = ± is described by Eq. [2.36].

From Eqs. [2.40] and [2.41] it follows that each of the two CR cones can be represented 
as a decomposition into the two unit vectors e± of the CR basis. Note that e± are orthogonal 
to each other at any point in 3D space. � ey are non-homogeneously polarized, in contrast 
to the well known polarization basis of linearly and circularly polarized states that have 
homogeneous polarization distribution in 3D space. � e CR polarization basis is also di� erent 
from the well known inhomogeneous polarization basis formed by radially and azimuthally 
polarized states. In particular, the unit vectors e± are rotated by 180º along any closed loop 
around the center of coordinates normally associated with the geometric center of the 
light beam.

Note that in the general case, decompositions of beams on the CR polarization basis and 
on the CR cones are di� erent. Each CR cone has two components in the CR polarization basis 
as demonstrated in Fig. 2.10. � e amplitudes of this decomposition are strongly separated in 
space. � e separation point is associated with the CR cone vertexes, i.e., the Raman spots. � e 
C+ and C− cones have smallest diameter at the Raman spot behind and before the focal focal 
plane, respectively. As shown in Fig. 2.10, for the CR cone C+ the polarization amplitude A++ 
becomes negligible a� er the Raman spot behind the focal focal plane, while A+− is negligible 
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before the same Raman spot. For the CR cone C− the contributions of amplitudes in the CR 
polarization basis are opposite, i.e., A−+ (A−−) becomes negligible before (a� er) the vertex of 
the corresponding CR cone C−. � erefore, CR cones C± have almost identical polarization 
distribution between the Raman spots and, consequently, they can interfere with each other, 
which leads to the double bright ring pattern with the Poggendor�  � ne splitting at the focal 
plane previously observed in conical refraction.

From ± in� nity to the Raman spots the CR cones C± are predominantly of orthogonal 
polarization at any spatial point and, therefore, they do not interfere. Moreover, if the 
polarization distribution of an input beam coincides with one of the CR cones only this 
CR cone is observed under conical refraction and, therefore, the interference pattern, i.e., 
the Poggendor�  dark ring, disappears at the focal plane of conical refraction as shown 
theoretically in Fig. 2.10(c) and Fig. 2.10(f) and demonstrated experimentally in the next 
subsection. � is model reproduces well the features of the CR beam shown in Fig. 2.2 with 
the add that in this case the beam can clearly be decomposed into two contributions, as shown 
in the next subsection.

Alternatively, we have shown in the previous section that an input plane-wave with 
transverse wave-vector k = k [cos(ϕk), sin(ϕk)] refracts into two opposite points in the 
expected CR rings, a� er passing through the biaxial crystal. If the polarization of this ray is 

Figure 2.10. 

Decomposition amplitudes Aqs of the CR cones Cq=+ (a,b) and Cq=- (d,e) onto 
the CR polarization basis of es=+ (a,d) and es=- (b,e) for an input beam with 
fundamental Gaussian transverse profile. Intensity evolution of the CR cones 
C+ and C− are presented in figures (c) and (f ), respectively. Their corresponding 
transverse profiles at the focal plane are presented in the insets. ρ0 = 10.
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Figure 2.12. 

Experimental set-up. The input Gaussian beam is obtained from a diode laser 
coupled to a monomode fiber. Its polarization is fixed to be circular by means of 
a linear polarizer (LP) and a quarter wave-plate (QWP). A segmented polarizer 
(CR-p) that can be rotated around the axial direction transforms the Gaussian 
beam into a non-uniformly polarized beam that mimics the CR polarization 
azimuthal distribution. The beam is focused (FL) through the biaxial crystal (BC) 
and the pattern at the focal plane is recorded by a CCD camera.

Figure 2.11. 

Double conical refraction experiment. (a)–(c) are the experimental CR transverse 
profiles obtained at the focal plane when the input beam is a sector of a Gaussian 
beam with its wave-vectors mainly contained in a plane at angle ϕk = 0º. Such 
a beam is obtained by applying an amplitude mask onto the beam, see its 
sketch at the left side of the corresponding figure. (d)–(f ) are the corresponding 
experimental transverse patterns for ϕk = 180º. In both cases only one refracted 
beam is obtained by properly choosing the input polarization.
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selected properly, only one point will be observed at the otherwise expected CR ring. Having 
this idea in mind, let’s consider the following experiment: in front of a Gaussian beam we 
place an angular mask that only transmits one angular sector of the beam, as depicted in the 
inset of Fig. 2.11(a). If the angular mask has the opening sector at an angle φ, most of the 
wave-vectors of the transmitted beam posses transverse wave vector kin = k [cos(ϕk), sin(ϕk)]. 
In this case, a circularly polarized input beam cut with such an angular mask and passing 
through the biaxial crystal is transformed into two azimuthal sectors at positions ϕ and ϕ + π 
of the otherwise expected CR rings, represented as dotted lines in Fig. 2.11(a).

However, note that each of the two azimuthal sectors do not belong to the same ring. 
� erefore, if the polarization of the input beam is � xed to be linear with azimuth at Φ = ϕ/2 
or Φ = (ϕ + π)/2, a� er being transformed by the biaxial crystal only one sector of the CR ring 
will be observed. � is is shown in Figs. 2.11(b) and (c) for Φ = 0 and Φ = π/2 respectively. 
If the angular mask is placed with the opened sector at ϕ+π, it will be also transformed into 
two azimuthal sectors not belonging to the same ring either, see Fig. 2.11(d). Analogously, if 
the transmitted sector is linearly polarized with azimuth at Φ = (ϕ+π)/2 or Φ = ϕ/2, only one 
azimuthal sector will be observed behind the biaxial crystal, as shown in Figs. 2.11(e) and (f) 
for Φ = 0 and Φ = π/2 respectively. � ese results indicate that if we consider a Gaussian input 
beam that possesses a nonuniform polarization mimicking the CR polarization, it is possible 
to select only one of the two bright rings.

2.4.2. Experiments

To show the dual-cone nature of the CR beam, we have designed a segmented polarizer 
formed by 8 sectors emulating the CR polarization -for this reason we call it as CR-polarizer. 
By taking into account the experimental results shown in Fig. 2.11, it is straightforward 
to deduce that for two appropriate orientations of the CR-polarizer, only one light ring is 
observed at the CR pattern at the focal plane. In this section we provide experimental proof 
of this conclusion.

Fig. 2.12 shows our experimental set-up. As input beam, we take a collimated linearly 
polarized Gaussian beam with w0 ≈ 1mm waist radius obtained from a 640 nm diode laser 
coupled to a monomode � ber. � e linear polarizer (LP) and the quarter wave-plate (QWP) are 
used to control the polarization of the input beam and � x it to be circular. � e CR-polarizer is 
placed a� er the QWP with its center coinciding with the center of the beam, which is focused 
by the lens (200mm of focal length) upon the biaxial crystal (BC). To ensure that the vertexes 
of the CR-polarizer are right at the center of the beam, we use an XY micro-positioner. Once 
focused, the beam has a waist radius of w0 ≈ 41 μm.

As BC we use a KGd(WO4)2 crystal being l = 28 mm, therefore R0 ≈ 475 μm, and yielding 
ρ0 ≈ 11. � e CCD camera is mounted on a translation stage to record the pattern at di� erent 
planes along the beam propagation.
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� e possibility to use the CR-polarizer to observe the dual-cone nature of CR is reported 
in Fig. 2.13. Figs. 2.13 (d)–(h) show the CR pattern at the focal plane for rotation of the 
CR-polarizer at angles ϕCR−p = [0 º, 180 º] in steps of 45 º. Fig. 2.13(c) is the pattern obtained 
in the absence of the CR-polarizer. At ϕCR−p = 0 only one light ring is observable. As ϕCR−p 

increases, the intensity of this ring decreases and an inner ring starts to form. At ϕCR−p = 90º 
the pattern is clearly formed by two light rings. From ϕCR−p = 90º on, the intensity of the outer 
ring keeps decreasing as the one from the inner increases, until having only one light ring 
again at ϕCR−p = 180º. To provide an even clearer visualization of the e� ect producing by the 

Figure 2.13. 

(a) and (b) show two particular configurations of the CR-polarizer for which 
only one CR light ring is obtained. The density plots show the numerically 
obtained light ring at the focal plane (Z = 0), while the dotted concentric rings 
are the position where the CR bright rings would appear in the absence of the 
CR-polarizer. Transverse patterns obtained at Z = ±6 are also shown. (c)–(h) 
show the transverse CR pattern at the focal plane for different orientations of 
the CR-polarizer with respect to the polarization distribution generated by the 
CR phenomenon [see double arrows in Fig. 2.2(a)]. The characteristic CR bright 
rings are recovered for ϕCR−p = 90º, while for ϕCR−p = 0º or ϕCR−p = = 180º only 
one bright ring is obtained. (i)–(n) and (o)–(t) are the corresponding transverse 
patterns (demagnified in size around a 30% ) at Z = −6 and Z = 6, respectively.
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Figure 2.14. 

CR transverse intensity profiles at the focal plane (first row) and at Z = −6 (second 
row) and Z = +6 (third row) for orientations of a linear polarizer (LP) at angles: 
[0º, 45º, 90º, 135º]. Left- and right-hand side set of images correspond to ϕCR−p = 
0º and ϕCR−p = 180º, respectively.

rotation of the CR-polarizer, we have carried out the same experiment at Z = ±6, the planes 
where the Raman spots starts to appear.

� e results are shown in Figs. 2.13(j)–(n) for Z = −6 and in Figs. 2.13(p)–(t) for Z = 6, 
being Figs. 2.13(i) and (o) the pattern obtained in the absence of the CRpolarizer. At Z = −6 
and for ϕCR−p = 0º, the CR pattern only has contributions from the beam center. In contrast, at 
ϕCR−p = 180º a light ring with no intensity at its center is found. At intermediary angles of the 
CR-polarizer, contributions of both the central intensity and the light ring are found. At Z = 
6 the CR pattern obtained for ϕCR−p = 0º is a light ring whereas at ϕCR−p = 180º only intensity at 
the beam center is observed. � ese results, together with the one presented in Figs. 2.13(d)–
(h) indicate that the CR beam can be actually understood as two axially displaced light cones, 
being the focal plane a mirror symmetry-plane.

It is also necessary to show the state of polarization of the light cones. Fig. 2.14 presents 
the experimental images of the CR transverse intensity pro� les at the focal plane (� rst row) 
and at Z = −6 (second row) and Z = +6 (third row) for di� erent orientations of a linear pola-
rizer (LP) used to analyze the state of polarization of the two cones. Le� -hand set of images 
correspond to ϕCR−p = 0º while right-hand side set of images correspond to ϕCR−p = 180º see top 
insets. Each set of images correspond to the C− and C+ cones, respectively. � e images show 
two remarkable phenomena: (i) every two diametrically opposite points at the light pattern 
are orthogonally polarized at any plane, and (ii) the polarization distributions of both light 
cones are the same.
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Figure 2.15. 

Cuts in the Z–X plane (where X ≡ x/w0)of the beam evolution obtained for 
two orientations of the CR-polarizer at (a) and (c) 0º, and (b) and (d) 180º, 
showing the dual-cone nature of the CR phenomenon. The first row presents 
the experimental measurements obtained by recording the transverse pattern at 
different propagation planes, while the corresponding numerical simulations 
obtained using Eqs. [2.40]–[2.41] can be found in second row. (e) and (f ) 
represent, respectively, the experimental and numerical beam propagation with 
the CR-polarizer being removed from the set-up. 0

thρ  = 10, exp
0ρ ≈ 11. Black is 

null intensity and yellow is maximum intensity.

To observe the free space evolution of the light cones, Fig. 2.15 presents cuts in the 
Z– X plane of the beam evolution of the CR pattern using the CR-polarizer. First row 
are the experimental results, while second row are the numerical simulations obtained using 
the dual-cone model, i.e., Eqs. [6]–[2.41]. Figs. 2.15(a) (obtained with ϕCR−p = 0º) and (c) 
correspond to the C− light cone, while Figs. 2.15(b) (obtained with ϕCR−p = 180º) and (d) 
correspond to the C+ light cone.

Fig. 2.15(e) shows the experimental beam evolution with the CR-polarizer being 
removed and Fig. 2.15(f) is the corresponding numerical simulation. � e experimental 
images were taken by recording the transverse light pattern at di� erent planes along the axial 
direction in steps of 5mm and then interpolating between them using the so� ware ImageJ. 
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Figure 2.16. 

Transverse intensity pattern at the focal plane for a cascade of two biaxial crystals 
with aligned optic axes obtained from an elliptical input beam. (a) Numerical 
simulations obtained by using Eqs. [2.19]–[2.24]. (b) Experimental measurements 
obtained by using two KGd(WO2)4 biaxial crystals with lengths of l1 = 28 mm 
and l2 = 10 mm.

As it can be appreciated, both experiments and numerical simulations are in good agreement, 
con� rming the dual-cone nature of the CR phenomenon.

2.5. CASCADED CONICAL REFRACTION

Multiple concentric rings in CR have been experimentally reported in a cascade of two 
(Kalkandjiev and Bursukova, 2008; Phelan et al., 2012; Peet, 2010b and 2015), three (Grant 
and Abdolvand, 2012) and up to four (Abdolvand, 2011) BCs, with interesting applications in 
lasing (Wilcox, 2010), particle trapping (O’Dwyer et al., 2012), vortex generation (O’Dwyer 
et al., 2011) and free space optical communications (Turpin et al., 2012). � e di� racting 
wave theory of CR has been extended by Berry to the case of cylindrically symmetric beams 
propagating through a cascade of up to N BCs (Phelan et al., 2012 and Berry, 2010), providing 
an accurate description of the phenomenon in terms of Bessel functions. Additionally, the 
extension to non-cylindrically symmetric input beams presented in Section 2.2.2 can be also 
implemented to accurately predict the pattern of input beams propagating through a cascade 
of BCs, as shown in Fig. 2.16 for a cascade of two biaxial crystals and a circularly polarized 
elliptical input beam. However, the di� ractive theory of CR has two major drawbacks: 1) its 
highly demanding from a computational point of view and 2) it does not o� er any intuition 
on the � nal pattern a� er an arbitrary large cascade of crystals.

In this Section we provide a simpler approach based in the wave-vector and polarization 
interpretation of CR shown in Section 2.3. Our aim is to o� er a practical guideline of the � nal 
pattern for CR in cascaded BCs at the focal plane, including the case of linearly polarized 
input beams.
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Figure 2.17. 

(a) CR ring at the focal plane for a circularly polarized input beam. Orange 
double arrows show the polarization distribution at each point of the CR ring. G 
= R0[cos φ, sin φ] gives the transverse displacement that the CR ring (with radius 
R0) suffers with respect to the input beam (white dot), with original position r0. 
φ gives the orientation of the plane of optic axes. ξ is the polar angle of a given 
point on the ring, with azimuth of the linear polarization ϕξ. (b) CR pattern for 
a linearly polarized input beam with azimuth of the linear polarization ϕE = 30º.

2.5.1. Coordinates system and single crystal confi guration

� e scheme of our experimental arrangement is shown in Fig. 2.18. A circularly 
polarized Gaussian light beam is focused with a lens (FL), passing along the optic axis of 
a cascade of up to three biaxial crystals (BCi) rotated by angles φi (i = 1, 2, 3) around their 
aligned optic axes. Finally, an imaging lens (IL) projects the focal plane onto the CCD camera.

Single annular pattern with � ne Poggendor�  splitting is observed when the � rst crystal is 
placed alone. We introduce the transverse coordinates XY, see Fig. 2.17(a). � e BC1 orientated 
at an angle φ1 transforms the input Gaussian beam (with position vector r0) into the CR light 
ring, whose center position is given by

r1 = r0 + G1. [2.42]

From Eq. [2.42], the position of any point of the CR ring (represented by the polar angle χ,
see Fig. 2.17(a)), is described by

r1(χ) = r0 + G1 + |G1| [cos (χ), sin (χ)] [2.43]

� e polarization azimuth, Φχ, at each point of the ring is related to its position along 
the CR ring through

1

2χ
χ ϕ+

Φ =  [2.44]
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2.5.2. Multiple crystals

To investigate the origin of multiple rings generated by a cascade of BCs, part of the 
conically refracted beam is selected (� ltered) by placing a pinhole at the CR ring a� er the 
� rst crystal, as schematically shown by the dashed white circle in Fig. 2.17(a). Every point 
of the ring is a CR-filtered beam defined by the polar angle χ of the filtering (which 
also defines the plane of wave-vectors ΦK = χ (Turpin, Loiko, Kalkandjiev, Tomizawa and 
Mompart, 2013)) and by the plane of its electric � eld vector with polarization azimuth Φχ 
given by Eq. [2.44]. CR-� ltered beams passing through a BC do not produce full ring pattern, 
but refract (split) into two orthogonally linearly polarized beams (Loiko et al., 2011). � eir 
positions correspond to two diagonally opposite points of the otherwise expected CR ring for 
a Gaussian input beam. � eir geometric center is:

r2 = r1 + G2 = r0 + G1 + G2, [2.45]

while their polar angles and transverse positions are de� ned by the � ltering angle χ of the 
input beam 

( ) ( )1 2
2 2, ;χ χ χ χ π= = +  [2.46]

( )( ) ( ) ( ) ( )1,2
2 2 1 2 2|r r G |G | cos ,sin ,χ χ χ χ = + ±    [2.47]

where the superscript distinguishes the refracted (output) beams. � eir polarization azimuths 
( )1,2
2χ

Φ are de� ned by Eq. [2.44] with χ being replaced by ( )1,2
2Φ given in Eq. [2.46] and φ1 

being replaced by φ2.

By combining Eq. [2.43] with Eqs. [2.45] and [2.47], the latter reads

Figure 2.18. 

(a) Experimental set-up. An input beam propagating along the optic axis of a 
cascade of biaxial crystals (BCi) (with orientation φi) is focused with a lens (FL) 
and transformed by the CR phenomenon in the cascade. An imaging lens (IL) 
projects the final pattern into the CCD camera.
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Figure 2.19. 

(a,b) Experimental intensity ring pattern(s) at the focal plane for a cascade 
formed by (a) 1 and (b) 2 biaxial crystals (BC). The dotted green ring show the 
CR ring that should appear in the absence of the second BCs. Red and green 
arrows correspond to G1 and G2 respectively. (c,d) Experimental intensity patterns 
obtained by using a beam filtered at χ = 45º (represented with gray vector, r0(χ) 
= r(in)+G1+ 1 1

2
 |G1| [1, 1]) from the CR ring of the first BC. White vector gives 

the position of the input beam. The purple dotted ring show the CR ring that 
would appear if the CR-filtered beam was a Gaussian beam.

( )( ) ( ) ( ) ( )r r1,2 1,2
2 2 2 2 cos ,sin ,Rχ χ χ = ±    [2.48]

where ( )1,2
2R  = ||G1| ± |G2||. To relate the angle between consecutive crystals, we de� ne φnm = 

φn−φm. � e intensity splitting distribution between the refracted beams (derived from Section 
2.3) is:

( )
( )( )1
2

1 2 2 21
2 cos cos ,

2
I I Iχ χ χχ

ϕ = Φ −Φ =  
 

 [2.49]

( )
( )( )1
2

1 2 2 21
2 cos cos ,

2
I I Iχ χ χχ

ϕ = Φ −Φ =  
 

 [2.50]

where Iχ = Iχ , CP = 0P
A

 for a circularly polarized input beam, while Iχ = Iχ , LP = 02P
A

 cos2 (Φχ 

− Φ0) = 2IχCP cos2 1
02

χ ϕ+ −Φ 
 

 for the linearly polarized case. P0 is the input beam’s power, 

which redistributes over the area A = 4πw0R occupied by the CR ring. Note that if R = 0, then
2
0 ,A πω=  where ω0 is the waist radius of the focused input beam. � e two refracted beams 

a� er the BC2 are also CR-� ltered beams, that are described by their transverse positions 
(1,2) (1,2)

2 2 2( )r r ξ=  and by the set of parameters ( )
( )1,2
2

1,2
2 , .

χ
χ Φ  
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Experimental results on CR-� ltered beams in a cascade of two crystals are presented in 
Fig. 2.19. As it can be appreciated, a CR-� ltered beam from the CR ring generated by the � rst 
crystal refracts as two beams a� er passing through the second crystal. When the ring of the 
� rst crystal is not � ltered, the transverse intensity pattern obtained a� er the second crystal 
forms a pair of concentric CR rings each of which with Poggendor�  splitting.

Multiple rings formation is obtained by considering the full range χ  [0, 2π). In this 
case, Eqs. [2.48], [2.49] and [2.50] de� ne two concentric rings with common center at r2, radii

( )
2
iR  and azimuthal intensities ( )

2
iI  

r2 = r0 + G1 + G2, [2.51]
( ) ( )2 1 2||G | |G || 1,2 ,iR i= ± =  [2.52]

( )
( )

1 20 21
2, 1

2

cos ,
2CP

PI
A

ϕ =  
 

 [2.53]

( )
( )

2 20 21
2, 2

2

sin ,
2CP

PI
A

ϕ =  
 

 [2.54]

being ( )
2
iA = 4πw ( )

2
iR if ( )

2
iR ≠ 0 and ( )

2
iA = π 2

0ω if ( )
2
iR = 0. In other words, the second crystal 

shi� s the center of the ring pattern and splits the parental CR ring into two concentric ones, 
as observed experimentally for the cascade of two crystals, see Fig. 2.20(a1). For input beams 
with linear polarization, the azimuthal intensity of the light ring patterns are:

( ) ( )1 1 2 1
2, 2, 02 cos ,

2LP CPI I χ ϕ+ = −Φ 
 

 [2.55]

( ) ( )2 2 2 1
2, 2, 02 cos ,

2 2LP CPI I χ ϕ π+ = −Φ + 
 

 [2.56]

for |G2| > R1 and
( ) ( )1 1 2 1
2, 2, 02 cos ,

2LP CPI I χ ϕ+ = −Φ 
 

 [2.57]

( ) ( )2 2 2 1
2, 2, 02 cos ,

2LP CPI I χ ϕ+ = −Φ 
 

 [2.58]

for |G2| < R1. Experimental patterns and corresponding theoretical simulations of a cascade 
of two biaxial crystals for input beams with linear and circular polarizations are shown in box 
(1) of Fig. 2.20.

� e third biaxial crystal (BC3), once added into the cascade, splits each CR-� ltered beam 
into two CR � ltered beams with parameters de� ned by Eqs. [2.46], [2.47], [2.49] and [2.50] as 
previously described. � erefore, four CR � ltered beams appear at the positions de� ned by Eq. 
[2.48] with parameters r3 = r0 + G1 + G2 + G3 and ( ) ( ) ( )1,2

3 2 3|G 1,2,3,4 .iR R i= ± =  For the 
full range χ  [0, 2π) the latter results predict four concentric rings as shown in Fig. 2.20(a2), 
centered at r3 and with radii ( )3

iR and corresponding azimuthal intensities ( )
3

iI as follows:
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r3 = r0 + G1 + G2 + G3, [2.59]

( )3
iR  = |||G1| ± |G2|| ±|G3|| (i = 1, 2, 3, 4), [2.60]

( )
( )

1 2 20 21 21
3 1

3

cos cos ,
2 2

PI
A

ϕ ϕ   =    
   

 [2.61]

( )
( )

3 2 20 32 21
3 3

3

sin cos ,
2 2

PI
A

ϕ ϕ   =   
  

 [2.62]

( )
( )

1 2 20 32 21
3 1

3

cos sin ,
2 2

PI
A

ϕ ϕ   =   
  

 [2.63]

( )
( )

4 2 20 32 21
3 4

3

sin sin ,
2 2

PI
A

ϕ ϕ   =   
  

 [2.64]

for CP input beams. For LP input beams, corresponding expressions can be obtained 
using Eqs. [2.55]–[2.58] and taking into account whether |G3| < ( )

2
iR or |G3| > ( )

2
iR (i = 1, 2). 

Explicit formulation is not presented here since for a cascade of N = 3 BCs there are 3! = 6 
possible combinations × 4 light rings = 24 formulae. Experimental patterns and corresponding 
theoretical simulations for a cascade of three biaxial crystals for linearly and circularly 
polarized input beams are presented in box (2) of Fig. 2.20.

Figure 2.20. 

Transverse intensity patterns for a cascade of 2 BCs (box 1) and 3 BCs (box 2).
Figures (ai,bi) are experimental data and (ci,di) (i = 1, 2) the corresponding 
theoretical simulations. First column corresponds to a circularly polarized input 
beam, while second column corresponds to a linearly polarized input beam with 
azimuth Φ 0 = 0º. Experimental parameters of the BCs: L1 = 27.31 mm, φ1 = 
0º; L2 = 10.66 mm, φ2 = 90º; L3 = 18.29 mm, φ3 = 180º. The focal length of the 
focusing lens (FL, see Fig. 2.18) is 200 mm.
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Patterns for a cascade of N biaxial crystals with characteristic vectors Gi can be obtained 
by applying Eq. [2.59] (position of the center) Eq. [2.60] (radii of each ring) and Eqs. [2.61]-
[2.64] (intensity of each ring) recursively. In this case, up to 2N−1 concentric rings appear at the 
focal plane, as it was recently shown if (Phelan et al., 2012; Abdolvand, 2011 and Berry, 2010) 
for circularly polarized input beams.

2.6. CONCLUSIONS

In this chapter we have shown the fundamental features of the CR phenomenon under 
three di� erent perspectives. In the � rst part of the chapter, the di� ractive solution of CR 
has been presented. We have demonstrated that this formulation allows predicting the free 
space evolution of light beams propagated through a biaxial crystal along any direction, 
including one of the optic axes. For a cylindrically symmetric and uniformly polarized beam 
propagating along one of the optic axes, simpli� ed equations and numerical calculations for 
the particular case of a Gaussian input beam have been presented. In the general case, we 
have reported both theoretically and experimentally the transition from double refraction to 
CR of a Gaussian and an elliptical input beam propagating within a biaxial crystal. Note that 
this formalism is also suitable to predict the transformation of non-homogeneously polarized 
beams a� er propagating through a biaxial crystal, as we have demonstrated for a radially and 
azimuthally polarized input light beams (Turpin, Vargas et al., 2015).

� en, we have presented the wave-vector and polarization dependence of the internal 
conical refraction phenomenon in biaxial crystals. We have experimentally proved that 
this phenomenon is only one particular case of refraction associated to beams possessing 
continuous axial cylindrical symmetry. In fact, we have reported that strongly elliptical beams do 
not generate the complete characteristic light ring of CR when they propagate along one of the 
optic axis of a biaxial crystal but split, in general, into two beams. We have derived expressions 
for the positions and relative intensities of the resulting refracted beams. � ese expressions play an 
analogous role as the Malus law but for biaxial crystals and can be used to predict the transverse 
intensity pattern of much more involved incident beams, as it has been demonstrated here for 
an input axicon beam.

In the third Section of the chapter, we have demonstrated the dual-cone nature of the CR 
phenomenon by using an azimuthally segmented polarizer that mimics the CR polarization 
distribution to generate a non-homogeneously polarized beam. We have proved that such 
device allows for selecting between the two CR cones and shown the experimental free-space 
conical beam evolution for a Gaussian input beam. A mirrorsymmetric beam evolution with 
respect to the focal plane for the two light cones has been obtained. In addition, we have 
demonstrated that the CR cones C+ and C− have their vertexes at the Raman spot behind and 
before the focal plane, respectively. It has been also reported the generation of two bright 
rings split by the Poggendor�  dark ring at the focal plane, which can be understood in terms 
of the interference produced by the di� erence on the divergence of the two co-propagating 
light cones.
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Finally, it has been presented an extension to a cascade of biaxial crystals, that leads to 
a transverse intensity pattern formed by multiple concentric rings. We have demonstrated 
that such pattern can be described by using the wave-vector and polarization formalism pre-
viously commented and we have shown that a cascade formed by N BCs generates up to 2N−1 

rings. A simple formulation that allows deducing the position, radii and intensity for each 
light ring has been also presented. Finally, we have reported the transverse intensity pattern of 
cascaded CR from a linearly polarized input beam, showing that the � nal pattern depends on 
the relative position of the BCs in the cascade, i.e., it is a non-commutable operation.
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� is Chapter demonstrates the in� uence of the ρ0 ≡ R0/w0 parameter over the CR beam 
evolution. While for ρ0 ≫ 1 the characteristic pair of concentric bright rings with Poggendor�  
splitting are generated, for ρ0 ≈ 1 the CR beam changes radically. In Section 3.1 we discuss 
all the previous works that related with CR for low values of ρ0. Section 3.1 is devoted to 
show CR beams that can be obtained for di� erent values of ρ0 < 10. Our investigations on the 
generation of a three-dimensional (3D) dark focus with CR are presented in Section 3.2. We 
demonstrate that in this case the CR beam forms a perfect optical bottle, i.e., a null-intensity 
region in space surrounded for regions of higher intensity in all directions. In Section 3.3 we 
present a novel Super-Gaussian beam obtained with CR. Super-Gaussian beams are beams 
whose intensity distribution is � at at the top and that decays smoothly at the edges. We discuss 
the beam propagation of the super-Gaussian beam and show that it has a confocal parameter 
three times larger than the one that would be obtained from a Gaussian beam. � e main 
advantages CR for beam shaping and conclusions of the Chapter are discussed in Section 3.4.

� e research contained in this chapter has been has been done in collaboration with Edik 
U. Rafailov from the Aston University, and Hiromitsu Tomizawa from the Japan Synchrotron 
Radiation Research Institute and has been published in (Loiko et al., 2013 and Turpin et al., 
2014).

3.1. INTRODUCTION

� e evolution of the CR beam depends strongly on the ρ0 = R0/w0 parameter. Up to 
now, we have centered our attention to the condition ρ0 ≫ 1, which covers most of the works 
on the � eld. However, there have been some investigations on the CR beam dependence with 
the ρ0 parameter. � e � rst contribution that can be found in this sense was from Belsky and 
Stepanov (Belsky and Stepanov, 1999), although they only reported a graph with the 1D radial 
intensity distribution at the focal plane for di� erent values of ρ0. A similar analysis was made 
by Bela� al (2000). Hellström and co-workers, designed a Yb:KGW laser based on CR and 
reported transverse intensity patterns obtained with low values of ρ0, although no detailed 
investigation on this issue can be found (Hellström et al., 2007). � e � rst real experimental 
attempt to take pro� t of the ρ0 parameter was carried out by Peet, who proposed the use of the 
biaxial crystals as a versatile mode converter between Hermite–Gauss and Laguerre–Gauss 
beams throughout the CR phenomenon (Peet, 2010b). � e same author, analyzed in detail 
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the B0 and B1 components of the CR beam to improve the directivity of the input beam (Peet, 
2010a) and also to generate vortex-like structures in the far � eld of the CR beam (Peet, 2013). 
Rosen and co-workers proposed a sub wavelength localization scheme for optical imaging 
based in CR under the condition ρ0 ≈ 1 (Rosen et al., 2013).

Although being very interesting, none of the previously commented works studied in 
detail the beam evolution of the obtained CR beams for low values of ρ0. In this chapter, we 
do so for two very particular values of ρ0 leading to a 3D dark focus (ρ0 = 0.924) (Loiko et 
al.,  2013) and a Super-Gaussian beam (ρ0 = 0.445) (Turpin et al., 2014). Before discussing in 
detail the features of the 3D dark focus and the Super-Gaussian beam, in this section we show 
how the ρ0 parameter a� ects the intensity pattern of the CR beam. In Fig. 3.1(a) we show the 
radial intensity distribution variation with ρ0 obtained from a circularly polarized Gaussian 
input beam and using Eqs. [2.11]–[2.16]. For ρ0 ≥ 3 the characteristic two bright rings with 
the Poggendor�  splitting can be observed. In contrast, for lower values of ρ0, the two bright 
rings and, in particular, the inner bright ring are not clearly distinguished. � is can be better 
visualized in Figs. 3.1(b)-(i), where transverse intensity patterns in the XY plane at Z = 0 for 
di� erent values of ρ0 are presented. As ρ0 decreases, the transverse intensity pattern di� ers 
from the characteristic CR bright rings. At ρ0 ≈ 1.5 the inner ring collapses into a central 
spot, at ρ0 ≈ 1 only a single (doughnut-like) ring is found and for ρ0 < 1 the ring becomes 
imperceptible. Since for ρ0 < 1 the transverse intensity pattern evolves from a doughnut-like 
ring to a Gaussian-like beam, it seems that it is possible to � nd a value of ρ0 where the radial 
intensity distribution is � at at its top.

3.2. GENERATING A 3D DARK FOCUS WITH CONICAL REFRACTION

Optical beams with dark regions of exactly zero intensity are rare objects usually related to 
optical singularities. � eir applications range from particle trapping (Shvedov et al., 2010), 
subdi� raction limited tighter focusing (Sheppard and Choudhury, 2004) and plasmon 
excitation (Bouhelier et al., 2007) to laser machining (Meier, Romano and Feurer, 2007). 
Laguerre–Gauss beams are well known examples of light beams possessing optical vortices 
forming a straight nodal line surrounded by light (Allen et al., 1992). More involved structures 
of closed loop nodal lines, their threading, knotting and linking have been demonstrated 
recently (Berry and Dennis, 2001; Leach et al., 2004; Irvine and Bouwmeester, 2008 and 
Dennis et al., 2010).

Bottle beams (Arlt and Padgett, 2000) are another example of optical beams with a 
dark region, more precisely they are also named optical dark potentials. Ideally, bottle beams 
comprise zero electric amplitude at one spatial point surrounded in all directions by regions 
with relatively high intensity. In practice, the intensity minimum in bottle beams is not 
exactly equal to zero because of di� erent experimental imperfections. Various methods and 
techniques have been proposed to produce 3D optical dark potentials in a controllable way, 
such as creating an intensity minimum by surrounding a region in 3D space with several 
beams (Davidson et al., 1995 and Cacciapuoti et al., 2001), crossing at least two cylindrical-
vector and vortex beams with a phase dislocation along the beam axis that leads to a zero-
intensity point (Kuga et al., 1997), by destructive interference of several Laguerre–Gauss light 
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beams (Arlt and Padgett, 2000 and Isenhower et al., 2009) or using uniaxial c-cut crystals 
(Shvedov et al., 2013). However, these methods have several drawbacks such as the fact that 
in some of them the intensity minimum is not exactly equal to zero, the extreme precise 
control on the optical elements being used, the � eld � uctuations introduced at and close to 
the zero-amplitude point, or the non trivial generation of Laguerre-Gauss and cylindrical-
vector and vortex beams (Zhan, 2009). Optical bottle beams have applications in optical 
tweezers for trapping particles with a refractive index lower than the surrounding medium, 
using the photophoretic force for instance (Shvedov et al., 2010), or in cold atom trapping with 
the possibility of creating an all optical blue-detuned trap that operates in the zero-intensity 
region (Bongs et al., 2001).

In this section, we present a robust, easy, and compact alternative to the previously cited 
methods to generate an optical bottle beam by transforming a fundamental monochromatic 
Gaussian beam into a beam with a 3D dark focus, i.e., a beam with a point of exact null 
intensity surrounded in all directions by regions of higher intensity, by means of CR.

Figure 3.1. 

(a) 2D density plot of the radial intensity distribution at I (ρ, ρ0,Z = 0), as given by 
Eq. [2.12]–[2.17]. (b)-(i) Transverse intensity distributions at the focal plane ICP 
(ρ, Z = 0) for an input Gaussian beam of circular polarization as given by Eq. 
[2.12]–[2.17] for different values of the control parameter ρ0.
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3.2.1. Axial intensity for ρ0 ≈ 1

Let us consider a focused monochromatic input beam propagating along one of the 
optic axis of a biaxial crystal. In what follows, we will assume a fundamental Gaussian input 
beam whose Rayleigh length and waist radius are given by zR and w0, respectively. If focusing 
lenses are used, the beam waist position is located at the focal plane of the lens. Since R0 = lα 
is characterized by the length (l) and conicity parameter (α) of the crystal, the ρ0 parameter 
can be easily controlled experimentally by modifying w0, e. g., by changing the focal length of 
the lens used in the experiments.

For a circularly polarized beam, at the beam center (ρ = 0), from Eq. [2.14], the on 
Z-axis intensity distribution is de� ned solely by the function B0 (ρ = 0, Z) since J1(0) = 0 and, 
therefore, B1 (ρ = 0, Z) = 0, see Eq. [2.13]. In other words,

( ) ( ) ( ) ( )
2 2

2
1

2
0

0

10, cos .
2

i k Z
n

CP kI Z a k e k dρ ρ φ
π

∞
−

= = ∫  [3.1]

� e former can be evaluated analytically for a Gaussian input beam with Fourier 
transform de� ned by Eq. (2.17), yielding:

( ) ( ) ( )21 10, F 1 erf ,X
C

Z Z

dB Z X i Xe iX
w dX w

π − = = +   [3.2]

where X = ρ0/ wZ  and wZ = 1+iZ. F(X) and erf(X) denote Dawson and error functions, 
respectively. Dawson function satis� es the equation dF(X)/dX = 1 − 2XF(X).

Figure 3.2. 

On-axis intensity at the focal plane center, I (ρ = 0, ρ0, Z = 0) as a function of the 
control parameter ρ0 = R0/w0. Black solid circles represent the experimental data 
obtained when a focused Gaussian beam propagates along the optic axis of a biaxial 
crystal. � e inset shows the on-axis intensity I (ρ = 0, ρ0, Z).

Libro 1.indb   80 11/12/2017   16:32:05



81BEAM SHAPING WITH CONICAL REFRACTION

� e evolution of the normalized intensity at the beam center for di� erent values of ρ0 
is shown in Fig. 3.2. At Z = 0 (1D plot), for ρ0 ≥ 3 the intensity at the beam center is close 
to 0. From ρ0 ≥ 3 down, the axial intensity increases, having a relative maximum at ρ0 ≈ 1.5. 
� en, the intensity decreases newly and a minimum is found at ρ0 ≈ 1. From this value of ρ0 down, 
the axial intensity increases until a maximum at ρ0 = 0, where no CR can be observed. � e 
surface plot reproduces the 1D plot at di� erent axial positions. As commented in the previous 
Chapter, for large values of ρ0, an axial intensity maximum (Raman spot) is found far from 
the focal plane (Z = 0). For low values of ρ0 the absolute axial maximum is shi� ed towards 
Z = 0. However, for ρ0 ≈ 1 the absolute axial intensity maximum is found again far from the 
focal plane.

From Fig. 3.2, it is clear that Eq. [3.2] has a solution with zero amplitude at the beam 
center (ρ = 0, Z = 0) that corresponds to the maximum of the Dawson function F(X). � us, 
by numerically solving BC (0, Z) = 0 from Eq. [3.2], one expects to obtain a dark focus (DF) 
(zero amplitude) for

DF
0 0.924,ρ =  [3.3]

where the superscript ‘DF’ means dark focus.

3.2.2. Characteristics of the 3D dark focus beam

Since the Z-axis is the symmetry axis of the output beam, the 3D distribution of the 
electric � eld can be represented by a two dimensional slice of intensity Iρ,Z = I (ρ, Z) as shown 
in Fig. 3.3. For ρ0 < 0.5, a single bright spot is observed whose maximum intensity corresponds 
to the center of the focal plane, see Fig. 3.3(a). For larger values of ρ0, this  maximum is 
laterally shi� ed in the focal plane and an intensity minimum appears at ρ = Z = 0, see Figs. 
3.3(b,c). In particular, the 3D dark focus or perfect bottle beam found for ρ0 = DF

0 0.924ρ =  [Fig. 
3.3(c)] disappears for larger values of ρ0, see Fig. 3.3(d). As it is seen in Fig. 3.3(c), the 3D 
dark focus with a zero intensity point at the beam center is surrounded by a region of higher 
intensity in all directions. � e maximum of the intensity barrier is achieved at the focal plane 
on a ring with radius ρmax ≈ 1.1 and I (ρmax, Z = 0) ≈ 0.2, i.e., the peak intensity at this ring is 
approximately 20% of that provided by the same focused Gaussian beam without the crystal. 
Along the beam propagation direction, the axial intensity has maxima at Zmax ≈ ±1.388 with I 
(ρ = 0, Zmax) ≈ 0.14. � e minimum in the intensity barrier has a form of a ring with radius ρθ 

≈ 0.62 that appears at a distance Zθ ≈ ±1.1 with |ρθ/Zθ| ≈ tan 30º and I (ρ = 0, Z0) ≈ 0.13. Dark 
focus, see Fig.3.4(c), and dark ring, see Fig.3.4(d), appear because of destructive interference 
of two cones provided by the CR phenomenon inside biaxial crystal and displaced with 
respect to each other along propagation direction as detailed in Chapter 2.

To experimentally con� rm the theoretical prediction on the possibility to generate a 
CR bottle beam with a 3D dark focus, we have performed experiments on CR in a plate of 
KGd(WO4)2 biaxial crystal 2.3 mm long yielding a CR ring radius of R0 = 39.1 μm. � e 
Gaussian input beam (with waist radius of 1.5 mm) obtained from a 640 nm diode laser 
coupled to a monomode � ber, as shown in Fig. 2.13. � e input collimated beam is focused by 
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Figure 3.4. 

Transverse intensity patterns at the focal plane experimentally obtained (a)-(d) and 
theoretically calculated (e)-(h) for a circularly polarized input beam of fundamental 
Gaussian profi le with diff erent values of the waist radius w0, which gives diff erent 
values of control parameter ρ0.

Figure 3.3. 

Slice of the intensity distributions ICP (ρ, Z) along the propagation direction for 
an input Gaussian beam of circular polarization as given by Eqs. [2.12]–[2.14] for 
diff erent values of the control parameter ρ0.

a lens and the transverse intensity patterns behind the crystal are recorded at di� erent positions 
along the beam propagation direction within few Rayleigh lengths.

By varying the focusing distance of the lens, we are able to adjust the radius of the 
focused beam, i.e., the parameter ρ0 = R0/w0 in the range ρ0  [0.3, 4.0].

Normalized intensities at the center of the focal plane experimentally measured are 
plotted in Fig. 3.2 with black solid points, while the experimentally captured full transverse 
intensity patterns are represented in the upper row of Fig. 3.4 for di� erent values of ρ0. As 
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Figure 3.5. 

Spatial evolution of the transverse intensity patterns along the propagation distance Z 
for ( )exp

0 0.93,ρ =  ∼ DF
0ρ , see Eq.[3.3], as experimentally obtained (a)-(d) and theoretically 

calculated (e)-(h), see Eqs.[2.12]–[2.14]. Top insets represent the crosssection of the 
measured intensity distribution along the horizontal axis at the beam center.

indicated before, for ρ0 < 0.5, the intensity pattern resembles that of a Gaussian beam. From ρ0 
= 0.45 to ρ0 = 0.92, the intensity at the center decreases being exactly zero at ρ0 = 0.92, see Figs. 
3.4(a) and (b). From ρ0 = 0.92 to ρ0 = 1.50, it increases with a relative maximum at ρ0 = 1.50, 
see Fig. 3.4(c). From this value on, the intensity at the center monotonically decreases and the 
full transverse intensity pattern becomes the standard pattern of CR with two bright rings, see 
Fig. 3.4(d). � e waist of the focused beam has been measured by removing the crystal. For the 
results shown in Fig. 3.4(b), it provides the ratio ( )exp

0 0.93,ρ =  which is close to the theoretical 
value DF

0ρ , see Eq. (3.3). � e lower row in Fig. 3.4 shows the full transverse intensity patterns 
theoretically calculated from Eqs. [2.12]–[2.17] being in excellent agreement with the 
experimental results.

Figs. 3.5(a)-(d) present the experimentally measured spatial evolution of the transverse

intensity patterns for ( )exp
0 0.93,ρ =  ∼ DF

0ρ  that corresponds to the case where a 3D dark 
focus appears at the focal plane. � e dark focus pattern from Fig. 3.5(a) evolves to a pattern 
with a maximum intensity at its center as shown in Fig. 3.5(d). Clearly, a region of null 
intensity is surrounded by regions of higher intensity. � e Rayleigh length in this case is 
zR ≈ 8.9 mm, which gives an estimation of the depth of the dark potential. Figs. 3.5(e)-(h) are 
the corresponding theoretical predictions obtained from Eqs. [2.12]-[2.14]. Both theory and 
experiments are in good agreement.

3.3. A SUPER-GAUSSIAN CONICAL REFRACTION BEAM

Ideally, a � at-top beam (Zhan, 2009; Bagini et al., 1996; Gur and Mendlovic, 1998; 
Tovar, 2001; Cai and He, 2006; Dan and  Zhang, 2008; Wang and Cai, 2008; Liu and Zhou, 
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2009; Litvin and Forbes, 2009; Ma et al., 2010; Jahn and Bokor, 2010; Han, Cheng and Zhan, 
2011; Hendriks et al., 2012; Ngcobo et al., 2013 and Chen, Tripathi and Toussaint, 2014) is a 
light beam possessing an intensity transverse pro� le mostly � at in the central part and sharply 
decaying at its edges, at variance with the Gaussian pro� le of the fundamental TEM00 mode. 
Flat-top beams are useful in a wide variety of laser applications where one needs a uniform 
intensity over a � xed area, such as in optical processing (Zhan, 2009 and Grojean, Feldman 
and Roach, 1980), laser-driven acceleration of particles (Wang et al., 2007 and Maher-
McWilliams, Douglas and Barker, 2012), optical trapping (Zhao et al., 2009) or gravitational-
waves detectors (Gras, Blair and Ju, 2010). Nevertheless, the generation of � at-top beams is 
a non trivial task and usually di� ractive optical elements are required, which su� ers from 
several drawbacks such as losses due to ine�  cient mode projection or di� raction, their 
extreme precise control or their limited spectral range (Zhan, 2009). Beams whose transverse 
intensity pro� le possess sharp edges and extremely � at crosssection are ideal realizations of 
� at-top beams. In experimental situations � at-top beams are well approximated by super-
Gaussian beams (Kim et al., 2012 and Dickey and Holswade, 2000). A super-Gaussian beam 
also possesses a � at intensity pro� le but it decays smoothly at its edges, similarly to a Gaussian 
beam (Dickey and Holswade, 2000). � e aim of this section is to show that a beam of super-
Gaussian pro� le can be generated by transforming an input Gaussian beam with a biaxial 
crystal throughout the CR phenomenon.

3.3.1. Characteristics of the Super-Gaussian conical refraction beam

By further exploring the CR beam dependence with the ρ0 parameter, we have found 
that at the value ρ0 = 0.445 the transverse intensity pro� le of the transformed beam becomes 
� at at its top and it decays smoothly at its edges, i.e., it is a super- Gaussian conically refracted 
(SGCR) beam. To deduce such value of ρ0, we solved Eqs. [2.12] and [2.13] numerically and we 
looked for which value of ρ0 it is found a maximum number of points with a slope equal to zero 
at the transverse cross-section at the focal plane. Fig. 3.6(a) and Fig. 3.6(b) show, respectively, 
the cross-section of the transverse intensity pro� le of the input Gaussian beam and the output 
CR beam for ρ0 = 0.445 along both the radial and the longitudinal directions. Fig. 3.6(c) plots 
the 2D intensity distribution of the SGCR beam in the z-r plane, while Fig. 3.6(d) plots the 
corresponding intensity distribution normalized to the beam area. � e plateau at the top part 
has been measured to be a 30% of the FWHM, which is compatible with a super-Gaussian 
beam of � rst order (Bagini et al., 1996). Also, the depth of � eld of this super-Gaussian beam 
is larger than that one of a Gaussian beam, as shown in Fig. 3.6(b). In Gaussian beams, the 
depth of � eld or confocal parameter b is twice the distance of the transverse plane at which 
the beam waist radius is w(zR) = 02 ,w i.e., b = 2zR. To obtain the confocal parameter for the 
SGCR beam, we solved numerically Eqs. [2.12] and [2.13] using ρ0 = 0.445 and we looked for 
the axial distance Z from the focal plane to which the area occupied by the SGCR beam was 
doubled with respect to the focal plane, i.e., we found Z accomplishing that w(Z) = ( )2 0w Z = . 
� e waist radius of beam, w(Z), was considered at e−2 of the maximum intensity at each plane. 
For the SGCR, we have found that the depth of � eld is bSGCR = 6.1zR, as depicted in Fig. 3.6(d). 
� erefore, the SGCR beam reported here has a confocal parameter three times larger than 
that one of the fundamental Gaussian beam.
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Top row of Fig. 3.7 presents the theoretical transverse patterns of the SGCR beam at 
di� erent planes along its propagation for a Gaussian input beam. Top insets demonstrate 
that the � at-top pro� le of the SGCR beams is only obtained at the focal plane while when 
the imaging plane is moved to other planes the plateau disappears and the pro� le tends to be 
Gaussian-like.

Experiments on the SGCR beam only require an input beam, a BC and an imaging 
system (CCD camera). We use the same input beam and biaxial crystal as in the previous 
Section and a focusing lens with focal length of 200 mm. � e experimental value of the control 
parameter of ρ0 obtained is 0.44. Bottom row of Fig. 3.7 shows the experimental transverse 
patterns obtained at di� erent propagation distances for the SGCR beams. Top insets represent 
the cross-section at the beam center along the horizontal direction. � ey agree well with the 

Figure 3.6. 

Cross-section of the intensity distribution along (a) the radial direction and (b) the beam 
propagation direction at the beam center for the original Gaussian beam (black dashed 
line) and the super-Gaussian conical refraction (SGCR) beam obtained by adjusting ρ0 
= 0.445 (red solid line). Black dots are the corresponding experimental measurements. 
(c) Intensity distribution in the z-r plane showing the free space evolution of the SGCR 
beam. (d) Intensity distribution of the SGCR beam normalized to the beam area to help 
visualizing the value of its confocal parameter b.
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corresponding numerical simulations presented in Fig. 3.7. For this arrangement, we have 
also measured the confocal parameter obtaining that ( )exp 5.8 0.2 .SGCR Rb z= ±

3.4. CONCLUSIONS

In conclusion, in this chapter we have carefully investigated CR both theoretically and 
experimentally in the regime ρ0 = R0/w0 < 1 for which novel intensity structures appear. On the 
one hand, for the speci� c value ρ0 = 0.924, we have theoretically derived and experimentally 
reported the transformation of an input Gaussian beam into a bottle beam with a point of 
exact null intensity. At variance with spatial light modulators (SLMs), where a signi� cant 
amount of light is lost by di� raction, the here proposed method transfers all the input power 
into the bottle beam, as long as the facets of the crystal have dielectric coatings to avoid 
re� ections and the doping elements that can be found in some particular crystals do not 
absorb input light power at the used frequency. � e obtained bottle beam could be useful 
for applications such as laser drilling, stimulated emission depletion microscopy, or trapping 
neutral atoms and Bose–Einstein condensates (BECs) by means of the light dipole force. An 
additional advantage is the fact that the quality and smoothness of the 3D dark focus obtained 
by means of CR is only limited by the quality of the input beam and the focusing lenses, while 
for SLMs it strongly depends on the pixel density. Nonetheless, this technique can be used 
in all the spectral range to which the biaxial crystal is transparent, at variance with other 
techniques such as computer generated holograms with SLMs or di� ractive optical elements. 
Furthermore, as it is shown in Figs. 3.4(b) and (c), the bottle beam generated with CR can 
be adiabatically transformed into a 3D dark ring, by simply tuning the focusing geometry. 

Figure 3.7. 

Transverse patterns along the beam propagation direction of the SGCR beam 
calculated theoretically (top row), and obtained experimentally (bottom row) for an 
input beam of transverse Gaussian profi le. Insets are the cross-section of the intensity 
distribution along the horizontal direction.
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Hence, it could be possible to trap a BEC in the 3D dark focus and then adiabatically transfer 
it into the dark ring to investigate, for instance, matter wave (Sagnac) interferometry or the 
appearance of persistent currents.

On the other hand, we have demonstrated that the CR phenomenon can be used as a 
tool for generating beams with Super-Gaussian transverse pro� les, this means � at-top beams 
with a smooth decay at their edges, from input beams with transverse Gaussian pro� le. We 
have reported that the generation of the SGCR beams is governed by the adjustment of the 
control parameter ρ0 to a value of 0.445. We have shown that the SGCR beams have only the 
� at-top pro� le at the focal plane of the system, while far from the focal plane the transverse 
cross-section becomes Gaussian-like. Additionally, the SGCR beams have been shown to have 
a confocal parameter of 6.1zR, i.e., more than three times that one for Gaussian beams. In 
addition to full power conversion, broad wavelength range and smoothness of the generated 
beam commented in the previous paragraph, the SGCR beam has the advantage presented 
that biaxial crystals can be used with high power beams, which is a requirement for high 
intensity x-rays experiments, for instance. One possible drawback of the presented method 
is the state of polarization of the SGCR beam, which is non-uniform and contains circular, 
elliptical and linear SOPs. However, the SOP of the beam is, in principle, only relevant in 
optical processing with tightly focused beams, while for the rest of the possible applications 
the most relevant aspect is the shape of the beam. � e state of polarization and the optical 
singularities generated with low values of ρ0 will be addressed in Chapter 4. Finally, note that 
the methods presented in this Chapter could be extended to alternative input beams such as 
elliptical beams, which have been studied in detail in CR (Turpin et al., 2013), to generate 
elliptical beams with transverse � at-top cross-section.
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In this Chapter we report novel vector beams, i.e., beams with involving states of 
polarization (SOP), obtained by transforming a Gaussian beam passing through a biaxial 
crystal, by means of the conical refraction phenomenon. We analyze both experimentally and 
theoretically the SOP of the di� erent vector beams generated and demonstrate that the SOP of 
the input beam can be used to control both the shape and the SOP of the transformed beam. 
We also identify polarization singularities of such beams and relate them to the spin-orbit 
coupling provided by the biaxial crystal and discuss them in terms of the coherent addition of 
two contributions, the B0 and B1 � elds of the Beksly–Khapalyuk–Berry solution, which form 
the conical refraction beam.

� e Chapter is organized as follows. In Section 4.1 we de� ne vector beams, discuss 
their common applications and introduce our work. � en, Section 4.2 is devoted to brie� y 
review the basics of the Stokes vector and CR formalisms needed for the subsequent sections 
and also to present separately the B0 and B1 components of the CR beam. In Sections 4.3 and 
4.4, we report for ρ0 ≫ 1 and ρ0 ≲ 1, respectively, the generation of novel CR vector beams 
both theoretically and experimentally. We characterize these vector beams by measuring 
their Stokes parameters and propose methods to manipulate them as, for instance, making 
use of the SOP of the input beam. We also identify polarization singularities generated in 
CR beams and in Section 4.5 we relate them to the spin-orbit coupling provided by the 
biaxial crystal. Finally, in Section 4.6 we summarize the main results of this work and discuss 
potential applications of these CR vector beams to di� erent � elds of optics.

� e research contained in this chapter has been done in collaboration with Alba Peinado, 
Ángel Lizana and Juan Campos from the Universitat Autònoma de Barcelona and has been 
published in (Turpin, Loiko, Peinado et al., 2015).

4.1. INTRODUCTION

� e state of polarization (SOP) is one of the fundamental signatures of light � elds 
associated with their vectorial nature. In general, at each point in space the dynamics of the 
electric � eld vector of a wave can be described by an ellipse. � is ellipse is known as polarization 
ellipse and it is characterized by the orientation of its major axis through the azimuth angle 
Φ  [0, π] and by the ellipticity parameter β  [−π/4, π/4] so that tan β is the ratio of the axes 
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of the polarization ellipse. If β = 0 the light � eld is linearly polarized, while if β = ± π/4
the SOP will be circular (le�  handed for ‘+’ and right handed for ‘-’, if we consider an 
observer looking in the direction from which light is coming). Usually coherent light beams 
are homogeneously polarized, i.e., the SOP is identical for all points at any transverse plane 
along the beam propagation. However, there exist light beams possessing non-homogenous 
polarization, known as vector beams, such as the well known radial or azimuthal polarizations 
(Zhan, 2009) or even beams with more involving polarization distributions (Maluenda et al., 
2013; Wang et al., 2007 and Desyatnikov et al., 2010). � e non-homogeneous polarization 
distribution of vector beams can lead to singular points where the SOP is exactly circular 
(C points), lines along which the SOP is linear (L lines) or disclinations where the 
instantaneous electric � eld is null (Nye and Berry, 1974; Dennis, O’Holleran and Padgett, 
2009; Kleckner and Irvine, 2013; Freund, 2012). Vector beams have been applied to laser 
material processing, optical imaging, atomic spectroscopy, and optical trapping (Zhan, 
2009 and the references therein), among many others. In CR, for ρ0 ≫ 1, the SOP of the 
beam at the focal plane is already well known (Turpin, Loiko, Kalkandjiev, Tomizawa and 
Mompart, 2013; Sokolovskii et al., 2013; Berry and Je� rey, 2007 and Peinado et al., 2013). 
In this Chapter we investigate the CR SOP out of the focal plane, including values of ρ0 ≲ 1,
when Poggendor�  � ne splitting vanishes. By means of the Stokes vector formalism, we 
characterize the resulting novel vector beams of CR and show that the SOP of the input beam 
can be used to control both the shape and the SOP of the transformed CR beam.

4.2. THEORETICAL BACKGROUND

4.2.1. Analysis of the B0 and B1 functions

From Eqs. [2.11]–[2.13], for a homogeneously polarized input beam with state of 
polarization given by e0 = (ex, ey), the electric � eld components in Cartesian coordinates Ex 

and Ey of the CR beam behind the biaxial crystal can be written as follows:

Ex = (B0 + B1 cos φ) ex + (B1 sin φ) ey, [4.1]
Ey = (B1 sin φ) ex + (B0  – B1 cos φ) ey, [4.2]

where ϕ is the azimuthal angle in cylindrical coordinates. From Eq. [4.1] and Eq. [4.2] it is 
straightforward to obtain the SOP of the B0 and B1 components:

B0,x = B0 ex, [4.3]
B0,y = B0 ey, [4.4]

B1,x = B1 cos φ ex + B1 sin φ ey [4.5]
B1,y = B1 sin ex – B1 cos φ ey [4.6]

For a circularly polarized Gaussian input beam with SOP e0 = (1, ± i)/ 2  (‘+’ for le� -
handed and ‘-’ for right-handed) passing through the biaxial crystal under CR conditions, 
Eqs. [4.3]–[4.6] read as follows:
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B0,x = 0
1 ,
2

B  [4.7]

B0,y = 0 ,
2
i B±  [4.8]

B1,x = 1
1 ,
2

iB e ϕ±  [4.9]

B1,y = 1 .
2

ii B e ϕ±  [4.10]

For this case, the SOP of the B0 and B1 components can be easily understood. Both 
components are circularly polarized but, while the B0 component is in phase with the input 
beam, the B1 component is in counter-phase and possesses an azimuthal phase eiϕ associated 
to beams carrying ± orbital angular momentum (OAM) per photon (Allen et al., 1992; 
Molina-Terriza, Torres and Torner, 2007; Torres and Torner, 2011 and Yao and Padgett, 2001). 

Figure 4.1. 

Transverse intensity patterns and electric fi eld (blue arrows) of the B0 component (fi rst 
column), B1 component (second row) and CR rings (third column) obtained at the focal 
plane for a right-handed circularly polarized Gaussian input beam. Each row represents 
a diff erent moment of time over half a period of rotation of the electric fi eld. ρ0 = 10.
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In other words, every point of the B1 component is circularly polarized but there is a rotation 
of the � eld by 2π on running along the azimuthal angle φ.

� e SOP of the B1 component combined with the B0 component leads to the characteristic 
CR polarization distribution along the CR rings obtained for ρ0 ≫ 1, as shown in Fig. 4.1 for 

Figure 4.2. 

Transverse intensity cuts in the Zρ plane of the (a) B0 and (b) B1 components.

Figure 4.3. 

B0 (left-hand side box) and B1 (right-hand side box) beams obtained for ρ0 = 1.50 (fi rst 
row), ρ0 = 0.92 (second row) and ρ0 = 0.45 (third row) in the Zρ plane (fi rst column 
of each box) and in XY plane at Z = 0 (second column of each box). (left-hand side 
box) and B1 (right-hand side box) (fi rst column of each box) and in XY plane at Z = 0 
(second column of each box).
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a right-handed circularly polarized (RHCP) Gaussian input beam. As it can be observed, the 
transverse intensity patterns at the focal plane of the B0 (� rst column) and B1 (second column) 
components are practically indistinguishable each other and almost identical to the CR 
pattern (third column), except for the presence of a node in the latter. Each row corresponds 
to di� erent moments of time running over half a period, the blue arrows indicating the SOP 
at di� erent points of the rings. � is sequence of images corroborate the previous highlighted 
features of the electric � eld of the B0 and B1 components: (i) electric � eld of the B0 component 
rotates clockwise, as the input beam, while the electric � eld of the B1 component rotates 
counter-clockwise; and (2) all the points of the B0 component are in phase whereas for the B1 

component there is an azimuthal phase of 2π along the rings. Note that at any moment of time 
the transverse intensity pattern of the B0 and B1 components form complete light rings. In 
contrast, the CR transverse intensity patterns form a azimuthally crescent annular structures 
with the position of the null-intensity point rotating in counter-phase with the input beam. 
From these images it is clear that how SOP of the CR rings is obtained from the coherent 
addition of the B0 and B1 � elds.

As shown in Fig. 4.1 the transverse intensity patterns of the B0 and B1 � elds at the focal 
plane (Z = 0) are almost identical. However, out of the focal plane the situation changes, see 
Fig. 4.2. In particular, at the positions where the Raman spots would start to form for the 
whole CR beam, the nature of the J0 and J1 Bessel functions involved in the B0 and B1 compo-
nents becomes appreciable. Far enough from the focal plane, the B0 beam possesses an axial 
intensity maximum, while the B1 beam has a nodal line coinciding with the Z axis, i.e., it forms 
an optical vortex, which is an optical singularity (Dennis, O’Holleran and Padgett,  2009). 
� is result becomes more appreciable for low values of ρ0. In Fig. 4.3 we show the intensity 
patterns of the B0 (le� -hand side box) and B1 (right-hand side box) components for ρ0 = 1.50 
(� rst row), ρ0 = 0.92 (second row) and ρ0 = 0.45 (third row) in the Zρ plane (� rst column of 
each box) and in XY plane at Z = 0 (second column of each box). It is clear that the B1 � eld 
forms an optical vortex possessing a nodal line along the Z axis, while the B1 component has, 
in general, light intensity at the beam axis. � ese results obtained by analyzing separately the 
B0 and B1 components of the CR beam will be very useful to understand the vector beams and 
optical singularities shown in the following Sections.

4.2.2. Stokes vector formalism

Since in this Chapter we aim to analyze in detail the SOP of CR beams, in what follows 
we introduce the standard tool to analyze the SOP of a light beam: the Stokes vector S = (S0, 
S1, S2, S3). For an electric � eld E = (Ex, Ey) with intensity I the Stokes parameters read (Born 
and Wolf, 1999):

S0 = I = |Ex|2 + |Ey|2, [4.11]

S1 = I0º – I90º = |Ex|2 – |Ey|2, [4.12]

S2 = I45º – I135º = 2Re *
x yE E ,    [4.13]

S3 = IR – IL = 2Im *
x yE E ,    [4.14]
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where IΦ (Φ = 0º, 45º, 90º, 135º) indicates the intensity of linearly polarized light with azimuth 
Φ, and IR and IL indicate the intensity of right– and le� -handed circularly polarized light, 
respectively. In what follows, we use equations normalized to E2, i.e., we consider I = E2 = 1. 
� ese de� nitions show that S0 account for the intensity of the light beam, S1 measures the 
amount of light which is linearly polarized (LP) in the vertical/horizontal basis, S2 does the 
same but with the diagonal basis and S3 relates the state of polarization in the right– and 
le� – circularly polarized (CP) basis. � e following equations show how the Stokes parameters 
account for the azimuth ε and ellipticity β  of the polarization ellipse (Born and Wolf, 1999):

2

1

1 arctan ,
2

S
S

ε
 

=  
 

 [4.15]

3
2 2
1 2

1 arctan .
2

S

S S
β

 
 =
 + 

 [4.16]

4.3. STATE OF POLARIZATION FOR ρ0 ≫ 1 

� e � rst information that can be extracted from Eqs. [2.11]–[2.13] with respect to the 
SOP of the CR beam is that at ρ = 0 there is only contribution of B0, since B1 α J1(ηρ = 0) = 0. 
Additionally, as commented previously, the SOP of the B0 component is e0. As a consequence, 
the center of the CR beam will possess always the same SOP as the input beam. � is fact, that 
was already pointed out in (Phelan et al., 2009; Peet, 2010 and Peet, 2013), will be discussed 
with more detail below. To obtain the Stokes parameters of the CR beam, Eqs. [4.11]–[4.14] 
must be combined with Eqs. [2.11]–[2.13]. For a circularly polarized (CP) input beam, the 
electric � eld and intensity beyond the crystal become:

Ex = B0 + B1e±iφ, [4.17]

Ey = ±iB0   iB1e±iφ, [4.18]

ICP = 2(|B0|2 + |B1|2), [4.19]

where upper/lower sign stays for LHCP/RHCP beam. For a linearly polarized (LP) input 
beam, the corresponding electric � eld and intensity beyond the crystal read as follows:

Ex = B0 cos Φ + B1cos(φ - Φ), [4.20]

Ey = B0 sin Φ + B1 sin (φ - Φ), [4.21]

( )*
LP CP 0 12Re[ ]cos 2 ,I I B B ϕ= + Φ−  [4.22]

where Φ is the polarization azimuth of the LP input beam with e0 = (cos Φ, sin Φ).

For well resolved concentric rings with Poggendor�  splitting, i.e., for ρ0 ≫ 1, Eqs. [2.12], 
[2.13], [4.19] and [4.22] show that a radially symmetric intensity pattern of CR is obtained 
only for a CP input beam. Instead, for a LP input beam, a crescent annular intensity pattern 
appears such that the zero intensity point is obtained for the ring position that possesses 
orthogonal polarization to the input beam. In both cases, the polarization distribution of the 
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Figure 4.4. 

(a) � eory: transverse pattern for ρ0 = 10 of the Stokes parameters S0, S1, S2, S3 obtained 
from numerical simulations for the CR beam transverse profi le with a RHCP and a 
LP (Φ = 45º) Gaussian input beam. First and second rows correspond to the focal 
plane (Z = 0) while third and fourth rows to the Raman spot plane (Z = 10.92). � e 
plane of optic axes of the crystal lies horizontally (φc = 0). (b) Experiment: for ρ0 = 
10.81, transverse patterns of the Stokes parameters S0, S1, S2, S3 for the CR beams 
measured with a RHCP and a LP (Φ = 45º) Gaussian input beam. First and second 
rows correspond to the focal plane (Z = 0) while third and fourth rows to the Raman 
spot plane (Z = 10.92).

CR pattern is the same. Every point of the rings is linearly polarized and the azimuth rotates 
continuously along the ring so that every two diametrically opposite points have orthogonal 
polarizations.

Fig. 4.4(a) presents the numerically obtained Stokes parameters at transverse sections 
of the CR beam (ρ0 = 10) at Z = 0 (� rst and second rows) and Z = 10.92 (third and fourth rows) 
obtained from a RHCP (� rst and third rows) and a LP (Φ = 45º) (second and fourth rows) Gaussian 
input beam. At the focal plane, see � rst two rows in Fig. 4.4(a), the SOP described by the 
Stokes parameters is the expected: symmetric pattern for the RHCP case and with a node at φ 
= 270º (Φ = 135º, since we have used φC = 0º). Last column in Fig. 4.4(a) demonstrates that at 
the focal plane the SOP of the CR beams, either RHCP or LP (Φ = 45º) (or any other) is linear, 
i.e., S3 = 0. In contrast, for the Raman spot, Z = 10.92, all Stokes parameters are substantially 
di� erent from zero, as shown in the last two rows in Fig. 4.4(a).

Stokes parameters in Fig. 4.4(a) clearly identify polarization singularities of CR beams. 
For RHCP input light, it is a C-point at the center of the CR beam, i.e., it is of CP at any point 
of the beam center along propagation. � e center of the S3 transverse pattern is a point with 
maximum intensity, while the other two Stokes parameters S1 and S2 have zero values. For 
LP45º input light, one can identify L-line singularity. In Fig. 4.4(a) this line can be identi� ed 
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as a vertical line of zero value of the Stokes parameters S3 and S1 and nonzero value of S2. It 
belongs to the plane de� ned by the points of CR ring with linear SOP of LPΦ=45º and LPΦ=135º .

We have also investigated the spatial evolution of the Stokes parameters along the 
propagation direction for a RHCP and LP (Φ = 45º) Gaussian input beam. As we move away 
from the focal plane, the bright rings become wider and the intensity at the Poggendor�  
dark ring is no longer zero. � e intensity of the outer ring decreases while the intensity of the 
inner ring increases. � e outer ring expands and the inner ring becomes smaller in radius. 
As a result, at Z ≈ 6 a spot in the center of the pattern appears. Finally, the inner ring shrinks 
into a bright spot at Z = 10.92 for ρ0 = 10, corresponding to the Raman spot. At this point, it 
can be found an additional type of polarization singularity independently on the polarization 
state of an input beam. It is clearly distinguishable by inspection of the Stokes parameter 
S3 that de� nes degree of circular polarization of the � eld. Observing the S3 parameter far 
from the focal plane, for instance, at the Raman spot as shown in the last two rows in Fig. 
4.4(a), reveals alternating annular regions of RHCP and LHCP states. � ese annular regions 
of circular polarization are separated by circles of null intensity. At these circles the � eld is 
linearly polarized. � erefore, these polarization singularities can be called as L circles. � is 
behavior has been also observed in the focusing of radially polarized beams and explored in 
detail in (Schoonover and Visser, 2006 and Shvedov et al., 2015) For a LP (Φ = 45º) input 
beam, the central spot is broken by a line of null intensity (L-line) that connects the two points 
with LP and azimuth Φ = 45º and Φ = 135º, as commented before. Note that polarization 
singularities, i.e., C-point for CP input beam, L-lines for LP input beam and L-circles, are 
invariants of CR beam propagation behind the crystal.

To test the validity of the obtained theoretical results, we have performed the 
corresponding experimental measurements. Fig. 4.5 shows the experimental set-up. � e Gaussian 

Figure 4.5. 

Experimental set-up. A diode laser coupled to a monomode fi ber generates a Gaussian 
beam at 640 mm with a beam waist radius w0 = 1.26 mm. � en the beam is focused by 
means of a focusing lens (FL) along one of the optic axes of a KGd(WO4)2 biaxial crystal 
(BC). Experiments from Fig. 4.4 were carried out using a FL with 100mm focal length 
and a biaxial crystal 10.5mm long, while FLs with focal lengths of 150 mm, 200 mm 
and 400 mm and a biaxial crystal 2.3 mm long were used for the experiments from Fig. 
4.7. Linear and circular polarizers are used as polarization state generators (PSG) and 
polarization state detectors (PSD) to generate and measure the SOP of the input and 
output beam, respectively. � e transverse patterns are recorded by means of an imaging 
lens (IL) that projects the image into a CCD camera.
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input beam is obtained from a diode laser at 640 nm coupled to a monomode � ber with a 
collimator, yielding a beam waist of w0 = 1.26 mm. To generate the di� erent input polarization 
states (LP with Φ = 45º and RHCP) we use half- and quarterwaveplates. We use lenses 
with di� erent focal lengths to modify the waist radius w0 of the input beam and to reach 
di� erent values of ρ0. � e beam passes along one of the optic axes of a biaxial crystal, placed 
always before the expected focal plane of the beam. An additional imaging lens is used to 
take di� erent planes along the beam propagation direction and transfer them onto the CCD 
camera. Linear and circular polarizers are used to measure the Stokes parameters of the beam 
a� er being transformed by the CR phenomenon. We use a commercially available (CROptics) 
KGd(WO4)2 biaxial crystals with α = 16.9 mrad and length l = 10.5 mm yielding CR ring 
radius of R0 = 180 μm.

Fig. 4.4(b) shows the obtained experimental Stokes parameters for ρ0 = 10.81. � e 
experimental results are in good agreement with the theoretical results presented in Fig. 
4.4(a). Discrepancy has been observed only for the S3 parameter for the case of a LP input 
beam (see last image of second rows) of Fig. 4.4(a). � is can be explained in terms of the 
experimental error introduced by the polarization state detector elements used, that disturb 
the beam shape and its position, which is central for the quality of the experimental results.

4.4. STATE OF POLARIZATION FOR ρ 0 ≲ 1

For ρ0 ≲ 1 CR patterns are signi� cantly di� erent from the double bright concentric 
rings with clear Poggendor�  splitting (occurring for ρ0 ≫ 1 as shown in the previous section). 

Figure 4.6. 

Intensity variation (a) along the radial direction ρ at the focal plane Z = 0 and (b) along 
the axial direction Z at the beam center (ρ = 0) for CR vector beams obtained using ρ0 
= 1.50 (blue-solid line), ρ0 = 0.92 (red-dashed line) and ρ0 = 0.45 (black-dotted line). 
� e corresponding intensity distribution in the (Z, ρ) plane are shown in fi gures (c)-(e).
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� e region ρ0 ≲ 1 has been explored recently (Peet, 2010a; Loiko et al., 2013; Turpin et al., 
2015) showing that CR can be used to design new CR lasers (Loiko, Sokolovskii, Carnegie,  
Turpin, Mompart and Rafailov, 2014), to increase the directivity of laser beams (Peet, 2010a), 
to generate a super-Gaussian beam (Turpin, Loiko, Kalkandkiev, Tomizawa and Mompart, 
2014), to create a three dimensional dark focus (Loiko, Turpin, Kalkandjiev, Rafailov and 
Mompart, 2013) and even to develop a novel scheme for super-resolution microscopy (Rosen 
et al., 2013). However, in all these works, no deep insight about the SOP of the generated CR 
beams has been provided. In what follows by considering the Stokes parameters we uncover 
the evolution of the SOP and polarization singularities of the CR beams and demonstrate 
how they depend on the SOP of the input beam. Fig. 4.6 shows the main features and general 
view of CR beams with ρ0 = [1.50, 0.92, 0.45]. � e cross-section of the CR transverse intensity 
pattern at the focal plane and far away from the focal plane are shown in Figs. 4.6(a) and (b), 
respectively. Figs. 4.6(c)–(e) are 2D density plots of the intensity of the CR beams in the Zρ 
plane.

Figs. 4.7(a), (c) and (e) presents density plots of the numerically calculated Stokes 
parameters for (a) ρ0 = 1.50, (c) ρ0 = 0.92 and (e) ρ0 = 0.45 at Z = 0 (� rst and second rows) and 
out of the focal plane (third and fourth rows). For ρ0 = 1.50 and ρ0 = 0.92 these planes give the 
axial intensity maximum, while for ρ0 = 0.45 we have considered the plane where the cross-
section area of the beam is doubled (Turpin, Loiko, Kalkandkiev, Tomizawa and Mompart, 
2014). First and third rows refer to a RHCP Gaussian input beam while second and fourth 
rows present the case of a LP (Φ = 45º) Gaussian input beam. For ρ0 ≲ 1 the position of the 
Raman spots are not well determined by Eq. [2.18] and the position of the axial intensity 
maxima must be determined for each particular case of ρ0. Its Z position is indicated at each 
image. � e corresponding experimentally measured transverse Stokes parameters are shown 
in Figs. 4.7(b), (d) and (f) for (b) ρ0 = 1.48, (d) ρ0 = 0.95 and (f) ρ0 = 0.45 at Z = 0 (� rst and 
second rows) and out of the focal plane (third and fourth rows). For these experiments, the 
same set-up shown in Fig. 4.5 was used but in this case taking a 2.3 mm long KGd(WO4)2 
biaxial crystal yielding CR ring radius of R0 = 39 μm.

While transverse distribution for intensity and polarization of CR beam look di� erent 
for the ρ0 ≲ 1 case with respect to ρ0 ≫ 1, it should be noted that singularities, i.e., the 
topological structure of the CR beam, remains similar. It means that (i) the CR beam center 
constitutes a C-point singularity for the case of RHCP input beam (see the � rst and third rows 
in Fig. 4.7), (ii) there exists a L-line polarization singularity for the LPΦ=45º input beam (see the 
second and fourth rows in Fig. 4.6) and (iii) there exists a L-circle singularity for input beam 
with arbitrary SOP (see the third and fourth rows in Fig. 4.7).

If we consider the special case of ρ0 = 0.92, the central point at the focal plane is a null-
intensity point and therefore all Stokes parameters are also 0 at the beam center. Vanishing 
intensity at the beam center leads to another feature: at the focal plane the sign of the circular 
polarization state associated with the Stokes parameter S3 is the opposite with respect to the 
input beam. In other words, at the focal plane the CR beam is predominantly LHCP for the 
RHCP input beam that we consider in this article (see � rst row in Fig. 4.7 for the case of 
ρ0 = 0.92). � is feature is easily deduced from the mathematical formulation, since for this 
ρ0 the value of the integral B0 at any radial point is null, which leads to dominance of the 
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contribution of integral B1 associated with a SOP orthogonal to the input one, see Fig. 4.3. For 
the case of a LP (Φ=45º) input beam and for all values of ρ0 investigated, at the focal plane Z 
= 0 the transverse patterns are crescent-like, with the intensity minimum at a point diagonally 
opposite to the point with maximum intensity. In the case of LPΦ=45º input beam that we 
consider, the intensity minimum is observed at the bottom, corresponding to the point of 
LP with Φ=135º. In contrast to the RCHP case, for all three values of ρ0 the S3 parameter is 

Figure 4.7. 

Numerically calculated Stokes parameters for ρ0 = 1.50 (a), ρ0 = 0.92 (c), and ρ0 = 0.45 
(e); and measured Stokes parameters for: (b) ρ0 = 1.48, (d) ρ0 = 0.95, and (f) ρ0 = 0.44. 
� e plane of optic axes of the crystal lies horizontally (φc = 0).
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null, which means that the patterns are completely LP. Out of the focal plane S3 ≠ 0 except at 
the beam center, where there is an L-line connecting the points with LP Φ=45º and Φ=135º.

Figure 4.8. 

Numerically calculated Stokes parameters for ρ0 = 1.50 (a), ρ0 = 0.92 (c), and ρ0 = 0.45 
(e); and measured Stokes parameters for: (b) ρ0 = 1.48, (d) ρ0 = 0.95, and (f) ρ0 = 0.44. 
� e plane of optic axes of the crystal lies horizontally (φc = 0).

� e theoretical predictions are, in general, in good agreement with the experimental 
results. Again, the S3 parameter for a LP input beam (last image of second and fourth rows of 
Figs. 4.7(a), (c) and (e)) is the measurement that di� ers most with respect to the numerical 
predictions. In addition to the experimental di�  culties commented above, i.e., the 
experimental error introduced by the polarization state detector elements used that disturb 
the beam shape and its position (being these ones particularly signi� cant for large values of 
w0), here it must be also taken into account the fact that small changes in the ρ0 can modify 
quantitatively the CR pattern. Additional features of focused CR beams are associated with 
Gouy phase.

It can be revealed by considering the transverse pattern evolution for Stokes parameters 
along CR beam propagation shown in Fig. 4.8 for a RHCP (top boxes) and LP (Φ = 45º) 
(bottom boxes) Gaussian input beam for ρ0 = 1.50, ρ0 = 0.92 and ρ0 = 0.45 before (Z < 0) 
and a� er (Z > 0) the focal plane. For RHCP input light [boxes (a) and (b)] the focal plane is 
a symmetry plane for S3. In contrast, S1 and S2 are rotated roughly 180º before and a� er the 
focal plane, which must be associated to the Gouy phase (Boyd, 1980). For a LP (Φ=45º) input 
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beam [boxes (c) and (d)] the Stokes parameters S1 and S2 are symmetric with respect to the 
focal plane and now S3 su� ers from a phase shi�  of 180º, due to the Gouy phase too.

4.5. DISCUSSION IN TERMS OF SPIN-ORBIT COUPLING

In general, the rotation of the Stokes parameters before and a� er the focal plane 
obtained for CR beams is also observed with focused Gaussian beams: due to the Gouy phase 
shi� , which induces an additional phase in the electric � eld of 180º at the focal plane, the S1 
and S2 of a Gaussian beam rotate around the Z axis by 180º. However, note that at variance 
with the results expected for a focused Gaussian beam, the S1 and S2 parameters of CR beams 
obtained from CP input beams not only rotate along the Z axis but also twist around it at 
the focal plane. CR beams possess non-integer OAM hat is generated due to the spin-orbit 
coupling provided by the biaxial crystal, as it has been reported by Berry and co-workers 
(Berry, Je� rey and Mansuripur, 2005). In (Berry, Je� rey and Mansuripur, 2005) it is shown 

Figure 4.9. 

Plots of the orbital angular momentum (OAM) (blue line), spin angular momentum 
(SAM) (purple line) and total angular momentum (green line) of the CR beam as a 
function of ρ0 for a left handed circularly polarized Gaussian input beam carrying a 
SAM of +ħ

that the total OAM JOAM and total spin angular momentum (SAM) JSAM carried by the CR 
beam as a function of ρ0 and of the initial total angular momentum J0 are:

( )2
0

OAM 0 0 0
1 ,
2

J J e Dρρ π ρ−=  [4.23]

( )( )2
0

SAM 0 0 01 ,J J e Dρρ π ρ−= −  [4.24]

where D(x) is the Dawson integral

( ) 2 2

0

.
x

x tD x e e dt−= ∫  [4.25]

Both the value and handedness of the OAM depend on the ellipticity of the input beam 
and on the ρ0 parameter, see Fig. 4.9. For ρ0 ≫ 1 and a CP input beam, i.e., with J0 = ± ħ (+ 
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for LHCP and - for RHCP), the output CR beam carries total optical angular momentum ± 
ħ/2 and zero SAM. � is is natural if one pays attention to the combination of the B0 and B1 

components that give rise to the CR beam. On the one hand, the B0 � eld carries ± ħ SAM 
and 0 OAM. On the other hand, the B1 component carries carries   ħ SAM and ± ħ OAM. 
� erefore, the equal coherent positive superposition of both � elds gives 0 SAM and 

1
2

±   
OAM.

Figure 4.10. 

Numerically simulated transverse intensity patterns and SOP (blue lines) at Z = 0 of 
vector beams obtained for a RHCP (fi rst row) and a LP (Φ = 45º) input Gaussian beam 
for ρ0 = 10.0 (fi rst column), ρ0 = 1.50 (second column), ρ0 = 0.92 (third column) and ρ0 
= 0.45 (fourth column).

For values of ρ0 out of that condition, the spin-orbit coupling di� ers. For instance, 
around ρ0 = 0.92 the handedness of the SAM of the CR beam changes from the same (ρ0 < 
0.92) to the opposite (ρ0 > 0.92) with respect to the input beam. As reported in (Berry, Je� rey 
and Mansuripur, 2005), for ρ0 = 1.50 the OAM of the CR beam is maximum compared with 
any other value of ρ0. Near the focal plane the twist is more appreciable at the central spot. 
Additionally, the velocity of rotation of the S1 and S2 parameters at that region as the beam 
approaches to the focal plane (Z = 0) is much faster than the rotation velocity of the outer ring. 
For the value ρ0 = 0.445 the beam carries almost null OAM, which explains the small twist of 
the S1 and S2 parameters near the focal plane and its similarities with a homogeneously CP 
Gaussian beam.

As shown in Fig. 4.3, for ρ0 ≲ 1 the intensity patterns of the B0 and B1 components di� er 
from each other. Since there are regions of the beam where both functions do not coincide, the 
coherent addition of both functions is not as direct as for ρ0 ≫ 1 and the spin-orbit coupling 
in the ρ0 ≲ 1 case is rather complex. To illustrate some examples, note that in some regions of 
the beam, the amplitude of the electric � eld vector of the B0 and B1 components are equal but 
they have opposite senses. As a consequence, in these regions the total electric � eld is null and 
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a polarization singularity is found, such as for the case of ρ0 = 0.92. In an alternative scenario, 
the B0 and B1 � elds have the precise amplitude to generate a region of linearly polarized 
states, such as the L-line found for ρ0 = 1.50. As a summary, the combination of both SAM 
and OAM of the CR vector beams leads to the rotation and twisting of the S1 and S2 Stokes 
parameters when CP input beams propagating through the biaxial crystal are considered.

To sum up the the results discussed in this Chapter, Fig. 4.10 presents the calculated 
transverse patterns and SOP (blue curves) of the vector beams analyzed in this work for a 
RHCP (� rst row) and a LP (Φ = 45º) (second row) input Gaussian beam at the focal plane. 
As it can be observed, for low values of ρ0 the SOP of the generated vector beams is rich and 
include regions with di� erent ellipticity and azimuth, leading to Poincare beams (Beckley, 
Brown and Alonso, 2010.

4.6. CONCLUSIONS

In summary, we have studied in detail the SOP of CR vector beams for a wide range 
of ρ0 and for di� erent SOP of the input beam. We have determined the Stokes parameters 
of the CR beam at di� erent transverse planes along the beam propagation direction and we 
have shown that both the shape and the SOP of the transformed beams depend on the SOP 
of the input beam. We have shown that the polarization distribution formed by orthogonal 
polarizations at any two radially opposite points of the pattern and usually associated to the 
CR phenomenon remains relevant under the condition ρ0 ≫ 1 and at the focal plane only. For 
ρ0 ≲ 1 and CP input beams we have found that polarization structure of CR beams contains 
non-homogeneously elliptically polarized states not only with di� erent azimuth but also with 
di� erent ellipticity. In contrast, for LP input beams, the SOP of the CR has been reported to 
be completely linear at the focal plane and with variable ellipticity and azimuth out of it. A 
good agreement between the theoretical predictions and the experimental results has been 
obtained.

Additionally, we have shown for the � rst time to our knowledge, experimental results 
on polarization singularities of CR beams and we have related them to the spin-orbit coupling 
provided by the CR phenomenon. We have demonstrated that CR polarization singularities 
can be changed by and controlled by varying the SOP of the input light beam. Such polarization 
singularities as C-points, L-lines and L-circles have been identi� ed for CR beams.

� e reported results can be particularly interesting for experiments with tightly focused 
beams (Zhan, 2009), for the generation of novel polarizations in CR (O’Dwyer et al., 2011), 
in optical micromanipulation (O’Dwyer et al., 2012; Turpin, Shvedov, Hnatovsky, Loiko, 
Mompart, and Krolikowski, 2013; Shvedov et al., 2014), mode conversion between Heremite–
Gauss-like beams and Laguerre–Gauss-like beams (Peet, 2010b) and in super-resolution 
imaging (Rosen et al., 2013). It is also promising the generation of polarization-tunable 
potentials to inject, extract and manipulate ultra-cold atoms (Turpin, Loiko, Kalkandjiev 
and Mompart, 2013 and Loiko, Ahu� nger, Menchon-Enrich, Birkl and Mompart, 2014). 
Additionally, by taking into account that the CR beams posses orbital angular momentum 
(Berry, Je� rey and Mansuripur, 2005) and that the biaxial crystals used are transparent to 

Libro 1.indb   107 11/12/2017   16:32:31



108 TESIS. SERIE INGENIERIA, MATEMÁTICAS, ARQUITECTURA Y FÍSICA

a wide frequency range, the presented technique could be an alternative for the production 
of high-frequency vortex beams for molecular-scale super-resolution microscopy (Gariepy, 
Leach, Kim, Hammond, Frumker, Boyd and Corkum, 2014). Finally, by using quantum 
sources, CR vector beams can be a tool for testing new Bell-like inequalities with hybrid 
polarization-momentum states useful in quantum information technologies (Fickler, 
Lapkiewicz, Ramelow and Zeilinger, 2014). 
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In this Chapter we address the question of the CR healing of a Gaussian input beam in 
the presence of an obstruction. In our case, we investigate the reconstruction of the transverse 
intensity pattern of the CR beams at di� erent propagation distances and also of their state of 
polarization when the Gaussian input beam passing through the biaxial crystal is blocked 
by an azimuthal obstruction. We show that, even for relatively large obstacles, the CR beams 
keep their annular shape, state of polarization and dark optical singularities. � e Chapter is 
organized as follows: in Sec. 5.1 we introduce related works to the � eld of self-healing that 
can be found in the literature and motivate our work. � en, Section 5.2 is devoted to describe 
our experimental set-up and report healing of conically refracted Gaussian beams a� er an 
obstruction for ρ0 ≫ 1. In Section 5.3 we compare the reconstructing behavior of the CR beam 
for ρ0 = 0.92 and ρ0 ≫ 1 and discuss the di� erences between the two cases. Finally, our main 
results are summarized in Section 5.4.

� e research contained in this Chapter has been done in collaboration of Ramón 
Corbalán from the Universitat Autònoma de Barcelona and has been published in (Turpin 
et al., 2015).

5.1. INTRODUCTION

Gaussian beams are the most well known solution of the paraxial wave equation. � ey 
are form-invariant beams, i.e., the form of their transverse intensity pattern does not change 
upon propagation, apart from a scaling factor. (Durnin, Miceli and Eberly, 1987) reported 
another solution of the paraxial wave equation, the Bessel beams, which are completely 
invariant upon propagation. In other words, both the transverse intensity pro� le and scale of 
Bessel beams remain unchanged as it propagates, i.e., Bessel beams are di� raction-free beams. 
One of the main features of Bessel beams is that they selfreconstruct a� er an obstacle, being 
this e� ect known as self-healing.

Recently, there has been a great interest in the study of the self-healing e� ect appearing 
in Bessel beams (Vyas, Kozawa and Sato, 2011 and Wu, Wang and Cai, 2014) and other 
di� raction-free beams including Airy beams (Siviloglou et al., 2007 and Broky et al., 2008) 
and Pearcey beams (Ring et al., 2012), or other exotic beams such as helico-conical beams 
(Hermosa, Rosales-Guzmáan and Torres, 2013) as well as Mathieu and Webber beams (Zhang 
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et al., 2012). � e major advantage of self-healing beams is that they can be used through 
turbulent media (Broky et al., 2008) and that they are ideal candidates for particle manipulation 
at di� erent planes (Garces-Chavez et al., 2002 and Baumgartl, Mazilu and Dholakia, 2008) 
and in microscopy (Fahrbach, Simon and Rohrbach, 2010). � e CR phenomenon has been 
also reported as an e�  cient tool to generate Bessel beams (Phelan et al., 2009; Kazak, Khilo 
and Ryzhevich, 1999; King et al., 2001). � e relation of CR with Bessel beams suggests that 
even if the input Gaussian beam is partially blocked, the CR beam may only be slightly 
affected. The aim of this Chapter is precisely to investigate the CR healing of a Gaussian 
input beam in the presence of an obstruction that blocks an azimuthal sector of the beam. 
We analyze both theoretically (by using the theoretical formalism presented in Sec. 2.2.2) 
and experimentally the in� uence of the obstruction over both the transverse intensity pattern 
and the state of polarization of the CR beam for well developed CR rings (ρ0 ≫ 1) and for the 
three-dimensional dark focus reported in Sec. 3.2.

5.2. CR HEALING OF GAUSSIAN BEAMS FOR ρ0 ≫ 1

In this Section we analyze the reconstruction of conically refracted Gaussian beams 
under the condition R0 ≫ w0 when an obstruction of closing angle ϕ blocks an azimuthal part 
of the input beam. We consider � rst the approximation R0 ≫ w0 since it is the commonly used 
con� guration in most experimental arrangements. Fig. 5.1 shows our experimental set-up. 
We obtain a circularly polarized Gaussian beam at 640 nm from a diode laser coupled to 
a monomode � ber by utilizing a linear polarizer (LP) and a quarter wave-plate (QWP). As 
an obstruction, we use amplitude angular masks (AAM). � ey block an azimuthal sector of 
angle ϕ of the Gaussian beam at the exit of the collimator. � e AAM are made by printing the 
desired 2D pattern over a transparent sheet of plastic. � e beam, whose waist radius w0 can 
be adjusted by means of the collimator, passes through a biaxial crystal and parallel to one 
of the optic axes. A CCD camera combined with an imaging lens (IL) records the transverse 
intensity pattern of the CR beam at di� erent planes. As a biaxial crystal we use a KGd(WO4)2 
crystal of length l = 28mm, conicity α = 16.9 mrad and, therefore, R0 = lα ≈ 475 μm. By 
reducing the focused beam waist down to w0 = 44 μm, we have obtained a ρ0 parameter up to 
10.75.

Fig. 5.2 shows both the experimental (top row) and numerically calculated (bottom 
row) transverse intensity patterns at the focal plane for obstructions of (a,f) ϕ = 0º, (b,g) 45º, 
(c,h) 90º, (d,i) 135º and (e,j) 180º. Insets represent the obstructed input beam just behind 
the AMM. When a relatively small obstruction angle is considered (ϕ = 45º), the transverse 
intensity pattern is almost una� ected as compared with the case without obstruction. In 
this case, the Poggendor�  dark ring and the two ring-like structures are clearly visible. � e 
rings are mirror-symmetric with respect to the horizontal axis but they have a maximum at 
their top and bottom regions. As ϕ increases the CR rings become asymmetric and the outer 
ring breaks into two boomerang-like lobes such that no complete Poggendor�  dark ring is 
appreciable. For ϕ = 180º, i.e., when the AAM blocks half of the input beam, the CR transverse 
intensity pattern is formed by a wide single ring with two dark singularities in the upper and 
top regions of the ring.
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� e healing mechanism provided by the biaxial crystal to reconstruct the CR beam 
can be understood in terms of the wave-vector splitting within the crystal. Every planewave 
is described by a certain wave-vector k = k|| + k, with k = |k|(cos ϕk, sin ϕk). � e biaxial 
crystal splits every plane wave into two new plane-waves. At the focal plane, these two plane-
waves are refracted at positions on the ring characterized by their azimuthal angle φ = ϕk 
and φ = ϕk + π (Turpin et al., 2013). As a consequence, when one azimuthal sector of the 
Gaussian beam is blocked, the azimuthally opposite sector partially compensates the absence 
of the blocked sector. For this reason, even when half of the input beam is blocked, a ring-like 
structure can be formed a� er passing through the biaxial crystal. � is mechanism explains 
why a single bright ring without Poggendor�  splitting is obtained when half of the input 
beam is blocked with the AAM, i.e., when ϕ = 180º. � e two bright rings with Poggendor�  
splitting appear as an interference of plane waves going to a particular azimuthal point of 
the CR ring from opposite sectors of the input beam. In contrast, if there are no other waves 
coming to the corresponding opposite points of the CR ring pattern at the focal plane, there 
is no interference and a only a single ring is observed. In Figs. 5.2(b)–(e) it is clearly visible an 
increase of the azimuthal sector of a single bright ring and shrink of the double bright rings’ 
domain with the AMM closing angle ϕ. Note that the azimuthal sector occupied by the double 
bright rings is larger than the angular sector of the AMM, ϕ, because of the di� raction of the 
input beam at the edges of AMM dark sector.

Now we turn to analyze the healing of the state of polarization of the reconstructed 
CR beams. � e standard tool to analyze the state of polarization of a light beam is the Stokes 
vector S = (S0, S1, S2, S3) together with the azimuth ε and ellipticity β of the polarization ellipse 
of the light beam described by Eqs. (4.11)–(4.16). � e values of ε and β at the focal plane 
numerically calculated for obstructions of (a,f) ϕ = 0º, (b,g) 45º, (c,h) 90º, (d,i) 135º and (e,j) 

Figure 5.1. 

Experimental set-up. A Gaussian beam is obtained from a diode laser coupled to a 
monomode fi ber. A collimator (C) is used to change the beam waist radius w0 of the 
Gaussian beam. A linear polarizer (LP) and a quarter wave-plate (QWP) are used to fi x 
the state of polarization of the Gaussian beam to circular. Azimuthal angular amplitude 
masks (AAM) characterized by their closing angle ϕ are used to block a sector of the 
Gaussian beam. � e obtained beam passes through the biaxial crystal (BC) along one of 
its optic axes and a CCD camera and an imaging lens (IL) record the transverse intensity 
pattern at diff erent planes.
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180º are presented in Fig. 5.3. Insets represent the obstructed input beam. Ideally, as ρ0 → ∞, 
β → 0. Since in our numerical simulations we consider ρ0 = 10, the state of polarization of the 
CR rings is slightly elliptical rather than purely linear. As it can be appreciated, in general, 
the polarization structure of the CR beam is maintained for all the values of ϕ, i.e., every two 
diametrically opposite points of the light structure are orthogonally polarized.

Figure 5.2. 

Transverse intensity patterns at the focal plane (z = 0) obtained with an obstruction 
of closing angle (a,f ) ϕ = 0º, (b,g) ϕ = 45º, (c,h) ϕ = 90º, (d,i) ϕ = 135º and (e,j) ϕ = 
180º placed before the biaxial crystal. (a,f) Intensity pattern obtained in the absence 
of obstruction. First row: experimental results ( exp

0ρ  = 10.75). Second row: numerical 
calculations obtained from Eqs. [2.3], [2.19]–[2.22] ( th

0ρ  = 10).

Figure 5.3. 

Numerically calculated 2D density plots of the azimuth ε (fi rst row) and the ellipticity 
β (second row) of conically refracted beams at the focal plane for ρ0 = 10 when the 
input Gaussian is blocked by azimuthal obstructions of (b,g) ϕ = 45º, (c,h) ϕ = 90º, 
(d,i) ϕ = 135º and (e,j) ϕ = 180º is placed before the biaxial crystal. (a,f ) 2D density 
plots of ε and β in the absence of the obstruction.
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Figure 5.4. 

Experimental (second row) and numerically calculated with Eqs. [2.3], [2.19]–[2.22] 
(third row) transverse intensity patterns along the axial direction z for an obstruction 
with ϕ = 45 for ρ0 = 10. � e fi rst row shows the numerically calculated transverse 
intensity patterns obtained in the absence of the obstruction. z is measured in units 
of the Rayleigh range, which for the Gaussian beam used in our experiments (w0 = 44 
µm) is zR = 9.5 mm.

In Fig. 5.4 we show the evolution of the transverse intensity patterns along the axial 
direction for a blocking sector of ϕ = 45º. Top row shows the transverse intensity patterns in 
the absence of the blocking mask, while middle and bottom rows are the experimental and 
numerically calculated transverse intensity patterns for the obstructed Gaussian beam. Near 
the focal plane (z = 0) the transverse intensity pattern resembles the pattern obtained without 
obstruction. In contrast, far enough of the focal plane it can be appreciated a perturbation of 
the CR transverse intensity pattern that resembles the considered obstruction.

5.3. CR HEALING OF GAUSSIAN BEAMS FOR ρ0 ≈ 1

As discussed in Section 2.4.1, the CR beam depends strongly on the value of the 
control parameter ρ0. For ρ0 = 0.92 the transverse intensity pattern at the focal plane forms a 
doughnut-like light structure with a null intensity point at the beam center (Loiko et al., 2013), 
see Fig. 5.5(a). Along the axial direction, the intensity at the beam center is no longer zero 
and the beam forms an optical bottle. � is value of ρ0 is particularly interesting because the 
polarization distribution of the light ring has points with di� erent β and ε and one deals with 
a Poincare beam, i.e., a beam possessing points with all the polarization states of the Poincare 
sphere (Beckley, Brown and Alonso, 2010). In what follows we discuss the reconstruction of a 
conically refracted Gaussian beam for ρ0 = 0.92 a� er an obstruction, analogously to what has 
been performed previously for ρ0 ≫ 1. For the incoming experiments we have used the same 
set-up as in Fig. 5.1 but with a 2.3mm long KGd(WO4)2 (therefore R0 = 39 μm) crystal and a 
waist radius of w0 = 44 μm.
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Fig. 5.5 shows both the experimental (top row) and numerically calculated (bottom 
row) transverse intensity pattern at the focal plane for obstructions of (a,f) ϕ = 0º, (b,g) 45º, 
(c,h) 90º, (d,i) 135º and (e,j) 180º. Insets represent the obstructed input beam for ρ0 = 0.92. 
In contrast to the case of ρ0 ≫ 1, when a relatively small obstruction angle is considered (ϕ 
= 45º), the transverse intensity pattern is substantially di� erent with respect to the case with 

Figure 5.6. 

2D density plots of the azimuth ε (fi rst row) and the ellipticity β (second row) of 
conically refracted beams at the focal plane for ρ0 = 0.92 when the input Gaussian is 
blocked by azimuthal obstructions of (b,g) ϕ = 45º, (c,h) ϕ = 90º, (d,i) ϕ = 135º and 
(e,j) ϕ = 180º is placed before the biaxial crystal. (a,f ) 2D density plots of ε β in the 
absence of obstruction.

Figure 5.5. 

Transverse intensity patterns at the focal plane (z = 0) obtained when an obstruction 
of angle (b,g) ϕ = 45º, (c,h) ϕ = 90º, (d,i) ϕ = 135º and (e,j) ϕ = 180º is placed before 
the biaxial crystal. (a,f) Transverse intensity pattern in the absence of obstruction. First 
row: experimental results ( exp

0ρ  = 1.04). Second row: numerical calculations obtained 
from Eqs. [2.3], [2.19]–[2.22] ( th

0ρ  = 0.92).
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no obstruction. In this case, a maximum of intensity appears at the bottom part of the ring 
and, therefore, the intensity pattern is mirror symmetric with respect to the vertical axis. As 
ϕ increases, the intensity in the bottom part of the light structure becomes stronger than in 
the top part. For all the values of ϕ, an intensity minimum can be observed but its position 
moves in the vertical direction as ϕ increases. However, note that even when half of the beam 
is blocked by the obstruction, the dark singularity is preserved. A similar behavior has been 
reported for a linearly polarized Bessel beam (Wu, Wang and Cai, 2014).

With respect to the state of polarization of the CR beams at the focal plane, see Fig. 5.6, 
we have observed that there is a tendency to preserve the polarization structure of the CR 
beam without obstruction: the CR beam is elliptically polarized and the ellipticity changes 
radially similarly to the intensity pattern. At the edges of the beam, β → 0 and the characteristic 
CR polarization distribution is recovered. However, since the transverse intensity pattern is 
very a� ected by the presence of an obstruction, these features of the state of polarization are 
lost for large enough values of ϕ. In particular, β losses its doughnut-like shape, while ε is kept 
quite stable up to ϕ = 135º.

� e evolution of the transverse intensity pattern along the axial direction for a blocking 
sector of ϕ = 45º is shown in Fig. 5.7. Top row shows the transverse intensity patterns in 
the absence of the blocking mask, while middle and bottom row are the experimental and 
numerically calculated transverse intensity patterns for the obstructed Gaussian beam. Near 
the focal plane (z = 0) the transverse intensity pattern di� ers from the one obtained without 

Figure 5.7. 

Experimental (second row) and numerically calculated (third row) with Eqs. [2.3], 
[2.19]–[2.22] transverse intensity patterns along the axial direction z for an obstruction 
with ϕ = 45 for ρ0 = 0.92. � e fi rst row shows the numerically calculated transverse 
intensity patterns obtained in the absence of the obstruction. z is measured in units 
of the Rayleigh range, which for the Gaussian beam used in our experiments (w0 = 44 
µm) is zR = 9.5 mm.
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obstruction. Additionally, out of the focal plane there is no reconstruction of the transverse 
intensity pattern. � erefore, for ρ0 = 0.92, the beam reconstruction process is neither found at 
the focal plane nor away from it.

5.4. CONCLUSIONS

We have analyzed in detail the transformation of Gaussian beams partially obstructed 
when they propagate through a biaxial crystal and parallel to one of the optic axes, i.e., under 
conditions of CR. We have shown that, at the focal plane, the CR beams for ρ0 ≫ 1 preserve the 
annular shape even when half of the beam is blocked. However, we have found that the dark 
annular singularity known as Poggendor�  dark ring only remains for small perturbations 
of the input beam. Out of the focal plane we have obtained that the obstruction a� ects the 
beam evolution, being its e� ect more appreciable the further away one moves along the axial 
direction. Additionally, the reconstruction of the state of polarization of the CR beam has also 
been investigated. For ρ0 ≫ 1, we have found that the polarization distribution of the CR rings 
is very stable against large perturbations.

We have carried out analogous investigations for ρ0 ≈ 1. In this case the transverse 
light pattern is more a� ected by the presence of the obstruction than in the case of ρ0 ≫ 1. 
Regarding the reconstruction of the state of polarization we have found that only the azimuth 
of the polarization is relatively robust when large obstructions a� ect the input Gaussian beam.

BIBLIOGRAPHY

Baumgartl, J.; Mazilu, M., and K. Dholakia (2008), “Optically mediated particle clearing using airy wavepackets,” 
Nature Photon., 2: 675.

Beckley, A. M.; Brown, T. G., and M. A. Alonso (2010), “Full Poincare beams,” Opt. Express, 18: 10777.

Broky, J.; Siviloglou, G. A.; Dogariu, A., and D. N. Christodoulides (2008), “Self-healing properties of optical 
Airy beams,” Opt. Express, 16: 12880.

Durnin, J.; Miceli, J. J., and J. H. Eberly (1987), “Di� raction-free beams,” Phys. Rev. Lett., 58: 1499.

Fahrbach, F. O.; Simon, P., and A. Rohrbach (2010), “Microscopy with self-reconstructing beams,” Nature Photon., 
4: 780.

Garces-Chavez, V.; McGloin, D.; Melville, H.; Sibbett, W., and K. Dholakia (2002), “Simultaneous 
micromanipulation in multiple planes using a self-reconstructing light beam,” Nature, 419: 145.

Hermosa, N.; Rosales-Guzmán, C., and J. P. Torres (2013), “Helico-conical optical beams self-heal,” Opt. Lett., 
38: 383.

Kazak, N. S.; Khilo, N. A., and A. A. Ryzhevich (1999), “Generation of Bessel light beams under the conditions of 
internal conical refraction,” Quantum Electronics, 29: 1020.

King, T.; Hogervorst, W.; Kazak, N.; Khilo, N., and A. Ryzhevich (2001), “Formation of higher-order Bessel 
light beams in biaxial crystals,” Opt. Commun., 187: 407.

Loiko, Y. V.; Turpin, A.; Kalkandjiev, T. K.; Rafailov, E. U., and J. Mompart (2013), “Generating a three-dimen-
sional dark focus from a single conically refracted light beam,” Opt. Lett., 38: 4648.

Libro 1.indb   120 11/12/2017   16:32:42



121CONICAL REFRACTION HEALING AFTER PARTIALLY BLOCKING THE INPUT BEAM

Phelan, C. F.; O’Dwyer, D.P.; Rakovich, Y. P.; Donegan, J. F., and J. G. Lunney (2009), “Conical di� raction and 
Bessel beam formation with a high optical quality biaxial crystal,” Opt. Express, 17: 12891.

Ring, J. D.; Lindberg, J.; Mourka, A.; Mazilu, M.; Dholakia, K., and M. R. Dennis (2012), “Auto-focusing and 
self-healing of Pearcey beams,” Opt. Express, 20: 18955.

Siviloglou, G. A.; Broky, J.; Dogariu, A., and D. N. Christodoulides (2007), “Observation of accelerating Airy 
beams,” Phys. Rev. Lett., 99: 213901.

Turpin, A.; Loiko, Y. V.; Kalkandjiev, T. K.; Tomizawa, H., and J. Mompart (2013), “Wavevector and polarization 
dependence of conical refraction,” Opt. Express, 21: 4503.

Turpin, A.; Loiko, Y. V.; Kalkandjiev, T. K.; Corbalán, R., and J. Mompart (2015), “Conical refraction healing 
a� er partially blocking the input beam,” Phys. Rev. A., 92: 013802.

Vyas, S.; Kozawa, Y., and S. Sato (2011), “Self-healing of tightly focused scalar and vector bessel–gauss beams at the 
focal plane,” J. Opt. Soc. Am. A., 28: 837.

Wu, G.; Wang, F., and Y. Cai (2014), “Generation and self-healing of a radially polarized bessel-gauss beam,”. Phys. 
Rev. A., 89: 043807.

Zhang, P.; Hu, Y.; Li, T.; Cannan, D.; Yin, X.; Morandotti, R.; Chen, Z., and X. Zhang (2012), “Nonparaxial 
Mathieu and Weber accelerating beams,” Phys. Rev. Lett., 109: 193901.

Libro 1.indb   121 11/12/2017   16:32:42



Libro 1.indb   122 11/12/2017   16:32:42



AN OPTICAL VAULT FOR ABSORBING 
PARTICLES

6

Libro 1.indb   123 11/12/2017   16:32:42



Libro 1.indb   124 11/12/2017   16:32:42



125

� is Chapter is devoted to demonstrate that the CR bottle beam obtained for ρ0 = R0/w0 
≫ 1 can be used as a recon� gurable optical potential to trap absorbing particles throughout 
the photophoretic force. We take pro� t of the characteristic state of polarization of the 
CR bright rings to generate a null-intensity region at the top region of the ring that allows 
particles to enter into the optical trap. � en, by changing the state of polarization of the input 
beam from linear to circular, we close the bottle and con� ne particles. Finally, by modifying 
again the state of polarization of the input from circular to linear beam we generate a null-
intensity region at the bottom of the ring and the trapped particles can scape from the trap 
in a controlled manner. � e Chapter is organized as follows. In Sec. 6.1 we motivate our 
approach and discuss related works available in the literature. � en, Sec. 6.2 presents the 
fundamentals on the photophoretic force. Our experimental proposal, which only consists 
on the use of half- and quarter-waveplates, a focusing lens and a biaxial crystal in addition to 
the input laser beam is shown in Sec. 6.3. In Sec. 6.4, we demonstrate experimental e�  cient 
loading and unloading of carbon-coated glass shells with sizes ranging from 20 μm to 50 μm. 
Finally, the conclusions of our work are shown in Sec. 6.5 

� e research contained in this chapter has been published in Refs. (Turpin et al., 2013; 
Turpin and Mompart, 2015), and has been done in collaboration with Vladlen Shvedov, Cyril 
Hnatovsky and Wieslaw Krolikowski from the Australian National University.

6.1. INTRODUCTION

Since its inception in the late 70s the � eld of optical trapping and manipulation of 
micron and submicron-sized objects with light has experienced an intense interest and rapid 
development (Ashkin, 1997 and Grier, 2003). Optical tweezers utilizing the presence of 
mechanical forces arising from light interaction with matter are now an indispensable tool 
in various physical, biological and medical applications. � ey have been extensively used on 
manipulating colloidal particles, molecules, nanoparticles and even single atoms. Last decade 
has seen an enormous progress in the � eld of trapping resulting in the implementation of 
advanced techniques involving for instance, multiple holographic traps, optical � bers, or 
singular scalar and vector beams (Dholakia, Reece and Gu, 2008; Woerdemann et al., 2013). 
Optimum conditions for particle trapping are dictated by the optical properties of the 
particles and the surrounding medium, as well as the physical nature of the light-mediated 
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trapping forces. For instance, while high light intensity attracts and traps transparent high-
index objects in a low-index medium, it in fact repels low index particles in a high index 
environment (Gahagan and Swartzlander, 1996). � at is why hollow (or doughnut) beams 
are used for e�  cient trapping in the latter case. In general, depending on the particular media 
and application, robust trapping and manipulation of micro-objects requires tailoring the 
light beam intensity pattern via phase and amplitude modulation or by varying the spatial 
coherence of light (Woerdemann et al., 2013; ČiŽmár, Mazilu and Dholakia, 2010; Shvedov 
et al., 2010).

In (Arlt and Padgett, 2000) introduced the concept of an optical bottle which represents 
an optical beam with a low (ideally null) intensity region surrounded entirely by light. Such 
a bottle could be used as a three-dimensional trap. Following this idea various practical 
implementations of optical bottles have been proposed. � e low intensity regions have been 
formed using, for instance, interference of multiple laser beams, partially spatially coherent 
optical vortices or laser beams a� ected by optical aberrations. � e suitability of an optical 
bottle for particle trapping and manipulation has been con� rmed in experiments with atoms 
(Olson et al., 2007; Xu et al., 2010) and absorbing particles (Shvedov et al., 2010; Shvedov et 
al., 2014; Desyatnikov et al., 2009; Shvedov et al., 2011).

� e problem with an ideal bottle beam is that the more e�  ciently it traps particles the 
more di�  cult it is to load it with particles. Once an optical bottle is formed it actually prevents 
particles from entering it. To cope with this issue, one straightforward solution consists of 
turning on the bottle beam when the particles already � oat in the region where the trap will 
be formed. Another and much more convenient choice would be to design a bottle in such 
a way that it could be partially opened and closed so it could be loaded and unloaded with 
particles as required.

� e purpose of this Chapter is to prove that such a design is indeed possible. We 
demonstrate that optical bottle formed CR can be tailored so that it can be opened and 
closed at will and in real time by varying the polarization of the input beam. We then use 
photophoretic trapping to demonstrate loading and unloading of airborne particles into and 
from the bottle.

6.2. THE PHOTOPHORETIC FORCE

� e photophoretic force is a thermal force induced by optical beams that was 
identi� ed � rstly by Felix Ehrenha�  at the beginning of the 20th century (Jovanovic, 2009). 
� e force of photophoresis works as follows. When a gas-suspended particle is illuminated, 
light is di� racted, refracted and re� ected by the particle. Additionally, if the particle is not 
transparent, it will absorb part of the energy of the light � eld and its temperature will rise 
up. As a consequence, the illuminated particle will radiate heat to the environment and the 
molecules of the surrounding gas will increase their kinetic energy. If the particle is non-
symmetrically illuminated, heat will be radiated unevenly too and only molecules from a 
certain region will increase their kinetic energy. � ose ones will exchange linear momentum 
with the illuminated particle with the result of a net force applied over the particle. At this 
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Figure 6.1. 

Action of the photophoretic force over an absorbing particle. (a) If heat is concentrated 
at the dark side of the particle, the particles from the surrounding medium will push it 
toward the light source (negative photophoresis). (b) Positive photophoresis occurs when 
the illuminated side of the particle is hotter than the dark one. In this case the net motion 
of the particle is away from the source. (c) If the particle is illuminated symmetrically it can 
be trapped in a three-dimensional region of space.

Figure 6.2. 

Numerically calculated CR optical bottle beams obtained for (a) a circularly polarized 
input beam and (b) a linearly polarized input beam by using Eqs. [2.14]–[2.16]. � e 
bottle is fully closed for a circularly polarized incident beam and opened for a linearly 
polarized incident beam. � e hole in the top wall of the “bottle” is clearly visible. � e 
insets depict the principal cross sections of the light intensity distribution. (c) and 
(d) depict the loading of particles into the bottles. Here ρ0 = 10.
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point, the movement of the illuminated particle can be away from the light source or towards 
to it depending on its absorption properties.

First, let’s consider the case of a low absorbing spherical particle. In this case, most 
of the illuminating light is refracted and concentrated at the dark side of the particle. As a 
consequence, this side will be hotter than the illuminated one and the particle will move 
towards the light source. � is e� ect is known as negative photophoresis. Negative photophoresis 
can also occur if heat absorption over the particle’s surface is non-uniform, as sketched in 
Fig. 6.1(a). In contrast, if the particle is strongly absorbing, most of the illuminated light will 
be absorbed at the illuminated side of the particle and its interaction with the surrounding 
medium will result on a net force away from the source, being this case named as positive 
photophoresis, see Fig. 6.1(b). In addition, if heat transmission over the particle surface is 
non-homogeneous, the photophoretic force will be even more involved. In our work, we 
consider homogeneous carbon-coated spherical glass shells, so that most of particles su� er 
from positive photophoresis. For further reading on the photophoretic force, we recommend 
Refs. (Desyatnikov et al., 2009; Jovanovic, 2009). � e photophoretic force has been used as a 
speckle trap (Shvedov et al., 2010), to trap biological samples (Redding et al., 2015; Wang et 
al., 2015), combined with engineered vortex beams as a tractor beam (Shvedov et al., 2010; 
Shvedov et al., 2014) and demonstrated to also depend on the polarization of the illuminating 
source (Shvedov et al., 2014; Shvedov et al., 2012).

6.3. EXPERIMENTAL PROPOSAL

Our trapping scheme, which is based on the possibility of opening and closing in real 
time the optical bottle provided by the CR phenomenon when ρ0 ≡ R0/w0 ≫ 1, works as 
follows. Let’s consider the case of the CR optical bottle generated when the input beam passing 
through the biaxial crystal is circularly polarized, see Fig. 6.2(a). In this case the optical bottle 
will be completely closed in 3D and absorbing particles falling down inside the bottle will be 
repelled from the latter as sketched in Fig. 6.2(c). Obviously, there is a certain probability for 
the particles to pass through the light barrier and enter inside the bottle but such probability 
is very low. In contrast, a linearly polarized input beam impinging the crystal results in the 
loss of perfect cylindrical symmetry of the CR optical bottle. From the 3D point of view, this 
latter case results in the formation of a hole in the side of the otherwise perfect bottle beam, 
see Fig. 6.2(b).

� e angular position of null-intensity region can be varied by rotating the azimuth 
of the linear polarization of the input beam. If the latter coincides with the azimuth from 
the bottom part of the CR rings at the focal plane, a null intensity point at their top will be 
generated. � is would allow increasing the trapping e�  ciency, since absorbing particles will 
� nd an stable point at the bottom part of the CR rings, as shown in Fig. 6.2(c) and Fig. 6.2(d). 
Once a particle has been loaded inside the bottle, the latter can be closed by modifying the 
state of polarization of the input beam from linear to circular, which isolates the particle from 
the environment. Finally, reverting the state of polarization of the input beam to linear would 
enable opening a hole in the trap at a desired angular location to unload the particles.
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We tested experimentally the practical suitability of the above described optical bottle 
beams to trap of airborne microscopic particles. Our experimental proposal is rather simple, 
since only a half-waveplate (HWP), a quarter-waveplate (QWP) a focusing lens and a biaxial 
crystal is needed to generate the 3D trapping potential, see Fig. 6.3(a). � e light beam from 
a CW laser (λ = 532 nm, input power 100 mW) passes through a HWP and QWP and then, 
a� er focusing with 100 cm positive lens, propagates along the optical axis of a monoclinic KTP 
crystal (l = 10 mm and α = 10 mrad) cut perpendicular to one of its optic axes, giving ρ0 ≈ 12.
Light emerging from the crystal is imaged with a CCD camera. We start with a circularly 
polarized input beam to create a perfect, cylindrically symmetric optical bottle. In order to 
visualize the optical bottle the camera was translated axially with a 10 μm step and at each 
step the transverse light intensity distribution is recorded and stored in the computer. A sequence 
of 75 intensity slices is then used to reconstruct the full 3D structure of the bottle. � e result is 
depicted in Fig. 6.3(b). As expected, the CR beam forms an optical bottle with a dark central 
region entirely surrounded by light. � e transverse size and the length of the bottle could 
be adjusted by varying the collimating optics as well as the position of the crystal. � en, the 
mutual orientation of the fast axis between the HWP and the QWP is modi� ed to transform 
continuously the ellipticity of the input beam from 90º (circularly polarized) to 0º (linearly 

Figure 6.3. 

(a) Experimental set-up. A Gaussian-like input beam obtained at 532 nm and with 100 mW 
of power is focused by a lens (FL) parallel to one of the optic axis of a KTP biaxial crystal. 
Previously, the state of polarization of the input beam has been prepared by means of a 
half-waveplate (HWP) and a quarter-waveplate (QWP). Absorbing particles contained 
in a chamber are trapped at the generated CR optical bottle. An imaging lens (IL) and a 
CCD camera are used to image diff erent transverse planes along the beam propagation 
direciton. (b) and (c) are the reconstructed experimental 3D intensity distribution obtained 
for circularly polarized and linearly polarized input beams, respectively. Here ρ0 = 12.
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polarized). � e 3D light intensity distribution for the linearly polarized case is shown in Fig. 
6.3(c). � e light structure is no longer cylindrically symmetric, with the top wall of the bottle 
featuring an opening, in agreement with the theoretical prediction, see Fig. 6.2(b).

6.4. EXPERIMENTAL RESULTS

We used the experimental set-up and optical bottles depicted in Fig. 6.3 to demonstrate 
trapping and manipulation of airborne light absorbing particles. Such particles can be 
e�  ciently con� ned by employing the photophoretic force (Shvedov et al., 2011; Jovanovic, 
2009). As commented in Sec. 6.2, in this case the illumination of particles leads to their heating 
and nonuniform temperature distribution. Interaction with the surrounding air results in the 
appearance of the photophoretic force which tends to repel particles from the high intensity 
region. In our experiments with the optical bottle we used glass shells covered with a thin 
layer of carbon (around 200 nm thick) in order to enhance light absorption. � e external 
diameter of the shells ranged from a few to tens of micrometers. To prevent accidental air � ow 
from a� ecting the trapping the optical bottle was formed inside a transparent glass cell placed 
immediately behind the biaxial crystal. � e axially located CCD camera recorded images of 
the particles inside the optical bottle. In order to speed up the trapping process the spheres 
were made � oating in the air.

Figure 6.4. 

(a) Statistics of the particles size normalized to the radial dimensions of the trap. (b) 
Experimental images of hollow glass shells of diff erent size trapped inside the bottle 
beam. Particles diameter has been measured to be in the range 20–50 µm. Note that 
simultaneous trapping of two glass spheres is also possible. Here ρ0 ≈ 12, being the 
ring radius R0 ≈ 200 µm.
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We found that while a particle could be trapped using either a fully closed (circular 
polarization) or open (linear polarization) bottle, the loading process was much faster in 
the latter case. As the internal diameter of the bottle was rather large (200 μm) the bottle 
could accommodate a great variety of trapped spheres. In Fig. 6.4(b) we show examples of 
particles with di� erent size con� ned in the trap. Because of gravity they are all located at the 
bottom of the bottle. � e trapping was generally very robust, with the particles resting on 
the lower “wall”, although other stable trapping positions are also possible. However, we found 
that sometimes the trapped particles oscillated inside the trap with the oscillation frequency 
increasing with the trapping power. Such dynamics was observed in the case of trapping 
complex objects such as those formed by two connected glass spheres. Besides, in Fig. 6.4(a) it 
is shown an histogram with statistics on the particle size normalized to the radial dimensions 
of the trap, i.e., the diameter of the CR ring. � e size distribution is Gaussian-like, with an 
average normalized size of 0.23. � at is to say it is possible to e�  ciently trap particles of as big 
as the half of the CR ring radius R0.

� e ability to open or close the bottle at will by varying the polarization of the input 
beam gives a unique opportunity to use the opening in the bottle not only to easily trap 
micro-object but also to unload the trap. Such functionality is demonstrated in Fig. 6.5. � e 
image sequence represents various stages of closing the hole in the upper wall of the bottle 
while subsequently opening it in its bottom wall. It is clearly seen that the initially trapped 
sphere drops out of the trap under the e� ect of gravity when the hole in the bottom wall 
appears.

6.5. CONCLUSIONS

In summary, we have used the phenomenon of conical refraction of light to create an 
optical bottle for photophoretic trapping and manipulation of airborne particles. By changing 
the input beam polarization from circular to linear the light wall can be opened up to let 
the particles under study enter the otherwise almost impenetrable trap. If necessary, the trapped 
particles can later be released by rotating the plane of the linearly polarized input beam and 
thus adjusting the angular position of the exit opening in the trap. We have demonstrated 
the ability to perform such manipulations in ambient air with relatively large and heavy 

Figure 6.5. 

Experimentally recorded sequence of images illustrating unloading the trapped glass 
sphere from the optical bottle.
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absorbing glass shells, in the range of 20 μm–50 μm. Finally, we envisage that it would be very 
promising to combine the here presented technique with the results shown in Sec. 2.4 in order 
to recon� gure the CR optical bottle along the axial direction too, which could be used to vary 
dynamically the position of the trapped particles.
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In this Chapter we present two a novel proposals to trap ultracold neutral atoms and 
Bose–Einstein condensates (BECs) with dipole potentials generated with CR. 

On the one hand, we demonstrate optical trapping of ultra-cold atoms in a bluedetuned 
trap formed by the three-dimensional dark focus shown in Sec. 3.2. We present experiments 
on trapping a 87Rb BEC in this potential and derive the trapping frequencies and potential 
barriers under the harmonic approximation and the CR theory. On the other hand, we also 
present a novel approach for the optical manipulation of neutral atoms in the Poggendor dark 
ring of CR. We demonstrate both theoretically and experimentally that the Poggendor dark 
ring is con ned in three dimensions by regions of higher intensity. We derive the positions 
of the con ning intensity maxima and minima and discuss the application of the Poggendor 
ring for trapping ultra-cold atoms using the repulsive dipole force of blue-detuned light. 
We give analytical expressions for the trapping frequencies and potential depths along both 
the radial and the axial directions. Finally, we present realistic numerical simulations of the 
dynamics of a 87Rb BEC trapped inside the Poggendor ring which are in good agreement with 
corresponding experimental results.

� e organization of the Chapter is the following. In Sec. 7.1 we give an insight into atom 
trapping with red- and blue-detuned potentials based on the dipolar force. Sec. 7.2 and Sec. 7.4 are 
devoted, respectively, to discuss theoretically and demonstrate experimentally optical trapping of 
87Rb BECs in a blue-detuned 3D trap and in a bluedetuned light ring provided by CR.

� e research contained in this Chapter has been done in collaboration with Juan Polo, 
and Verónica Ahu nger from the Universitat Autònoma de Barcelona; and Johannes Küber, 
Felix Schmaltz and Gerhard Birkl from the Technische Universität Darm-stadt (TUD); and 
has been published in (Turpin et al., 2015 and Turpin, Küber, Schmaltz, Mompart and Birkl 
(Submitted to publication). � e reported experiments were carried out by the author at 
the laboratory of Prof. Birkl at the TUD during a three months stay that was  nanced by the 
Deutscher Akademischer Austausch Dienst (grant number 91526836).

7.1. INTRODUCTION

� e � eld of atomtronics is a key point to enable integrated matter-based quantum 
technologies such as quantum computation, quantum simulation and quantum metrology 
(Seaman et al., 2007; Olsen and Bradley, 2015). Light-assisted manipulation of matter by means 
of the  eld intensity gradient throughout the dipolar force is one of the main techniques used 
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in atomtronics. � e intensity gradient of a light � eld can be used to e�  ciently trap ultra-cold 
atoms and BECs, using either red- or blue-detuned light. In the former technique, atoms 
are trapped in the region of intensity maxima taking pro� t of light whose wavelength is 
smaller (red-detuned case) or larger (bue-detuned case) than the atomic two-level transition 
frequency. Red-detuned (bright) optical traps are the most widely used optical traps due to 
their simplicity, since only a tightly enough focused beam producing a strong intensity gradient 
is needed. A drawback of trapped atoms in attractive dipole potentials is that they su� er from 
di� erent energy shi� s depending on the state and intensity of the trap. � e � delity of high 
precision measurements based on dipole traps also su� ers from coherence loss caused by 
inhomogeneous di� erential light shi� s (Lundblad, Schlosser and Porto, 2010). In contrast, 
blue-detuned (dark) optical traps, allowing for a con� nement of atoms in an intensity local 
minimum, have signi� cantly decreased scattering rate and decoherence. � erefore, they are 
ideal candidates for highly sensitive experiments.

� e aim of this chapter is to demonstrate that both a 3D dark potential and a dark ORP 
generated with CR can be used to e� ciently trap BECs. Starting from the fundamental CR 
equations, we will obtain the trapping potentials and potential depths under the harmonic 
approximation. � en we will demonstrate experimental trapping of 87Rb BECs in these 
potentials.

7.2. TRAPPING OF BECS IN A 3D DARK FOCUS

Blue-detuned optical potentials are used in the manipulation of Rydberg states (Zhang, 
Robicheaux and Sa� man, 2011), atomic clocks (Takamoto et al., 2009), quantum information 
processing (Monroe, 2002) or Bose-Einstein condensation in uniform potentials (Gaunt et 
al., 2013). In the best ideal situation for blue-detuned optical traps, the local minimum where 
atoms are trapped has null intensity. If additionally this null intensity region is con� ned in 
three dimensions by regions of higher intensity, the light beam will form an optical bottle (Arlt 
and Padgett, 2000). Di� erent methods have been proposed to generate optical bottle beams, 
such as the interference of Laguerre–Gauss beams (Isenhower et al., 2009), surrounding a 
region of space in three dimensions with several beams (Rudy et al., 2001), crossing two or 
more vortex beams (Li et al., 2012) or by using optical C-cut uniaxial crystals (Shvedov et 
al., 2013). However, most of these methods have associated di� erent limitations such as the 
extreme precise control on the optical elements needed to generate and align the complex 
beams used or the fact that the intensity minimum is not exactly equal to zero (Zhan, 2009). 
In what follows, we exploit the 3D dark focus presented in Sec. 3.2 as a blue-detuned potential 
for atom trapping experiments. Firstly, we will derive the trapping frequencies and potentials 
depths under harmonic approximation, by using the CR theory presented in Sec. 2.2. � en 
we will report the experimental implementation of the CR 3D dark focus for the trapping of 
a 87Rb BEC.

7.2.1. � eoretical formulation for the 3D dark focus to atom trapping

Previously, it has been shown that for ρ0 = R0/w0 = 0.924 the CR beam forms a 3D dark 
focus, i.e., a null intensity point surrounded by regions of higher intensity in 3D space, as 
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Figure 7.1. 

(a) 2D density plot of the transverse pattern of CR at the focal plane for ρ0 = 0.924. 
(b) Corresponding 2D density plot in the z-x plane showing that for this value of ρ0 
the CR beam forms a 3D dark focus. Top insets plot the radial and axial transverse cross-
sections at z = 0 and x = 0, respectively.

shown in Fig. 7.1. Now, we will study the behavior of the CR beam at and around the origin, 
i.e., for r = (ρ ≈ 0, Z ≈ 0), and we will derive the trapping frequencies and potential depths 
using the harmonic approximation. � e dipolar potential trapping that it will be considered is 
(Grimm, Weidemüller and Ovchinnikov, 2000):

( ) ( ) 0r r ,U I U= −   [7.1]
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  [7.2]

Note that in 0 0U  we have applied the rotating-wave approximation and we consider the 
case of Alkali atoms. c is light’s velocity in vacuum,  ΓDi and ωDi (i = 1, 2) are, respectively, 
the natural line width and frequency of the Di line of the atomic specie used, and ωL is the 
frequency of the input beam. In our case, I(r), is given by Eqs. [2.12]–[2.14].

Radial direction

� e Taylor expansion of the Bessel function of order α, Jα (x), around x = 0 can be written 
as follows:
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where  Γ (t) = 1

0

t xx e dx
∞

− −∫ is the well known gamma function. Under this expansion and for 

an input beam of transverse fundamental Gaussian pro� le, Eqs. [2.12] and [2.13] become:
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where we have considered a Gaussian input beam with normalized transverse pro� le of the 
electric � eld amplitude E(ρ) = E0 exp (− ρ2) and corresponding Fourier transform a (η) = E0 

exp (-η2/4), being E0 = 2
02

P
πω , P the power of the input beam and w0 its waist radius. Eqs. (7.4) 

and (7.5) can be analytically solved, obtaining the following expressions:
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where 1F1(a; b; z) is the Kummer confluent hyper-geometric function. This formulation 
can be used for any value of ρ0 as long as the point of intensity minimum remains at ρ = 0. 
Note that the minimum intensity point ρmin will depend on the value of ρ0. For the 3D dark 
focus (ρ0 = 0.924), ρmin = 0. We have found that close to ρ = 0, the term k = 0 approximates well 
to the original CR beam without approximation. In contrast, to describe appropriately the 
position of the radial maximum, up to the term k = 4 must be considered. For the harmonic 
approximation, only up to second order terms are required. Since the intensity of the CR 
beam for a circularly polarized input beam is given by Eq. [2.14], it is enough to keep the 
k = 0 terms of the series in Eqs. [7.7] and [7.8]. In this case, the intensity of the CR beam reads 
as follows:
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� e � rst term in Eq. [7.9] is an o� set of the potential that appears when one moves out axially 
from the focal plane, as shown at the top inset of Fig. 7.1(b). As a consequence, trapping 
atoms out of the focal plane can increase the scattering rate of photons. � e second term 
(a� er the ‘+’) is the one that must be taken into account to obtain the trapping frequency of 
the potential. By using the harmonic approximation, the trapping frequency along the radial 
direction at any Z, ωr (Z), is:
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 [7.10]

where m is the atomic mass. Note that, in the axial direction this approximation is only valid 
in the region where the optical bottle is formed, i.e., for Z  [−1.388, 1.388]. Additionally, note 
that in Eq. [7.13], we have undone the normalization of the radial coordinate, i.e., we have 
replaced ρ by r/w0.
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As commented above, the potential barrier along the radial direction, i.e., at the point 
r = (ρ = 1.1, Z = 0), is not well described by the harmonic approximation and it must be 
evaluated by taking terms k > 4 in Eq. (7.9). Its value is:

( ) 0 2
0

1.1, 0 0.80 ,
2

PU Z U
w

ρ
π

= = = ×   [7.11]

Axial direction

For completeness, we will study also the trapping con� nement along the axial direction. 
In this case, a compact expression for any value of ρ0 cannot be obtained since the minimum 
radial intensity point depends on it. For our case of interest, the point of minimum intensity 
is at ρ = 0. Here, the approximation from Eq. [7.3] used before is not needed since J1(0) = 0 
and J0(0) = 1 and, as a consequence B1 (ρ = 0, Z) = 0. � erefore, the light intensity is solely 
described by B0 as follows:
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where D(x) is the Dawson function. � e second order of the Taylor expansion of this 
analytical solution leads to the following expression for the trapping frequency (ωz) along the 
axial direction:
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 [7.13]

� e potential barriers along the axial direction, i.e., at r = (ρ = 0, Z = ±1.388) can be 
obtained directly from Eq. [7.13]. � eir values are:
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π
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7.3. EXPERIMENTAL TRAPPING OF A 87RB BEC IN THE 3D DARK FOCUS

� e experimental set-up is presented in Fig. 7.2. A 90º mutually intersected pair of 
beams (not shown in the set-up) forming a crossed optical dipole trap is used to create a 
BEC of 25000 87Rb atoms in the center of the vacuum chamber. � e crossing plane of the two 
beams is in the direction perpendicular to gravity. � e light of the CR potential is obtained 
from a tunable Ti: Sapphire laser at λCR = 792.55 nm, providing a power of PCR = 24 mW 
inside the vacuum chamber. To generate the 3D dark focus potential, we align the focused 
input beam with waist radius of 42.7 μm and Rayleigh length zR = 5.42 mm along one of the 
optic axis of KGd(WO4)2 biaxial crystal by using a lens F1 of 150 mm focal length. A half-
waveplate (HWP) and a quarter-waveplate (QWP) are used to ensure the state of polarization 
of the input beam to be circular. A pinhole before the focusing lens F1 is arranged in order to 
increase the spatial coherence of the input beam and ensure its Gaussian transverse pro� le. 
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� e KGd(WO4)2 crystal has a length of l = 2.2 mm, a conicity of α (λ = 792.55 nm) = 17.6 
mrad and, therefore, R0 = 37.4 μm.  is value, together with the measured w0, gives ρ0 = 0.88, 
which is close to the theoretical value ρ0 = 0.924 for the 3D dark focus. � e transformed CR 
pattern appears at the focal plane of the system. Lenses F2, F3, F4 and F5 are used in telescope 
con guration to re-image the focal plane into the vacuum chamber on top of the crossed 
dipole trap. � is re-imaging system de-magni� es the CR potential by a factor of 0.75, so that 
the � nal radius of the CR ring and of the focused beam are 0R¢  = 28.1 μm and 0w ¢  = 32.0 μm, 
respectively.

� e radial direction of the 3D dark focus is in a plane perpendicular to gravity. Since the 
con� nement provided by the 3D dark focus depends on zR, a large quantity of power would 
be required to trap atoms against gravity along the axial direction. For this reason, we use an 
additional red-detuned sheet of light generated by means of a cylindrical lens that focuses 
a Gaussian beam to hold atoms against gravity. For the light-sheet, we use light obtained 
from a diode laser at λLS = 783.55 nm, with a power of PLS = 137mW. � e waist radius of the 
focused beam in the axial direction of the system is wZ = 26.2 μm. All these parameters yield 
a measured trapping frequency of ωZ = (169 ± 2)Hz. � is measurement was done by loading 
a BEC into the light sheet potential and switching it o�  for 300 μs. � en, the light sheet was 
switched on again and we could observe the velocity of oscillation of the atoms in the potential 

Figure 7.2. 

Experimental setup for the creation of a 3D dark focus potential based on CR. � e 
CR ring potential (λ = 792.55 nm) is oriented horizontally. Vertical confi nement is 
achieved by a horizontally oriented red-detuned light sheet (λ = 783.55 nm). � e 
re-imaging system de-magnifi es the CR beam by a factor of 0.75. F1 = 150 mm, F2 
=F3 =F4 = 400 mm, F5 = 300 mm, HWP = half- waveplate, QWP = quarterwaveplate, 
NPBS = non-polarizing beam splitter. � e inset is a density plot of an experimentally 
trapped 87Rb BEC (image size 2 mm × 2 mm) with our set-up.
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induced by gravity. As a summary, our 3D optical trapping potential is formed by the dark 
focus with blue-detuned light, allowing for con� nement in the radial direction, and for the light 
sheet with red-detuned light, allowing for con� nement in the axial direction. � e loading of the 
BEC into this potential is performed adiabatically, i.e., the crossed dipole trap is switched o 
slowly while the CR potential and the light sheet are switched on. � e total duration time of 
the process is 40 ms. Inset in Fig. 7.2 shows experimental atomic density images of a 87Rb BEC 
in this trapping con� guration.

To measure the trapping frequency of the 3D dark focus potential we used the optical 
lattice to give a momentum of 2ħk to the trapped atoms and measure their velocity for di� erent 
oscillation times. We found a trapping frequency of ωR = 2 × (283 ± 16) Hz. � e experimental 
error is due to the azimuthal asymmetry of the potential heights.

To measure the potential heights of the blue-detuned dark focus trap, we used an optical 
lattice that accelerated the trapped atoms in a direction parallel to the lightsheet beam. In our 
experimental arrangement, both arms of the optical lattice could be modi� ed independently 
both in intensity and frequency, resulting this in a moving optical lattice. More details about 
the optical lattice used can be found in (Küber, 2014). � e dark focus point of the CR potential 
was positioned on top of the crossing point of cross-dipole trap in order to accelerate the atoms 
against the light walls of the dark focus potential. Atoms were accelerated with a momentum of 
2ħk and we took measurements on the atom number that le�  the potential as a function of its 
power. � e potential height is found when only half of the atoms can leave the potential. � e 
measured potential height of the 3D trapping potential in the radial direction was Ur = 25ER, 
where ER is the recoil energy (ER/ħ = 2 × 3.77 kHz in our experiments). For the experimental 
parameters used in our experiment, the corresponding calculated trapping frequency is ωr 
(ρ0 = 0.88, Z = 0) = 2 × (284)Hz, which is in complete agreement with the measured trapping 
frequency. With respect to the calculated potential barrier, we have obtained a theoretical 
value of U(ρ = 1.1, Z = 0) = 31ER, which slightly di� ers with the corresponding measurement. 
� is can be associated to the asymmetry of the maximum along the azimuthal direction in 
the experimental potential.

7.4. BLUEDETUNED OPTICAL RING TRAPS FOR BECS BASED 
ON CONICAL REFRACTION

Optical ring potentials (ORPs) with axial symmetry are considered as basic building 
blocks and the simplest nontrivial closed-loop circuits in atomtronics (Seaman et al., 2007; 
Pepino et al., 2009; Ruschhaupt and Muga, 2004; � orn et al., 2008 and Stickney, Anderson 
and Zozulya, 2007) and atom interferometry (Cronin, Schmiedmayer and Pritchard, 2009). 
Atoms can be trapped by means of the optical dipolar force in high or low intensity regions 
with red-detuned (Stamper-Kurn et al., 1998 and Barrett, Sauer and Chapman, 2001) or blue-
detuned (Ozeri, Khaykovich and Davidson, 1999) light, in what follows called bright and dark 
potentials, respectively. On the one hand, bright ORPs have been proposed and demonstrated 
with high-azimuthal-order Laguerre–Gaussian (LG) beams (Wright, Arlt and Dholakia, 
2000) and also with annular microlenses (Birkl et al., 2001; Müther et al., 2005). Azimuthal 
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lattices within ORPs have been demonstrated with time orbiting of light beams (Schnelle 
et al., 2008); Houston, Riis and Arnold, 2008) and by interference of LG beams of di erent 
azimuthal orders (Franke-Arnold et al., 2007). A one-dimensional stack of ORPs in a line has 
been proposed in an optical cavity (Freegarde and Dholakia, 2002) and demonstrated with 
axicon beams (Courtade et al., 2006). Experimental storage and propagation of ultra-cold 
atoms and BECs in bright ORPs have been reported recently (Ryu et al., 2007; Ramanathan et 
al., 2011). Dark ORPs on the other hand are optical � elds with an annular region of minimum 
intensity (Olson et al., 2007), such as closed-loop optical singularities (Berry and Dennis, 
2001; Dennis et al., 2010), for which the region of minimum intensity is exactly zero. For 
ultra-cold atoms, dark ORPs have the advantage of substantially reducing atom heating 
and decoherence rates (Ozeri, Khaykovich and Davidson, 1999) because of the low rate of 
spontaneous photon scattering as well as producing intrinsically � at potential minima. Blue-
detuned ORPs have been experimentally reported by means of LG beams generated with 
spatial light modulators (SLMs) (Yakimenko et al., 2013) and by amplitude masks (Corman 
et al., 2014; Lee and Hill, 2014; Eckel et al., 2014). � ese two techniques might experience the 
following limitations: (i) a signi� cant fraction of the input power is lost and, therefore, it does 
not contribute to create the optical trap, (ii) the smoothness and, therefore, the quality of the 
trapping potential is limited by the size and number of pixels for the SLMs and the resolution 
of the printing system for the amplitude masks, and (iii) an accurate control on the position 
and alignment of the optical elements being used is required. As a consequence, these two 
techniques yield typically not null intensity minima. Producing ORPs with zero-intensity 
annular regions both along the radial and axial directions is a challenging task. In this case, 
the dark potential forms a toroidal dark focus, i.e., a region of minimum intensity con� ned 
by higher intensities (light walls) both in the axial and radial directions. A toroidal dark focus 
has only been demonstrated using a superposition of two LG beams (Olson et al., 2007).

In this section, we present a new method to generate a dark ORP by means of the 
Poggendor dark ring (PDR) of CR. We theoretically investigate the three-dimensional (3D)  
� eld distribution around the CR PDR and show both theoretically and experimentally that 
it is a toroidal dark focus. We also discuss the use of the PDR as a blue-detuned ORP for 
ultracold atoms and demonstrate this for a 87Rb BEC.

7.4.1. Asymptotic solution close to the Poggendorff  dark ring

� e asymptotic solution for the Poggendor dark ring, i.e., for 0
0

0

R
w

ρ =  ≫1, is obtained 

by using the asymptotic expansion of Bessel functions: cos (ηρ0) J0 (ηρ) ≈ sin (ηρ0) J1 (ηρ) ≈ 
cos (ηξ − π/4) 02 .πηρ  Here we have centered the normalized radial component in cylindrical 
coordinates at ρ0 by using  ξ ≡ ρ − ρ0 = r/w0 −R0/w0. In this case BC ≈ BS and the electric � eld 
can be written as (Belskii and Khapalyuk, 1978; Belsky and Stepanov, 1999):

E(ξ, Z, φ) = f (ξ, Z) E0 (eCR . e0) eCR, [7.15]
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� erefore, the asymptotic intensity distributions a
CPI  and a

LPI  for CP and LP input beams are, 
respectively,
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In the following we will analyze the case of a CP input beam, for which the CR output 
intensity is azimuthally symmetric and its spatial distribution is described by Eq. [7.18]. For 
the Gaussian input beam considered in the previous section, Eq. [7.16] can be analytically 
evaluated through the Kummer con� uent hyper-geometric function 1F1(a; b; z) (Berry, 2004):

Figure 7.3. 

Normalized CR intensity for a CP Gaussian input beam as given by Eq. [7.20] along 
the radial direction (a) at the focal plane and (b) along the axial direction at the radial 
position of the PDR (ξ = ξ0). Blue solid circles represent experimental data with an 
experimental uncertainty of 5 % along both axis.

Table 7.1. Positions of the Poggendorff  dark ring and of the maxima in the radial 
(ξ±) and axial (Z±) directions

Point name ξ (w0) Z (zR)

Dark Ring: ξ0  -0.541 0

Bright Rings: ξ+ 0.390 0

ξ− -1.235 0

Maxima along Z: Z± -0.541 ±1.519
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Figure 7.4. 

(a) Normalized light intensity in three dimensions near the PDR. (b) 2D contour 
density plot near the PDR of the normalized light intensity calculated from Eqs. [7.18] 
and [7.20] and for ρ0 = R0/w0 = 20. Color map: black = null intensity, white = high 
intensity.
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� e solid line in Fig. 7.3(a) shows the square modulus of Eq. [7.20] at the focal plane (Z = 
0). f (ξ0, 0) = 0, gives the radial position of the Poggendor dark ring at the focal plane, being  ξ0  
= −0.541. In other words, the radius of the PDR is smaller than the geometric approximation 
of the CR ring, R0, by approximately half the waist of the input beam. Note that  ξ = ρ − ρ0, 
with ρ0 ≡ R0/w0. In the radial direction the PDR is con� ned by two maxima at ξ+ = 0.390 and 
ξ+ = −1.235, respectively (see Table 7.1). Along the Z direction, the lowest intensity barrier is 
observed also at the radial position of the PDR, i.e., at ξ = ξ0 as shown in Fig. 7.3(b). At this 
radial point the positions of the intensity maxima along Z obtained from Eq. [7.18] and [7.20] 
are Z± = ±1.519. � erefore, the PDR is con� ned by walls of light in all directions and forms 
a toroidal dark-focus. Table 7.1 presents the positions of the PDR and of the maxima in the 
radial (ξ±) and axial (Z±) directions. As a visualization of the toroidal dark trap provided by 
the PDR of CR, Fig. 7.3(a) shows the three-dimensional distribution of light intensity of the 
asymptotic approximation of the BKB solution near the focal plane. Fig. 7.3(b) is a contour 
plot near the PDR, con� rming that it is a region of low intensity surrounded in all directions 
by regions of higher intensity. Note that the PDR is an exact null intensity region only for input 
Gaussian beams under the asymptotic approximation, i.e., for ρ0 ≫ 1, while non-zero intensity 
radial minimum points are found out of the paraxial approximation, as reported in Chapter 3.
For input beams with di� erent transverse pro� le the CR pattern may change (Peet, 2011; Darcy, 
McCloskey, Ballantine, Lunney, Eastham and Donegan, 2014).

We have experimentally checked that near the PDR the light intensity increases in all 
directions, see blue solid circles in Fig. 7.4(a) and Fig. 7.4(b). � ese experiments on the CR 
PDR were carried out using a CP focused input Gaussian beam (w0 = 40 μm, zR = 7.9 mm) at 
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λ = 640 nm and a KGd(WO4)2 biaxial crystal (cross-section 6×4 mm2, l = 28 mm, α = 16.9 
mrad) cut perpendicular to one of the optic axes (entrance surface parallelism better than 10 
arc seconds) yielding a CR ring of R0 = 475 μm (ρ0 ≈ 12).  e transverse light patterns at and 
around the focal plane were recorded with a CCD camera.

7.4.2. Harmonic potential approximation

We consider the same potential as described by Eq. [7.1] and Eq. [7.2] where I(r) is 
given by Eq. [7.18] and Eq. [7.20]. By using the harmonic approximation, we have obtained 
the following expressions for the corresponding radial (ωr) and axial (ωz) trapping frequencies 
of the PDR (ξ = ξ0, Z = 0)
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r z
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=


 [7.21]

with the numerical constants Ar (Z = 0) = 4.63 and Az = 0.34. Eq. [7.21] is obtained by 
expanding Eq. [7.20] in Taylor series, introducing it into Eq. [7.18] and considering the ξ2 

coe�  cient.

Note that from Eqs. [7.18], [7.20], and [7.21] for a given CR set-up, i.e., for a � xed R0 

and w0, the trapping frequencies and the maxima of the potential barriers can be tuned by 
modifying the power P and the frequency ωL of the input beam. We have obtained that at the 
focal plane the maxima of the potential barriers are described by

( ) 0 2 2
0 0

,0 ,
4

PU C U
w

ξ
π ρ± ±=   [7.22]

where C+ = 2.54 (outer bright ring) and C− = 0.541 (inner bright ring).

� ere can be other experimental situations however, where it is required to work outside 
the focal plane, for instance in experiments where a more symmetric potential is needed, such 
as the one shown with a solid line in Fig. 7.5(a), where the radial intensity distribution close 

Figure 7.5. 

(a) Profi le of the trapping potential at Z = 0, i.e., at the focal plane (dashed curve), 
and at Z = 4 (solid curve) where the inner and the outer bright rings of CR have equal 
maximum intensity. (b) Coeffi  cient Ar as a function of Z. � e analytical expression for 
the Ar (Z) is given by Eq. [7.23].
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to the PDR is shown for the focal plane (Z = 0) and the plane Z = 4. In these cases, Eq. [7.21] 
can be utilized to calculate the trapping frequency of the potential at any axial position Z by 
just replacing Ar (Z = 0) by

( ) 2

8.8170.051 .
1.873 2.307rA Z

Z
= − +

+
 [7.23]

Figure 7.5(b) presents the dependence of Ar (Z) on Z. Note that outside the focal plane an 
o� set to the potential is occurring, since the minimum intensity point is no longer of null 
intensity as plotted for Z = 4 as solid line in Fig. 7.5(a). We have found that this non-zero 
minimum intensity point can be taken into account by means of the optical potential along 
the axial direction,

( ) 2
0 0 2 2

0 0

, .
4

PU Z U Z
w

ξ
π ρ

= 
 [7.24]

� e con� ning maxima along Z are not well described by the harmonic approximation 
and must be evaluated using Eqs. (7.18) and (7.20). � ey read

( )0 0 2 2
0 0

, 0.17
4

PU Z U
w

ξ
π ρ

=   [7.25]

7.4.3. Numerical simulations of a BEC of 87Rb atoms

To demonstrate the applicability of the PDR for ultra-cold gases, now we discuss the 
two-dimensional (2D) evolution of a BEC of 87Rb atoms con� ned in an annular geometry 
within the focal plane by using the PDR of CR and a strong additional con� nement along 
the axial direction so that axial ωr. Such con� nement can be achieved by using an additional 
red-detuned sheet of light (e.g., generated by focusing a Gaussian beam with a cylindrical 
lens as shown in Fig. 7.2) to compensate for the weak axial con� nement as well as, in case of 
a horizontal ring plane, the e� ect of gravity. We use the 2D Gross–Pitaevskii equation (GPE) 
in order to study the dynamics of the BEC along the ring potential:

( ) ( ) ( ) ( )extr r r r
2

2 2
2, | , | , ,

2 Di t V t t
t m

 ∂
Ψ = − + + Ψ Ψ ∂  



 Ñ g  [7.26]

where Vext (r) is the external potential, g2D = 2ħasN 2 ,z

m
ω

π
  as is the scattering length, ωz is 

the frequency of the con� ning potential in the axial direction, m is the mass of the 87Rb atoms 
and N is the number of atoms.

In our simulations, we consider trapping close to the D2 and D1 lines of 87Rb. � ese lines 
possess natural line widths of   ΓD2 = 2π × 6.07 MHz and  ΓD1 = 2π × 5.75 MHz and frequencies 
of ωD2 = 2π × 384.23 THz and ωD1 = 2π × 377.11 THz, respectively. � us, to calculate the 
trapping frequencies and the maxima of the potential barriers is straightforward by using 
Eqs. [7.2], [7.21], [7.22], and [7.25]. Based on the experimental parameters of (Küber, 2014), 
for a biaxial crystal yielding a CR ring of R0 = 170 μm, an input beam waist w0 = 18 μm, a 
light frequency of ωL = 2π × 378.40 THz and a laser power P = 27 mW, at the focal plane, the 
maxima of the potential barriers and trapping frequencies are, respectively, U(ξ– , Z = 0)/kB = 
280 nK, U(ξ+ , Z = 0)/kB = 1314 nK and ωr = 2π × 265 Hz, where kB is the Boltzmann constant.
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Figure 7.6(a) shows the numerical simulation for a 87Rb BEC, with scattering length 
as = 5.45 nm, of N = 12,000 atoms trapped in a blue-detuned harmonic annular potential 

21
2r rV mω=  (r − (R0 − 0.541w0))2 with radial frequency ωr = 2π × 265 Hz calculated using 

Eq. [7.21]. Our numerical simulations are based in the following loading process: the BEC is 
created in a cross-dipole trap, see e.g. (Lauber et al., 2011), and loaded into the red-detuned 
sheet of light. We consider that both the cross-dipole trap and the red-detuned sheet of light 
lie in a common plane orthogonal to the gravity � eld. � e PDR potential, which also lies in the 
plane orthogonal to the gravity � eld, is placed tangent to one of the beams of the cross-dipole 
trap, see Fig. 7.6(c). � e beam from the cross-dipole trap that is tangent to the PDR is switched o�  
as the CR PDR potential is switched on, in an adiabatic process. Finally, the remaining beam 
from the cross-dipole trap is switched o�  and the BEC expands in the CR PDR potential. We 
plot the atomic density of the BEC a� er 30 ms of expansion in the annular potential. In order to 
reduce the transverse excitations, the loading of the BEC into the CR ring potential has been 
performed adiabatically (in our case during 20ms) as reported in (Küber, 2014). Fig. 7.6(b) 
shows the corresponding experimental density distribution a er 30 ms expansion of a 87Rb 
BEC trapped in the real CR PDR. � e CR PDR was placed perpendicular to gravity and a sheet 

Figure 7.6. 

(a) Plot of the atomic density from the numerical simulation of a trapped 87Rb BEC 
after 30 ms of expansion in the ring Vr = 21

2 rmω (r − (R0 − 0.541w0))2, with the frequency 
ωr = 2π × 265 Hz being calculated using the harmonic approximation. Parameter values 
used for the simulation: R0 = 170 µm, w0 = 18 µm, P = 27 mW, wz = 2π × 500 Hz, 
as = 5.45 nm and N = 12,000 atoms. (b) Experimental density distribution of a trapped 
87Rb BEC in the CR ring potential using the same experimental parameters as for 
the numerical simulation, with the exception of the axial confinement, that was 
made using a red-detuned Gaussian beam focused with a cylindrical lens, providing 
a measured trapping frequency of ( )exp 2 169 2 Hz.zω π= × ± � e measured radial trapping 
frequency provided by the CR PDR was ( )exp 2 300 20 Hzrω π= × ±  Numerical simulation 
under the same conditions as in (a) but including the scattering induced by the 
position spreading during detection. Each fi gure is 600 µm × 600 µm. Color map: 
dark blue (red) corresponds to null (high) intensity. White dashed lines in (c) indicate 
the position of the cross-dipole trap with respect to the PDR, being both of them 
orthogonal to the gravity fi eld. � e waist radius of each beam from the cross-dipole 
trap is 25 µm.
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of light generated by focusing a Gaussian beam with a cylindrical lens was used to hold atoms 
against gravity. � e corresponding measured trapping frequencies are ( )exp 2 300 20 Hzrω π= × ±
and ( )exp 2 169 2 Hz.zω π= × ±

� e major discrepancy between experimental and numerical density plots is found in 
the radial width of the BEC. In the ideal case Fig. 7.6(a), the e� ects of broadening due to  
� nite optical resolution and photon scattering of the detection light have not been considered 
to obtain the plot, which shows a BEC with a width of 3 μm. In contrast, the experimental 
image from Fig. 7.6(b), which shows a BEC with a width of 25 μm, was obtained by using 
red-detuned light (λill = 780 nm, Pill = 0.25 mW) to illuminate the BEC during a time of till = 
200 μs. For this illuminating light we have calculated a scattering rate   Γsc = 3.29 × 106 s−1 that, 
together with the recoil velocity of vrec = 5.89 mm/s, increases the width of the atomic cloud in 
the radial direction by 21.89 μm during the illumination time. Figure 7.6(c) shows the same 
numerical simulation as Fig. 7.6(a) where we have taken into account now the increase of the 
width produced by the detection process. Now, numerical simulation and experimental result 
agree well.

In order to further con� rm the validity of the harmonic approximation, we also studied 
the ground state of the BEC trapped in the toroidal dark-focus (see Fig. 7.7). � e physical 
system considered has the following parameters: R0 = 170 μm, w0 = 18 μm, P = 27 mW, wr = 
2π × 265 Hz, as = 5.45 nm and N = 12,000 atoms. � e toroidal dark trap is placed orthogonal 
to gravity and, to provide con� nement along the axial direction, we have considered a sheet 
of light analogous to the one discussed in (Küber, 2014) with a trapping frequency wz = 2π × 
500 Hz. � e plots represent a section of the wave-function probability in the radial direction 

Figure 7.7. 

Radial sections of the atomic density of the BEC (a) before and (b) after 30 ms of 
azimuthal expansion of the BEC trapped in the harmonic potential 21

2r rV mω= (r − (R0 − 
0.541w0))2 (black-dashed line) and in the Poggendroff  dark ring of CR (red-solid line). 
Black-dashed and red-dotted lines are the corresponding trapping potentials. Parameter 
values: R0 = 170 µm, w0 = 18 µm, P = 27 mW, wr = 2π×265Hz, wz = 2π×500 Hz, 
as = 5.45 nm and N = 12,000 atoms. � e ground state (a) is obtained by adding an 
extra confi nement (wazi = 2π×265 Hz) in the azimuthal direction in order to reproduce 
the loading of the BEC in the CR ring trap.
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at the peak value of the density. � e red-solid line in Fig. 7.7(a) shows the ground state wave-
function probability of the BEC trapped in the PDR potential (represented by the red-dashed 
line), while the black-solid line is the ground state of the BEC trapped in the harmonically 
approximated potential (represented by black-dashed line) equivalent to the PDR. To provide 
con� nement in the azimuthal direction, an extra beam yielding a trapping frequency of wazi 

= 2π × 265 Hz is included. We have found a 0.7% of relative di� erence between the energies 
of the two ground states. Figure 7.7(b) presents the BEC wave-function probability a� er 
30 ms of expansion within the harmonically approximated ring potential (black-solid line) 
and within the real PDR potential (red-solid line). Black- and red-dashed lines represent 
the harmonic ring potential and the PDR potential, respectively. In this case, the relative 
di� erence between both wave-function probabilities is negligible. � ese results con� rm the 
good agreement between the harmonic approximation derived above and the original PDR.

7.5. CONCLUSIONS

In this Chapter we have proposed and demonstrated two blue-detuned novel optical 
potentials based on CR for atomtronics experiments. On the one hand, we have demonstrated 
the experimental implementation of a blue-detuned 3D trap obtained from a single beam 
and a biaxial crystal. We have derived simple expressions for the trapping frequencies and 
potential barriers in three dimensions as a function of typical experimental parameters. 
Both experimental measurements and predicted results are in complete agreement with 
each other. In our case, the 3D dark focus beam was arranged with the beam propagation 
direction parallel to gravity. Since the axial con� nement o� ered by such optical potential is 
not enough to compensate gravity, an additional trapping potential was needed to con� ne in 
this direction was needed. However, the 3D dark focus can be used as a blue-detuned optical 
trap with a single beam by arranging the light potential in a plane orthogonal to gravity. One 
of the advantages of our technique is that CR provides the full conversion of the input power 
into the 3D dark focus and avoid di� raction losses, in contrast to other methods based on 
spatial light modulators (SLMs), for instance, which introduce losses due to di� raction in the 
generation of LG beams. Moreover, biaxial crystals can be transparent to an extremely wide 
spectral range (Darcy et al., 2013) (0.35 μm-5.5 μm in KGd(WO4)2, for instance), at variance 
with SLMs which only work in a short spectral range usually of few hundreds of nm. � se 
features make the 3D dark focus beam very attractive for particle manipulation (Turpin et al., 
2013; Shvedov et al., 2014) and atom (Monroe, 2002 and Birkl et al., 2001) trapping. We would 
like to note that if instead of a Gaussian input beam, an elliptical beam was used, the 3D dark 
focus would lead to a pair of elliptical beams divided by a thin dark region. � is con� guration 
could be used as a dark sheet potential. Also, a combination of the 3D dark focus with an array 
of micro lenses (Müther et al., 2005 and Schlosser et al., 2011) would lead to the generation 
of a 2D array of 3D dark traps of signi� cant interest in atom trapping for quantum computing 
experiments. Finally, the interference of the 3D dark focus with a plane wave along the beam 
propagation direction would generate a 1D stack of doughnut-like beams, ideal for quantum 
many-body experiments (Courtade et al., 2006).

On the other hand, we have demonstrated that the Poggendor dark ring of CR obtained 
for ρ0 ≫ 1 is a good candidate for matter-wave experiments requiring annular geometries. 
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We have found the positions of the bright and dark rings of CR and the position of the two 
points with maximum intensity along the beam propagation direction, both experimentally 
and analytically. Besides, we have shown that the radius of the PDR is smaller than the optical 
geometric approximation of the CR ring radius R0, by approximately half the waist radius of 
the input beam (−0.541w0 in Table 7.1). All previous related works (Belskii and Khapalyuk, 
1978; Belsky and Stepanov, 1999; Bela� al, 2000; Berry, 2004 and Berry and Je� rey, 2007) were 
performed considering that the radius of the PDR exactly coincided with R0. � e reported 
results show that the PDR is enclosed by higher intensity walls both in the radial as in the 
axial directions, i.e., it is a toroidal dark-focus in all three dimensions, at variance with other 
light beams possessing only radial con� nement, such as Laguerre–Gaussian modes. We have 
applied the harmonic approximation around the PDR and we have derived the expression 
for the radial and axial trapping frequencies and the maxima of the potential barriers for 
bluedetuned light as a function of common experimental parameters such as beam power, 
beam waist, detuning and the parameters of the crystal. � e reported results show the 
suitability of the PDR for trapping ultra-cold atoms with blue-detuned light, making this 
technique ideal for experiments where well-de ned potentials and high intensity beams are 
required (Olson et al., 2007; Ozeri, Khaykovich and Davidson, 1999; Wright, Arlt and Dholakia, 
2000; Birkl et al., 2001). � erefore, as a proof of the usefulness of the derived theory we have 
performed numerical simulations of the dynamics of a trapped 87Rb BEC with N = 12000 
atoms in the dark ring potential using the harmonic approximation and have compared the 
obtained results with the solution of the original CR light � eld. We have also compared the 
ground states in both cases and we have found 0.7% relative di erence in energy between 
them. � e numerical simulations agree well with the experimental results on the dynamics 
of a trapped 87Rb BEC in the PDR of CR. In addition to the advantages commented above 
in terms of power e� ciency and beam quality, the minimum (and practically null) intensity 
circle o� ered by the toroidal dark trap avoids photon scattering and presents no corrugation 
of the potential minimum at the focal plan, at variance with techniques based on LG beams 
(Yakimenko et al., 2013) or amplitude masks (Corman et al., 2014; Lee and Hill, 2014 and 
Eckel et al., 2014). A range of applications of this technique can be envisioned: for optimized 
beam geometries, i.e., small w0, R0, and zR, the toroidal dark focus of the PDR generated by CR 
could be used to built an all-optical trap for BECs using a single beam. Under such conditions, 
this potential could be used as a basic element in atomic SQUID experiments (Wright et al., 
2013 and Ryu et al., 2013), as well as to study the dynamics of matter waves with periodic 
boundary conditions and the generation of persistent currents (Ramanathan et al., 2011; Ryu, 
Henderson and Boshier, 2014). For large R0, the PDR can be used as a dark 2D ring potential 
by using a 1D light sheet, along the axial direction, as an additional con ning potential. � is 
con� guration would allow to study wave-packet interference in a mesoscopic ring simulating 
a quasi-one-dimensional system. By modifying this 1D light sheet to a blue-detuned double 
layer also accessible via CR (Turpin et al., 2013; Loiko et al., 2013) again a fully blue-detuned 
dark trap geometry with added � exibility is generated. Additionally, a radial optical lattice 
could be generated by means of a cascade of biaxial crystals, generating 2N−1 dark rings for a 
cascade of N biaxial crystals (Turpin et al., 2013 and Berry, 2010). � is could be also combined 
with the technique shown in (Turpin et al., 2012) to generate an azimuthal optical lattice with 
controllable number of nodes and separation between them, applicable in quantum-many 
body systems experiments (Amico, Osterloh and Cataliotti, 2005 and Lewenstein, Sanpera 
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and Ahu� nger, 2012). Also interesting is the possibility of using the PDR to coherently 
injecting, extracting, and velocity  ltering of particles, ultra-cold atoms and BECs as reported 
in (Turpin et al., 2013; Loiko et al., 2014) by tuning the polarization of the input beam and 
opening/closing the ring potential. Finally, we would also like to note that by switching to 
red-detuned light, the inner and outer bright rings around the PDR generate an intrinsically 
concentric system of a double-ring potential which can be used for the generation of coherent 
double wave packets for the investigation of wave packet tunneling and coupled persistent 
currents of ultra cold atoms (Morizot et al., 2006; Aghamalyan, Amico, and Kwek, 2013).
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Type I and type II second harmonic generation (SHG) of a beam transformed by the 
conical refraction phenomenon are presented within this Chapter. At variance with other 
works combining SHG and CR where both phenomena are generated in a single non-linear 
biaxial crystal, see Section 8.1, in our approach we � rstly transform an input Gaussian beam 
with a linear biaxial crystal and then double its frequency with nonlinear KTP and LBO 
crystals. In this case, a very e�  cient process is found, since the optic axis of the linear biaxial 
crystal can be aligned with the phase-matching direction of the non-linear crystals used. 
Section 8.2 describes our experimental approach, in which we use LBO (for type I SHG) and 
KTP (for type II SHG) non-linear crystals to frequency double a CR beam at a fundamental 
frequency of 1064 nm. In Section 8.3 it is discussed the transverse intensity patterns obtained 
at the focal plane of the system. We show that for type I the second harmonic intensity pattern 
is a light ring with a point of null intensity, while for type II the light ring possesses two 
dark regions. � e experimental results are in good agreement with the proposed theoretical 
model. � e beam evolution of the SHG CR beams are reported in Section 8.4, showing great 
similarities with the CR beam at the fundamental frequency. We discuss SHG CR beams 
generated at di� erent positions of the non-linear crystals along the fundamental CR beam 
in Section 8.5. Since the SHG process depends strongly on the input intensity distribution, 
transverse intensity patterns generated do not resemble the ones obtained at the focal plane. 
Finally, in Section 8.6 we outline the main conclusions that can be drawn from our work.

� e research contained in this chapter has been performed in collaboration of José Trull 
and Crina Cojocaru from the Universitat Politécnica de Catalunya (UPC) and published in 
Turpin et al. (2013).

8.1. INTRODUCTION

� e invention of the laser opened many new areas of physics. In particular, the interaction 
of a powerful, monochromatic and coherent light source with optical media resulted on the 
born of non-linear optics. � e � rst non-linear optical e� ect reported was second harmonic 
generation (SHG), in which two photons at frequency ν combine each other to form a single 
photon at frequency 2ν. Note that in this process both energy (E) and momentum (k) are 
conserved:
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Ef = ħ2v = ħv + ħv, [8.1]

kf = k2v = kv,1 + kv,2. [8.2]

Eq. [9.2] is also known as the phase-matching condition. Since linear momentum is a vectorial 
magnitude, both the direction and magnitude of this quantity must be preserved. In the 
simplest case the refractive indices at the two involved frequencies satisfy n(2ν) = n(ν) and we 
have collinear phase-matching, i.e., k2ν || kν. For n(2ν) ≠ n(ν), the phase matching condition 
implies, in general, non-collinear SHG.

In spite of being a relatively old phenomenon, only few articles have addressed CR in the 
non-linear regime (Shih and Bloembergen, 1969; Schell and Bloembergen, 1978; Stroganov, 
Illarionov and Kidyarov, 1980; Velichkina et al., 1980; Kroupa, 2010; Zolotovskaya et al., 
2011; Peet and Shchemelyov, 2011 and Grant et al., 2014), being all of them centered in the 
study of second harmonic generation (SHG) processes. In most of these works (Shih and 
Bloembergen, 1969 and Zolotovskaya et al., 2011), CR and its SH signal were generated in the 
same biaxial crystal (BC). � is con� guration ensures a very compact set-up, but unfortunately 
the phase matching direction does not coincide, in general, with one of the the optic axis of 
the crystal. � erefore, only materials with very large non-linearities are able to simultaneously 
generate SH and CR. An alternative study of SHG in combination with CR can be carried 
out by placing a NLC a� er a BC (Turpin et al., 2013 and Peet and Shchemelyov, 2011). � is 
con� guration allows the adjustment of the phase matching condition for SHG in the NLC 
with the optic axis of the BC. In this case, a more e�  cient SHG process can be found. In what 
follows we present our results of SHG in type I (LBO) and type II (KTP) NLCs of a beam 
transformed by the CR phenomenon, that have in published in Turpin et al., 2013. (Turpin et 
al., 2013; Shih and Bloembergen, 1969; Schell and Bloembergen, 1978; Stroganov, Illarionov 
and Kidyarov, 1980; Velichkina et al., 1980; Kroupa, 2010; Zolotovskaya et al., 2011; Peet and 
Shchemelyov, 2011 and Grant et al., 2014), being all of them centered in the study of second 
harmonic generation (SHG) processes. In most of these works (Shih and Bloembergen, 1969; 
Zolotovskaya et al., 2011), CR and its SH signal were generated in the same biaxial crystal 
(BC). � is con� guration ensures a very compact set-up, but unfortunately the phase matching 
direction does not coincide, in general, with one of the the optic axis of the crystal. � erefore, 
only materials with very large non-linearities are able to simultaneously generate SH and CR. 
An alternative study of SHG in combination with CR can be carried out by placing a NLC 
a� er a BC (Turpin et al., 2013 and Peet and Shchemelyov, 2011). � is con� guration allows 
the adjustment of the phase matching condition for SHG in the NLC with the optic axis of 
the BC. In this case, a more e�  cient SHG process can be found. In what follows we present 
our results of SHG in type I (LBO) and type II (KTP) NLCs of a beam transformed by the CR 
phenomenon (Turpin et al., 2013).

8.2. EXPERIMENTAL SET-UP

Fig. 8.1 shows in detail our experimental set-up.

A randomly polarized input beam at 1064 nm is focused to a KGd(WO4)2 BC under CR 
conditions. At the ring plane, where the CR ring at fundamental harmonic (FH) appears, we 
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Figure 8.1. 

(a) Experimental set-up. A randomly polarized input beam with a beam waist radius of 
w0 = 3.2 mm is obtained from an Yb fi ber laser generating light pulses at 1064 nm with 
pulse duration t = (110 ± 10) ns at 20 kHz repetition rate (PRR) and up to 10 W of 
nominal power per pulse. � is beam is focused by a lens (FL) of 400 mm focal length 
to a KGd(WO4)2 BC of length L = 28 mm and conicity, yielding R0 = 475 µm. At the 
ring plane, we place the NLCs: LBO (type I, deff  = 0.668 pm/V, LLBO = 10 mm) and 
KTP (type II, deff  = 3.2598 pm/V, LKTP = 8 mm). � e imaging lens IL projects diff erent 
planes of the SHG propagated beams onto the CCD camera. � e infrared fi lter (IRF) 
eliminates the radiation at the FH. ∆BC = L(1 − 1/nBC) and ∆NLC = LNLC(1 − 1/nNLC) are 
the longitudinal shift of the ring plane added by the BC and the NLC, respectively. (b) 
CR ring at the ring plane with the fi ne Poggendorff  splitting obtained in the absence 
of the NLC. Double orange arrows show the polarization distribution along the ring. 
o and e denote the points with ordinary and extraordinary polarizations, respectively.

zR so that the NLC generates SH only from a unique transverse pattern of the CR beam. � e 
length of the NLCs (LLBO = 10 mm, LKTP = 8 mm) is smaller than the distance of the Raman 
spot from the ring plane: ZRaman ≈ 166 mm. Finally, an imaging lens (IL, with position ZIL) of 
200 mm focal length projects the ring plane into the CCD camera.

8.3. TRANSVERSE INTENSITY PATTERNS AT THE FOCAL PLANE

Fig. 8.2(b) and Fig. 8.2(c) show the experimental SHG intensity patterns for type I and 
type II NLCs, respectively. We observe that in type I SHG, the transverse pattern consists of 
a light ring with a point of null intensity, resembling the pattern obtained in CR with linearly 
polarized beams (Kalkandjiev and Bursukova, 2008). However, in this case the whole SH ring 
is linearly polarized with the polarization plane coinciding with the extraordinary polarization 
of the NLC. For type I NLC, SHG occurs in the form oo → e. � us, the point of the CR ring at 

place the NLCs oriented precisely under phase-matching conditions for optimal generation 
of SH. � e focusing lens used ensures operation under plane wave approximation, i.e., LNLC ≈ 
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the FH with polarization coinciding with the extraordinary mode of the NLC does not lead 
to SHG and, therefore, the resulting pattern in this case forms a crescent ring. With respect 
to type II SHG, we observe a light ring with two diagonally opposite points of null intensity. 
In this case, the ring is also linearly polarized coinciding with the extraordinary polarization 
of the NLC. Note that in type II SHG the doubling frequency process occurs through the 
channels oe → e and eo → e. As a consequence, the two points of the CR ring at the FH with 
only ordinary or extraordinary polarization do not contribute to SH while the maximum SH 
intensity comes from those points of the FH ring with an equal contribution of ordinary and 
extraordinary polarizations.

Figure 8.2. 

Patterns of the FH (a), type I (b) and type II SH (c) generated with the NLCs placed 
at the ring plane. Patterns were captured by using the lens IL, see Fig. 8.1, to image 
the ring plane onto the CCD. Top and right insets are, respectively, the horizontal and 
vertical intensity profi les at the center of the images. Orange double arrows indicate 
the polarization plane.

Figure 8.3. 

Type I (a)-(c) and type II (d)-(f) SHG patterns of conically refracted beams with ring 
radius of 181 µm (second column), 397 µm (third column), and 476 µm (fourth 
column). Insets in fi rst row represent in scale the rings at the fundamental frequency.
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Fig. 8.4 presents the SHG transverse intensity patterns for di� erent CR rings obtained 
from biaxial crystals with corresponding di� erent length. � e KGd(WO4)2 crystals used 
in this case were 28 mm, 23 mm and 11 mm long (476 μm, 397 μm and 181 μm of ring 
radius respectively). Insets are the pro� le of the fundamental frequency. Since the state of 
polarization and transverse intensity pattern of the FH is well preserved even for the shorter 
BC, the results obtained for the three crystals are identical.

To obtain a quantitative description of the SH process we use the di� ractive theory of 
CR presented in Chapter 2. In particular, it can be shown, that for the asymptotic case ρ0 → ∞, 
the intensity of the CR beam at the ring plane is described by:
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where wZ = 1+iZ and 1
2

D (x) is the parabolic cylinder (Weber) function (Belsky and Stepanov, 
1999). ξ ≡ ρ−ρ0 is the normalized radial component in cylindrical coordinates. Taking into 
account both the polarization and the intensity distribution of the FH given by Eq. [8.3] 
and the the nature of the SHG processes (oo → e for type I; oe → e and eo → e for type II), 
it is straightforward to derive the corresponding analytical expressions for the SH intensity 
patterns from the CR ring:
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Figure 8.4. 

Azimuthal intensity distribution of the final patterns for type I (LBO) and type 
II (KTP) SHG. Symbols represent the experimental data, while solid lines are the 
corresponding analytical solutions from Eqs. [8.4]–[8.6].
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where φ indicates the point of the CR ring, ϕ0 is the mutual orientation between the planes of 

optic axes of the BC and the NLC and ρ0 ≡ 0

0

R
w

 measures the ring radius in beam waists. I2ω0 

is the normalized intensity of the SH signal at the exit of a NLC for a Gaussian beam (Boyd, 
2003), where P is the power of the input beam, λ1 is the wavelength of the fundamental wave, 
ε0 is the vacuum permeability, c is the speed of light in the vacuum, de�  is the maximum value 
of the e� ective χ2 coe�  cient and n1 and n2 are the optical refractive indexes of the NLC. In 
Fig. 8.4 we plot the azimuthal intensity variations obtained experimentally (symbols) and the 
corresponding theoretical solutions (solid lines) for type I (red) and type II (black) NLCs.

Note, in addition, that the inner Poggendor�  ring is almost non visible in the SHG 
intensity patterns, see Figs. 8.2(b) and 8.2(c). For the FH, it has been shown that the intensity 
of the input beam redistributes between the two Poggendor�  rings in a ratio 3:1 (outer:inner) 
(Belskii and Khapalyuk, 1978). Since I2ω0 ∞ 

0

2
wI , the two Poggendor�  rings do not generate the 

same SH intensity signal, being the SHG outer ring much more intense than the inner one.

8.4. BEAM EVOLUTION OF THE SHG BEAMS

Fig. 8.5 presents the evolution of the transverse intensity patterns of the SHG beams 
obtained by imaging di� erent planes along the beam propagation. Comparing with the 
intensity patterns observed in the absence of the NLC, i.e., under conditions of CR (top row), 
one concludes that the frequency doubled waves are also CR beams, being their evolution 
completely analogous to the FH. We have observed two focusing spots placed symmetrically 
from the ring plane of the SH signals resembling the Raman spots of CR. � is behavior is 
expected since SHG is a non-linear process that converts both the intensity and the phase of 
the incoming wavefront inside the NLC.

Figure 8.5. 

Evolution of the transverse intensity profile in type I (middle row) and type II 
(bottom row) SHG when the NLCs are placed at the ring plane of the CR beam. � e 
extraordinary polarization in the NLC was perpendicular to the plane of optic axes of 
the BC, i.e., ϕ0 = 0º. We note that the Raman-like spots for second harmonic, see (d) and 
(h), have been observed on both sides from the ring plane. First row images show the 
transverse intensity patterns observed in the absence of the NLC.
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8.5. INFLUENCE OF THE POSITION OF THE NON-LINEAR CRYSTAL

It is well known that SHG depends on the beam’s pro� le passing through a NLC. To 
illustrate how is this dependence for CR beams, power measurements of the total SHG 
intensity were taken with the NLCs placed at di� erent positions of the CR beam. Both in type I
and type II SHG, the Raman spot is the most e�  cient plane. � e corresponding transverse 
intensity patterns obtained at the focal image plane when the NLCs are placed at di� erent 
positions of the beam propagation at FH are shown in Fig. 8.5(a)–(h). It is particularly 
interesting that, when the NLCs are placed out of the ring plane, there are contributions to the 
SHG beam of all the original CR beam, i.e., of the CR ring, the Raman spot and the secondary 
rings at the same time. � is has been also pointed out by (Peet and Shchemelyov, 2011).

8.6. CONCLUSIONS

In summary, we have reported SHG in type I and type II NLCs from an input beam 
refracted conically a� er passing along the optic axis of a BC. � is con� guration allows 
aligning precisely the phase-matching direction of the NLC. For type I, the SH pattern at the 
ring plane forms a light ring with a point of null intensity, corresponding to the extraordinary 
polarization of the FH. In contrast, for type II SHG, the light ring possesses two dark points 
that correspond to the two points of the FH with only ordinary or extraordinary polarizations. 
We have provided a qualitative explanation of the SH intensity patterns in terms of the 
di� erent channels that contribute to the SH signal and derived an analytical solution that is 
in good agreement with the experimental results. Besides, we have investigated the spatial 
evolution of the SH beams showing that they resemble conically refracted beams. Finally, we 

Figure 8.6. 

Top plot: Measured total output SHG power for diff erent positions of the NLCs along 
the FH beam propagation. (a)–(h) Patterns obtained as the position of the type I (fi rst 
row) and type II (bottom row) NLC is placed at diff erent positions along the beam 
propagation direction of the FH beam. Subsequent images are separated a distance of 5zR.
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have shown that the Raman spot is the most e�  cient region for SHG and demosntrated that 
when the NLCs are placed out of the ring plane, the transverse intensity patterns observed 
at the focal image plane posses contributions from the CR rings and the Raman spot at the 
same time.
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In this Chapter there are presented, to our knowledge, the � rst attempts to use CR 
for quantum optical applications. We propose the use of CR to measure linear momentum 
entanglement between two twin photons generated by means of spontaneous parametric 
down-conversion through a polarization measurement. � is proposal was conceived during 
a research stay at the group of Prof. Miles Padgett (University of Glasgow). Unfortunately, 
the duration of the stay was insu�  cient to achieve good quality experimental data, reason for 
which we will restrict to the theoretical proposal. � e Chapter is organized as follows. In Sec. 
9.1 we introduce the Einstein–Podolsky–Rosen paradox and Bell inequalities, which are at 
the heart of our proposals. Sec. 9.2 is devoted to explain the transformation of a spontaneous 
parametric down-conversion beam by means of the CR phenomenon. � en, in Sec. 9.3 we 
show how a single biaxial crystal can be used to swap linear momentum entanglement for 
polarization entanglement. We present the quantum state of the system and how it can be 
converted into a polarization state. To conclude, in Sec. 9.4 we sum up the ideas presented in 
this Chapter and discuss the reasons why we did not succeed with the experiments.

9.1. INTRODUCTION

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen presented a paradox (the 
EPR paradox) that became the major critique against the Copenhagen interpretation of 
quantum mechanics (Einstein, Podolsky and Rosen, 1935). With that critique, EPR aimed to 
show that the wavefunction is not enough to describe reality and, therefore, that the quantum-
mechanical description of the world is incomplete. � e EPR paradox can be summarized 
as follows. Let’s consider a disintegration process that emits a pair of particles and let them 
travel a time enough so they are space-time separated but they are entangled in momentum 
and position. Quantum mechanics a�  rms that there are some quantities (observables) 
that cannot be simultaneously measured with complete precision. In this sense, it is stated that 
operators associated to these conjugated observables do not commute. � is is the case of 
momentum p and position r, whose canonical commutation relation leads to the well known 
uncertainty principle σxσp ≥ ħ/2. Besides the fact that the uncertainty principle introduces 
some constrains, there is no restriction to measure simultaneously the momentum of one of a 
pair of particles and the position of the other one. However, such measurement would give us 
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a complete knowledge of both the position and momentum of the two particles, since in the 
disintegration process both momentum and center of mass position must be preserved. � is 
seems to be in contradiction with the Copenhagen interpretation of quantum mechanics. 
EPR stated that a more fundamental theory based on some unknown (hidden) variables 
should be developed to make quantum mechanics complete. Soon a� erwards, Neils Bohr 
wrote a reply to the EPR paradox where he stated that it is an error to consider both particles 
as two separate systems (Bohr, 1935). A� er the particles have interacted once, they must be 
considered as part of a single system. � is response to the EPR paradox was enough for the 
quantummechanical defenders but it was not enough to discard the existence of some hidden 
variable theory that explained the oddities of quantum mechanics.

In 1964 John S. Bell published a work that settle any discussion on that sense (Bell 
et al., 1964 and Aspect, 2004). Bell realized that EPR assumed that the measuring process 
performed in one particle is not a� ecting the measuring process carried out over the other 
particle, i.e., the measurements are local. By taking the latter statement and the idea of the 
EPR paradox that separated particles have separated physical realities as axioms, Bell derived 
a set of inequalities that every local theory of hidden variables should satisfy. To the delight 
of quantum mechanical backers, he found that in some cases quantum mechanics does not 
satisfy those inequalities and, therefore, quantum mechanics cannot be described by any local 
theory of supplemental variables. � e direct consequence of this � nding is that quantum 
mechanics is non-local, at variance with any intuition that we have of our everyday world.

� e problem is that situations of con� ict where quantum mechanics violate Bell 
inequalities are rare and hard to test experimentally, since a very well de� ned entangled 
state and the corresponding measuring devices are needed. In 1969, John F. Clauser, Michael 
A. Horne, Abner Shimony and Richard A. Holt proposed a feasible experiment to test Bell 
inequalities based on polarization entangled correlated photons produced in certain atomic 
cascades that opened the route to a � rst batch of experiments (Freedman and Clauser, 1972; 
Pipkin, 1979; Clauser, 1976 and Freedman and Clauser, 1972). With the exception of  (Pipkin, 
1979) all these works demonstrated agreement with quantum mechanics, i.e., violation of Bell 
inequalities. However, in these � rst experiments the detection e�  ciency was so low that one 
additional assumption was required: given a pair of photons emerging from the polarizers 
used, the probability of their joint detection is independent of the polarizer orientations. 
Alain Aspect and co-workers were able to avoid the latter assumption by using a very e�  cient 
atomic cascade process that enabled to clearly violate Bell inequalities (Aspect, Grangier and  
Roger, 1981; Aspect, Grangier and Roger, 1982; Aspect, Dalibard and Roger, 1982).

Nowadays, most experiments devoted to further test Bell inequalities take pro� t of the 
non-linear optical phenomenon of spontaneous parametric down-conversion (SPDC) that 
in 1995 was demonstrated to be an e�  cient source of polarization entangled photon pairs 
by Anton Zeilinger and co-workers (Kwiat et al., 1995). In fact, this source also produces 
frequency entangled (Brendel, Mohler and Martienssen, 1992; Tittel et al., 1997 and 
Hendrych,  Micuda and Torres, 2007) and both linear (Osorio et al., 2007 and Fickler et al., 
2014) and orbital angular momentum entangled (Mair et al., 2001; Molina-Terriza, Torres, 
and Torner, 2003; Torres et al., 2003; Osorio, Molina-Terriza and Torres, 2008; Leach et al., 

Libro 1.indb   170 11/12/2017   16:33:02



171TESTING QUANTUM MECHANICS WITH CONICAL REFRACTION

Figure 9.1.

(a) Spontaneous parametric down-conversion (SPDC) process: a pump photon of 
frequency v0 and momentum |kv0| = 2πn/λ0 decays into two photons with corresponding 
momentum |kvj | = 2πn/λj (j = {s, i}). (b) Perfect collinear phase-matching: the two 
photons are emitted parallel to the direction of the pump and the down-converted 
light forms a bright spot. (c) Perfect non-collinear phase-matching: the signal and idler 
photons have opposite transverse momentum and their directions belong to a cone. In 
this case the transverse light pattern of the down-converted light forms a light central 
ring. NLC: nonlinear crystal.

2009 and Jack et al., 2009) photon pairs. In our case, we will use photon pairs produced by 
SPDC to propose a novel method to swap linear momentum entanglement into polarization 
entanglement by means of CR. Additionally, we will propose a CR-based Bell-like inequality 
to test entanglement between the linear momentum and the polarization of a single photon.

9.2. CONICAL REFRACTION OF A SPONTANEOUS PARAMETRIC 
DOWN-CONVERTED BEAM

Spontaneous parametric down-conversion (SPDC) is a non-linear process in which a 
single photon decays into two new photons called as idler and signal photons. In this process, 
which was � rstly identi� ed by Kleinman as optical parametric noise (Kleinman, 1968), both 
the energy and the linear momentum must be preserved, i.e.

hv0 = hvs + hvi,  [9.1]

kv0 = kvs + kvi,  [9.2]

being Eq. [9.1] and Eq. [9.2] known as the phase-matching conditions. If |kν0 | = |kνs |+|kνi | 
collinear phase-matching is found and the transverse intensity pattern of the SPDC beam 
at the output of the non-linear crystal forms a bright spot, see Fig. 9.1(b). In contrast, if the 
previous relation does not hold, the non-collinear phase-matching condition produces a 
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SPDC beam evolving as a cone whose transverse intensity pattern forms a light ring, as shown 
in Fig. 9.1(c). Note that in this case, the signal and idler photons appear at diametrically 
opposite positions on the light ring.

� e signal and idler photons generated in the SPDC process have been reported to be 
entangled in many di� erent degrees of freedom such as polarization (Kwiat et al., 1995 and Shih 
and Alley, 1988), frequency (Ali Khan and Howell, 2006), linear momentum (Howell et al., 2004), 
transverse position (Moreau, Devaux and Lantz, 2014) and orbital angular momentum (Mair 
et al., 2001). In our case, we use a BBO uniaxial crystal to produce type-I SPDC photons with 
the same polarization and frequency and we pay attention to correlations in linear momentum. 
� e intensity pro� le of the SPDC beam in the far-� eld of the crystal imaged with a lens of focal 
length f can be modeled through the following expression:

( )
2

2
SPDC

,arI r sinc
f

α
 

= + 
 

 [9.3]

where α = (|kν0 | − |kνs | − |kνi |)L/2 is a phase-matching parameter that determines the opening 
angle of the SPDC cone and a = (|kνs | + |kνi |)L/4n2, where n is the refractive index for the signal 
and idler wavelengths and L is the crystal length (Romero et al., 2012). For our purposes, we 
require non-collinear phase-matching to obtain a clear SPDC light cone. � e transformation 
of such a beam by means of CR can be easily predicted making use of Eqs. [2.12]–[2.15] and 
[9.3]. Both the theoretical and the experimental transverse intensity patterns obtained when 
the SPDC beam at the far-� eld of the non-linear BBO crystal (α ≈ −3, f = 200 mm, L = 5mm, 
λ0 = 355 nm, λi = λs ≈ 2λ0) passes through a biaxial crystal are presented in Fig. 9.2. Note 
that the polarization of the SPDC beam was transformed into circular by means of a quarter 
wave-plate. � e transverse intensity pattern is formed by a pair of concentric light rings 
without Poggendor�  splitting. We have checked that the polarization distribution along the 
rings is CR-like, i.e., it is linear at every point with the azimuth rotating π rad for a complete 
turn along the rings. In what follows, we take pro� t of the linear momentum entanglement 

Figure 9.2. 

(a) Numerically calculated, by using Eq. [9.3], and (b) experimentally recorded 
transverse intensity pattern of the down-converted light cone after being transformed 
by the CR phenomenon. For the experimental image, a BBO non-linear crystal was 
used to down-convert input photons at 355 nm into momentum-entangled photon 
pairs at 710 nm. � en, the optic axis of a KTP biaxial crystal (l = 10 mm) was aligned 
with the beam propagation direction of the pump beam and a CCD camera was used 
to record the transverse intensity pattern. α ≈ −5.
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provided by the SPDC process and of the linear momentum-polarization relation o� ered by 
the CR phenomenon to propose a new Bell-type inequality test of quantum mechanics.

9.3. DETECTION OF LINEAR MOMENTUM ENTANGLEMENT WITH CONICAL 
REFRACTION

As commented in the previous section, SPDC can be used to generate photon pairs 
entangled in time, frequency, polarization, linear momentum and orbital angular momentum. 
For the case of linear momentum entangled photons, entanglement detection is not an 
easy task, since transverse positions must be measured, e.g., by using a single photon CCD 
camera (Fickler et al., 2014 and Moreau, Devaux and Lantz, 2014). In contrast, detection of 
polarization entanglement is much simpler, since only linear polarizers and single photon 
detectors are needed. In this Section we propose how to take pro� t of the CR phenomenon to 
transform linear momentum entanglement into polarization entanglement.

We consider that the down-converted photons have the same frequency, i.e., that νs 
= νi = ν0/2 and also that they are generated in type I SPDC (therefore they are horizontally 
polarized). As previously stated, the signal and idler photons are, in general, emitted in a light 
cone, see Figs. 9.1(a) and (c). � eir linear momentum ks,i has both transverse ,k s i

⊥  and parallel 
||

,k s i  components to the propagation direction of the fundamental beam. � ese momentum 
components can be written as

( )0
, , x , yk sin cos u sin u ,

2s i s i s i
k

β φ φ⊥ = +  [9.4]

|| 0
, zk cos u ,

2s i
k

β=  [9.5]

where k0 = 2πn/λ0 is the wave-number of the fundamental photon, β is the aperture angle of 
the down-converted cone, ϕs,i is the azimuthal angle in cylindrical coordinates and ux,y,z form 
an orthogonal basis of unitary vectors. If we look at the transverse momentum component 
and de� ne ϕs ≡ ϕ, due to momentum conservation the relation ϕi = ϕ + π must be satis� ed. 
Fig. 9.3 shows our experimental proposal. � e state of polarization of the down-converted 
photons emerging from the non-linear crystal is transformed by means of a quarter wave-
plate into le� -handed circular (σ+), for instance. � e system formed by the down-converted 
photons can be mathematically described by the following state:

2

0

1| | , | , .
2 s i

d
π

φ φ σ φ π σ
π

+ += +∫y  [9.6]

� en, a slit whose aperture plane is described by the azimuthal angle ϕk projects the state 
described by Eq. [9.6] into the state

| | , | , ,k ks i
φ σ φ π σ+ += +

¢
y  [9.7]

which is a state with well de� ned transverse linear momentum given by the azimuthal angle 
ϕk. � is bi-photon state passes through a biaxial crystal with ||

,k s i  parallel to one of its optic axis. 
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Following the theoretical formalism used in Sec. 2.3.3 it is straightforward to deduce that the 
resulting state can be described by

out

1| , , , ,
2 2 2 2 2 22
k k k k

k k k k
i ss i

φ φ φ φπ πφ φ π φ π φ
 

= + + + + +  
 

y  [9.8]

where we have set the orientation of the characteristic G vector of the biaxial crystal at φc = 
0. Note that the action of the biaxial crystal over the bi-photon state is twofold: (1) the linear 
momentum of each photon has equal probability of being projected at azimuthal angles ϕk 

and ϕk + π and (2) the state of polarization of each state is correspondingly transformed from 
circular to linear with azimuth ϕk/2−φc and ϕk/2 + π/2 − φc. Without loosing generality we can 
set ϕk = 0, which leaves the state from Eq. [9.8] as

( )out

1| , , , , ,
2 s i s i

H V V H= → ← + ← →y  [9.9]

where we have de� ned transverse linear momentum states with azimuthal angle 0/π rad as → 
/ ← and linearly polarized states with azimuth at 0 /

2
π  rad as H/V. � e combined role of the 

Figure 9.3. 

Proposed set-up to demonstrate linear momentum entanglement through a 
polarization measurement with CR. The state of polarization of the SPDC cone 
emitted by a BBO non-linear crystal is transformed from linear into circular by means 
of a quarter wave-plate (QWP). A slit selects only two azimuthal sectors of the light 
cone and, therefore, fi xes the transverse momentum of the transmitted twin photons. A 
biaxial crystal (BC) couples the transverse momentum of photons with a certain linear 
polarization that depends on the orientation of the BC. A non-polarizing beam splitter 
(NPBS) sends each photon to a linear polarizer (LP) and a single photon detector 
(SPD) to measure coincidences counts while rotating the mutual angle between the 
transmission axes of the polarizers. � e inset shows diff erent plots of the correlation 
function between the LPs of branches A and B as a function of the orientation of the 
transmission axis of LPB (φB) calculated from Eq. (9.14) for φA = 0 rad (blue line), φA = 
π/8 rad (purple line), φA = π/4 rad (yellow line) and φA = 3π/8 rad (green line).
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biaxial crystal and the NPBS is to remove the information on the linear momentum of each 
photon, so that the bi-photon state approaching the detectors is:

( )out

1| ,
2 s i s i

H V V H= +y  [9.10]

which is a well known Bell-state for polarization entangled photons (see Aspect, 2004) and 
the references therein). Once the photons are spatially separated by the NPBS and passed 
through the corresponding linear polarizers A and B with respective transmission axis at 
angles φA and φB, the expected quantum coincidence counts Cij (where i, j  0, 1) at given 
single photon detectors a� er the linear polarizers are

( ) ( ) ( )2
00 11

1, , sin ,
2A B A B A BC Cϕ ϕ ϕ ϕ ϕ ϕ= = −  [9.11]

( ) ( ) ( )2
01 10

1, , cos .
2A B A B A BC Cϕ ϕ ϕ ϕ ϕ ϕ= = −  [9.12]

For these coincidence counts, the well known correlation function

( )
( ) ( ) ( )

( ) ( ) ( )

2
00 11

2
01 10

1, , sin
2,
1, , cos
2

A B A B A B

A B

A B A B A B

C C
E

C C

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

= = −
=

= = −
 [9.13]

reads:

E (φA, φB) = cos2 [2 (φA – φB)] [9.14]

� erefore, the Bell parameter ( ) ( ) ( ) ( ), , , ,A B A B A B A BS E E E Eϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ′ ′ ′ ′≡ + + − reaches a maximum 
value of 2√2, which is the upper bounding for violation of Bell inequalities.

9.4. CONCLUSIONS

In this Chapter we have proposed the use of CR to transform linear momentum 
entanglement of twin photons generated in a non-linear crystal by means of SPDC into 
polarization entanglement. It has been shown that the CR phenomenon couples a given 
transverse linear momentum with a certain linear polarization. We have described the 
quantum state of photons before and a� er the biaxial crystal in terms of these two observables 
and shown that, at least theoretically, linear momentum entanglement is transformed into 
polarization entanglement. It has been demonstrated that this output quantum state is a Bell 
state for polarization with a well known Bell inequality that gives a maximum value of 2 2  of 
the S parameter. 

Unfortunately, the experimental data collected from the experiments carried out 
in order to demonstrate our proposal did not have quality enough to measure the Bell (S) 
parameter. � e major drawback that we su� ered during the research stay at the group of Prof. 
Miles Padgett was noise from the environment that strongly a� ected the bucket detectors 
used, together with the lack of extra time to keep on with the experiment.

In case of being demonstrated experimentally, our proposal would open a new route 
to demonstrate linear momentum entanglement of twin photons, which is a hard task due to 
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the high sensitivity of the CCD detectors that are needed, with a relatively simple polarization 
measurement. Note that, as commented in previous Chapters, CR is a linear e� ect that does 
not depend on the intensity of the input source. Additionally, biaxial crystals can be transpa-
rent to a high spectral range and they convert the full power of the input light source, which 
would signi� cantly decrease losses compared with other systems.
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In this Chapter, we propose a polarization de-multiplexing and multiplexing system based 
on conical refraction to increase the channel capacity for free-space optical communication 
applications. � e proposed technique is based on the forward-backward optical transform 
occurring when a light beam propagates consecutively along the optic axes of two identical 
biaxial crystals with opposite orientations of their conical refraction characteristic vectors. 
We present an experimental proof of usefulness of the presented technique by increasing in 
one order of magnitude the channel capacity at optical frequencies in a propagation distance 
of 4 m. � e Chapter is organized as follows. In Sec. 10.1 we discuss di� erent FSOC techniques 
that can be found in the literature. � en, the forward-backward CR optical transform that 
is at the heart of our FSOC system is presented in Sec. 10.2. Sec. 10.3 is devoted to show 
our experimental proposal, in which we use three biaxial crystals, and the corresponding 
experimental results. Finally, in Sec. 10.4 we summarize our work and envisage future possible 
experiments based on our technique.

� e research contained in this chapter has been published in (Turpin, Loiko, Kalkandjiev 
and Mompart, 2012a) and patented in (Turpin et al., 2012b).

10.1. INTRODUCTION

In optical communications, di� erent properties of a light � eld, such as its intensity, 
wavelength, polarization, and orbital angular momentum (OAM), can be used to provide 
optical signals to e�  ciently transmit the information so that these signals do not interfere each 
other along the communication channel. � us, for example, the capacity of a communication 
channel can be substantially increased if one multiplexes di� erent wavelengths of various input 
optical carrier signals into a single channel by using the Wavelength Division Multiplexing 
(WDM) technique (Mukherjee, 2000). For a monochromatic laser beam, Laguerre–Gaussian 
light beams carrying orbital angular momentum (OAM) in the helicity of their phase fronts 
have been proposed (Allen et al., 1992) as a basis of carrier signals allowing, in principle, for 
an arbitrary increase of the channel capacity (Gibson et al., 2004; Wang et al., 2012; Torres, 
2012 and Krenn et al., 2014). However, there are practical drawbacks that restrict the range 
of applicability of the OAM encoding technique (Jack, Padgett and Franke-Arnold, 2008 and 
Franke-Arnold et al., 2004) such as the large divergence of high order OAM modes, which 
prevent their use for free space optical communications (FSOC) at long distances. 
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Alternatively, also for a monochromatic � eld, one could additionally use the polarization 
degree of freedom of a light beam as a carrier basis of signals for FSOC links. In this case, 
nevertheless, the use of a polarization beam splitter allows, at most, to double the FSOC 
channel capacity. In this Chapter, we present a novel method to de-multiplex and multiplex a 
monochromatic input light beam into, in principle, an arbitrary large number of polarization 
states by means of the CR phenomenon. Our formalism is closely related to the wave-vector 
and polarization formalism presented in Sec. 2.3 and on the forward-backward optical 
transformation carried out by the CR phenomenon in a cascade of two biaxial crystals with 
opposite orientations of their G vectors.

10.2. THE FORWARD-BACKWARD CONICAL REFRACTION TRANSFORMATION

As it has been previously shown, when an ideally collimated circularly polarized light 
beam passes along the optic axis of a biaxial crystal it refracts conically inside the crystal and 

Figure 10.1. 

Sketch of the forward-backward CR transform provided by a degenerate 2-crystal 
cascade confi guration with formed by two biaxial crystals with orientation of their 
characteristic vector G of (a) φG = 90º for G1 and (b) φG = 270º for G2. (c1)–(e3) 
Experimental transverse intensity patterns of the input beam entering into the system 
(first column), the CR beam obtained at the ring plane (second column) and the 
output beam emerging from the whole degenerate 2-crystal cascade (third column) 
for a Gaussian input beam (fi rst row), an elliptical input beam (second row) and a 
star-shaped input beam (third row).
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emerges as a collimated hollow cylinder whose transverse intensity pattern forms a light ring. 
� is light ring is laterally shi� ed being both the direction of the displacement as well as the 
ring radius given by the so-called characteristic G vector of the biaxial crystal (Kalkandjiev 
and Bursukova, 2008), see Fig. 2.1. As a consequence, a crystal with orientation of its G 
vector φG = 90º shi� s the center of the CR ring a distance R0 in the +y direction, where we 
have considered that G is contained in the xy plane and beam propagation parallel to the z 
direction, as sketched in Fig. 10.1(a). In contrast, a crystal with orientation of its G vector φG 
= 270º, i.e., opposite to the previous case, shi� s the CR ring a distance R0 in the −y direction, 
see Fig. 10.1(b). If both e� ects are combined, the output beam at the exit of the second biaxial 
crystal is identical to the input beam entering into the � rst biaxial crystal. In other words, 
the birefringent e� ects of both biaxial crystals cancel each other and the input beam remains 
invariant a� er passing through the 2-crystal cascade. � is particular arrangement, which 
allows for an optical CR forward-backward transform, will be called in what follows as the 
degenerate 2-crystal cascade CR con� guration. Note that in this simpli� ed explanation, we 
have only considered ideally collimated beams. However, as we will demonstrate in what 
follows, the here de� ned forward-backward transform also applies to focused beams.

In Figs. 10.1(c1)–(e3) we show the transverse intensity patterns corresponding to 
di� erent input beams entering the � rst biaxial crystal (� rst column), the CR beam obtained 
at the ring plane (second column) and the output beam emerging from the whole degenerate 
2-crystal cascade (third column) for a Gaussian input beam (� rst row), an elliptical input 
beam (second row) and a star-shaped input beam (third row). For a Gaussian input beam, at 
the ring plane the transverse intensity pattern is formed by the well known pair of concentric 
bright rings with Poggendor�  splitting. As it was already discussed in Sec. 2.3, an elliptical 
input beam splits into two elliptical beams at the ring plane of the � rst biaxial crystal. Finally, 
the star-like input beam is transformed into azimuthal sectors along a ring at the CR ring 
plane. As it can be appreciated, the output beams a� er passing through the degenerate 
2-crystal cascade reproduces the input beam.

10.3. MULTIPLEXING AND DE-MULTIPLEXING PROPOSAL 
AND EXPERIMENTAL RESULTS

In this section, we make use of the forward-backward transform of CR to propose a 
novel method to de-multiplex and multiplex a monochromatic light beam into a large 
number of linearly polarized states as it is schematically shown in Fig. 10.2. � e � rst crystal 
de-multiplexes the input beam into an in� nite number of linearly polarized beams placed 
along a ring (see boxed inset in Fig. 10.2 where each transmitted sector is a linearly polarized 
beam). Each of these beams constitutes an information channel (note that the channels are 
polarization channels) that can be individually selected and modulated in amplitude. Later 
on, the second biaxial crystal multiplexes all the channels into one beam that propagates in 
free space. Finally, a third biaxial crystal can be used to decode the transmitted signal at the 
receiver stage. In what follows we describe the CR de-multiplexing and multiplexing protocol 
in terms of the standard elements that form a free space optical telecommunications system: 
the transmitter, the free space propagation, and the receiver. Note that the mutual alignment 
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of the optic axes of the biaxial crystals should be maintained with precision within 50 μrad to 
make it work properly by means of the CR e� ect.

� e transmitter consists of an input monochromatic light beam, two biaxial crystals in 
a degenerate 2-cascade con� guration, an angular amplitude mask, and the lenses to focus and 
collimate the beam. As input beam, we take a collimated linearly polarized Gaussian beam 
with w0 = 1mm beam waist obtained from a 640 nm diode laser coupled to a monomode � ber. 
A linear polarizer and a quarter wave plate are placed to ensure a perfect circularly polarized 
Gaussian beam at the entrance of the � rst crystal. Note that the experiment could also be 
performed with a linearly polarized input beam but with the inconvenience of producing 
a crescent intensity pattern instead of a complete ring and, therefore, the polarization 
channels would possess di� erent amplitudes. � e degenerated 2-cascade scheme is prepared 
with two identical KGd(WO4)2 biaxial crystals (< 100 nm of di� erence) yielding a light 
ring a� er the � rst crystal of 872 μm ring radius. � e polished entrance surfaces of the two 
biaxial crystals (cross-section 6 × 4 mm2) have parallelism with less than 10 arc seconds and 
they are perpendicular to one of the two optic crystal axes within 1.5 mrad misalignment 
angle. To focus and collimate the beam we use lenses with 200 mm focal length. To select 
the polarization channels at the light ring we use angular amplitude masks forming a star 
burst-like pattern with n (up to 12) opened circular sectors, see boxed inset in Fig. 10.2. 
� e amplitude masks actually allow passing only some parts of the ring, thus we are indeed 
selecting the communication channels. Encoding the information into the di� erent channels 

Figure 10.2. 

Sketch of the polarization de-multiplexing and multiplexing experimental set-up based 
on CR being used to increase the channel capacity of a FSOC system. � e FSOC 
system is formed by the transmitter with its two identical biaxial crystals presenting 
opposite G vectors, a free space propagation distance of 4 m, and the receiver with the 
third biaxial crystal. � e inset shows how polarization signals are selected by using an 
angular amplitude mask (AAM) that only allows passing some sectors of the CR ring. 
Green lines indicate the state of polarization. LP: linear polarizer. QWP: quarter wave 
plate.
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could be performed by time varying the transmission coe�  cient for each sector of the mask 
using, for instance, a spatial light modulator.

In our experiments, the free space propagation distance is 4m. We have measured that 
the multiplexed beam has a divergence similar to the initial Gaussian beam and, therefore, 
we expect that our protocol could operate for the same distances as other FSOC systems do 
it with Gaussian beams.

� e receiver itself consists of an objective of 50 mm focal length, a 12 mm long 
KGd(WO4)2 biaxial crystal, and a CCD camera. � is biaxial crystal de-multiplexes (� nal pat-
terns shown in the third row of Fig. 10.3) the free space propagated beam (transverse patterns 
shown in the second row of Fig. 10.3), performing CR and recovering the sectors that were 
modulated by the angular amplitude masks (� rst row of Fig. 10.3) at the transmitter. As it 
can be observed in the third row of Fig. 10.3, we are able to independently modulate up to 12 
sectors, which constitutes an increase in one order of magnitude of the channel capacity of the 
FSOC link. Last row in Fig. 10.3 shows the intensity variation along the azimuthal direction 
of the corresponding de-multiplexed patterns from the third row of Fig. 10.3. � e intensity 
peaks of the received channels are perfectly distinguishable with respect to the background. 
Additionally, one can also note that there is no crosstalk between neighbor channels, since 
there appear as number of peaks as number of channels selected at the transmitter.

Figure 10.3. 

Experimental transverse intensity patterns (third row) and the corresponding 
integrated azimuthal intensities (fourth row) obtained by the receiver for multiplexer 
masks (fi rst row) with 2 (a), 4 (b), 8 (c), and 12 (d) opened sectors. � e second row 
shows the multiplexed beams at the entrance of the receiver.
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Crosstalk (XT) between the channels is one of the main limiting factors for real 
applications. � e main contribution into the XT between adjacent channels in our system 
comes from light di� raction on the mask domain boundaries. To characterize the XT, we 
have investigated the in� uence of the closure angle of the masks, i.e., the azimuthal angle 
separating neighbor open sectors (see θ in the inset of Fig. 10.4), and the number of channels 
over it by measuring the residual intensity at the center of the closed sector. For the latter 
case, the open and closed sectors in the mask have the same azimuthal angular width and 
we measure the XT at the closed sectors. � e results for XT, i.e., residual intensity related to 
the intensity maximum, are presented in Fig. 10.4. � e data reveal that, as it can be expected, 
the smaller the number of channels the smaller the XT. Moreover, the thinner the open 
sectors, which corresponds to larger closure angle θ, the smaller the XT too. Red solid curve 
gives exponential � tting to the experimental data that show the XT decay as θ increases and 
N decreases. For the 12 channels case shown in Fig. 10.3, the average XT is less than 3%. 

Figure 10.4. 

Crosstalk (XT) between adjacent channels vs. the closure angle θ (bottom axis) and 
vs. the number of channels N (top axis) of the masks used. Red solid curve represents 
exponential fi tting to the experimental data. Uncertainty of the θ angle measurement 
was below 1º.

Finally, we would like also to note that misalignment in crystals’ rotation around the beam 
propagation direction leads to light polarization XT between any opposite points at the CR 
ring. However, in our system the latter is well controlled below 10−6.

10.4. CONCLUSIONS

In summary, we have proposed a novel technique to de-multiplex and multiplex a 
monochromatic light beam into a � nite and, in the ideal case, an arbitrary number of linearly 
polarized states. � e technique is based on the forward-backward transform produced by 
two biaxial crystals under conditions of CR. We have demonstrated an increase of one order 
of magnitude in the channel capacity for FSOC of a monochromatic input Gaussian beam at 
640 nm for a 4m propagation distance with cross-talk being below 3%. In addition, we have 
investigated the XT with respect to the azimuthal angle of the closed sectors and the number 
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of sectors of the masks used. � e obtained results suggest that by simply optimizing the 
channel selecting mechanism, i.e., the thickness of the open and closed sectors of the masks, 
one could increase the channel capacity or decrease the XT for a � xed number of channels.

As an encouragement for future investigations on the technique proposed in this Chapter, 
we would like to note that by selecting appropriate biaxial crystals it would be interesting to 
extend this novel method to other wavelengths in the optical and telecommunication bands 
at which the crystals are transparent and to combine it with the WDM technique. Finally, it 
would be very promising to look for new quantum cryptography protocols by extending the 
technique to the single-photon case.
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In this last Chapter we aim to discuss and summarize the main contributions of this 
thesis. Since all Chapters have been summed up at their end, here we will just comment our 
most relevant contributions.

Within this thesis we have analyzed in detail the phenomenon of conical refraction (CR) 
occurring in biaxial crystals when a light beam propagates parallel to one of the optic axis and 
we have applied this phenomenon to di� erent areas of physics such as optical trapping, free-
space optical communications or quantum entanglement.

A� er a brief overview of the phenomenon of CR and its relevance for the acceptance 
of the wave theory of light (see Chapter 1), we have exhaustively analyzed the phenomenon 
of CR both theoretically and experimentally in Chapters 2–4. For a cylindrically symmetric 
and homogeneously polarized beam, the di� ractive solution of CR (introduced by Belsky 
and Khapalyuk and reformulated by Berry (Belskii and Khapalyuk, 1978a and 1978b; Berry, 
2004 and Berry and Je� rey, 2007) is based on two main equations and ρ0 ≡ R0/w0 is used 
as the control parameter that structures the output beam, where R0 is the CR ring radius 
under geometrical approximation and w0 the waist radius of the focused input beam. We have 
explored the in� uence of ρ0 over the CR beam and shown that for ρ0 ≈ 1 both the transverse 
intensity pattern at the focal plane and the evolution of the beam di� ers from the CR beam 
found for ρ0 ≫ 1, which is characterized at the focal plane by a pair of concentric bright rings 
with di� erent intensity split by the Poggendor�  dark ring. In particular, we have reported 
the generation of a super-Gaussian beam (Turpin et al., 2014) and a three-dimensional dark 
focus for ρ0 = 0.45 and ρ0 = 0.92 (Loiko, Turpin, Kalkandjiev, Rafailov and Mompart, 2013), 
respectively.

It is also well known that under conditions of ρ0 ≫ 1 and for a Gaussian input beam the 
polarization distribution along the CR rings at the focal plane is linear at every point with 
the azimuth rotating continuously by π rad for a complete turn along the rings.

In this thesis we have demonstrated that this polarization distribution is only found at 
the focal plane and that out of the focal plane there exist states possessing non-null ellipticity 
(Turpin, Loiko, Peinado, Lizana, Kalkandjiev, Campos and Mompart, 2015). Not only this, it 
has been shown the existence of annular lines forming polarization singularities separating 
right and le�  handed circularly polarized states. We have further analyzed the state of 
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polarization of CR beams for ρ0 ≈ 1 and demonstrated the generation of Poincaré beams, i.e., 
non-homogeneously polarized beams possessing all possible states of polarization. It has been 
also discussed the generation of optical singularities and we have linked them with the spin-
orbit coupling provided by the biaxial crystal. We note here that it would be very interesting to 
further analyze the spin-orbit coupling and optical singularities generated by non-Gaussian 
input beams, including non-cylindrically symmetric and non-homogeneously polarized 
input beams and also for the propagation out of the optic axis.

In this thesis we have also contributed to the di� ractive theory of CR by demonstrating 
that the Hamiltonian operator introduced by (Berry, 2004) can be used to predict the 
transformation of non-homogeneously polarized and non-cylindrically symmetric beams 
propagating through a biaxial crystal (or a cascade of them) along any direction (Turpin, 
Loiko, Kalkandjiev and Mompart, 2015). � e validity of the presented equations has been 
proved both for Gaussian and elliptical input beams propagating both along the optic axis of 
a biaxial crystal and out of it and also for a cascade of two biaxial crystals with aligned optic 
axis.

Although the Belsky–Khapalyuk–Berry equations of CR describes well all the 
phenomenology associated to CR, they do not offer too much physical intuition about 
the beam evolution (Belskii and Khapalyuk, 1978b and Berry, 2004). Recently it was proposed 
that the CR beam can be understood as the interaction of two light cones with slightly 
di� erent positions of their vertices along the axial direction (Sokolovskii et al., 2013). Our 
contribution to this picture has been the reformulation of the dual-cone model of CR and 
also the experimental demonstration of the existence of two light cones without the need of 
blocking the beam at any part (Turpin, Loiko, Kalkandjiev, Tomizawa and Mompart, 2015). A 
segmented linear polarizer that mimics the usual CR polarization distribution has been used 
in order to select each of the cones and modify the intensity ratio between the inner and the 
outer rings of CR.

� e last contribution to the theory of CR reported in the present thesis has been a CR 
model based in splitting of linearly polarized input waves. In this model, every azimuthal 
point of the CR ring at the focal plane (Poggendor�  splitting is neglected in this approach) 
is characterized by a transverse wave-vector and a state of linear polarization (Turpin, Loiko, 
Kalkandjiev, Tomizawa and Mompart, 2013). When an input wave enters into the crystal, 
it splits into two subwaves that preserve the original transverse wave-vector and refract to 
opposite points of the CR ring. � e state of linear polarization of these two waves is mutually 
orthogonal and depends on the orientation of the biaxial crystal. We have shown that, with 
this simple model, there can be obtained the general features of the � nal transverse intensity 
pattern and polarization structure of complex input beams. As a proof of principle, we have 
applied this formalism to the case of a linearly polarized axicon beam. � is theory has been 
shown to be of signi� cantly usefulness for the calculation of the transverse intensity pattern 
obtained for an arbitrary large cascade of crystals with aligned optic axes (Turpin, Loiko, 
Kalkandjiev and Mompart, 2013). In this case, the resulting pattern a� er a cascade of N 
crystals contains in general 2N−1 concentric bright rings. � e intensity of the rings depend 
on the mutual orientation between the crystals and their radius is a function of the CR ring 
radius generated independently by each of the crystals.
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� e above mentioned splitting of an input wave into two sub-waves makes us glimpse 
that even if the input beam lacks of some wave-vectors, the CR light ring can still be observed. 
Following this idea, in Chapter 5 we have also investigated the CR transformation of Gaussian 
input beams partially blocked by an obstruction (Turpin, Loiko, Kalkandjiev, Corbalán, and 
Mompart, 2015). We have obtained that the CR phenomenon is a healing-like process that 
reconstructs partially the output beam emerging from the biaxial crystal, e.g., when half of the 
input beam is blocked, the transformed intensity pattern still forms a light ring. � is has been 
analyzed for two di� erent scenarios, ρ0 ≫ 1 and ρ0 = 0.92, obtaining that the healing process 
both in shape and in polarization distribution is more robust for large values of ρ0.

When one looks at the shape of CR beams, the � rst application that is envisaged is optical 
trapping. While optical trapping is usually associated to optical tweezers, in this thesis we have 
explored and demonstrated optical trapping of both absorbing particles and Bose–Einstein 
condensates by using, respectively, the photophoretic force and the dipole force, see Chapters 
6 and 7. On the one hand, I have demonstrated that the optical bottle formed by a CR beam 
can be recon� gured by changing the state of polarization of the input beam (Turpin, Shvedov, 
Hnatovsky, Loiko, Mompart and Krolikowski, 2013). In collaboration with the group of Prof. 
Wieslaw Krolikowski at the Australian National University, we have used this mechanism 
to e�  ciently load and unload absorbing glass shells up to 100 μm of radius by means of the 
photophoretic force. In this sense, it would be very promising to combine this technique 
with the method described in Sec. 2.4 to modulate in real time the intensity distribution 
between each of the axial intensity maxima of the CR bottle in order to move the particles 
away from and towards the input source. On the other hand, we have carried out two di� erent 
implementations of CR as a dipolar potential for ultra-cold neutral atoms by taking pro� t 
of the Poggendor�  dark ring and the three-dimensional dark focus reported in Chapter 3.
Firstly, a complete characterization of both the Poggendor�  dark ring and the three-
dimensional dark focus has been made, demonstrating that they form, respectively, a null 
intensity region surrounded by high intensity walls in three dimensions. For the Poggendor�  
dark ring case, this implies a dark toroidal potential (Turpin et al., 2015), while the three-
dimensional dark focus forms a perfect optical bottle (Turpin et al. [submitted to publication]). 
� en, we have derived the harmonic trapping frequencies and potential depths directly 
from the CR theory and, in collaboration with the group of Prof. Gerhard Birkl at the 
Technische Universität Darmstadt, we have experimentally applied these potentials to trap 
a 87Rb Bose–Einstein condensate. Optical ring potentials are particularly interesting because 
they represent basic elements in the recently born � eld of Atomtronics (Seaman et al., 2007; 
Pepino et al., 2009; Ruschhaupt and Muga; 2004; � orn et al., 2008 and Stickney, Anderson 
and Zozulya, 2007) and they are ideal candidates for the study of persistent currents and 
the implementation of atomic Sagnac interferometers (Helm, Cornish and Gardiner, 2015). 
To motivate future implementations of novel potentials based on CR, the combination of CR 
and microlenses arrays could be used for the generation of bright and dark annular optical 
lattices. In our case, we have restricted to the case of dark potentials but note that annular 
bright geometries, including coupled concentric rings, are also available via CR. Note also that 
reshaping of the CR optical potentials could be possible by modifying in real time the state of 
polarization of the input beam.
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Since both the spatial evolution and the polarization distribution of a CR beam is very 
rich, in collaboration with Prof. Jose Trull and Prof. Crina Cojocaru from the Universitat 
Politécnica de Catalunya we have looked at the second harmonic generation (SHG) of this 
kind of beams in type I and type II non-linear crystals, see Chapter 8 and Ref. (Turpin, Loiko, 
Kalkandjiev, Trull, Cojocaru and Mompart, 2013). I obtained that, in general, when the non-
linear crystal is placed at the focal plane of the input CR beam the transverse intensity patterns 
of the SHG beams resemble the ring-like patterns of the fundamental frequency CR beams 
but possessing linear polarization at all the points of the light structure. In contrast, when the 
nonlinear crystals are placed out of the focal plane, we have shown that the SHG beams have 
contributions of both the Raman spot and the CR rings.

� e � rst proposal of combining CR with quantum optics has also been presented in this 
thesis, in collaboration with the group of Prof. Miles Padgett from the University of Glasgow, 
see Chapter 9. Firstly, we have analyzed the transformation of a spontaneous parametric 
down-conversion beam generated in a non-linear crystal, which leads photons entangled 
in linear momentum. � en, inspired by the wave-vector splitting introduced by the biaxial 
crystal we have proposed a method to demonstrate such entanglement through a polarization 
measurement, i.e., we swap linear momentum entanglement into polarization entanglement 
by means of the conical refraction phenomenon. Unfortunately, the experimental results 
obtained in Glasgow did not have quality enough to con� rm the theoretical proposal.

CR has been also considered for technological applications, being at the heart of a single 
shot novel polarimeter (Peinado et al., 2013; Peinado et al., 2015) and of a solid state laser 
(Loiko et al., 2014). In particular, in Chapter 10 of this thesis we have also reported a free 
space optical communication (FSOC) system for multiplexing and demultiplexing multiple 
polarization channels with a cascade of 3 biaxial crystals, see (Turpin, Loiko, Kalkandjiev 
and Mompart, 2012) and patent (Turpin, Loiko, Kalkandjiev and Mompart, 2012). Some 
sectors of the CR ring generated by the � rst biaxial crystal are selected by means of amplitude 
masks and a second biaxial crystal is used to recombine (multiplex) all these sectors back to 
a single beam. Finally, the third biaxial crystal demultiplexes the selected sectors that form 
our communication channels. With this system, I demonstrated the possibility to increase 
in one order of magnitude of the channel capacity, i.e., the number of polarization channels, 
with less than 3% of crosstalk. � is system is interesting since it can work at any wavelength 
at which the biaxial crystals are transparent. In this case, it would be very interesting to 
investigate the multiplexing of multiple independent lasers with a single biaxial crystal, i.e., to 
combine multiple independent lasers. We have carried out some investigations in this sense 
and our preliminary conclusions are that this could only be achieved with linearly polarized 
elliptical beams. We would like to note that the FSOC system reported in this thesis is not 
the only technological application of CR. In collaboration with the group of Prof. Edik U. 
Rafailov at the Aston University (Birmingham), we have shown that the doping elements 
found in our biaxial crystals can be used to built intracavity lasers with CR patterns (Loiko et 
al., 2014). Additionally, due to that for a uniformly polarized input beam there exists a direct 
link between the intensity distribution of the CR rings and the state of polarization of the 
input beam, we have demonstrated and patented a single-shot polarimeter based on CR in 
collaboration with the group of Prof. Juan Campos at the Universitat Autònoma de Barcelona, 
see (Peinado et al., 2013; Peinado et al., 2015 and Turpin et al., 2014) for further information.
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In conclusion, the applications discussed in this thesis are only some examples of the 
possibilities to apply CR to di� erent � elds of science and technology. Our aim has been to 
show that the physics behind the phenomenon of CR is very rich and that it can be really 
useful in a wide variety of situations. We hope that our investigations will motivate the 
scienti� c community to take pro� t of the � exibility o� ered by the CR phenomenon, giving a 
second life to this old and almost forgotten optical e� ect.
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