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Abstract 

We study DEA efficiencies of 47 Spanish airports over the period 2009-2013 under 186 

input/output specifications obtained by combining 6 inputs and 5 outputs.  The results are 

analysed using the tools of multivariate statistical analysis, in particular the Individual 

Differences Scaling model of Caroll and Chang (1970).  This model reveals what has remained 

invariant over the period, what are the most salient characteristics of efficiency for individual 

airports, and how these characteristics have changed in importance during the crisis period.  It 

also discloses the strengths and weaknesses of each airport in terms of efficiency.  Given the 

large differences in size between the airports, we use the Variable Returns to Scale approach.  

Since it is a characteristic of economic crisis that some capacity remains idle, we use the output 

oriented form of DEA.  The results reveal important changes in efficiency between 2009 and 

2010, followed by a period of slow return to the pre-crisis situation. 
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1. Introduction 

Airports are public resources that require a large amount of investment, and there has been 

substantial interest in exploring whether such resources have been effectively and efficiently 

used.  Spain has not been an exception.  The European Court of Auditors (2014) investigated if 

investment expenditure in Spanish airports had been justified.  Authors who explored efficiency 

in airports, in an international context, are Gillen and Lall (1997; 2001) , Sarkis (2000) , 

Bazargan and Vasigh (2003), Parker (1999), Sarkis and Talluri (2004) , Wang et al. (2004), Yu 

(2004; 2010), Barros et al. (2007),  Barros (2008a; 2008b; 2009), Pathomsiri et al. (2008), Yu et 

al. (2008) , Assaf et al. (2012). In Spain we can mention Murillo-Melchor (1999), Salazar de la 

Cruz (1999), Martin and Roman (2001; 2006), Martin-Cejas (2002) , Coto-Millan et al. (2007; 

2014; 2016), Tapiador et al. (2008), Martin et al. (2009; 2011), Tovar and Martin-Cejas (2009; 

2010), Lozano and Gutierrez (2011), Lozano et al. (2013). 

A popular technique for efficiency assessment is Data Envelopment Analysis (DEA).  DEA 

takes a particular unit to be assessed as the focus of analysis and asks if the inputs used by such 

unit would have been better employed elsewhere.  The question is basically: imagine that we 

close the unit under observation and distribute its inputs amongst other similar units, the units 

that have received extra inputs will generate extra outputs; will these extra outputs be at least as 

large as the outputs that were generated by the unit we consider closing?  If the answer to this 

question is “yes”, then the unit under observation is deemed to be inefficient. 

There are many possible input/output combinations (specifications) that can enter into a DEA 

study, and calculated efficiencies depend on the specification chosen.  In fact, two different 

analysts working on the same data can come up with different results just because they have 

chosen different specifications.  It is difficult to justify how two different results can arise from 

the same data when the analysis is performed by two perfectly competent people.  A solution 

proposed by Serrano-Cinca et al. (2016) is to estimate a variety of specifications for each unit 

under observation and to analyse the results using Factor Analysis. This approach has been 

revealed to be very effective in various studies Gutierrez-Nieto et al., (2007); Serrano-Cinca et 

al., (2016); and Sagarra et al., (2017).  Ripoll-Zarraga and Mar-Molinero (2017) applied this 

approach to study the efficiency of Spanish airports. 

 

Extreme values are a problem in DEA since they may have considerable influence on the 

results. But an extreme efficiency value may just be consequence of the choice of inputs and 

outputs.  Serrano Cinca et al. (2016) demonstrated that whether a particular unit of assessment 
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appears to be an extreme value depends on the particular choice of inputs and outputs that are 

incorporated in the specification.  Units of assessment that are associated with extreme efficiency 

values under a particular specification may not appear to present discordant behaviour under 

other specifications.  For this reason, we have decided not to start the modelling by looking for 

extreme values.  By estimating a variety of specifications, we will be able to reveal the reasons 

why some units of assessment present extreme behaviour, if any such units exist.  This will, in 

fact, disclose the strengths and weaknesses in the efficiencies of the various airports. 

Airport efficiency studies tend to be static, in the sense that data on inputs and outputs are 

collected for a particular year, and the model is estimated.  Here we take the analysis a step 

further by adding the time dimension to the analysis. 

The standard way to incorporate time changes in DEA is by means of the Malmquist index 

approach (Thanassoulis, 2001).  But the Malmquist index approach suffers from the same 

limitations as the standard DEA approach in that a particular specification has to be selected, and 

no alternatives are considered.   

Our data consists in four inputs and five outputs for 47 Spanish airports over a five-year 

period. DEA efficiency was calculated for each airport under an output-oriented variable returns 

to scale model (VRS). VRS is justified given the large difference in size between the various 

airports.  Output orientation was selected as an approach because we considered that the 2008 

economic crisis had left capacity under-utilised, and we wanted to see how this had developed.  

As for the specifications, many can be contemplated, but we were selective in the sense that 

some of them did not make much managerial sense and these were excluded from the analysis.  

The final data set was a three-way table of airports by specifications by years.  The cells in the 

table contained efficiencies. 

The approach followed to analyse the results was based on the Individual Differences Scaling 

(INDSCAL) model of Carroll and Chang (1970).  This model reveals what has remained 

constant over the time period, and any time effects that may exist. This is done by means of a 

“common map” and a set of weights.   

The common map represents airports over the time period in a consensus map that, in this 

case, is represented in a nine dimensional space, although only six dimensions are interpreted.  

The interpretation of the dimensions is done using the technique of Property Fitting (ProFit) 

(Schiffman et al., 1981).  

To study time effects we need to analyse the weights produced by the INDSCAL model.  This 
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we do in a graphical way using a representation suggested by Young (Coxon, 1982).  The 

weights reveal that the economic crisis had a large impact in the data after 2009, followed by a 

period of slow recovery. 

After this section, we describe the data in Section 2.  Section 3 describes the methodology and 

the results.  The paper ends with a discussion section that contains the conclusions. 

2. The Data 

Spanish airports are government owned and managed by a public company named AENA 

(Aeropuertos Españoles y Navegación Aérea). AENA manages 49 civilian aviation airports 

including four general aviation airports and two heliports. One of the consequences of this 

centralised management is that airports do not compete. There has been much debate about the 

adequacy of a centralised system versus local decision making (Cambra de Comerç de 

Barcelona, 2010; CNMC-The National Board for Markets and Competition, 2014; Word 

Finance, 2016). 

Our data set includes 47 of the 49 airports over a period of five years (2009-2013).  There is 

no financial data information on individual airports prior to 2009. The list of airports can be seen 

in Table 1. Two airports were excluded from the analysis due to lack of data: Son Bonet (in 

Majorca island) and Algeciras. 

In terms of passengers, the network contains 14 large airports (i.e. more than 3.5 million of 

passengers per year).  The remaining 43 airports can be described as medium or small sized, and 

have a high variability in terms of passengers and cargo. The data have been extracted from the 

annual reports of AENA from 2009 to 2013 where individual data per airports was published 

except for the depreciation of assets and runway length. 

Despite being government owned, AENA does not receive public subsidies.  To obtain extra 

funds, Spanish airports have engaged in commercial activities alongside with their aeronautical 

mission. Amongst these commercial activities we can list duty-free shops; car rental; food 

services; shops; advertising; VIP lounges; banking; travel agencies; and vending machines. 

Diversification towards commercial activities is normally associated with privatisation processes 

(Humphreys, 1999). In the Spanish case, commercial revenues are as important as aeronautical 

revenues (ICAO, 2013). 

DEA requires specifying what are the inputs and the outputs of an airport.  The inputs 

considered are: 
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Labour costs excluding air traffic control services (A) 

Operating costs (B) 

Depreciation of airside assets (C) 

Runway length (D) 

All the inputs are in euros except for runway length. The letters in brackets indicate the 

symbol that has been used in the analysis. 

The outputs generated by an airport are considered to be: 

Passengers (1) 

Air traffic movements (ATM) (2) 

Cargo (3) 

Commercial revenues (4) 

Percentage flights on time (5) 

Cargo is measured in tons and commercial revenues are measured in euros. The numbers in 

brackets indicate the symbol that has been used in the analysis. 

These variables used have been frequently used in airports’ efficiency studies; see Tovar and 

Martin-Cejas (2010).  The choice of inputs and outputs has been guided by data availability as 

published by AENA. Labour and operating costs; the number of passengers; movements; cargo 

and commercial revenues have been extracted from AENA’s annual reports. 

Cargo has increased its importance over the years.  It requires different handling methods 

compared to passengers (Tovar and Martin-Cejas, 2009; Chi-Lok and Zhang, 2009). Aircraft 

movements are treated as an output of airside operations.  They generate revenues in the form of 

landing and aircraft parking charges (Coto-Millan et al., 2014). The percentage flights on time 

has been used as an indicator of congestion. 

Turning our attention to inputs, airports’ resources are normally related to infrastructure. 

Infrastructure includes the number of runways; terminal buildings; boarding gates; number of 

checking desks; terminal size; parking capacity; and number of full-time employees.  

Nevertheless, infrastructure is difficult to define or quantify. Indeed, one of the main challenges 

of airport benchmarking analysis is the inclusion of capital measures (Parker, 1999).  Various 

capital proxies have been used in airport industry research: rent expenses (Parker, 1999); 
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depreciation of fixed assets (Murillo and Melchor, 1999; Martin and Roman 2001; Martin et al., 

2009; 2011); capital expenses (Martin-Cejas, 2002); book value (Barros and Sampaio, 2004; 

Coto-Millan et al., 2014; 2016); length of runways (Martin et al., 2011); and airport surface area 

or number of gates (Tovar et al., 2009; 2010). It is also possible to take into account if assets are 

linked to aircraft movements (boarding gates; apron capacity and runways areas), or to loading 

processes such as checking counters and baggage belts (Lozano et al., 2013). 

 

In this study, we have employed as a proxy for capital usage, the depreciation of airside assets. 

From an accounting perspective depreciation reflects the consumption of airport assets that takes 

place in the process of generating revenues. Following Ashford et al. (1996) airport 

infrastructure was classified into airside and landside. In this study, only the depreciation of 

airside assets is considered.  The split between airside and landside assets has been discussed by 

Gillen and Lall (1997), and Pels et al. (2001; 2003). Airside assets are considered to be essential 

to develop aeronautical activities. The depreciation of airside assets refers to aviation terminals; 

aprons; taxiway and air traffic control and visualisation systems (beacon), excluding runway 

depreciation.  Depreciation was calculated using established depreciation rules while taking into 

account the historical cost of non-current assets.   The calculation required knowing the initial 

cost of assets and of the subsequent work performed on them. The historical cost of non-current 

assets was obtained from the construction certifications of works performed in airports.  It was 

not possible to find individual airport infrastructure expenditure information before 2000, and 

calculations were made as if airports had started their activity in the year 2000.  Airports’ initial 

investments for 2000 were estimated from depreciation charges for 2004 (accidentally released 

by the Spanish Government). These depreciation expenses were available per airport within 

individual income statements. The useful life of the assets conforms to current regulation in the 

transportation sector for buildings and structures as required by international financial reporting 

standards (IFRS) for property, plant and equipment (IAS 16). 

There was no information regarding the type of labour cost (full or part-time; permanent or 

fixed term).  In a few instances, there was missing data.  We preferred making a small estimation 

error rather than removing an airport from the data set because a particular item was not 

available, and we inputted an estimate using the nearest neighbour approach.  We estimated 

some items in the cases of Ceuta, Cordoba, Huesca, La Gomera, and Madrid-4Vientos.  

Runway length is a non-discretionary input in the sense that runway length cannot be changed 

in the short term in order to improve efficiency.  Non-discretionary inputs in DEA have been 
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studied, amongst others, by Banker and Morey (1986), Ruggiero (1988), and Cordero-Ferrara et 

al., (2008).  In our case, the DEA models estimated are output oriented, and the standard model 

does not need to be modified. 

All the data measured in monetary units was deflated by the Spanish gross domestic product 

deflator (base Spain, 2010). 

Table 1 Descriptive Statistics. 

Variable  Mean  Std. Dev. Min  Max 

Passengers  4,094,892  8,656,221  0  49,866,113 

Air Traffic Movements  42,736.41  72,758.36  476  435,187 

Cargo (t)  13,472,972  53,369,951  0  394,154,078 

Aeronautical Revenues (mill €)  35.45  97.33  0.03  703.93 

Commercial  Revenues (mill €)  13.40  31.16  0  186.82 

Labour Costs (mill €)  8.25  11.36  0.12  81.83 

Operating Costs (mill €)  21.75  55.88  0.45  350.82 

Depreciation Airside (€)  2,208.97  5,498.38  0  31,100.24 

Runway Length (m2)    177,574.20  161,175.30  10,626  927,000 

 

Descriptive statistics for inputs and outputs are given in Table 1 (Source: AENA 2009-2013 

except for depreciation and runway length. Data deflated by the GDP deflator base Spain, 2010). 

3. Analysis and Results 

Efficiencies were estimated under 186 DEA specifications for each airport and for each of the 

five years. This makes a total of 43,710 estimations. Inputs were identified by means of capital 

letters, and outputs by means of numbers, in line with the notation introduced in the previous 

section.  For example, model AC32 contains as inputs labour (A) and depreciation (C) and as 

outputs cargo (3) and ATM (2).  The specifications estimated are not all the possible 

combinations between the five outputs and the four inputs since some were excluded on the 

grounds that they did not make operational sense. 

3.1. Factor analysis of efficiencies for individual years 

The data to be analysed is a three-way matrix of 186 specifications, by 47 airports, and by 5 

years.  Although some relevant information can be obtained through visual inspection of the 
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data, it is clearly necessary to use a data reduction technique in order to deal with such a large set 

of figures.  

In the first instance, the data set was treated as a set of five matrices of airports by 

specifications, one such matrix for each year, the cells of the matrices containing estimated 

efficiencies.  Specifications were treated as variables, and airports were treated as cases.  Each 

matrix was analysed using Unrotated Orthogonal Factor Analysis.  This was done in order to 

assess the dimensionality of the data. 

There was little variation between the five years.  In general, either 9 or 8 factors were 

associated with eigenvalues greater that unity, the standard Kaiser’s criterion.  The 9 factors 

always accounting for more than 95% of the variability in the data.  The first factor was clearly 

an overall measure of efficiency, and accounted for more than 60% of the variability in the 

information.  Similar patterns were observed by Gutierrez-Nieto et al., (2007), Serrano-Cinca et 

al., (2016), and Sagarra et al., (2017). 

It was also observed that factorial weights associated with dimensions 7, 8, and 9 were low 

(less than 0.3).  Considering that the statistical package employed, SPSS, orders factors in terms 

of their eigenvalues, it can be conjectured that factors 7, 8, and 9 are of lesser importance in the 

analysis.   

Following this matrix by matrix factor analysis study, it was decided to model the data as 

nine-dimensional, although we did not expect to obtain interesting findings for dimensions 

higher than six. 

3.2. The individual differences scaling model 

Given the amount of data we had, we decided to use a statistical technique that reveals its 

main characteristics in a graphical form.  There are several such approaches that can be used to 

model three-way data.  We preferred to employ the Individual Differences Scaling (INDSCAL) 

model of Carroll and Chang (1970).  Estimations were performed with the PROXSCAL routine 

of the package SPSS.   

Scaling models are estimated using numerical hill-climbing methods and can suffer from local 

minima problems. To be sure that it was not the case in this instance, several approximation 

methods were used.  Another problem with hill-climbing approaches is that iterations can finish 

before the optimal value is found.  To avoid this problem as far as possible, the default level of 

precision in SPSS was increased by a factor of one thousand.  The results reported here were 

found to be robust to the estimation method used and to the level of precision in the calculations. 
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The INDSCAL model is proximity based.  First, proximities between airports are calculated 

for every year.  There are various ways in which proximities can be calculated. We used 

Euclidean metric between airports using as variables standardised efficiency values.   This 

method is equivalent to Factor Analysis when certain restrictive conditions apply; Coxon (1982). 

In other words, each airport is a point in a space of 186 dimensions (one dimension for each 

specification).  The proximity (dissimilarity) between any two airports is taken to be the distance 

between the points in the 186-dimensional space.  Since there are 47 airports in the data set, this 

results in the calculation of 1081 proximity values for each year.  In mathematical terms, the 

proximity between airport i and airport j in year t is given by: 

௜௝ߜ 
௧ ൌ ቀ∑ ൫݁௜௞

௧ െ ௝݁௞
௧ ൯

ଶଵ଼଺
௞ୀଵ ቁ

భ
మ	, (1) 

where ݁௜௞
௧  is the standardised efficiency of airport i under specification k for year ݐ. 

INDSCAL models the airports as a set of points in a d-dimensional space. Following the 

findings of the year by year factor analysis, d was set to 9. INDSCAL is not rotation invariant, as 

is the case with factor analysis or with Multidimensional Scaling.  It has been found that the 

dimensions in an INDSCAL study often have a meaning.  Attaching a meaning to the 

dimensions is important in order to interpret the results of the analysis.  This is done below. 

It is assumed that the relative position of the airports with respect to each other, in this 9 

dimensional space, remains invariable over time, but that the relative importance (salience) of 

the dimensions changes over time.  This assumption is appropriate for the Spanish airport data 

set since it is reasonable to assume that the airports that are similar in a particular year will 

continue to be similar over the time period.  For example, if Vitoria and Zaragoza airports are 

similar during the first year, they will continue to be similar during the following four years.  

This does not mean that things do not change; the relative importance of the dimensions in the 

space may change over time as a result of, for example, the economic cycle. 

INDSCAL returns as output both a common map that represents what has remained invariant 

over time, and a set of weights that reveals time-related effects. The set of weights, one for each 

dimension and for each year, are used to “distort” the common map.  The distortion is a simple 

change of scale that is used to emphasise the importance (salience) of each dimension in each 

particular year.    The importance of each dimension of the common map will increase in a 

particular year if the weight associated for that year for that dimension is higher than average, 

and will decrease if the weight associated with that dimension is lower than average.  



10 | P a g e 2 9  
 

Mathematically, INDSCAL performs a non-linear regression where the dependent variables 

are the ߜ௜௝
௧  and the unknowns are of two types: the coordinates of the airports in the common 

space, ܿ௜ௗ, and the set of weights ݓௗ
௧ . Where ܿ௜ௗ is the coordinate ݀ of airport ݅ in the common 

space, and  ݓௗ
௧  is the weight attached to dimension ݀ in the specific year ݐ. 

We can write: 

௜௝ߜ 
௧ ൌ ൫∑ ሺܿ௜ௗ െ ௝ܿௗሻଶݓௗ

௧ଽ
ௗୀଵ ൯

భ
మ ൅ ௜௝ߝ

௧ ൌ ݀௜௝
௧ ൅ ௜௝ߝ

௧  , (2) 

where the ݀௜௝
௧   are the distances between airports as calculated from the common map.  

Being regression based, model fit can be assessed using the correlation between the 

dissimilarities, ߜ௜௝
௧ ,	 and the distances ݀௜௝

௧ .  This is done for each year. 

 ܴ௧	 ൌ ௜௝ߜሺ	݊݋݅ݐ݈ܽ݁ݎݎ݋ܥ
௧ , ݀௜௝

௧ ሻ (3) 

The model contains an ambiguity: if we multiply the coordinates of the common space by a 

constant and divide the weights by the square of this figure, the value under the square root 

remains unchanged.  To avoid this, the weights for each year are normalised so that 

 ܴ௧ଶ ൌ ∑ ሺݓௗ
௧ሻଶଽ

ௗୀଵ  (4) 

In other words, the sum of the square of the weights for each year adds up to the square of the 

correlations between dissimilarities and distances for that particular year. 

The weights for each dimension and each year can be seen in Table 2.  This table also contains 

the sum of squares of the weights for each particular year. 

Table 2 INSCAL Weights (wt) and Goodness of Fit measure for each year. 

Year   ૚࢝  ૛࢝  ૜࢝  ૝࢝  ૞࢝  ૟࢝  ૠ࢝  ૡ࢝  ૢ࢝  ૛࢚ࡾ

2009  0.240  0.589  0.106  0.000  0.137  0.009  0.228  0.022  0.025  0.487

2010  0.219  0.178  0.165  0.158  0.232  0.095  0.185  0.132  0.491  0.487

2011  0.260  0.145  0.248  0.502  0.212  0.121  0.146  0.042  0.057  0.488

2012  0.301  0.171  0.277  0.165  0.163  0.100  0.094  0.467  0.000  0.487

2013  0.289  0.141  0.247  0.117  0.195  0.506  0.100  0.000  0.075  0.487

It can be seen in Table 2 that correlations between dissimilarities and distances for each year 

are in the region of 0.7 (the square root of the figure under the ܴ௧ଶ column).  It can also be seen 

that the relative salience of the dimensions, as measured by the weights, changes over time.  This 

is something we will further explore below. 
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Another way of assessing the goodness of fit of the model is known as “stress”. Stress is a 

measure of lack of fit.  As such, we would like stress to be near to zero.  There are various 

measures of stress, depending on the way the result is normalised, the most common measure is 

known as Stress1; Kruskal (1964).  In this case Stress1 was found to be 0.0610, which ranks as 

“very good” in Kruskal’s (1964) verbal classification. 

INDSCAL also generates a common map.  The common map is a consensus map over time, 

which plots each airport in the 9-dimensional space.  Each airport is then, a point in a 9-

dimensional space.  The coordinates of each airport in the common map are given in Appendix 

A.   

Clearly, a mathematical map in nine dimensions is difficult to comprehend.  It needs to be 

projected into pairs of dimensions.  The projection of the common map into dimensions 1 and 2 

can be seen in Figure 1. The projection of the common map into dimensions 3 and 4 can be seen 

in Figure 2, and the projection of the common map into dimensions 5 and 6 can be seen in Figure 

3.  Airports are identified by means of their codes. 

 
Fig. 1.  Common Map. Projection into Dimension 1 and Dimension 2. Airports identified by means of their codes. 
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Fig. 2.  Common Map. Projection into Dimension 3 and Dimension 4. Airports identified by means of their codes. 

 

 

 

Fig. 3.  Common Map. Projection into Dimension 5 and Dimension 6. Airports identified by means of their codes. 
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3.3. Interpreting the common map.  Property Fitting 

In order to better understand the results of the analysis, it is important that dimensions in the 

common map be attached a meaning.  This can be done in a more formal way using the Property 

Fitting approach (ProFit). ProFit is a form of biplot; see Gower and Hand (1996).  It attempts to 

establish if there are directions in the common space that are related to the way in which 

efficiency under a particular specification changes.  For example, if efficiency in dealing with 

cargo grows in the direction of Dimension 5, we plot a vector in the direction of Dimension 5 to 

make this explicit.  To draw the vectors, we need to perform a regression in which the 

independent variables are the coordinates of the airports in the common space, and the dependent 

variable is the efficiency under the specification of interest.  For a mathematical justification of 

this procedure see Mar-Molinero and Mingers (2006). 

ProFit vectors were normalised to unit length, 

 

௜ߚ 
∗ ൌ ఉ೔

ට∑ ఉ೔
మవ

೔సభ
మ

	 , ݅ ൌ 1… .9	, (5) 

 

where ߚ௜ is the ݅ െth regression coefficient.  The ߚ௜
∗ values can be seen in Appendix B.  

Appendix B also shows the ܴଶ, that measures Goodness of Fit in the regression. 

Normalisation is important for the interpretation of the dimensions.  All ProFit vectors have 

their origin in the centre of co-ordinates and, after normalization, have unit length.  If, in a two-

dimensional projection, the end point of the ProFit vector associated with a particular 

specification is close to the centre of coordinates, it is concluded that the dimensions on which 

the vector is plotted are unrelated to efficiency under that particular specification.  If, on the 

other hand, the vector appears to have unit length in a particular projection, one can conclude 

that the dimensions of the figure are the relevant ones for the interpretation.   

3.4. Interpreting the common map.  Hierarchical Cluster Analysis 

Figures 4, 5, and 6 have to be seen together with Figures 1, 2, and 3.  Ideally, one would 

project both the end points of the profit vectors and the airports on the same pair of dimensions, 

but this would have resulted in too much information within each figure.  
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Fig. 4.  DEA Specifications projection into Dimension 1 and Dimension 2 with indication of Ward clustering method. 

 

Before we proceed to interpretation, we need to realise that the end points of the ProFit 

vectors are located in a 9-dimensional space, and it is possible for two such end points to appear 

near to each other in the projection while being far away in the space.  In order to address this 

issue we have conducted a Hierarchical Cluster Analysis of the end points of the ProFit vectors.  

The ߚ௜
∗values were treated as variables, and the specifications as observations.  Ward´s 

agglomeration method was chosen, since it maximises homogeneity within clusters and 

heterogeneity between clusters.  After observing the dendrogram, it was decided that six would 

be an appropriate number of clusters.  The specifications that belong to the same cluster have 

been identified in Figures 5, 6, and 7. 
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Fig. 5.  DEA Specifications projection into Dimension 3 and Dimension 4 with indication of Ward clustering method. 

 

 
Fig. 6.  DEA Specifications projection into Dimension 5 and Dimension 6 with indication of Ward clustering method. 

 



 

3.5. Interpreting the common map.  Exploring the meaning of the dimensions 

In this section we interpret the common map, as projected in Figures 1, 2, and 3 taking into 

account the results of ProFit and Cluster analysis. 

We observe in Figure 1 that airports concentrate in the lower right-hand-side quadrant and in 

the upper left-hand-side quadrant.  Airports located in the lower right side of the figure are, on 

the whole, large or medium-sized (Madrid Barajas, Barcelona El Prat, Palma, Alicante). Airports 

located on the top left hand side quadrant are small airports (Albacete, Logrono, Badajoz). It is 

clear that the north-west, south-east diagonal is related to the size of the airport.  To understand 

how the efficiency of large airports differs from the efficiency of small airports, we turn our 

attention to Figure 4. 

In Figure 4 we observe that the end points of ProFit vectors that are most distant from the 

centre of coordinates in the direction south-east belong to Cluster 6 and, to a smaller amount, to 

cluster 3.  Furthermore, the distance from the origin of coordinates to points that belong to 

Cluster 6 is almost unity, indicating that this cluster is important for interpretation purposes. 

Members of Cluster 6 have as inputs Operating Costs (B), Depreciation (C), and Runway Length 

(D) and as outputs Passengers (1), ATM (2), and Commercial Revenues (4).  This indicates that 

large airports are efficient at generating aeronautical activity and revenues given the use they 

make of the infrastructure, while the same cannot be said of small airports.  Almost half of the 

airports in the EU can be described as being “small”, but these account for just 0.75% of air 

traffic.  

Using a similar way of proceeding we turn our attention to Dimension 1 in Figure 4.  ProFit 

vectors that point towards the right hand side contain Depreciation (C) and Runway Length (D) 

as inputs; as outputs they contain Passengers (1) and ATM (2).   We can then suggest that 

Dimension 1 is related to the efficient use of investment in order to generate air traffic 

movements (passengers and/or cargo). 

If we now look at Dimension 2 in Figure 4 we see that the ProFit vectors that point towards 

the top contain as inputs Labour Cost (A) and Depreciation (C), and as outputs ATM (2), Cargo 

(3), and Flights on Time (5).  We have already observed that the airports that are located towards 

the top of Figure 1 are small ones.  This suggests that small airports have high punctuality 

records, and deal with aircraft traffic in a cheap way, both from the point of view of labour and 

the point of view of investment in infrastructures.  We can label this dimension as cost efficiency 

with respect to aeronautical activity in terms of punctuality. 
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Dimension 3 is associated with a variety of specifications combining a variety of inputs and 

outputs, but all of them include ATM (output 2). This suggests that dimension 3 is related to the 

efficiency in obtaining financial resources in relation with Air Traffic Movements (airport 

charges in relation to approach and landing taxes). Dimension 3 shows the trade-off between the 

length of runways and cargo activities, taking into account punctuality. Large airports handle 

large aircrafts, which may take longer times for cargo operations and affecting punctuality. 

It can be seen in Figure 5 that the ProFit vectors most associated with Dimension 4 contain 

Labour Costs (A) and Operating Costs (B) as inputs, and Passengers and (1) ATM (2) as outputs. 

This dimension could be interpreted as cost efficiency in dealing with passengers.  

Dimension 5 is clearly associated with the efficiency in dealing with cargo.  

Finally, Dimension 6 captures efficiency effects associated with runway length. Clearly, 

longer runways make it possible for larger aircraft to land, and this impacts on efficiency. But, at 

the same time technical efficiency will depend on the existence of traffic and its impact on 

punctuality. 

3.6. Time evolution 

Time related effects are captured by the weights in Equation 2.  For a given year and a given 

dimension, the absolute value of the weight is not important, since this depends on the 

normalisation performed in Equation 4.  What is important for a given year, t, is whether the 

value of the weight associated with a particular dimension is greater or smaller than the value of 

the weight associated with another dimension.  If both weights are of equal value, the common 

map is a good representation of the efficiency situation for the airports.  If the weight for 

dimension i is higher than the weight for dimension j, the common map has to be elongated 

along dimension i and shrunk along dimension j.  This is to say, if weight, wti, is higher than 

weight, wtj , dimension i takes more importance than dimension j during year t.  

This is best explored graphically, but because there are 6 weights, 15 such graphs are necessary 

to give full details.  We have decided to only reproduce here the most informative graphs.  

There are various ways in which the relative importance of the weights can be revealed.  Here we 

have opted for Young’s plots; Coxon (1982, p.199).  Four such plots can be seen in Figure 7. 

It can be seen in section (a) of Figure 7 that there was a large change in the relative importance of 

Dimension 2 with respect to Dimension 1 after 2009.  This can be directly attributed to the impact 

of the economic crisis.  In 2009 Dimension 2 was clearly more important than Dimension 1, a 

situation that was reversed in the following years. Dimension 2 has been interpreted as cost and 
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investment efficiency, and Dimension 1 was interpreted as efficiency in the use of investment in 

order to generate passenger activity. From this we deduce that in the year 2009, when passenger 

activity was high, the emphasis was on cost reduction and good use of infrastructures.  After 2009 

the emphasis appears to have shifted to generating passenger activity given the investment available 

in each airport.  

The next plot of interest corresponds to section (b) of Figure 7.  Here we concentrate on cost 

efficiency in dealing with passengers, which was associated with Dimension 4.  This efficiency 

appears to have taken more importance during the worst years of the economic crisis (2010 and 

2011).  In years 2012 and 2013 the relative importance of Dimension 4 with respect to Dimension 1 

decreased, indicating a return to the pre-crisis situation. 

The relative importance of Dimension 4 with respect to Dimension 2 is explored in section (c) of 

Figure 7.  We see that cost efficiency in relation to passengers appears to have had relatively low 

emphasis in 2009, before the economic crisis hit Spanish airports, but that the situation was 

reversed during the crisis. 

 

Fig. 7.  INDSCAL weights, Young’s plots.
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Finally, the relative salience of efficiency in dealing with passengers or cargo is explored in 

section (d) of Figure 7.  We can see that efficiency in cargo took more importance before the 

crisis and that, as the crisis developed, efficiency in dealing with passengers took more 

importance.  This can be due to a fall in cargo activity as a consequence of the economic crisis. 

Discussion and conclusions 

Airports are important infrastructures that command many resources.  In Spain, airports are 

nationally owned and managed through a state company: AENA.  There has been substantial 

interest in establishing if the resources have been efficiently managed in the aeronautical 

industry.  

From 2004 to 2007, the vast majority of small and medium sized airports increased their 

number of passengers. The financial crisis that started in 2008 impacted on small and medium 

sized airports that suffered a significant reduction in air traffic compared to large airports. In fact, 

the reduction in traffic that took place between 2007 and 2013 was so drastic that only two 

airports reported increases in the number of passengers (27.86% Santander and 1.12% Santiago).  

However, efficiency depends on inputs and on outputs.  This begs the question of how the crisis 

affected the efficiency of the airport system.  The research reported in this paper addresses such 

question using the technique of Data Envelopment Analysis combined with the tools of 

Multivariate Statistical Analysis. 

The first issue explored is: what is airport DEA efficiency?  Is there just one form of DEA 

efficiency or can several efficiencies be identified?  In standard studies data is collected on the 

values of inputs and outputs and calculations take place.  But the results of the analysis depend 

on the choice of inputs and outputs.  This is no trivial matter, as inputs (and outputs) tend to be 

correlated and there are no modelling rules equivalent to the ones that are available in statistical 

analysis. 

Our approach has been to estimate a variety of input/output combinations that we have named 

specifications.  We have used four inputs and five outputs that are standard in the airport 

efficiency literature.   

The treatment of capital assets has been particularly complex, since appropriate data could not 

be had from AENA’s financial statements.  Capital usage had to be estimated from investment 

expenditure (tangible assets) whilst taking into account established depreciation rules. 

In total, efficiencies were estimated under 186 combinations of inputs and outputs.  The 
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calculations were performed for each of the five years for which we had data. Since we had data 

for 47 airports, this represents the calculation of 43,710 efficiency values. 

To analyse such a large number of results we resorted to the tools of multivariate statistical 

analysis, in particular to scaling techniques because these permit the graphical presentation of the 

main features of the data.   

The particular statistical approach chosen was the Individual Differences Scaling model of 

Carrol and Chang (INDSCAL).  INDSCAL produces a “common map”, that shows what has 

remained constant over time, and a set of weights that contain information about time-related 

changes. 

The study of the common map revealed that six efficiency definitions can be identified: (1) 

efficient use of investment in order to generate passenger activity; (2) cost efficiency in relation 

to aeronautical activity; (3) efficiency in obtaining revenues in relation to Air Traffic 

Movements; (4) cost efficiency in dealing with passengers; (5) efficiency in dealing with cargo; 

and (6) efficiency effects associated with runway length.   

Having interpreted the meaning of the dimensions, it is possible to assess the strengths and 

weaknesses of each airport in terms of efficiency.  For example, Vitoria airport is located near 

the centre of the representation in Figure 1 suggesting that it is slightly better than average in 

terms of efficient use of investment in order to generate passenger activity, and that it is slightly 

better than average in terms of cost efficiency as related to aeronautical activity; from Figure 2 

we deduce that Vitoria airport is slightly better than average in terms of cost efficiency in 

relation to ATM, and that it is below average in cost efficiency when dealing with passengers; 

however, in Figure 3 we see that the real strength of Vitoria is in cargo efficiency.  We conclude 

that in Vitoria airport there is room for improvement in terms of use of investment, cost 

reduction, and generation of passenger activity, but that it stands as an example of good practice 

in relation to cargo.  Similar analyses can be easily done with any other airport, since this only 

requires the observation of the airport in the different dimensions of the common map.  In fact, it 

has been shown that operational knowledge can be derived from appropriate processing of the 

data and that this knowledge can be represented in a graphical way for easy understanding. 

The relative importance of these approaches to efficiency has varied over time, and this is 

revealed in the weights generated by the INDSCAL model.  We see in Figure 7 (a) that in 2009 

cost efficiency took priority over efficient use of investment in the generation of passenger 

activity, but that the situation was reversed as a consequence of the economic crisis.  In Figure 7 
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(b) we see that after 2009, cost efficiency in relation to passengers took priority over efficient use 

of investment.  From Figure 7 (c) we observe that, before the crisis, cost efficiency in relation to 

passengers also took priority over cost efficiency in relation to aeronautical activity.  Figure 7 (d) 

shows how cost efficiency in dealing with cargo lost importance during the period, and this was 

gained by cost efficiency in relation to passengers.  These changes can be related to the loss of 

outputs as a consequence of the crisis, whilst inputs were slow to adapt to change.  What is more, 

the slow return that is observed to the pre-crisis situation has probably more to do with increases 

in the outputs than with decreases in the inputs. 

We conclude that the combination of multivariate statistical analysis with DEA efficiency 

evaluation can produce important insights in time related effects in efficiency.  However, in this 

analysis we have not taken into account shifts in the production frontier.  This may not be a great 

loss, since five years is a short period, and the situation is dominated by the impact of the 

economic crisis. 
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Appendix A 

See Table A1. 

Table Al 
Coordinates of Spanish airports in the common space. 

Code Airport  Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 

LCG A Corunna -0,14 0,43 -0,65 -0,63 -0,24 -0,90 0,71 0,93 -0,57 

ABC Albacete -1,53 2,18 -1,08 -1,38 -1,11 0,69 0,14 0,64 0,64 

ALC Alicante-Elche 1,47 -1,24 1,22 0,30 -0,72 0,89 -1,02 -0,50 0,67 

LEI Almeria -0,49 -0,18 -0,80 -0,86 -0,36 -0,80 1,46 0,76 -1,02 

OVD Asturias -0,28 0,11 -0,58 -0,07 -0,32 -0,71 0,19 0,44 -0,55 

BJZ Badajoz -1,64 1,38 -0,24 1,28 0,01 -1,79 -0,22 -0,82 0,08 

BCN Barcelona-El Prat 1,68 -0,77 1,59 1,07 -0,43 1,58 -1,31 -1,46 1,41 

BIO Bilbao 0,71 -0,61 1,02 0,60 1,07 0,24 -1,23 -0,74 0,82 

RGS Burgos -1,41 1,39 -1,34 -0,10 -0,39 0,64 0,45 -0,20 0,34 

JCU Ceuta -1,07 0,38 -0,91 0,20 -1,49 0,47 1,22 -0,94 0,33 

ODB Cordoba -0,61 2,24 -0,59 -0,38 -0,34 0,54 0,03 -0,29 0,97 

VDE El Hierro -0,36 0,80 -2,16 -1,54 -0,30 -0,06 0,47 -0,25 -0,30 

FUE Fuerteventura -0,07 -1,46 -0,49 0,63 0,17 -0,39 1,04 0,38 0,01 

GRO Girona 0,30 -1,31 1,25 0,30 0,36 -0,26 -0,94 0,64 -0,24 

LPA Las Palmas GC 0,94 -0,93 1,35 1,42 1,44 0,66 -1,19 -1,23 1,25 

GRX Granada-Jaen -0,39 0,52 -0,73 -0,58 -0,18 -1,34 0,30 1,45 -0,92 

HSK Huesca -1,52 0,82 0,07 -0,31 -0,23 -0,55 -0,99 -0,45 -1,59 

IBZ Ibiza 0,67 -1,17 0,75 1,49 0,27 0,58 -0,33 -0,35 0,45 

XRY Jerez 0,75 -0,46 0,34 1,12 0,24 0,91 0,79 -0,29 0,23 

GMZ La Gomera -1,18 1,21 -1,02 -1,61 -1,07 1,24 1,14 2,97 -3,16 

SPC La Palma -0,51 0,07 -1,34 -0,76 0,19 -1,23 1,59 1,59 -1,27 

ACE Lanzarote 1,75 -0,87 0,54 0,31 0,73 0,63 -0,40 -0,72 0,51 

LEN Leon -1,20 1,03 -0,06 -1,47 -0,84 -0,54 0,76 1,10 -0,55 

RJL Logrono-Agoncillo -1,17 2,31 -0,86 -1,65 -0,95 1,18 -0,63 0,49 -0,20 

MAD Madrid-Barajas 1,73 -0,57 1,68 1,06 -0,04 1,58 -1,57 -1,52 1,55 

MCV Madrid-4Vientos 1,72 -0,52 1,68 1,09 0,02 1,56 -1,54 -1,51 1,50 

TOJ Madrid-Torrejon -1,08 -0,45 -1,54 0,31 0,60 1,43 2,26 0,75 -1,66 

AGP Malaga 0,30 -1,55 1,49 0,36 -0,97 0,29 -1,15 -0,34 1,32 

MLN Melilla -0,62 1,17 -0,84 -1,19 -0,95 -1,66 -0,03 -1,12 -0,92 

MAH Menorca -0,16 -0,43 -0,84 -0,06 -0,09 -0,79 1,54 0,72 -1,00 

MJV Murcia -0,11 -1,07 -0,57 1,55 -0,84 -0,87 1,20 0,88 -0,35 

PMI Palma de Mallorca 1,73 -0,57 1,68 1,06 -0,04 1,58 -1,57 -1,52 1,53 

PNA Pamplona -0,78 0,84 -0,10 -1,50 -0,45 -1,29 0,72 -0,11 -0,29 

REU Reus -0,17 -0,27 -0,25 -0,45 0,02 -1,14 0,96 1,72 -0,60 

QSA Sabadell 1,38 -0,51 1,62 1,63 -0,64 1,43 -1,45 -1,20 1,44 

SLM Salamanca -0,92 -0,25 -0,48 -0,89 0,06 -0,84 -0,97 1,98 -0,83 

EAS San Sebastian -0,15 1,16 -0,23 -0,97 -0,31 -0,59 -0,66 -1,16 0,41 

SDR Santander -0,23 0,05 -0,46 1,15 -0,43 -0,38 0,85 0,06 -0,24 

SCQ Santiago Compost -0,37 -0,68 -0,45 -0,89 -0,39 -1,19 0,55 0,86 -0,83 

SVQ Sevilla 1,63 -0,26 1,05 0,98 1,36 0,62 -1,15 -0,96 0,98 

TFN Tenerife Norte 0,29 -1,40 0,80 1,02 0,95 0,10 -0,21 -0,53 0,56 

TFS Tenerife Sur 1,42 -0,99 0,33 1,04 -0,77 0,40 -0,23 -0,06 0,44 

VLC Valencia 0,74 -0,90 1,38 0,75 0,31 0,43 -1,33 -0,23 0,94 

VLL Valladolid -0,85 0,13 -0,81 -1,25 -0,10 -1,66 0,55 0,08 -0,97 

VGO Vigo -0,47 0,36 -0,66 -1,03 -0,23 -1,65 1,03 0,62 -1,28 

VIT Vitoria 0,32 0,94 0,24 -0,96 3,38 0,75 0,07 -0,45 0,80 

ZAZ Zaragoza -0,04 -0,13 0,02 -0,20 4,05 0,22 0,08 -0,12 0,14 
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Appendix B 

See Table B1. 

Table Bl 
End points of normalised ProFit vectors. 

Model ࢼ૚
∗ ૛ࢼ 

∗ ૜ࢼ 
∗ ૝ࢼ 

∗ ૞ࢼ 
∗ ૟ࢼ 

∗ ૠࢼ 
∗ ૡࢼ 

∗ ૢࢼ 
∗  R2 

ABCD12345 -0,230 0,057 0,137 0,386 0,228 0,194 -0,301 -0,155 0,756 0,519

ABCD12 0,388 -0,403 -0,020 0,740 -0,161 -0,211 -0,241 -0,070 -0,078 0,820

ABCD2 0,092 -0,540 0,420 0,522 -0,138 0,303 -0,278 -0,223 -0,115 0,800

ABCD2345 -0,222 -0,016 0,206 0,134 0,241 0,399 -0,307 -0,212 0,731 0,544

ABCD234 0,364 -0,598 0,367 0,352 0,483 0,062 0,013 -0,044 0,109 0,863

ABCD235 -0,460 0,195 0,417 -0,056 0,288 0,400 -0,134 -0,329 0,453 0,586

ABCD245 -0,033 0,034 0,113 0,333 -0,391 0,316 -0,447 -0,183 0,623 0,537

ABCD23 -0,052 -0,386 0,552 0,193 0,577 0,356 -0,010 -0,200 0,078 0,856

ABCD24 0,437 -0,625 0,150 0,563 -0,168 -0,029 -0,214 -0,028 -0,061 0,859

ABCD25 -0,378 0,270 0,411 0,083 -0,198 0,407 -0,264 -0,379 0,436 0,539

ABC12345 -0,196 0,096 0,149 0,499 0,280 0,219 -0,321 0,043 0,670 0,548

ABC1234 0,389 -0,428 0,223 0,599 0,464 -0,172 -0,020 -0,064 0,090 0,833

ABC1235 -0,096 0,324 0,116 0,582 0,369 0,198 -0,308 0,007 0,513 0,523

ABC1245 -0,051 0,087 0,038 0,652 -0,290 0,128 -0,441 0,059 0,515 0,545

ABC123 0,468 -0,213 0,137 0,655 0,502 -0,176 -0,039 -0,059 0,001 0,820

ABC124 0,399 -0,445 0,014 0,718 -0,145 -0,218 -0,226 -0,048 -0,069 0,840

ABC125 0,050 0,307 0,002 0,731 -0,201 0,111 -0,426 0,020 0,367 0,498

ABC12 0,457 -0,267 -0,063 0,758 -0,104 -0,218 -0,243 -0,046 -0,146 0,809

ABC2 0,218 -0,393 0,375 0,632 -0,073 0,269 -0,305 -0,199 -0,217 0,786

ABC2345 -0,192 0,068 0,274 0,296 0,308 0,400 -0,328 -0,011 0,658 0,565

ABC234 0,418 -0,547 0,356 0,375 0,500 0,043 -0,012 -0,014 0,077 0,862

ABC235 -0,367 0,365 0,455 0,148 0,395 0,395 -0,146 -0,179 0,371 0,591

ABC245 -0,025 0,082 0,161 0,503 -0,324 0,311 -0,483 0,015 0,529 0,553

ABC23 0,063 -0,258 0,524 0,289 0,652 0,334 -0,030 -0,183 -0,010 0,859

ABC24 0,477 -0,578 0,140 0,577 -0,148 -0,045 -0,235 -0,003 -0,087 0,855

ABC25 -0,315 0,399 0,442 0,358 -0,076 0,418 -0,254 -0,053 0,412 0,523

ABD12345 -0,332 -0,090 0,380 0,264 0,181 0,304 -0,145 -0,091 0,716 0,497

ABD1234 0,308 -0,615 0,284 0,494 0,420 -0,046 0,055 -0,060 0,131 0,828

ABD1235 -0,352 0,004 0,419 0,255 0,222 0,321 -0,134 -0,135 0,669 0,478

ABD1245 -0,160 -0,073 0,279 0,455 -0,418 0,227 -0,283 -0,072 0,611 0,510

ABD123 0,336 -0,542 0,266 0,538 0,461 -0,039 0,045 -0,058 0,118 0,809

ABD124 0,349 -0,615 0,057 0,642 -0,196 -0,115 -0,169 -0,048 -0,040 0,851

ABD125 -0,192 0,028 0,331 0,459 -0,401 0,251 -0,273 -0,125 0,573 0,480

ABD12 0,362 -0,550 0,020 0,684 -0,203 -0,112 -0,195 -0,049 -0,068 0,828

ABD2 -0,014 -0,582 0,440 0,484 -0,162 0,333 -0,223 -0,198 -0,086 0,796

ABD2345 -0,420 -0,055 0,477 0,140 0,169 0,369 -0,120 -0,125 0,616 0,533

ABD234 0,222 -0,650 0,419 0,352 0,441 0,105 0,048 -0,020 0,141 0,842

ABD235 -0,519 0,130 0,556 -0,040 0,235 0,371 -0,019 -0,253 0,382 0,572

ABD245 -0,268 -0,022 0,417 0,326 -0,392 0,323 -0,258 -0,112 0,557 0,542

ABD23 -0,133 -0,406 0,581 0,178 0,518 0,377 0,023 -0,177 0,077 0,830

ABD24 0,318 -0,686 0,198 0,562 -0,199 0,015 -0,180 -0,010 -0,030 0,855

ABD25 -0,461 0,189 0,581 0,086 -0,194 0,378 -0,116 -0,288 0,360 0,534

ACD12345 -0,023 0,247 0,040 -0,007 0,314 0,399 -0,545 -0,398 0,473 0,569

ACD1234 0,287 -0,447 0,233 0,356 0,597 0,186 -0,246 -0,293 -0,002 0,829

ACD1235 -0,136 0,280 0,147 -0,053 0,346 0,406 -0,440 -0,446 0,449 0,571

ACD1245 0,154 0,275 -0,043 0,167 -0,300 0,306 -0,651 -0,371 0,354 0,544

ACD123 0,226 -0,410 0,287 0,330 0,634 0,204 -0,189 -0,331 0,015 0,825

ACD124 0,435 -0,098 0,631 -0,362 0,301 -0,258 0,304 -0,142 0,047 0,053

ACD125 0,033 0,332 0,072 0,129 -0,272 0,340 -0,586 -0,453 0,360 0,534

ACD12 0,333 -0,457 0,043 0,581 -0,194 0,077 -0,426 -0,291 -0,178 0,784

ACD2 0,192 -0,486 0,332 0,473 -0,155 0,360 -0,328 -0,314 -0,182 0,818

ACD2345 0,064 0,241 0,122 -0,122 0,302 0,480 -0,493 -0,373 0,451 0,572

ACD234 0,358 -0,468 0,346 0,208 0,562 0,297 -0,181 -0,226 -0,047 0,872

ACD235 -0,289 0,340 0,336 -0,104 0,318 0,440 -0,237 -0,390 0,419 0,583

ACD245 0,206 0,194 -0,036 0,117 -0,405 0,354 -0,655 -0,336 0,271 0,525

ACD23 0,014 -0,296 0,557 0,147 0,581 0,405 -0,023 -0,278 0,004 0,866
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Model ࢼ૚
∗ ૛ࢼ 

∗ ૜ࢼ 
∗ ૝ࢼ 

∗ ૞ࢼ 
∗ ૟ࢼ 

∗ ૠࢼ 
∗ ૡࢼ 

∗ ૢࢼ 
∗  R2 

ACD24 0,452 -0,510 0,128 0,450 -0,196 0,172 -0,400 -0,201 -0,219 0,846

ACD25 -0,165 0,409 0,303 0,040 -0,228 0,428 -0,380 -0,438 0,375 0,540

AC12345 0,069 0,428 0,029 0,218 0,442 0,379 -0,548 -0,186 0,300 0,591

AC1234 0,388 -0,284 0,195 0,416 0,638 0,137 -0,254 -0,244 -0,088 0,846

AC1235 -0,039 0,514 0,114 0,218 0,505 0,355 -0,429 -0,225 0,243 0,582

AC1245 0,218 0,428 -0,064 0,391 -0,142 0,292 -0,667 -0,167 0,183 0,537

AC123 0,326 -0,182 0,231 0,427 0,695 0,136 -0,191 -0,274 -0,106 0,837

AC124 0,453 -0,325 -0,019 0,609 -0,129 0,023 -0,446 -0,204 -0,244 0,799

AC125 0,117 0,556 0,022 0,412 -0,049 0,295 -0,588 -0,226 0,142 0,499

AC12 0,423 -0,254 0,007 0,659 -0,087 0,023 -0,419 -0,245 -0,279 0,762

AC2 0,297 -0,222 0,367 0,600 -0,047 0,292 -0,306 -0,279 -0,330 0,789

AC2345 0,138 0,455 0,154 0,141 0,438 0,443 -0,490 -0,154 0,279 0,594

AC234 0,448 -0,321 0,314 0,275 0,610 0,251 -0,192 -0,187 -0,125 0,887

AC235 -0,139 0,578 0,318 0,175 0,466 0,382 -0,247 -0,180 0,241 0,589

AC245 0,289 0,462 0,064 0,325 -0,160 0,362 -0,625 -0,139 0,166 0,543

AC23 0,133 -0,106 0,506 0,263 0,670 0,351 -0,036 -0,246 -0,110 0,878

AC24 0,533 -0,377 0,102 0,505 -0,132 0,133 -0,405 -0,166 -0,285 0,844

AC25 -0,015 0,658 0,274 0,367 -0,041 0,359 -0,402 -0,196 0,164 0,505

AD12345 -0,317 0,087 0,455 -0,231 0,030 0,570 -0,177 -0,412 0,323 0,450

AD1234 0,008 -0,614 0,413 0,256 0,334 0,442 -0,072 -0,271 -0,033 0,776

AD1235 -0,357 0,110 0,469 -0,209 0,057 0,550 -0,154 -0,402 0,326 0,450

AD1245 -0,179 0,112 0,441 -0,128 -0,450 0,508 -0,221 -0,404 0,267 0,493

AD123 -0,022 -0,591 0,430 0,271 0,360 0,437 -0,049 -0,261 -0,006 0,778

AD124 0,132 -0,615 0,231 0,439 -0,350 0,306 -0,240 -0,240 -0,166 0,819

AD125 -0,228 0,137 0,464 -0,110 -0,420 0,498 -0,201 -0,402 0,275 0,487

AD12 0,108 -0,609 0,251 0,465 -0,338 0,308 -0,226 -0,236 -0,146 0,814

AD2 -0,009 -0,491 0,475 0,356 -0,286 0,419 -0,146 -0,317 -0,165 0,795

AD2345 -0,340 0,182 0,518 -0,204 0,029 0,533 -0,120 -0,393 0,296 0,460

AD234 -0,048 -0,531 0,512 0,161 0,320 0,496 -0,031 -0,276 -0,041 0,788

AD235 -0,414 0,238 0,529 -0,153 0,088 0,481 -0,064 -0,380 0,285 0,464

AD245 -0,214 0,208 0,510 -0,108 -0,419 0,478 -0,160 -0,386 0,246 0,505

AD23 -0,133 -0,405 0,581 0,133 0,367 0,486 0,030 -0,303 -0,024 0,782

AD24 0,081 -0,572 0,358 0,362 -0,342 0,387 -0,202 -0,262 -0,174 0,828

AD25 -0,311 0,272 0,541 -0,066 -0,334 0,446 -0,104 -0,387 0,247 0,493

BCD12345 0,084 -0,060 0,192 0,080 0,195 0,262 -0,173 -0,141 0,889 0,508

BCD1234 0,693 -0,437 0,229 0,166 0,324 -0,201 0,087 0,080 0,298 0,871

BCD1235 0,081 0,036 0,216 0,070 0,258 0,281 -0,184 -0,197 0,850 0,492

BCD1245 0,257 -0,028 0,084 0,272 -0,444 0,161 -0,300 -0,106 0,727 0,514

BCD123 0,732 -0,361 0,195 0,202 0,364 -0,203 0,056 0,078 0,269 0,856

BCD124 0,711 -0,476 0,049 0,353 -0,198 -0,254 -0,113 0,079 0,137 0,885

BCD125 0,260 0,069 0,109 0,279 -0,427 0,182 -0,319 -0,170 0,701 0,486

BCD12 0,729 -0,412 0,002 0,397 -0,192 -0,256 -0,156 0,073 0,096 0,860

BCD2 0,539 -0,539 0,486 0,260 -0,189 0,169 -0,200 -0,043 0,100 0,866

BCD2345 0,009 -0,040 0,285 -0,039 0,217 0,383 -0,200 -0,198 0,802 0,549

BCD234 0,649 -0,476 0,350 0,069 0,356 -0,058 0,087 0,110 0,275 0,909

BCD235 -0,327 0,157 0,469 -0,187 0,282 0,398 -0,065 -0,329 0,513 0,580

BCD245 0,215 0,013 0,187 0,161 -0,436 0,295 -0,341 -0,167 0,687 0,547

BCD23 0,315 -0,371 0,592 -0,036 0,532 0,236 0,061 -0,045 0,258 0,905

BCD24 0,723 -0,526 0,176 0,275 -0,188 -0,131 -0,113 0,116 0,125 0,916

BCD25 -0,213 0,231 0,478 -0,070 -0,233 0,409 -0,189 -0,385 0,512 0,536

BC12345 0,237 -0,086 0,249 0,118 0,291 0,230 -0,144 0,086 0,834 0,524

BC1234 0,710 -0,407 0,206 0,166 0,352 -0,221 0,066 0,103 0,270 0,865

BC1235 0,354 0,169 0,211 0,235 0,424 0,223 -0,151 0,043 0,701 0,493

BC1245 0,392 -0,093 0,121 0,327 -0,363 0,133 -0,302 0,103 0,682 0,520

BC123 0,781 -0,235 0,131 0,249 0,405 -0,226 0,037 0,095 0,176 0,849

BC124 0,726 -0,455 0,032 0,350 -0,164 -0,272 -0,131 0,101 0,116 0,873

BC125 0,523 0,160 0,075 0,454 -0,271 0,123 -0,317 0,059 0,545 0,465

BC12 0,773 -0,301 -0,048 0,428 -0,124 -0,274 -0,165 0,090 0,023 0,839

BC2 0,684 -0,398 0,419 0,346 -0,093 0,115 -0,238 -0,005 -0,007 0,846

BC2345 0,137 -0,029 0,414 0,024 0,316 0,327 -0,166 0,037 0,757 0,553

BC234 0,663 -0,438 0,341 0,078 0,387 -0,087 0,059 0,148 0,252 0,903

BC235 -0,099 0,300 0,564 -0,077 0,446 0,373 -0,035 -0,175 0,454 0,561

BC245 0,344 -0,019 0,303 0,246 -0,360 0,245 -0,343 0,063 0,646 0,542

BC23 0,445 -0,245 0,537 0,032 0,621 0,192 0,034 -0,014 0,168 0,911

BC24 0,737 -0,498 0,167 0,281 -0,152 -0,159 -0,140 0,151 0,105 0,903
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Model ࢼ૚
∗ ૛ࢼ 

∗ ૜ࢼ 
∗ ૝ࢼ 

∗ ૞ࢼ 
∗ ૟ࢼ 

∗ ૠࢼ 
∗ ૡࢼ 

∗ ૢࢼ 
∗  R2 

BC25 0,061 0,397 0,612 0,110 -0,126 0,389 -0,202 -0,210 0,446 0,486

BD12345 -0,137 -0,097 0,477 0,120 0,152 0,265 -0,024 -0,073 0,795 0,508

BD1234 0,620 -0,497 0,305 0,189 0,308 -0,155 0,125 0,112 0,304 0,864

BD1235 -0,166 -0,023 0,511 0,101 0,201 0,285 -0,024 -0,122 0,751 0,491

BD1245 0,035 -0,077 0,381 0,312 -0,460 0,185 -0,161 -0,049 0,690 0,527

BD123 0,649 -0,442 0,288 0,223 0,350 -0,152 0,106 0,110 0,287 0,845

BD124 0,647 -0,539 0,116 0,377 -0,225 -0,213 -0,081 0,108 0,144 0,894

BD125 0,012 0,001 0,430 0,305 -0,444 0,213 -0,162 -0,112 0,664 0,497

BD12 0,665 -0,492 0,075 0,421 -0,227 -0,213 -0,119 0,100 0,108 0,871

BD2 0,410 -0,602 0,522 0,254 -0,218 0,208 -0,160 -0,026 0,123 0,861

BD2345 -0,250 -0,087 0,552 -0,014 0,143 0,354 -0,022 -0,105 0,684 0,544

BD234 0,526 -0,539 0,427 0,087 0,333 -0,027 0,121 0,138 0,312 0,883

BD235 -0,403 0,086 0,601 -0,162 0,226 0,368 0,046 -0,249 0,438 0,577

BD245 -0,078 -0,057 0,501 0,162 -0,435 0,306 -0,154 -0,090 0,632 0,559

BD23 0,202 -0,426 0,619 -0,035 0,491 0,265 0,089 -0,030 0,271 0,882

BD24 0,613 -0,598 0,249 0,298 -0,227 -0,103 -0,083 0,144 0,161 0,907

BD25 -0,321 0,140 0,642 -0,057 -0,223 0,378 -0,042 -0,286 0,430 0,544

CD12345 0,573 0,191 0,145 -0,420 0,195 0,235 -0,324 -0,312 0,378 0,613

CD1234 0,759 -0,244 0,254 -0,212 0,401 0,117 -0,196 -0,110 0,171 0,890

CD1235 0,470 0,215 0,236 -0,452 0,242 0,249 -0,279 -0,360 0,381 0,610

CD1245 0,696 0,224 0,062 -0,255 -0,296 0,148 -0,387 -0,269 0,255 0,608

CD123 0,724 -0,220 0,307 -0,220 0,441 0,126 -0,169 -0,139 0,163 0,890

CD124 0,856 -0,254 0,072 0,015 -0,235 0,022 -0,364 -0,092 0,004 0,878

CD125 0,630 0,260 0,156 -0,294 -0,280 0,168 -0,369 -0,328 0,273 0,592

CD12 0,853 -0,244 0,118 0,019 -0,229 0,027 -0,362 -0,120 -0,009 0,865

CD2 0,771 -0,230 0,442 0,100 -0,235 0,138 -0,257 -0,077 0,034 0,906

CD2345 0,562 0,212 0,206 -0,410 0,201 0,251 -0,302 -0,299 0,380 0,618

CD234 0,742 -0,228 0,357 -0,190 0,402 0,152 -0,149 -0,073 0,148 0,925

CD235 0,191 0,309 0,427 -0,396 0,283 0,292 -0,162 -0,365 0,453 0,598

CD245 0,691 0,245 0,121 -0,246 -0,299 0,164 -0,370 -0,258 0,259 0,613

CD23 0,521 -0,167 0,581 -0,152 0,489 0,223 -0,021 -0,080 0,210 0,925

CD24 0,861 -0,246 0,175 0,032 -0,231 0,056 -0,326 -0,060 -0,016 0,919

CD25 0,403 0,378 0,368 -0,272 -0,273 0,234 -0,279 -0,371 0,375 0,573

C12345 0,673 0,397 0,076 -0,235 0,373 0,128 -0,355 -0,115 0,185 0,606

C1234 0,826 0,008 0,126 -0,130 0,477 0,056 -0,211 -0,096 0,024 0,880

C1235 0,606 0,456 0,129 -0,221 0,437 0,125 -0,329 -0,136 0,161 0,594

C1245 0,780 0,389 0,004 -0,100 -0,080 0,063 -0,448 -0,102 0,097 0,552

C123 0,797 0,082 0,148 -0,092 0,527 0,045 -0,189 -0,109 -0,014 0,871

C124 0,905 -0,053 -0,020 0,070 -0,101 -0,026 -0,377 -0,088 -0,110 0,825

C125 0,744 0,464 0,057 -0,086 -0,025 0,060 -0,441 -0,128 0,074 0,518

C12 0,901 0,017 -0,002 0,113 -0,058 -0,037 -0,370 -0,103 -0,153 0,787

C2 0,880 0,069 0,257 0,208 -0,044 0,044 -0,287 -0,055 -0,148 0,846

C2345 0,640 0,452 0,187 -0,205 0,382 0,133 -0,314 -0,092 0,198 0,607

C234 0,809 0,026 0,240 -0,107 0,486 0,090 -0,162 -0,065 0,014 0,922

C235 0,460 0,562 0,313 -0,155 0,472 0,141 -0,228 -0,108 0,211 0,581

C245 0,762 0,448 0,111 -0,067 -0,086 0,066 -0,415 -0,081 0,106 0,556

C23 0,678 0,134 0,388 -0,032 0,589 0,127 -0,066 -0,055 0,017 0,924

C24 0,915 -0,037 0,088 0,095 -0,102 0,006 -0,340 -0,060 -0,125 0,876

C25 0,632 0,605 0,263 -0,018 -0,014 0,081 -0,360 -0,107 0,130 0,498

D12345 0,289 0,242 0,556 -0,405 -0,302 0,294 0,037 -0,328 0,313 0,534

D1234 0,597 -0,318 0,593 -0,178 -0,092 0,317 0,087 -0,181 0,095 0,892

D1235 0,265 0,253 0,571 -0,399 -0,289 0,292 0,045 -0,332 0,316 0,530

D1245 0,311 0,224 0,521 -0,356 -0,440 0,274 -0,007 -0,327 0,281 0,553

D123 0,598 -0,303 0,604 -0,166 -0,080 0,318 0,094 -0,185 0,089 0,892

D124 0,615 -0,350 0,466 -0,043 -0,431 0,253 -0,034 -0,171 0,002 0,923

D125 0,287 0,236 0,538 -0,351 -0,429 0,273 0,001 -0,332 0,284 0,549

D12 0,618 -0,336 0,476 -0,030 -0,425 0,254 -0,029 -0,176 -0,005 0,922

D2 0,567 -0,323 0,549 -0,023 -0,410 0,260 -0,005 -0,190 -0,001 0,910

D2345 0,233 0,248 0,586 -0,397 -0,290 0,298 0,050 -0,324 0,320 0,532

D234 0,571 -0,306 0,626 -0,172 -0,084 0,317 0,099 -0,179 0,099 0,889

D235 0,141 0,278 0,629 -0,378 -0,239 0,295 0,076 -0,338 0,316 0,519

D245 0,258 0,232 0,553 -0,350 -0,429 0,280 0,007 -0,324 0,290 0,551

D23 0,523 -0,280 0,675 -0,160 -0,048 0,319 0,123 -0,195 0,095 0,884

D24 0,597 -0,342 0,497 -0,038 -0,428 0,255 -0,024 -0,172 0,005 0,920

D25 0,167 0,264 0,604 -0,334 -0,382 0,281 0,035 -0,342 0,288 0,534
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