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Nothing in life is to be feared, it is only to be understood.

— Marie Curie —

Malware is definitely not an exception
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Smart devices equipped with powerful sensing, computing and networking 
capabilities have proliferated lately, ranging from popular smartphones and tablets 
to Internet appliances, smart TVs, and others that will soon appear (e.g., watches, 
glasses, and clothes). One key feature of such devices is their ability to incorporate 
third-party apps from a variety of markets. This poses strong security and privacy 
issues to users and infrastructure operators, particularly through software of 
malicious (or dubious) nature that can easily get access to the services provided by 
the device and collect sensory data and personal information.

Malware in current smart devices–mostly smartphones and tablets–has 
rocketed in the last few years, supported by sophisticated techniques (e.g., advanced 
obfuscation and targeted infection and activation engines) purposely designed to 
overcome security architectures currently in use by such devices. This phenomenon 
is known as the proliferation of smart malware. Even though important advances 
have been made on malware analysis and detection in traditional personal computers 
during the last decades, adopting and adapting those techniques to smart devices 
is a challenging problem. For example, power consumption is one major constraint 
that makes unaffordable to run traditional detection engines on the device, while 
externalized (i.e., cloud-based) techniques raise many privacy concerns.

This Thesis examines the problem of smart malware in such devices, aiming at 
designing and developing new approaches to assist security analysts and end users 
in the analysis of the security nature of apps. We first present a comprehensive 
analysis on how malware has evolved over the last years, as well as recent progress 
made to analyze and detect malware. Additionally, we compile a suit of the most 
cutting-edge open source tools, and we design a versatile and multipurpose research 
laboratory for smart malware analysis and detection.

Second, we propose a number of methods and techniques aiming at better 
analyzing smart malware in scenarios with a constant and large stream of apps 
that require security inspection. More precisely, we introduce Dendroid, an effective 
system based on text mining and information retrieval techniques. Dendroid uses 
static analysis to measures the similarity between malware samples, which is then 
used to automatically classify them into families with remarkably accuracy. Then, we 
present Alterdroid, a novel dynamic analysis technique for automatically detecting 
hidden or obfuscated malware functionality. Alterdroid introduces the notion of 
differential fault analysis for effectively mining obfuscated malware components 
distributed as parts of an app package.
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Next, we present an evaluation of the power-consumption trade-offs among 
different strategies for off-loading, or not, certain security tasks to the cloud. We 
develop a system for testing several functional tasks and metering their power 
consumption called Meterdroid. Based on the results obtained in this analysis, we 
then propose a cloud-based system, called Targetdroid, that addresses the problem 
of detecting targeted malware by relying on stochastic models of usage and context 
events derived from real user traces. Based on these models, we build an efficient 
automatic testing system capable of triggering targeted malware.

Finally, based on the conclusions extracted from this Thesis, we propose a 
number of open research problems and future directions where there is room for 
research
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Los dispositivos inteligentes se han posicionado en pocos años como aparatos 
altamente populares con grandes capacidades de cómputo, comunicación y 
sensorización. Entre ellos se encuentran dispositivos como los teléfonos móviles 
inteligentes (o smartphones), las televisiones inteligentes, o más recientemente, 
los relojes, las gafas y la ropa inteligente. Una característica clave de este tipo 
de dispositivos es su capacidad para incorporar aplicaciones de terceros desde 
una gran variedad de mercados. Esto plantea fuertes problemas de seguridad 
y privacidad para sus usuarios y para los operadores de infraestructuras, sobre 
todo a través de software de naturaleza maliciosa (o malware), el cual es capaz de 
acceder fácilmente a los servicios proporcionados por el dispositivo y recoger datos 
sensibles de los sensores e información personal.

En los últimos años se ha observado un incremento radical del malware atacando 
a estos dispositivos inteligentes –principalmente a smartphones– y apoyado por 
sofisticadas técnicas diseñadas para vencer los sistemas de seguridad implantados 
por los dispositivos. Este fenómeno ha dado pie a la proliferación de malware 
inteligente. Algunos ejemplos de estas técnicas inteligentes son el uso de métodos 
de ofuscación, de estrategias de infección dirigidas y de motores de activación 
basados en el contexto. A pesar de que en las últimas décadas se han realizado 
avances importantes en el análisis y la detección de malware en los ordenadores 
personales, adaptar y portar estas técnicas a los dispositivos inteligentes es un 
problema difícil de resolver.

En concreto, el consumo de energía es una de las principales limitaciones a 
las que están expuestos estos dispositivos. Dicha limitación hace inasequible el uso 
de motores tradicionales de detección. Por el contrario, el uso de estrategias de 
detección externalizadas (es decir, basadas en la nube) suponen una gran amenaza 
para la privacidad de sus usuarios.

Esta tesis analiza el problema del malware inteligente que adolece a estos 
dispositivos, con el objetivo de diseñar y desarrollar nuevos enfoques que permitan 
ayudar a los analistas de seguridad y los usuarios finales en la tarea de analizar 
aplicaciones. En primer lugar, se presenta un análisis exhaustivo sobre la evolución 
que el malware ha seguido en los últimos años, así como los avances más recientes 
enfocados a analizar apps y detectar malware. Además, se integran y extienden las 
herramientas de código abierto más avanzadas utilizadas por la comunidad, y se 
diseña un laboratorio que permite analizar malware inteligente de forma versátil y 
polivalente.
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En segundo lugar, se proponen una serie de técnicas dirigida a mejorar el 
análisis de malware inteligente en escenarios dónde se requiere analizar importantes 
cantidad de muestras. En concreto, se propone Dendroid, un sistema basado en 
minería de textos que permite analizar conjuntos de apps de forma eficaz. Dendroid 
hace uso de análisis estático de código para extraer una medida de la similitud entre 
las distintas muestras de malware. Dicha distancia permitirá posteriormente clasificar 
cada muestra en su correspondiente familia de malware de forma automática y 
con gran precisión. Por otro lado, se propone una técnica de análisis dinámico de 
código, llamada Alterdroid, que permite detectar automáticamente funcionalidad 
oculta y/o ofuscada. Alterdroid introduce la un nuevo método de análisis basado en 
la inyección de fallos y el análisis diferencial del comportamiento asociado.

Por último, se presenta una evaluación del consumo energético asociado 
a diferentes estrategias de externalización usadas para trasladar a la nube 
determinadas tareas de seguridad. Para ello, se desarrolla un sistema llamado 
Meterdroid que permite probar distintas funcionalidades y medir su consumo. 
Basados en los resultados de este análisis, se propone un sistema llamado 
Targetdroid que hace uso de la nube para abordar el problema de la detección de 
malware dirigido o especializado. Dicho sistema hace uso de modelos estocásticos 
para modelar el comportamiento del usuario así como el contexto que les rodea. De 
esta forma, Targetdroid permite, además, detectar de forma automática malware 
dirigido por medio de estos modelos.

Para finalizar, a partir de las conclusiones extraídas en esta Tesis, se identifican 
una serie de líneas de investigación abiertas y trabajos futuros.
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Smart devices are rapidly emerging as popular appliances with increasingly 
powerful computing, networking, and sensing capabilities. Perhaps the most 
successful examples of such devices so far are smartphones and tablets, which 
in their current generation are far more powerful than early personal computers 
(PCs). One of the key differences between such “smart” devices and traditional “non-
smart” appliances is that they offer the possibility to easily incorporate third-party 
applications through online markets (Figure 1.1 depicts such differences).1

The popularity of smart devices –intimately related to the rise of cloud-computing 
paradigms giving complementary storage and computing services– is backed by 
recent commercial surveys, showing that they will very soon outsell the number of 
PCs worldwide [Dediu, 2012 and 2013]. For example, the number of smartphone 
users has rapidly increased over the past few years. In 2011, global mobile handset 

1 Although some early feature phones –such as Java ME– allowed the installation of third-party software, 
their functionality and the support given to both users and third-party developers is relatively limited in 
comparison to smartphones and other smart devices.

Figure 1.1

APPLIANCES EVOLUTION TOWARDS SMART DEVICES

Source: Own elaboration.
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shipments reached 1.6 billion units [Juniper, 2012] and the total smartphone sales 
reached 472 million units (58% of all mobile devices sales in 2010) [Goasduff and 
Pettey, 2014].

In 2012 the smartphone users penetration increased 68.8% and at the end of 
2013 reached 1.43 billion units [eMarketer, 2014]. In fact, the number of Android 
OS and, iOS users is also increasing profusely [Nielsen, 2012]. Specifically, the 
global mobile OS market share shows that Android OS reached 69.7% at the end 
of 2012, racing past Symbian OS, BlackBerry OS and iOS as depicted in Figure 
1.2. Furthermore, the number of worldwide smartphone sales is expected to keep 
increasing at least until 2017 [Dediu, 2014b], the average number of applications 
per device increased from 32 to 41 and the proportion of time spent by users on 
smartphone applications almost equals the time spent on the Web (73% vs. 81%) 
[Nielsen, 2012].

New smart devices are appearing at a steady pace, including TVs [Samsung, 
2014], watches [Sony, 2014], glasses [Google, 2014b], clothes [CuteCircuit, 2014] 
and cars [Newcomb, 2014]. This is not only playing a key role in bringing to reality 
much-discussed paradigms such as wearable computing or the Internet of Things 
(IoT), but also finding innovative and very attractive applications in critical domains 
such as, for example, healthcare. Both medical staff and patients are increasingly 
taking advantage of such devices, from regular tablets and smartphones [Larner, 
2012] to smart pillboxes [IIH-uBox, 2014], and the new generation of smart wearable 
systems (SWS) for health monitoring (HM) or implantable medical devices (IMDs) 
[Chan et al., 2012], among others.

Figure 1.2

MAIN SMARTPHONE PLATFORMS BY MARKET SHARE FROM 2007 TO 2012

Source: [Dediu et al., 2014].
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QQ 1.1. SMART MALWARE AND SMART DEVICES

In many respects, smart devices present greater security and privacy issues 
to users than traditional PCs [Chin et al., 2012]. For instance, most of such devices 
incorporate numerous sensors that could leak highly sensitive information about 
users location, gestures, moves and other physical activities, as well as recording 
audio, pictures and video from their surroundings. Furthermore, users are increasingly 
embedding authentication credentials into their devices, as well as making use of 
on-platform micropayment technologies such as Near Field Communication (NFC) 
[Fenske, 2012].

One major source of security and privacy problems is precisely the ability to 
incorporate third-party applications, primarily from available online markets but 
also by other means. There are currently two established models of smart devices 
according to how users can access such markets [Husted et al., 2011]. In the open-
market model, users are free to install applications from any online market, whereas 
the socalled walled-garden market model restricts the market from which users 
can install applications.2 Many market operators carry out a revision process over 
submitted apps, which presumably also involves some form of security testing to 
detect if the app includes malicious code. So far such revisions have proven clearly 
insufficient for several reasons:

■■ First, market operators do no give details about how (security) revisions 
are done. However, the ceaseless presence of malware in official markets 
reveals that operators cannot afford to perform an exhaustive analysis over 
each submitted app.

■■ Second, determining which applications are malicious and which are not is 
still a formidable challenge. This is further complicated by a recent rise in the 
socalled grayware [Felt et al., 2011c], namely apps that are not fully malicious 
but that entail security and/or privacy risks of which the user is not aware.

■■ Finally, a significant fraction of users rely on alternative markets to get access 
for free to paid apps in official markets. Such unofficial and/or illegal markets 
have repeatedly proven to be fertile ground for malware, particularly in the 
form of popular apps modified (repackaged) to include malicious code.

The reality is that the rapid growth of smartphone technologies and its 
widespread user-acceptance have come hand in hand with a similar increase in 
the number and sophistication of malicious software targeting popular platforms. 
Malware developed for early mobile devices such as Palm platforms and feature 
mobile phones was identified prior to 2004. The proliferation of mobile devices in the 
subsequent years translated into an exponential growth in the presence of malware 
specifically developed for them (mostly Symbian OS), with more than 400 cases 

2 In spite of this, users have found ways of circumventing such restrictions by modifying the device so 
that other markets will be accessible too.
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between 2004 and 2007 [Dunham, 2008; Shih et al., 2008]. Later on that year, iPhone 
and Android OS were released and shortly became predominant platforms. This 
gave rise to an alarming escalation in the number and sophistication of malicious 
software targeting these platforms, particularly Android OS. For example, according 
to the mobile threat report published by Juniper Networks in 2012, the number of 
unique malware variants for Android OS has increased by 3325.5% during 2011 
[Juniper, 2012]. A similar report by F-Secure reveals that the number of malicious 
Android OS apps received during the first quarter of 2012 increased from 139 to 
3063 when compared to the first quarter of 2011 [F-Secure, 2012], and by the end 
of 2012 it already represents 97% of the total mobile malware according to McAfee 
[McAfee, 2013]. More recently, Sophos Mobile Security Threat Report [Sophos, 
2014c] showed that the cumulative Android OS malware samples almost reach 700 
thousands reported units by 2014 as depicted in Figure 1.3.

The main factors driving the development of malware have swiftly changed 
from research, amusement and the search for notoriety to purely economical–
and political, to a lesser extent. The current malware industry already generates 
substantial revenues [Schipka, 2009], and emergent paradigms such as Malware-
as-a-Service (MAAS) paint a gloomy forecast for the years to come. This admits 
a simple explanation from an economic point of view: all in all, attackers seek to 
minimize the cost required to achieve their goals and, therefore, aim at obtaining the 
maximum revenues with minimal efforts. For example, the inequality

			   Cost (Attack) < Potential Revenue		    [1.1]

Figure 1.3

CUMULATIVE ANDROID MALWARE SAMPLES FROM NOVEMBER 2010  
TO JANUARY 2014

Source: [Sophos, 2014c].
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is used in [Guido and Arpaia, 2012] to give a cost-benefit analysis of mobile attacks. 
This fits perfectly the case of smart devices such as smartphones, where malware 
is rather profitable due to (i) the existence of a high number of potential targets 
and/or high value targets; and (ii) the availability of reuse-oriented development 
methodologies for malware that make exceedingly easy to produce new specimens. 
Both points are true for the case of Android OS and explain, together with the open 
nature of this platform and some technical particularities, why it has become such 
an attractive target to attackers–see for example Figure 1.4, where the correlation 
between the market share and the number of unique malware cases reported is 
straightforward.

Correlations –if not causations– such as those discussed above are paramount 
to understand future tendencies and threats, not only in the case of smartphones or 
tablets but also in other devices that soon will likely proliferate. For instance, it has 
been recently reported that medical devices are plagued with malware [Clark et al., 
2013; Vockley, 2012]. Furthermore, it has been shown that RFID-based systems, 
such as the ones used in several medical devices, are a great infection vector 
[Rieback et al., 2006]. In the near future, it is quite plausible that similar risks will 
affect vulnerable IMDs [Burleson et al., 2012], leaving users and patients exposed 
to exfiltration of highly-sensitive medical information or even malicious manipulation 
[Halperin et al., 2008a].

Thwarting malware attacks in smart devices is a thriving research area with 
a substantial amount of still unsolved problems. In the case of smartphones, one 

Figure 1.4

MALWARE AND MARKET SHARE CORRELATION

Sources: Correlation between the number of malware cases and platform market share during  
a) 2009-2010 [McAfee, 2011], b) 2010 [Juniper, 2012], and c) 2011 [Juniper, 2012].
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primary line of defense is given by the security architecture of the device, one of 
whose foremost features is a permission system that restricts apps privileges. This 
has proven patently insufficient so far. For example, in the case of Android OS apps 
request permissions in a non-negotiable fashion, in such a way that users are left 
with the choice of either granting the app everything it asks for at installation time or it 
will not be possible to use it. Most users simply do not pay attention to such requests; 
or do not fully understand what each permission means; or, even if they do, it is 
hard to figure out all possible consequences of granting a given set of privileges. 
For example, applications requesting permission to access the accelerometer of 
a smartphone or a tablet are rather common. However, it has been demonstrated 
that it is possible to infer the keys pressed by the user on a touchscreen from just 
vibrations and motion data [Cai and Chen, 2011]. Thus, using such a permission in 
conjunction with Internet access –another rather common privilege– could lead to a 
serious risk of data exfiltration. On top of that, the problem aggravates in platforms 
where apps can interact with each other and share information, as one needs to 
consider the privileges acquired by potential collusions.

QQ 1.2. MOTIVATION AND OBJECTIVES

This Dissertation deals with the problem of analyzing smart malware for smart 
devices, providing specific methods for improving their identification. The Dissertation 
is strongly biased towards smartphones, since they currently are the most extended 
class of smart devices and the platform of choice for malware developers and security  
researchers. However, our discussion and conclusions apply to other devices as 
well, and can help to better understand the problem and to improve upon current 
defense techniques.

We next describe the main motivation and objectives of this work. Firstly, we 
state that current methods aiming at analyzing smart malware are ineffective and 
we question the role that security analysts play during the study of large amounts of 
complex software. Secondly, we establish the need of systematic approaches and 
automated tools for analyzing smart malware.

QQ 1.2.1. Motivation

This Dissertation identifies two fundamental open issues where research is 
needed:

There is more malware than ever before, and it is increasingly sophisticated.

P1: Sustained growth in the number of malicious apps targeting smart 
devices.

As discussed before, malware has become a rather profitable business due 
to the existence of a large number of potential targets and the availability of reuse-
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oriented malware development methodologies that make exceedingly easy to 
produce new samples. The impressive growth both in malware and benign apps is 
making increasingly unaffordable any human-driven analysis of potentially dangerous 
apps. This is especially critical as current trends in malware engineering suggest 
that malicious software will continue to grow both in number and sophistication. As 
a result, market operators and malware analysts are overwhelmed by the amount 
of newly discovered samples that must be analyzed. This is further complicated by 
the fact that determining which applications are malicious and which are not is still a 
formidable challenge, particularly for grayware.

This has motivated the need for automated analysis techniques and instruments 
to alleviate the workload of performing intelligent security analysis of software. For 
instance, when confronted with a continuously growing stream of incoming malware 
samples, it would be extremely helpful to differentiate between those that are minor 
variants of a known specimen and those that correspond to novel, previously unseen 
samples. Grouping samples into families, establishing the relationships among them, 
and studying the evolution of the various known “species” is also a much sought 
after application.

P2: Increase in the sophistication of malicious apps and the rise of a new 
generation of smart malware.

Malware for current smartphone platforms is becoming increasingly 
sophisticated and developers are progressively using advanced techniques to defeat 
malware detection tools. On one hand, smartphone malware is becoming more and 
more stealthy and recent specimens are relying on advanced code obfuscation 
techniques to evade detection. These techniques create an additional obstacle to 
malware analysts, who see their task further complicated and have to ultimately 
rely on carefully controlled dynamic analysis techniques to detect the presence of 
potentially dangerous pieces of code. On the other hand, the presence of advanced 
networking and sensing functions in the device is giving rise to a new generation of 
smarter malware. These malware instances are characterized by a more complex 
situational awareness, in which decisions are made on the basis of factors such as 
the location, the user profile, or the presence of other apps.

This state of affairs has consolidated the need for smart analysis techniques 
to aid malware analysts in their daily functions. This challenge has to be tackled by 
novel methods to efficiently support market operators and security analysts. In some 
cases, this problem cannot be solved by market operators alone or by enhanced 
security models, as they really depend on each user’s privacy preferences. For 
example, a leakage of data such as one’s location or the list of contacts might well 
constitute a serious privacy issue for many users, but others will simply not care 
about it.

The situation described above inevitably leads to the need for more sophisticated 
analysis techniques. This, however, poses an important challenge: many devices 
suffer from strong limitations in terms of power consumption, so certain security tasks 
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executed on the platform may be simply unaffordable. External analysis performed 
on the cloud in near real time can constitute an alternative. Such a strategy seeks 
to save battery life by exchanging computation and communication costs, but it still 
remains unclear whether this is optimal or not in all circumstances. Furthermore, the 
rise of targeted –user-specific– malware poses one additional challenge: conducting 
particularized analysis for specific user and execution context.

QQ 1.2.2. Objectives

The main goal of this Thesis is to study methods, tools and techniques to 
assist security analysts and end users in the analysis of untrusted apps for smart 
devices and automate the identification of smart malware.

To achieve this goal, we will focus in the following three general objectives:

●● Study the evolution and current state of malware for smart devices, as well as 
recent progress made to analyze and detect it.

●● Develop techniques aiming at better analyzing malware in large scale sofware 
markets, with particular emphasis on intelligent instruments to automate parts 
of the analysis process.

●● Facilitate the analysis of complex smart malware in scenarios with a constant 
and large stream of apps on target. Examples of such sophistication include 
malware targeting user-specific actions, malware hindering detection with 
advance obfuscation techniques, or malware exploiting the battery limitations 
of current devices, to name a few.

QQ 1.3. CONTRIBUTIONS AND ORGANIZATION

This Thesis provides several contributions in the field of smart malware detection 
for smart devices aligned with the goals discussed in the objectives above. These 
contributions are grouped into four related areas, which corresponds to the four 
central parts of this document: (i) Foundations & Tools, (ii) Static-based Analysis, 
(iii) Dynamic-based Analysis, and (iv) Cloud-based Analysis.

Foundations and tools. Part I presents the current state of malware analysis and 
provides a framework for investigating different analysis and detection strategies for 
untrusted or malicious code. The following two contributions are presented:

1. A comprehensive analysis of the evolution of untrusted code for 
smart devices and current detection strategies. Chapter 2 provides a 
characterization of current malware’s main features together with an 
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in-depth analysis of both malware and grayware evolution. We identify 
exhibited behaviors, pursued goals, infection and distribution strategies, 
etc. and provide numerous examples through case studies of the most 
relevant specimens. This chapter also includes a careful review of 
current detection techniques and presents a taxonomy that provides a 
comprehensive analysis of their strengths and weaknesses.

The comprehensive study described in in this chapter suggest the need 
of a versatile and multipurpose research laboratory for smart malware 
analysis and detection. Thus, Chapter 3 presents a new generation lab 
and describes the three building-blocks of its architecture: (i) static-, 
dynamic-, and cloud-based analysis system. Each system is built on 
a number of open source tools that facilitate the extraction of security 
features from apps–static features from the apps’ components and 
also dynamic characteristics obtained from their execution. The lab 
incorporates both physical and virtual devices. These devices are 
instrumented with cutting-edge tools for monitoring a great number of 
features: ranging from (i) hardware-based signals, such as the battery 
consumption, to (ii) kernel-based features such as the system calls. 
The lab also includes a dataset composed of a sizable number of apps 
crawled both from legitimate online markets and malicious public and 
private repositories. This new generation lab is shown to be paramount 
for the evaluation of all contributions presented in this Thesis, and 
extremely useful for automating malware analysis for smart detection.

Static-based Analysis. Part II exploits the use of static features to assist the 
security analyst in the large scale analysis of malware families:

2. A text mining approach for analyzing and classifying malware families. 
Chapter 4 analyzes several statistical and semantic features to facilitate 
the identification of malicious code components and their similarity to 
other apps. This Chapter shows how static analysis can be used 
to classify malware with a technique named Dendroid. Dendroid a 
system based on text mining and information retrieval techniques used 
for automating parts of the malware anal- ysis process. This approach 
is motivated by a statistical analysis of the code structures found in a 
dataset of Android OS malware families, which reveals some parallels 
with classical problems in information retrieval domains. To this end, we 
adapt the standard Vector Space Model [Salton et al., 1975] and reformulate 
the modeling process followed in text mining applications. This enables 
us to measure similarity between malware samples, which is then 
used to automatically classify them into families. We also investigate 
the application of hierarchical clustering over the feature vectors 
obtained for each malware family. The resulting dendrograms resemble 
the so-called phylogenetic trees for biological species, allowing us to 
conjecture about evolutionary relationships among families. In fact, this 
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contribution reveals that current malware families abuse from a reuse-
oriented development methodology, which boosts static-based detection 
strategies.

Dynamic-based Analysis. Part III compiles efforts based on the dynamic 
execution of untrusted code and the analysis of its resulting behavior. The following 
fundamental contribution is tackled:

3. Differential fault analysis of obfuscated malware behavior. Obfuscated 
malware provides attackers with the ability to evade static analysis. 
Chapter 5 introduces a dynamic-based detection technique called 
Alterdroid for identifying obfuscated malware on large-scale analysis 
scenarios. Alterdroid provides security analysts with a framework capable 
of automating the identification of obfuscated components distributed 
as parts of an app. The key idea in Alterdroid consists of analyzing 
the behavioral differences between the original app and a number of 
automatically generated versions of it where a number of modifications 
(faults) have been carefully injected. Observable differences in terms of 
activities that appear or vanish in the modified app are recorded, and 
this signature is finally analyzed through a pattern-matching process 
driven by rules that relate different types of hidden functionalities with 
patterns found in the differential signature.

Cloud-based Analysis. Part IV contains two contributions related to the use  
of the cloud to offload detection strategies from devices. The first contribution explores 
the question of offloading –or not– general anomaly-based detection strategies. The 
second contribution stands over the conclusions extracted from the first one, and 
approaches the detection of targeted malware using a cloud-based strategy. We 
next summarize each one:

4. Power-aware anomaly detection in smartphones. Many recent works 
simply assume that on-platform detection is prohibitive and suggest 
using offloaded (i.e., cloud-based) engines. Chapter 6 studies different 
security tasks involved in the detection of malware in built-in detection 
systems. Specifically, it focuses on machine learning based anomaly 
detection systems, as they are widely used to build both static and 
dynamic detection techniques. This chapter studies the power-
consumption trade-offs among different strategies for off-loading, 
or not, those security tasks. It also shows that outsourced detection 
strategies are clearly the best option in terms of power consumption 
when compared to on-platform detection. This contribution also points 
out noticeable differences among different machine learning algorithms, 
and provides separate consumption models for functional blocks (data 
preprocessing, training, test, and communications) that can be used to 
obtain power consumption estimates and compare detectors.
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5. A stochastic behavioral-triggering model for targeted malware detection. 
Targeted malware challenges current dynamic-based detection strategies 
as analysts must reproduce very specific activation conditions to trigger 
malicious payloads. Furthermore, the consumption model presented 
in Chapter 6 shows that the use of detection techniques built in the 
device is unaffordable. Chapter 7 proposes a cloud-based system, 
called Targetdroid, to facilitate the detection of this type of malware. The 
contribution presented in this chapter relies on automatically learned 
stochastic models of usage and context events derived from real 
users. This chapter reveals several interesting particularities of apps 
usage patterns that allow for an efficient generation of testing patterns. 
This contribution shows that testing patterns automatically is feasible, 
specially when this is done in conjunction with a cloud infrastructure.

Finally, Part V presents the main conclusions, analyzes the contributions of this 
Thesis and the published results, and discusses open research problems and future 
work. This part also comprises the references and appendices.
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QQ 2.1. INTRODUCTION

This chapter presents a comprehensive study of the evolution and current state 
of malware for smart devices and techniques proposed to thwart malware attacks. 
We first describe current smartphone security architectures and discuss a number of 
research works that have recently proposed enhanced models to provide protection 
against malicious applications (see Section 2.2). We then provide in Section 2.3 a 
characterization of the various categories of malware developed for smart devices by 
identifying possible attack goals, distribution and infection strategies, and exhibited 
behavior. Other authors (e.g., [Felt et al., 2011c; Zhou and Jiang, 2012]) have 
previously discussed similar issues for smartphone malware, but not to the extent 
covered by this work. Furthermore, our taxonomy is used to analyze the evolution of 
malware using a representative sample of specimens that have gained notoriety over 
the last few years. Finally, Section 2.4 analyzes and discusses malware detection 
approaches specifically developed for smart devices. Again, we first identify a 
number of features according to which each technique can be classified and use 
them to provide a systematic review of the most relevant works proposed so far. 
Among our contributions, we identify an extensive number of indicators that can be 
monitored to detect the presence of malware and that apply to any kind of smart 
device–not only smartphones or tablets. Additionally, we correlate these features 
with our malware characterization, pointing out how each class of malicious behavior 
manifests in terms of observable indicators.

QQ 2.2. SECURITY MODELS IN CURRENT SMART DEVICES

In this section we provide an overview of the security models and protection 
measures incorporated in current smart devices, with particular emphasis on 
smartphones. The two major mobile platforms –iOS and Android OS– are built upon 
traditional desktop Operating Systems (OS) and inherit some security features from 
them. However, they also employ more elaborated security models designed to 
better fit the architecture and usage of these devices.

QQ 2.2.1. Security Features

A number of recent works (e.g., [Asokan et al., 2013; Enck, 2011; Kostiainen et 
al., 2011; Li and Clark, 2013]) have provided detailed account of the major security 
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features incorporated in smartphones. In what follows we restrict ourselves to 
highlight the fundamentals about:

1. security measures implemented at the market level;

2. security features incorporated in the platform; and

3. an overview of recently proposed security mechanisms

with particular emphasis on the protection against malware that they provide.

QQ 2.2.1.1. Market Protection

A primary line of defense against malicious software consists of preventing it 
from entering available distribution markets. To this end, two basic security measures 
are applied at the market level:

●	Application review. Some official markets analyze submitted apps before 
making them available for download and install. Operators do not give details 
about the particularities of such reviews, but it is generally understood that 
some form of security testing is carried out. Furthermore, in walled-garden 
models devices can only access some markets, which presumably only 
distribute reviewed apps.

●	Application signing. Most markets force authors to sign their apps. This allows 
authors to claim authorship and also has some technical consequences 
in certain platforms (e.g., apps signed with the same certificate can share 
resources). Thus, a device can be sure about the integrity of an app by 
verifying the associated signature against the corresponding certificate 
authority.

Both measures have proven so far insufficient to combat malware. Manually 
reviewing applications is a a difficult and time-consuming task, impossible to perform 
in full extent due to the massive number of applications being submitted every day. 
Automated approaches have been recently explored as an affordable alternative 
[Batyuk et al., 2011; Gilbert et al., 2011; Lockheimer, 2014; Zhou et al., 2012b]. For 
instance, in 2012 Google announced an application approval tool named Google 
Bouncer [Lockheimer, 2014] for Android OS. Also in this line, Zhou et al., proposes 
DroidRanger for detecting smartphone malware in Android markets [Zhou et al., 
2012a,b]. Their analysis shows that the infection rate in alternative marketplaces 
is one order of magnitude higher than the official marketplace. Additionally, they 
found that about 0.1% of the 204.040 analyzed applications are malicious. We 
however believe that such a fraction is much higher for two reasons. On the one 
hand, samples were taken during a two-month period in the first and third quarter of 
2011. However, according to McAfee Threat Report [McAfee, 2012], the number 
of Android OS malicious samples experimented an exponential growth of 400% during 
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the fourth quarter of that year. On the other hand, the detection heuristics used by 
authors present a high false negative rate, ranging from 5.04% to 23.52%.

Even if application review processes were perfect, many devices install 
applications through unofficial markets in which there are no guarantees whatsoever 
about the trustworthiness of such apps. Application signing can give users some 
assurance about the integrity of software downloaded from a questionable source, 
particularly when such software claims to be an unmodified copy of the same available 
in official markets. But most of the time users do not perform such verifications, nor 
it is possible to do so in many cases as signatures are stripped off.

QQ 2.2.1.2. Platform Protection

Current platforms incorporate a number of mechanisms to confine and limit the 
actuation of malicious apps once installed in the device:

● Permissions. Most platforms provide a permission-based system aimed at 
restricting the actions that an app can execute on the device, including access 
to stored data and available services (e.g., networking, sensors, etc.). Au et 
al. [Au et al., 2011] examine the permission system of several smartphone 
OS, focusing on:

1. The amount of control users have over app permissions. Depending on 
the granularity offered by the OS, users can grant privileges using precise 
or coarse permissions. Additionally, such permissions cannot always be 
individually enabled or disabled.

2. The information they convey to the user. Several platforms offer the users 
specific information about how applications are using resources. While 
some OS only inform of what resources the application may use, others 
track the actual use of permissions throughout execution.

3. The interactivity of the system. Some permission systems require a heavy 
intervention of the user. Typically, fine-grained permissions require more 

Platform #Perm. Control Information Interactivity

Android OS 75 Medium High Low

Windows Mobile 15 Medium Medium Low

iOS 1 Low Low Low

BlackBerry OS 24 High High High

Table 2.1 

PERMISSION MODELS IN THE MAIN SMARTPHONE PLATFORMS

Source: Au et al., 2011
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interaction than coarse-grained. Furthermore, permissions can either be 
requested only once (assuming they will remain the same) or they can 
be requested periodically.

A summary of their analysis is shown in Table 2.1. These results will be further 
discussed later on Section 2.2.2 when discussing the security features of the 
most important platforms. A recent study by Felt et al. [Felt et al., 2011b,d, 
2012] on the effectiveness of app permission systems concludes that they are 
rather effective at protecting users. However, in the case of Android OS it points 
out that many apps request a significant amount of permissions identified 
as potentially dangerous and that frequent exposure to warnings drastically 
reduces effectiveness. Furthermore, authors also conclude in [Felt et al., 
2011b] that apps are often over-privileged due to a lack of documentation and 
development bad practices. In this regard, Barrera et al. [Barrera et al., 2010] 
propose a methodology for analyzing permission-based security models and 
suggest to increase the expressiveness without maintaining the total number 
of permissions.

●● Sandboxing. Sandboxing is a security mechanism used by some platform 
architectures to isolate running applications based on mandatory access control 
policies. Sandboxing can provide protection against malicious applications to 
a certain extent, but are ineffective if users overlook the permissions entitled 
to installed apps [Felt et al., 2012]. Furthermore, sandboxing do not prevent 
apps from exploiting system or kernel vulnerabilities and, besides, can also 
be bypassed in some cases [Davi et al., 2011a]. In this regard, several works 
[Andrus et al., 2011; Gudeth et al., 2011; Husted et al., 2011; Lange et al., 
2011; Wu et al., 2014] propose the use of hypervisors that run directly on 
the hardware. Other authors (e.g., [Russello et al., 2012]) have focused on 
optimizing the virtual machine manager, as virtualization introduces a trade-
off between security and performance [Xu et al., 2010].

●● Interactions between apps. Some platforms provide the developer with a rich 
inter-application communication system to facilitate component reuse. 
Such Inter Component Communication (ICC) systems introduce several 
security issues. For example, in a compromised device messages exchanged 
between two components could be intercepted, stopped, and/or replaced by 
others, as they generally are not encrypted or authenticated. Additionally, two 
or more malicious applications can collude to violate app security policies, such 
as for example in the so-called re-delegation attacks [Felt et al., 2011a]. Chin 
et al. [Chin et al., 2011] have recently identified a number of security risks 
derived from the app interaction system in Android OS. Their reported results 
show that 97% of the analyzed applications are exposed to activity hijacking; 
57% to activity launch; 56% to broadcast injection; 44% to broadcast theft; 19% 
to service hijacking; 14% to service launch; and 13% to system broadcast 
without action check.
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●● Remote management. Some market and network operators, as well as 
platform manufacturers, are empowered with the ability to remotely remove 
apps from the device and even repair damages caused by malware. This 
can be seen as an extension of other functionalities already present, such 
as for example updating the OS or applying patches. However convenient, 
this feature can be seen by many users as too intrusive and is not exempt 
from risks, both privacy-wise but also in case of compromise of the remote 
management function.

QQ 2.2.1.3. Other Proposals

Over the last few years there has been an explosion of proposals suggesting 
enhanced security models and alternative policy languages to improve upon the 
limitations discussed above. The interested reader can find a summary in recent 
surveys, such as for example [Enck, 2011]. The majority of them fall in one or more 
of the next categories:

1.	Rule driven policy approaches [Bugiel et al., 2011a; Conti et al., 2011; Enck et 
al., 2009a; Ongtang et al., 2009; Titze et al., 2013] propose richer languages 
based on rules, aiming at palliating insufficient policy expressibility on current 
protection systems.

2.	High-level policy protection techniques focus on enforcing information flow 
throughout the system. Several approaches focus on applying different 
labeling systems [Mulliner et al., 2006], while others enforce full isolation 
based on distinct security profiles [Russello et al., 2012] or policies [Russello 
et al., 2013] within a single device.

3.	Platform hardening aims at simplifying underlying platform layers, i.e., boot- 
loader and kernel, to mitigate the risk of unpatched vulnerabilities [Husted 
et al., 2011]. SELinux-based systems [Shabtai et al., 2010a] and remote 
attestation [Nauman et al., 2010] approaches can be applied to improve 
trusted computing base protection.

4.	Multiple-users protection assumes scenarios where different users share the 
same device. Several approaches focus on applying different access control 
mechanisms such as DifUser [Ni et al., 2009] or RBACA [Rohrer et al., 2012] 
(a Role Based Access Control for Android).

Most of these proposals would certainly provide enhanced protection against 
malicious apps. However, in many cases they ultimately rely on richer –and 
more complex– policies that users must specify. But users generally lack security 
expertise [Kraemer and Carayon, 2007], and developing complete and consistent 
security policies is far from being an easy task even for experts with the appropriate 
background. It can be argued that devices could use policies created by others, but it 
is unclear to what extent “one size fits all.” Furthermore, there is an incipient interest 
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on intentionally bypassing the platform protection mechanisms to gain full control of 
the device and, for example, install apps otherwise forbidden.

QQ 2.2.2. Security Features in Dominant Platforms

When compared with traditional PCs, smartphone platforms have taken an 
innovative approach to securing the device and the distribution of software. We next 
provide an overview of some of the security features present in the five platforms 
that currently dominate the market.

QQ 2.2.2.1. Symbian

Symbian OS security model is based on a basic permission system. Phone 
resources are controlled by the OS using a set of permissions called “capabilites.” 
Furthermore, applications run in user space, while the OS run in kernel space. Those 
applications requiring access to protected resources must be signed by Symbian or 
the device manufacturer, while all others can be self-signed [Kostiainen et al., 2011]. 
There is very little information about protection at the market level.

QQ 2.2.2.2. BlackBerry

BlackBerry security model is based on a coarse-grained permission protection 
model. Applications have very limited access to the device resources and, as in the 
case of BlackBerry OS, they must be signed by the manufacturer (RIM) to be able to 
access resources such as, for example, the user’s personal information. Additionally, 
applications must get user authorization to access resources such as the network. 
However, once the user grants access to an application to use the network, the 
application can both send SMSs and connect to Internet [O’Connor, 2006]. Although 
applications are not executed in a sandbox, some basic process and memory 
protection is offered. For instance, a process cannot kill other processes nor access 
memory outside the app bounds.

QQ 2.2.2.3. Android

Google’s Android OS security model relies on platform protection mechanism 
rather than on market protection, as users are free to download applications from 
any market. Applications declare the permissions they request at installation time 
through the so-called manifest. If the user accepts them, the operating system will 
be in charge of enforcing them at running time.
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Many researchers have pointed out that Android OS’s permissions are overly 
broad and have proposed alternatives and extensions [Fang et al., 2014]. For 
example, Ongtang et al. propose a fine-grained permission model called Saint to 
limit the granularity at which resources are accessed [Ongtang et al., 2009]. Similarly, 
Jeon et al. [2011] propose a framework that enhances Android OS’s security policies 
and extends permission enforcement both an installation time and during runtime. 
Schreckling et al., introduced in [2012] Constroid, a framework to define data-centric 
security policies for access management. Security policies are here defined for each 
individual resource, instead of specifying permissions for each app. Furthermore, 
such definition can be done at a fine-grained level, allowing users to, for example, 
grant an app access to a part of the address book only. A major consequence is that 
security policies are therefore defined by the user, not by the developer. However, 
this approach can easily overwhelm users as they are held responsible of specifying 
security and privacy policies.

Additionally, Android OS uses sandboxing technique and Address Space 
Layout Randomization (ASLR) to protect applications from malicious interference 
of others apps. Although Android OS isolates each running process, apps can still 
communicate with each other using ICC, a rich functionality that, however, introduces 
risks such as those discussed before. Bugiel et al., introduce a security framework 
called TrustDroid [Bugiel et al., 2011b] to separate trusted an untrusted applications into 
domains, firewalling ICCs among these domains. Similarly, Dietz et al., propose Quire 
[Dietz et al., 2011], a signature scheme that allow developers to specify local (ICC) 
and remote (RPC) communication restrictions. Other proposals such as TaintDroid 
[Enck et al., 2010], AppFence [Hornyack et al., 2011] or XManDroid [Bugiel et al., 
2011a] closely monitors apps to enforce given security policies. The first two uses 
dynamic taint analysis to prevent data leakage and protect user’s privacy, while the 
last one extends Android OS’s security architecture to prevent privilege escalation 
attacks at runtime. The main difference between TaintDroid and AppFence is that 
the latter tries to covertly anonymize private information prior to blocking leakages.

Furthermore, all Android OS applications must be signed with a certificate to 
identify the developer. However, the certificate can be self-signed, in which case no 
certificate authority verifies the identity of the developer.

Several articles discuss Android OS security model [Enck et al., 2009b; Shabtai 
et al., 2010b], providing a deep understanding of android architecture. Enck et al. 
[Enck et al., 2011] also present a study of Android security by analyzing 1100 free 
applications. We refer the reader to these works for further details.

QQ 2.2.2.4. iOS

Apple’s iOS security model [Apple, 2012] relies on market protection mechanisms 
rather than enforcing complex permission polices on the device at installation time. 
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Apple’s App Store is a walled-garden market with a rigorous review process. Those 
processes are essential for preventing malware from entering the device, as runtime 
security mechanisms are limited to sandboxing and user supervision. iOS isolates 
each third-party application in a sandbox. However, most of the device’s resources 
are accessible1 and misuse of a few of them –such as GPS, SMS, and phone calls– 
can only be detected by the user after installation.

Specific details on Apple’s App Store application review are unknown. In July 
2009 Apple revealed that at least two different reviewers study each application 
[Apple, 2014]. However, it is probable that Apple uses also static and dynamic 
analyses.

Applications distributed on Apple’s App Store must be signed by a valid 
certificate issued by Apple. Developer certificates are issued to individuals and/or 
companies after obtaining a verified Apple credential. iOS dynamically verifies that 
the application is signed, and therefore it is trusted, before executing it. Nevertheless, 
iOS can be tampered with (jailbroken) to install applications from alternative markets. 
This practice violates Apple policies, causes the device to lose its warranty, and 
allows the distribution of piggyback malware repackaged together with the original 
app.

Latest versions of iOS provide a number of features to protect user data based 
on master encryption keys and protected by a passcode. The entire file system is 
encrypted using block-based encryption and can only be decrypted when the phone 
is unlocked. Additionally, iOS supports ASLR and Data Execution Prevention (DEP) to 
prevent the execution of arbitrary code at runtime.

QQ 2.2.2.5. Windows Mobile

Microsoft’s market protection model for Windows Mobile systems is based on 
application review. Developers are also validated prior to application’s approval. 
Platform protection in Windows Mobile is similar to Android OS. It uses a trusted 
boot component and code signing to protect the integrity of the operating system. 
It also provides signed drivers and applications through the Windows Phone Store 
online market.

Latest versions of Microsoft’s smartphone OS (Windows Phone 7 and 8) 
incorporate isolation among different sandboxes [Microsoft, 2012], and each app 
is executed in its own sandbox, named “chamber.” Chambers are defined and 
implemented using system policies, which restrict the access to other chambers. 
While chambers are defined and implemented using a number of system policies, 
each security policy defines what permissions are given to an app, known as 
capabilities. In this regard, users are informed of the capabilities of an application 
prior to install.

1 In iOS version 5, although Apple is likely to introduce some modifications in iOS version 6. Specifically, 
the new version will restrict access to most of the device’s resources [Chubb, 2014].
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QQ 2.3. MALWARE IN SMART DEVICES: EVOLUTION, CHARACTERIZATION 
      AND EXAMPLES

Malicious applications for smart devices –notably smartphones– have rocketed 
over the last few years, evolving from relatively simple apps causing annoyance 
to complex and sophisticated pieces of code designed for profit, sabotage or 
espionage. In this Section we first provide a brief overview of such evolution from 
early mobile platforms to current devices. We subsequently propose a number of 
features that can be used to classify, characterize and better understand malware 
for smart devices.

QQ 2.3.1. Evolution

As in the case of traditional PCs, where malware evolution was intimately 
connected to the increase in computing resources and the advent of the Internet, 
the complexity and hostility of malicious software has intensified from early mobile 
handsets to the current generation of smart devices. In the early 2000s, Palm 
platforms were affected by malicious software that mimicked strategies well-known 
in PC malware. For example, Symb/Liberty, Symb/Vapor and Symb/Skuller were 
popular Trojans at the time, i.e., applications that perform some useful function 
while simultaneously conducting malicious activities. Others such as Symb/Phage 
employed classical virus propagation strategies to infect additional programs present 
in the handset. Their malicious payload varied, but in all cases it was sought to inflict 
damage over user information or corrupt system files in order to cause a device 
failure.

The rise of feature mobile phones brought about a variety of distinctive infection 
vectors when compared to traditional PCs, primarily through the communication 
and networking functions offered by 3G, Wi-Fi, EDGE, Bluetooth, the SMS/MMS 
messaging system, and NFC [Fleizach et al., 2007; Verdult and Kooman, 2011]. 
For instance, Symb/Cabir was one of the first Symbian OS worms using Bluetooth 
to infect other devices. Additionally, when handsets were given Internet connectivity 
and the possibility to easily install third-party applications, more sophisticated 
infection strategies appeared. One early example was Symb/Yxes, which used the 
SMS channel and support from remote servers to propagate and configure itself.

The availability of mobile networking and pay-per-use services contributed 
to a rapid escalation of the malware phenomenon, both in feature phones and 
smartphones. Examples such as Android/YZHCSMS.A and WinCE/Fakemini send 
premium-rate SMSs without the user’s knowledge, which results in very significant 
revenues for the owner of the registered number. Others such as Android/Smspacem 
have been also driven by economic incentives: sending spam through SMSs.

In recent years, the proliferation of smartphones with improved sensing and 
networking capabilities has translated into more sophisticated threats. For example, 
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Android/DroidKungFu and iPhone/FindAndCall steal a variety of personal information 
stored in the device and exfiltrate it through the network to a remote server. Other 
pieces of malware such as Android/Spybubble, Android/Nickispy and FinSpy Mobile2 

have evolved into fully fledged spy instruments with the ability to monitor, record and 
exfiltrate the device’s current location, ongoing and past phone calls and SMS logs 
to name a few. Although more illustrative examples are provided later on this section, 
readers interested in a more in-depth study are referred to the recent work of Zhou 
and Jiang [Jiang and Zhou, 2013; Zhou and Jiang, 2012], where a study of more 
than 1200 malware samples is presented.

It is plausible to believe that similar threats will soon affect other smart devices 
such as smart TVs or IMDs. For example, Auriemma [Auriemma, 2014] has recently 
shown that several versions of Samsung’s Smart TV [Samsung, 2014] are vulnerable 
to buffer-overflow attacks that could allow an attacker to remotely control the device. 
Many security vendors are already releasing security frameworks for smart TVs, 
including antimalware products [Sophos, 2014a]. The situation may become similar 
for medical devices too, particularly for those designed to remotely monitor a patient’s 
condition and/or control body functions. We are only aware of a few cases of malware 
reported so far that affects existing IMDs or other medical smart devices [Clark et al., 
2013], although researchers believe that malicious programs will certainly rock soon 
[Clark et al., 2013; Halperin et al., 2008b; Vockley, 2012].

QQ 2.3.2. Malware Characterization

Current malware for PCs have evolved into complex and reuse-oriented 
pieces of software. Traditional classifications have focused on factors such as the 
propagation strategy (e.g., viruses vs. worms) or the malicious activity carried out 
(trojan horses, spyware, adware, rootkits, etc.), among others [F-Secure, 2014; Felt 
et al., 2011c; Symantec, 2014; Zhou and Jiang, 2012]. However, these categories 
are rather imprecise and do not contribute to a better understanding in terms of 
detecting the presence of malware, particularly in current times where most malware 
present multiple and constantly changing features.

We next identify several criteria according to which malware in smart devices can 
be described and classified. Each provided criterion will be subsequently associated 
with some observable behavior in one or more features of the device. Thus, our 
classification will serve both to better understand the functionality of malware, but 
also to point out where to look for detecting malicious activities. We believe this can 
be of help to improve upon current detection strategies.

We classify malware for smart devices in terms of the following three features 
(a graphical summary is provided in Figure 2.1):

2 FinSpy is a surveillance component part of a commercial surveillance toolkit called FinFisher, designed 
to spy over a wide range of mobile platforms. The mobile version is capable to monitor apps, emails, text 
messages, etc. on Android, iOS, BackBerry, Symbian, etc.
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●● Attack goals and behavior: Identifying malware’s motivation on smart devices is 
paramount to have a better understanding of its behavior and can be used 
to develop targeted detection strategies. Such goals range from fraud and 
service misuse driven by economic incentives, to spamming, espionage, data 
theft and sabotage.

●● Distribution and Infection: Malware creators can use a variety of techniques 
to distribute malicious applications and infect devices, from self-propagation 
mechanisms based on vulnerabilities and misconfigurations, to simply tricking 
the user into installing it by means of social-engineering techniques.

●● Privilege acquisition: Once the malicious code is installed on the device, 
it often needs to acquire enough privileges to carry out its goals. This is 
automatic in many cases, as the user might already have granted them to the 
app, whereas in other cases technical vulnerabilities and/or misconfigurations 
are exploited.

Figure 2.1

MALWARE CHARACTERIZATION FOR SMART DEVICES

Source: Own elaboration.

In the remaining of this section we describe each criterion in detail and discuss 
some illustrative examples.

QQ 2.3.3. Attack Goals and Behavior

Felt et al. [2011c] analyze the main incentives behind iOS, Android OS, and 
Symbian OS malware using a dataset containing 46 specimens found between 
2009 and 2011. According to their analysis, the most common malicious activities 
are related to the exfiltration of personal information and user credentials (44%), 
followed by premium-rate SMSs (33%) and, to a lesser extent, research, novelty, 
or amusement purposes. It is also pointed out that the majority of the analyzed 
pieces exhibited behaviors related to more than one incentive, and that they often 
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incorporate secondary goals such as SMS advertisement, spamming, search engine 
optimization and, in a few cases, ransom. About the 33% of the studied malware 
changed their behavior based on commands received from a Command and Control 
(C&C) server.

More recently, new pieces of malware such as Android/NotCompatible [Look- 
out, 2014] are demonstrating that attackers’ interests are not only limited to the scope 
of a smartphone and its user, but to large private networks. By turning an infected 
device into a TCP relay/proxy –capable of forwarding network traffic–, smartphones 
can be used to support many infection vectors. For instance, an attacker could 
establish an encrypted point-to-point session via HTTP with a device located behind the 
firewall. Using such tunnel, the attacker might be able to probe the private network and 
run exploits against assets within the corporation. Thus, malware such as Android/
NotCompatible opens new opportunities for penetrating corporate networks.

Understanding the motivations behind malware can lead to a better identification 
of its behavior. Figure 2.2 presents the relation between most common incentives 
and the behavior associated with them. Common behaviors can be classified in 
monitoring (eavesdropping, profiling, etc.), service misuse (SMS, call, email, other 
services used for spamming, etc.), sabotage (draining the battery, deleting critical 
files, etc.), data exfiltration, and fraud. Note that some behaviors could affect two or 
more categories. For example, the unauthorized use of SMSs for spamming might 
well be both a service misuse and a fraud.

QQ 2.3.3.1. Example: Smartphone-based Botnets

A botnet is a collection of compromised devices that can be remotely controlled 
by an attacker (i.e., the bot master). As the number of smartphones is rapidly 
approaching the number of PCs, botnets for such platforms have gained momentum 
using a variety of distribution strategies to harvest as many devices as possible.

Traynor et al. [Traynor et al., 2009] were among the first to study the potential 
theoretical impact of mobile-phone botnets in cellular networks. As far as we are 
aware, the first mobile botnet –named SymbOS/Yxes– appeared in 2009 and targeted 
Symbian OS platforms, using a rudimentary HTTP-based command and control (C&C) 
channel. iPhone/Ikee appeared later on that same year, infecting around 21,000 
iPhones within two weeks. One remarkable feature of Ikee was that it showed how 
easy it can be to hijack a smartphone platform when root exploits are available. 
Specifically, it exploited iPhones that were left with the SSH port open and a default 
password after having been jailbroken. Such simple but very effective attack vectors 
can enable an attacker to control thousands of devices through an easy-to-implement 
C&C mechanism, as Ikee.B did [Porras et al., 2010].

C&C resilience is essential for a botnet to survive. In this regard, smartphones 
are very attractive devices, as they offer multiple communication alternatives that 
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can be leveraged to implement a C&C channel, including rather non-standard means 
such as SMSs [Mulliner and Seifert, 2010]. Mulliner et al., implemented and evaluated 
an iPhone-based mobile botnet named iBot and demonstrated that thwarting them 
is more challenging than in computer networks, in particular because of employing 
multiple C&C channels (HTTP, SMS, etc.) in a peer-to-peer (P2P) fashion.

Android/Andbot [Xiang et al., 2011] introduced a new energy-aware C&C 
strategy named URL Flux for Android OS botnets. Android/Andbot uses URL Flux 
to eliminate the single point of failure problem present in Ikee.B and also reduces 
the SMS fees incurred by iBot. URL Flux is a domain name conversion used by 
Confiker —a Windows worm that infected millions of computers between 2009 and 
2011– based on a domain generation algorithm seeded with a public key. Recently, 
more advanced iOS rootkit-like malware such as iSAM [Damopoulos et al., 2011] 
integrates multi-functional tools also capable of self-propagating to other iPhone 
devices in ways similar to Ikee’s.

Obfuscation is becoming popular in botnets, both by encrypting communications 
exchanged over the C&C channel and also local resources that might facilitate 

Figure 2.2

MAIN ATTACK GOALS, ASSOCIATED INCENTIVES, AND EXHIBITED  
BEHAVIOR FOR MALWARE IN SMART DEVICES

Source: Own elaboration.
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detection through static analysis, such as server names and URLs, keywords, file 
names, etc. AnserverBot makes extensive use of some of these techniques, and 
also relies on posts made on public blogs to retrieve code updates and communicate 
with other members of the botnet.

QQ 2.3.3.2. Example: Grayware

The so-called grayware apps gather potentially sensitive user and/or device 
information, sometimes without user knowledge, and use it for dubious purposes 
or in contexts that the user might well not approve. For example, Aurora Feint is an 
app that sends the whole address book to an unknown destination and was quickly 
delisted from Apple’s market in July 2008. Similarly, the author of Storm8 –a popular 
game– was sued for collecting users’ phone numbers, and Twitter has been widely 
criticized for sending the phone’s contact list without informing the user.

Most grayware apps claim to retrieve such information for legitimate purposes 
and that it is crucial to improve the quality of the service offered to users. This, 
however, has recently become a major privacy threat for users’ privacy, as apps 
collect excessive amounts of personal information and it remains unclear whether 
the service provider will use that data for legitimate purposes or not. Some platform 
manufacturers are increasingly deploying measures to prevent this. For example, 
in iPhone a strict control is carried out to guarantee that personal information is not 
sent to the cloud unless really needed.

QQ 2.3.4. Distribution and Infection Strategies

Malicious programs employ a number of distinctive techniques to distribute 
themselves. We next discuss the most relevant and propose a taxonomy to classify 
them according to the channel used to enter the device. Distribution techniques are 
primarily influenced by malware in desktop computers, although the emergence of 
app markets have opened new possibilities. Two main approaches exist: (i) self- 
propagation and (ii) social engineering. A self-propagating piece of malware can 
use different strategies to automatically install the payload into a device, whereas 
social engineering-based distribution strategies exploit the security unawareness of 
users to trick them into manually installing the application (e.g., Andr/Opfake-C by 
Sophos [Sophos, 2014b], which spreads via Facebook and, once installed, allows 
the attacker to perform premium-rate calls).

We have identified six different distribution vectors that can be used to infect 
devices:

■■ Market to Device (M2D): This propagation strategy is based on market-borne 
attacks. An attacker uploads a malicious application to a market, sometimes 
using a stolen identity. Users can only get infected if markets accept such 
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malicious apps and users install them. Open markets, in particular those 
performing little or no security revisions, are particularly vulnerable to this 
distribution method. For instance, malware using devious exploits (e.g.: 
Android/Droid-KungFu3), might compromise the device by these means.

■■ Application to Device (A2D): This propagation strategy is based on 
application-borne attacks. An attacker might rely on a specific, vulnerable 
application to spread itself. For instance, instances such as Andr/Opfake-C 
can use Facebook to post links with a copy of the malicious code. The main 
difference with M2D is that attackers assume the presence of other installed 
applications (presumably “goodware”) to achieve infection. In this regard, 
even walled-garden models can be vulnerable to this type of infection vector.

■■ Web-browser to Device (W2D): W2D uses web-borne attacks to propagate 
the malware in way similar to A2D. In this regard, we can consider W2D an 
specific type of A2D. The difference is that A2D strategies are limited by the 
possibilities offered by the application, whereas in W2D malware can exploit 
general drive-by-download strategies. This attack vector has recently gained 
popularity due the widespread use of vulnerable multi-platform components 
such as WebView [Luo et al., 2011].

■■ SMS to Device (S2D): This strategy is used by malware that propagates  
via SMS or MMS or attacks that distribute a malicious payload by these 
means.

■■ Network to Device (N2D): This propagation strategy is based on exploiting 
vulnerabilities or misconfigurations in the device. We distinguish between:

●● Device to Device (D2D): When distribution is driven by another device in a 
P2P-fashion, and

●● Cloud to Device (C2D): When distribution is done by a powerful computer 
such as a workstation or a server.

■■ USB to Device (U2D): This strategy is used by malware that enters the device 
through a port (typically a cable) when connected to an infected PC.

QQ 2.3.4.1. Example: Repackaging

One of the most common distribution strategy for smartphone malware consists 
of repackaging popular applications and distributing them through alternative markets 
(M2D) with additional malicious code attached. Repackaging is not a phenomenon 
exclusive of the current generation of smartphones, although the proliferation of these 
platforms and the impressive growth in available apps have certainly contributed to 
make it a popular infection strategy. As far as we know, M2D repackaging started 

3 Android/DroidKungFu uses an exploit called "Rage Against The Cage” [Kramer, 2010] for privilege 
escalation.
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with Symbian OS Trojans such as SymbOS/Skuller and SymbOS/Dampig, which 
replaced system applications and antivirus files with modified ones. The focus has 
recently shifted towards Android OS apps, particularly by repackaging popular games 
and tools [NakedSecurity, 2014], including banking apps. For example, Android/- 
FakeToken trojan implements a man-in-the middle attack to forward SMS messages 
with mTANs (Mobile Transaction Numbers).

Zhou et al., [2012a] present in a systematic study of six popular third-party 
marketplaces for Android OS. Their report concludes that between 5% and 13% 
of all available apps online are malware using repackaging, and the most common 
incentive is fraud in the form of replaced in-application advertisements to re-route 
revenues. The study also identifies a few cases with planted backdoors and other 
malicious payloads.

QQ 2.3.4.2. Example: Malicious Code Transference via Network

In some cases, malware creators do not repackage an app with the full malicious 
code. Instead, the modified app only encloses a short piece of code that downloads 
and install the malicious payload once the app is installed on the device. One example of 
this variant –sometimes known as update attacks [Zhou and Jiang, 2012] is Android/
DroidKungFuUpdate. Remarkably enough, repackaged apps can enter the device 
without the user being aware of it. By exploiting some technical vulnerabilities and 
misconfigurations, some malware samples have even been able to replace another 
installed app by a repackaged version of the same one.

Repackaged apps often rely on obfuscation techniques to avoid detection and 
to make static analysis harder [Apvrille, 2011]. For example, in the case of update 
attacks the transferred payload is often encrypted. In other cases, encryption is 
applied to malicious components that are distributed together with the repackaged 
app, usually as if they were class files, images or other raw resources. For instance, 
Android/RootSmart and Android/Fjcon use AES to hide domain names and URLs; 
Android/Geinimi conceals URLs by encrypting them with DES; and Android/OpFake 
simply makes an XOR with a predefined key.

QQ 2.3.5. Privilege Acquisition

Exploitation strategies comprise a variety of techniques used by malware to 
gain the privileges required to achieve its goals. We distinguish two broad classes:

■■ User Manipulation: In many cases, privileges are directly granted by users who 
are not aware of the potential repercussions of doing so. These strategies, 
which rarely involve any technical sophistication, can be surprisingly effective 
and very damaging. Common forms of user manipulation include:
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●● Social engineering.

●● Malware and/or grayware installed by novice users who do not understand 
–or do not pay attention to– the permission model.

●● Repackaged applications found in alternative markets.

As in other similar security problems in computing, these methods can be pre- 
vented by raising awareness about the dangers of malicious apps.

■■ Technical Exploitation: In other cases the malicious app can escalate by 
exploiting technical vulnerabilities or misconfigurations of the platform. Even 
though the particular technical means greatly depend on each platform, the 
most common current attacks include [Chin et al., 2011; Davi et al., 2011a]:

●● API vulnerabilities.

●● Buffer overflows.

●● Code injection attacks.

●● ICC vulnerabilities.

●● Return-oriented Programming (ROP) and ROP without return flaws.

●● System vulnerabilities.

●● Networking protocol flaws.

●● Bootloader vulnerabilities.

●● Rooted device-based vulnerabilities.

QQ 2.3.5.1. Example: Rootkits

Current smartphone platforms are becoming increasingly complex, including 
not only the operating system itself but also dozens of libraries that give support 
to the services offered by the device. Kernel-level rootkits similar to those known 
for traditional PCs have recently appeared with identical purposes, namely to hide 
the existence of malicious software from the operating system. Most rootkits infect 
devices via N2D vectors, but app markets –official or not– are increasingly playing 
a key role. For example, it is pointed out in [Zhou and Jiang, 2012] that repackaged 
apps that implement technical exploits to gain root access once installed in the 
device do exist. Such exploits are often distributed with the repackaged app or 
acquired from a remote server as they become available. Contrarily, other exploits 
involve user manipulation to acquire privilege escalation. For example, iPhone/
Mobileconfigs [Skycure, 2014] allows an attacker to remotely hijack the device by 
installing malicious system-level settings into the device through social engineering.
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Root exploits in iPhone are often quickly patched by Apple and it is difficult to 
find malware samples exploiting these vulnerabilities [Seriot, 2010]. The first exploit 
known for iOS was identified as early as 2007 and exploited a buffer over- flow in the 
libtiff library. Other known exploits affected the SMS service–SMS fuzzing, presented 
at Black Hat USA 2009 by Miller and Mulliner–and PDF-related functionalitites–as 
the one used by iPhone/JailbreakMe to root iOS 4.3.3 and earlier versions via a 
web browser. Later in 2011, Miller submitted iPhone/InstaStock [Goodin, 2014], 
which, after being approved, disclosed a hidden payload endowing InstaStock with 
remotely controlled root capabilities.

Hypervisors are a common strategy to counteract rootkits. Although there  
are some approaches to incorporate them on smartphones, such architectures are 
heavy-weight and not widely available yet. Bickford et al. [Bickford et al., 2010] 
implemented three proof-of-concept rootkits for Android. Firstly, they rootkit the GSM 
Linux Kernel Module (LKM) in a way that a remote attacker can listen to the victim’s 
conversations. Secondly, they rootkit the GPS LKM so that the attacker compromises 
the victim’s location privacy. And thirdly, they exploit a number of power-intense 
services so that the battery is drained in two hours. They conclude that there is 
currently no effective nor efficient technique to detect infection by rootkits.

QQ 2.3.6. Discussion

Table 2.2 (see page 47) shows a representative set of smartphone malware 
and provides, for each one of them, sought attack goals and the distribution and 
privilege acquisition strategies implemented. Various conclusions can be drawn:

Table 2.2 

SAMPLES OF SMARTPHONE MALWARE FOR THE MAIN OS AND THEIR MOST 
RELEVANT CHARACTERISTICS. MALWARE HAVING MULTIPLE GOALS MIGHT 
EXHIBIT SELECTED CHARACTERISTICS DEPENDING ON THE SPECIMEN

 App
Attack Goals Distribution/Infection P.A.

Theft Misu-
se

Sabo-
tage

SPAM Fraud M2D A2D W2D N2D U2D S2D User Ex-
ploit

FinSpy Mobile ● □ □ - - - ● ● ● ● ● ● ●
Symb/Cabir ◊ ◊ ◊ ◊ ◊ - - - ● - - ● -
Symb/Skuller □ □ ● □ □ ● - - - - - ● -
Symb/Yxes ● - ● - - ● - - - ● ● -
Sym/ZeusMitmo ● □ □ □ □ ● - - - - - ● ●
BB/FlexiSpy ● - - - - ● - - - - - ● -
BB/BBproxy - ● - - - ● - - - - - ● -
BB/ZeusMitmo ● □ □ □ □ ● - - - - - ● ●
And/YZHCSMS ● - - - ● ● - - - - - ● -

Charact.
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Table 2.2 (continued)

SAMPLES OF SMARTPHONE MALWARE FOR THE MAIN OS AND THEIR MOST 
RELEVANT CHARACTERISTICS. MALWARE HAVING MULTIPLE GOALS MIGHT 
EXHIBIT SELECTED CHARACTERISTICS DEPENDING ON THE SPECIMEN

 App
Attack Goals Distribution/Infection P.A.

Theft Misu-
se

Sabo-
tage

SPAM Fraud M2D A2D W2D N2D U2D S2D User Ex-
ploit

And/SpyBubble ● - - - - ● - - - - - ● -
And/SimChecker ● - - - - ● - - - - - ● -
And/BaseBridge ● - - - - ● - - - - - ● -
And/GinMaster ● - - - - ● - - - - - ● -
And/DroidKungFu ● - - - - ● - - - - - ● -
And/AutoSPSubs - - - - ● ● - - - - - ● -
And/Nickispy ● - - - - ● - - - - - ● -
And/Smspacem - ● - ● - ● - - - - - ● -
And/Crusewind ● - - - - ● - - - - - ● -
And/Zsone - ● - - - ● - - - - - ● -
And/GGTracker ● ● - ● - ● - - - - - ● -
And/AdSMS ● ● - - - - - ● - - - - ●
And/Fakeplayer - ● - - - ● - - - - - ● -
And/Bgserv ● - - - - ● - - - - - ● -
And/Lightdd ● - - - - ● - - - - - ● -
And/Rootcager ● - - - - ● - - - - - ● ●
And/Opfake - ● - - - ● ● - - - - ● -
And/OneClickFraud - - - - ● ● - - - - - ● -
And/FakeToken - - - - ● ● - - - - - ● -
iP/MogoRoad - - - - ● - - ● - - - - ●
iP/JailbreakMe - ◊ - - - - - ● - - - - ●
iP/InstaStock ◊ ◊ ◊ ◊ ◊ ● - - - - - - ●
iP/FindAndCall ● - - ● - ● - - - - - ● -
iP/Mobileconfigs □ □ □ □ □ - - ● - ● - ● -
iPJ/iKee.A ◊ ◊ ◊ ◊ ◊ - - - ● - - - ●
iPJ/iKee.B □ □ □ □ □ - - - ● - - - ●
iPJ/Dutch 5€ - - - - ● - - - ● - - - ●
iPJ/Privacy.A ● - - - - - - - ● - - - ●
WinCE/Duts.A ◊ ◊ ◊ ◊ ◊ ● - - - - - ● -
WinCE/Fakemini - ● - - - ● - - - - - ● -
WinCE/Pmcryptic - ● - - - - - - - ● - ● -
WinCE/Terred - ● - - - ● - - - - - ● -
WinCE/ZeusMit. ● □ □ □ □ ● - - - - - ● ●

Charact.

Symb: Symbian       iPJ: Jailbroken iPhone      iP: iPhone      Abd: Android
WinCE: Windows Mobile       BB: BlackBerry

•: The referred characteristics are applied to the application.
◊: Proof-of-concept for demonstration, novelty or amusement pursoses.
□: Multi-pursose malware having multiple goals.
Source: Own elaboration.
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■■ M2D strategies clearly dominate other distribution and infection strategies.
This conforms the study conducted in [Zhou and Jiang, 2012] over 1200 
samples of Android OS malware, which points out that 86% of them use 
repackaging techniques.

■■ Privileges are mostly acquired by simple user manipulation, i.e., by simply 
asking the user to grant them to the app. This is certainly worrisome and 
motivates many recent works dealing with enhanced permission models 
and novel ways of communicating requested privileges to users. Even though 
repackaging is nowadays the primary entry point for malware, it is pointed out 
in [Zhou and Jiang, 2012] that 36.7% of studied specimes attempt to leverage 
technical exploits to obtain root privileges.

■■ In terms of behavior, malware with just one goal is rare. Most samples spy 
on users and steal personal data, but also attempt to commit fraud or misuse 
services. A possible explanation for this is the reconfigurable nature of 
most malware specimens through updates, as in the case of botnets. Thus, 
attackers basically seek to plant a basic bot engine in the device, and then to 
provide it with instructions and further code to perform specific tasks. Again, 
this conforms similar studies carried out recently. For example, in [Zhou and 
Jiang, 2012] it is pointed out that 90% of the samples turn the compromised 
device into a bot; almost half of them (45.3%) try to misuse SMS or call 
services to obtain financial profit; and 51.1% harvest user information. Finally, 
sabotage is quite unusual, with only a few examples that drain the device’s 
battery or remove selected files.

■■ There are remarkable differences between Android OS and iPhone malware 
in the three criteria of our taxonomy

●● First, most Android OS malware is distributed by markets, notably in the 
form of repackaged applications. iPhone barely suffers from such infection 
vectors, and the majority of malware enters via web and network exploits. 
In part, this is a consequence of the walled-garden model of Apple’s market.

●● The differences in their respective permission models and the way of 
granting privileges also show up: while a significant fraction of Android OS 
malware is entitled with sufficient privileges by the user –even if it later 
escalates by other means–, in iPhone most specimens depend on technical 
exploits.

●● Finally, in contrast with Android OS malware, most iPhone specimens 
discovered so far have been created for demonstration or amusement 
purposes.

A word of caution is appropriate, though: because of its openness, Android OS 
is the de facto platform-of-choice for security research in smartphones, which may 
have also negatively contributed to the malware phenomenon; and, furthermore, 
Apple follows a less communicative strategy about iPhone malware.
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QQ 2.4. MALWARE DETECTION AND ANALYSIS

As detailed in the previous section, current malware pose severe threats to 
security models in smart devices. In this section we classify and describe the most 
significant advances in malware detection systems for such devices [Shahzad et al., 
2012]. More precisely, we show how such systems build their foundations based on 
a variety of detection techniques. These techniques aim at identifying where and 
how malware manifests by constantly monitoring various device-based features. We 
also show how detection systems are driven by these features, as they represent the 
key elements for malware identification. We believe that this comprehensive study is 
paramount for researchers and practitioners in order to facilitate the construction of 
new detection systems.

Figure 2.3

TAXONOMY OF MALWARE DETECTION TECHNIQUES FOR SMART DEVICES

Source: Own elaboration.

QQ 2.4.1. A Taxonomy of Detection Techniques

Malware detection is a complex process pulling together monitoring, analysis 
and identification tasks. In order to organize and better understand current detection 
systems, we next propose a taxonomy based on the following seven characteristics 
(see Figure 2.3 for a graphical summary):

■■ Type of Detection (ToD) There are two common types of malware detection 
techniques according to how code is analyzed:

●● Static analysis: this type of technique attempts to identify malicious code 
by unpacking and disassembling (or decompiling) the application. This 
technique is a relatively fast approach and it has been widely used in 
preliminary analysis to search for suspicious strings or blocks of code.

●● Dynamic analysis techniques seek to identify malicious behaviors after 
deploying and executing the application on an emulator or a controlled 
device. These techniques require some human or automated interaction 
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with the app, as malicious behavior is sometimes triggered only after certain 
events occur.

Static analysis techniques are well known in traditional malware detection and 
have recently gained popularity as efficient mechanisms for market protection. As 
a major drawback, these techniques fail to identify malicious behavior when it is 
obfuscated or distributed separately from the app. Contrarily, dynamic analysis are 
arguably more powerful in these cases. In fact, the only way of learning what the app 
is really doing necessarily requires to run the code and observe its actions. Howe-
ver, the inputs generated by most dynamic analysis tools are generally produced by 
using random streams of user events, which might not trigger the execution of the 
malicious payload, resulting in malicious apps that avoid being detected. This parti-
cular shortcoming can be tackled by modeling users’ behavior and providing human-
like inputs. Dynamic analysis can be used both in the cloud for market protection or 
directly in the device, although resource consumption is certainly a issue (see later 
discussion on this in Chapter 6).

■■ Type of Monitoring (ToM) Malware can be detected by analyzing various 
features that serve to tell apart benign from malicious activities. A monitoring 
system can collect user-level, kernel-level, or hypervisor-level activity, 
depending on the type of features that will be extracted. Monitoring approaches 
include the collection of: (i) system calls (SYS); (ii) network activity (NET); (iii) 
event logs (EL); (iv) user activity; (v) instructions (I); (vi) permissions (P); or 
(vii) program traces (PT); to name a few. Each type of monitoring activity 
requires the deployment of different instruments to intercept and format the 
corresponding events. For instance, SYS requires the use of a system trap 
technique with root privileges, while NET requires capturing all packets from 
the network interface. Additionally, monitoring any of these features when the 
app is run in an hypervisor requires the introspection of a virtual environment.

Monitoring can be potentially expensive in terms of resource consumption, 
particularly if a large number of events is collected directly over the platform being 
monitored. As far as we are aware, no power consumption analysis has been carried 
out yet, but practical experience suggests that intensive monitoring is prohibitive for 
current smart devices.

■■ Granularity of Detection (GoD): A point related to the ToM discussed above is 
how collected data is filtered in order to select the detection scope. Monitoring 
can be carried out at different levels:

●● Per App: features related to a specific application are monitored and 
analyzed independently from other apps in the system. This type of feature 
classification presents good performance when malware is a stand-alone 
application.

●● Per group of apps: in this case, data from a collection of applications is 
gathered and analyzed. This is potentially useful when malware’s goals are 
achieved in a distributed way by several collaborating apps.
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●● Per device: detecting certain types of malware, such as for example 
rootkits, requires a more general detection approach focused on monitoring 
the device itself rather than particular apps executed on it.

■■ Type of Analysis (ToA): The monitored information is subsequently analyzed 
to extract evidence on the presence of malware. Such analysis can be carried 
out by a human expert (E), although this possibility is becoming increasingly 
unaffordable, at least without the support of automated analysis tools. There 
are several types of techniques for analyzing data obtained after monitoring, 
including: Clustering (CL), Support Vector Machines (SVM), Self-Organizing 
Maps (SOM), other general Machine Learning (ML) algorithms, Control Flow 
Graphs (CFG), Data Flow Graphs (DFG), Program Dependency Graphs 
(PDG), etc.

■■ Type of Identification (ToI): Depending on the type of identification carried out, 
detection systems can be classified as either anomaly-based (A), misuse- 
based (M), or specification-based (SPEC) system. This feature refers to the 
principle guiding the identification of malicious activities and follows the same 
ideas explored in Intrusion Detection Systems [Estévez-Tapiador et al., 2004; 
Garcia-Teodoro et al., 2009].

●● Anomaly-based Identification attempt to model the “normal” behavior of the 
monitored system, classifying as anomalous any other behavior reported. 
Anomaly detection techniques have the potential to detect previously unseen 
malware. However, they generally present a high rate of false positives, i.e., 
they are prone to detect rare legitimate behaviors as malicious.

●● Misuse-based Identification –also known as signature-based– aims at 
identifying known malicious activity by means of predefined patterns 
of signatures. Thus, only “malicious” behaviors are modeled here. The 
main benefit of misuse detection lies in its accuracy detecting well-known 
attacks. Generally, for each known malicious behavior, misuse systems 
are equipped with one or more signatures. In this regard, maintaining an 
up-to-date database with a massive amount of signatures poses a major 
challenge. Furthermore, resource-constrained devices are not capable of 
processing big amount of signatures.

●● Specification-based Identification works on the basis of predefined 
authorized behaviors (specifications) and assumes that any activity 
deviating from them violates the system policy and, therefore, is malicious.

●● Place of Monitoring and Identification (PoMI): Monitoring, analysis, and 
identification techniques are generally resource-intensive tasks that cannot 
be afforded in battery-constrained devices. As a consequence, in recent years 
it has been proposed to externalize many of such tasks to more powerful plat- 
forms, even though some processing still needs to be taking place in the 
device. We distinguish three main classes of detection schemes according to 
where monitoring and identification takes place:
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●● In the device: Both monitoring and identification are placed locally in the 
device. This requires very lightweight approaches and their scope may 
be quite limited. There are two types of local monitoring or identification 
techniques according to where the monitoring is taking place:

– Local out-line (L): This type of technique aims at monitoring the device by 
installing itself in one of the lower layers of the device’s architecture, and 
generally require root privileges.

– Local in-line, also known as Inline Reference Monitor (IRM): This type of 
technique rewrites untrusted applications so that the monitoring code is 
embedded into the app, and does not require root privileges.

●● Distributed (D) among other devices. Performs any monitoring, analysis 
or identification task in a cooperative way among different trusted devices.

●● In the cloud (C). Uses virtual environments for running several devices on 
a single server machine without reducing the battery life.

– Sandbox (SB): uses a tightly controlled set of resources for running 
dynamic analysis over target apps.

– Replica in the cloud (RC): uses remote security servers for hosting exact 
replicas of the device. Monitoring and identification techniques that are 
placed on the replicas require complex synchronization sys- tems to 
ensure that the replica is at all times identical to the actual device, as well 
as collaboration with the service provider (e.g., the internet provider for 
general purpose devices or phone provider for smartphones).

■■ Place of Analysis (PoA): Finally, depending on where the analysis component 
is placed –i.e., locally or in the cloud– the approach used poses different 
challenges. On one hand, cloud-based approaches require local preprocessing 
of the monitored traces, transmitting them to the cloud, and waiting for the 
results. Finally, results may be included for further identification of malware. 
On the other hand, local approaches might accelerate the delay in obtaining 
the response, especially when traces are too big and/or the connection is 
very slow.

QQ 2.4.2. Monitorable Features in Smart Devices

According to the monitoring approaches discussed above, we next identify and 
classify a number of device-based features that can provide evidence of malware 
activities. We subsequently explore how the behavior of some representative 
classes of malicious activities manifest in subsets of these features. Specifically, 
we analyze those features against: (i) botnets–like malware, (ii) Denial of Service 
(DoS) attacks, (iii) technical exploitations, i.e., SMS–of–death, (iv) user manipulation 
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such as Phishing or Pharming, (v) information theft via monitoring, and (vi) service 
misuse such as SMS or (Quick Response) QR codes. A summary of this taxonomy 
–excluding the full list of features for each class– is given in Figure 2.4.

●● Hardware: This kind of features identify the state of the hardware (HW) 
components of the device. We group HW features in three subclasses:  
(i) battery, (ii) input/output HW, and (iii) device info. Table 2.3 provides a 
detailed list of features for each subclass. The state of the battery or the 
access to the unique device identifier can be used to detect a specific type of 
malware. For instance, some botnets check first that the battery is charging 
before performing heavy operations. Another example of the use of HW-based 
features for malicious purposes is access to the IMEI of a smartphone with 
the goal of exfiltrating it.

●● Communications: Communications represent an essential infection vector 
in smartphones. They include the following features: (i) phone and internet 
calls, (ii) phone and internet messaging, and (iii) network usage (data other 
than calls and messaging), as identified in Table 2.4.

Figure 2.4

TAXONOMY OF MONITORABLE FEATURES FOR SMART DEVICES

Source: Own elaboration.
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●● Sensors: On-platform sensors allow the device to interpret the physical con- 
text of a user [Knappmeyer et al., 2013]. Currently the most common sensors 
are: (i) accelerometer, (ii) GPS, (iii) compass, (vi) gyroscope, (v) microphone, 
(vi) touch sensors, (vii) speakers, and (viii) camera, as illustrated in Table 2.5. 
Access to sensors can be monitored to identify malicious use. For instance, 
profiling malware will typically access the user’s current location. Thus, if an 
application is constantly accessing the GPS and sending this information 
through the network, it could be an indication of malicious –or, at least, 
potentially dangerous– usage.

●● System: Access to system resources can be used to identify malicious 
behaviors by monitoring: (i) processes, (ii) storage, (iii) memory, (iv) package 
management, and (v) scheduler, as identified in Table 2.6.

●● User: There are a number of features that generally involve user interaction 
and that could also provide evidence of malicious behavior. We identify  

Table 2.3 

MONITORABLE HARDWARE FEATURES AND EXAMPLES OF ATTACKS  
THAT COULD AFFECT THEM

 Features

Battery

Charging_Enabled ● - - - - - - -

Battery_Voltage ● ● - - - - - -
Battery_Current ● ● - - - - - -
Battery_Temp ● ● - - - - - -
Battery_Level_Change ● ● - - - - - -

I/O

LED - - - - - - - -
USB_Connection - - - - - - - -
Coverage_Range - - - - - - - -
Press_Key - - - - - ● ● -

Device Info.

IMEI - - - - - ● - -
Device_Id - - - - - ● - -
SIM_Card - - - - - ● - -
Phone_State - - - - - ● - -
UID_Access - - - - - ● - -
UID_Removal - - - - - ● - -
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(i) user-permissions frequency requests (applications can be classified into 
categories by monitoring the frequency at which they request permissions 
[Rassameeroj and Tanahashi, 2011]), (ii) third-party apps, (iii) built-in apps, 
and (iv) other actions, as detailed in Table 2.7.

QQ 2.4.2.1. Discussion

Malicious apps –as any other app– rely on the device’s system and sensors to 
achieve their goals. Different components of the device are therefore interrogated 
by the malware to operate. For instance, the behavior of botnets is deeply related 
to almost any kind of communication feature as all bots rely on a C&C back-end. 

Table 2.4 

MONITORABLE COMMUNICATIONS FEATURES AND EXAMPLES OF ATTACKS 
THAT COULD AFFECT THEM

 Features

Calls

Phone

Phone_Outgoing - ● - - - ● - -

Phone_Incoming - ● - - - ● - -

Phone_Missed - ● - - - ● - -

Phone_Privileged - ● - - - ● - -

Internet
SIP_Incoming - ● - - - - - -

SIP_Outgoing - ● - - - ● - -

Msg.

Phone

SMS_Incoming ● ● ● - - ● - -

SMS_Outgoing ● ● - - - ● - -

SMS_Read ● ● - ● - ● - -

SMS_Privileged - ● - - - ● ● -

MMS_Incoming ● ● ● - - ● - -

MMS_Outgoing ● ● - - - ● - -

MMS_Read ● ● - ● - ● - -

MMS_Privilege - ● - - - ● ● -

Internet
XMPP_Incoming ● - - - - ● - -

XMPP_Outgoing ● ● - - - ● - -
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Table 2.4 (continued)

MONITORABLE COMMUNICATIONS FEATURES AND EXAMPLES  
OF ATTACKS THAT COULD AFFECT THEM

 Features

Net.

Byte

WiFi_TX_Bytes ● - - - ● ● - -

Phone_TX_Bytes ● ● - - - ● - -

Bluetooth_TX_Bytes ● ● - - - ● - -

WiFi_RX_Bytes ● ● - ● - ● - -

Phone_RX_Bytes ● ● - - - ● - -

Bluetooth_RX_Bytes ● ● - - - ● - -

Packets

WiFi_TX_Pckts ● ● - - ● ● - -

Phone_TX_Pckts ● ● - - - ● - -

Bluetooth_TX_Pckts ● ● - - - ● - -

WiFi_RX_Pckts ● ● - ● - ● - -

Phone_RX_Pckts ● ● - - - ● - -

Bluetooth_RX_Pckts ● ● - - - ● - -

Connections

WiFi_CX ● ● - ● ● ● - -

Phone_CX ● ● - ● ● ● - -

Bluetooth_CX ● ● - ● ● ● - -

DNS_Resoluc ● ● - ● ● ● - -
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Additionally, they could also require some system interactions in order to store and 
update themselves. However, they are not likely to access any sensor–unless the 
master commands it through a remotely transmitted payload. Another interesting 
example is given by fraud attacks such as Phishing or Pharming. In these cases, the 
malware is likely to use network connections in order to get to the victim, access to 
SMS messages to steal, for example, One Time Passwords (OTPs), or change the 
DNS resolution of the device, but it will definitely not access sensors.

Accessing those components in a stealthy manner is still, to the best of our 
knowledge, a limitation for attackers. Nevertheless, there are some technical 
exploitation vectors that allow a malware to root the device, which could thwart 
detection at some levels. In those cases, access to hypervisor-level monitoring is 
paramount to identifying such cases.
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Table 2.5 

MONITORABLE SENSORS FEATURES AND EXAMPLES OF ATTACKS  
THAT COULD AFFECT THEM

Features

Accelerometer

Access_Accelerometer - - - - - ● - -

Current_Roll_Pitch_Yaw - - - - - ● - -

Orientation_Changing - - - - - ● - -

GPS

Access_Location - - - - - ● - -

Current_Location - - - - - ● - -

Location_Changing - - - - - ● - -

Compass

Access_Compass - - - - - ● - -

Current_Cardinal_Orientation - - - - - ● - -

Cardinal_Orientation_Changing - - - - - ● - -

Gyroscope

Access_Gyroscope - - - - - ● - -

Current_Angular_Moment - - - - - ● - -

Angular_Moment_Changing - - - - - ● - -

Microphone
Record_Audio - - - - - ● - -

Access_Audio - - - - - ● - -

Touch
Touch_Screen_Preasure - - - - - ● - -

Touch_Screen_Area - - - - - ● - -

Speaker
Access_Speakers - - - - - ● - -

Play_Audio - - - - - ● - -

Camera

Take_Picture - - - - - ● - ●

Access_Picture - - - - - ● - ●

Record_Video - - - - - ● - -

Access_Video - - - - - ● - -

Calculate_Depth (RGDB) - - - - - ● - -
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Table 2.6 

MONITORABLE SYSTEM FEATURES AND EXAMPLES OF ATTACKS THAT 
COULD AFFECT THEM

Features

Processing

CPU_Time - ● ● - - - - -
Runnable_Entities - ● - - - - - -
Context_Switching - - - - - - - -
Wakelocks - - - - - - - -
Processes_Changing - ● - - - - - -

Storage

File_Open ● - - - - - -
File_Reads ● - - - - - - -
File_Writes ● - - - - - - -
File_Read_Bytes ● - - - - - - -
File_Write_Bytes ● - - - - - - -

Memory

Dirty_Pages - - - - - - -
Active_Pages - - - - - - - -
Anonymous_Pages - - - - - - - -
Page_Activations - - - - - - - -
Page_Desactivations - - - - - - - -
Page_Faults - - - - - - - -
DMA_Allocations - - - - - - - -
Garbage_Collections - - - - - - - -
Page_Frees - - - - - - - -
Inactive_Pages - - - - - - - -
File_Pages - - - - - - - -
Mapped_Pages - - - - - - - -
Writeback_Pages - - - - - - - -

Pkg Mgmt

App_Load_Time ● - - - - - - -
Install_Packages ● - - - - - - -
Delete_Packages ● - - - - - - -
Change_Package ● - - - - - - -
Restart_Package ● - - - - - - -
Master_Clear ● - - - - - - -

Scheduler

Yield_Calls - - - - - - - -
Schedule_Idle - - - - - - - -
Running_Jiffies - - - - - - - -
Waiting_Jiffies - - - - - - - -
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Tables 2.3 through 2.7 present various examples of malicious activities and the 
features that would likely allow a detection system to identify them. The mapping 
between the monitorable features and the attacks has been extracted analytically 
based on the criterion and the expertise of the authors. Based on this, several 
conclusions can be drawn:

■■ Monitoring can be a very heavy consuming task. Thus, identifying a 
monitoring strategy as well as an appropriate type of features is crucial to 
reduce workload and improve detection efficacy. For instance, if a user is 
interested in using his device in a Bring-Your-Own-Device (BYOD) context, 
avoiding exfiltration of sensitive information may be critical, and therefore 
monitoring only some specific features would be a good strategy.

■■ From all eight cases studied, the most relevant group of features affects 
communications (Table 2.4). In this regard, it is also interesting to identify 

Table 2.7 

MONITORABLE USER FEATURES AND EXAMPLES OF ATTACKS THAT COULD 
AFFECT THEM

 Features

User–permissions #_requests ● ● ● ● ● ● ● ●

Third Party Apps

Apps_Installed ● - - - - - - -

Apps_Usage ● - - - - - - -

Apps_Delete ● - - - - - - -

Built–in Apps

Address_Book - - - - - ● - -

History - - - - - ● - -

Bookmarks - - - - - ● - -

Calendar - - - - - ● - -

Feeds - - - - - ● - -

Email - - - - - ● - -

Other Actions
Push_Notifications - - - - - ● - -

Unlock ● ● ● ● ● ● ● ●

Attacks
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adaptive monitoring strategies based on the appropriate amount of features. 
Thus, if a detection system can likely identify the most popular malware by 
only monitoring, say, 40% of the features, then monitoring the remaining ones 
can be eventually switched off, e.g., when the battery is lower than a given 
threshold.

Finally, we emphasize that the list of detection features presented in Tables 2.3 
through 2.7 are only an excerpt of all those that can be used by a detection system. 
However,. In general, each type of device will offer a more or less exhaustive list of 
available features for each category given above.

QQ 2.4.3. Overview of Detection Systems

In the last few years several works have been proposed to detect malware on 
smart devices–mostly smartphones and, more specifically, for Android OS platforms. 
We have classified the 20 most representative detection systems according to the 
taxonomy provided above. The result, shown in Table 2.10, summarizes current 
research directions.

Even though all detection systems are strongly interrelated, some general 
characteristics are evident. For example, while some techniques are more versatile 
and, therefore, are used more often, others are used mainly for certain detection 
systems. Thus, both static and dynamic analysis are used for device and market 
protection. However, it is more frequent to use dynamic analysis for device-oriented 
detection and static analysis for market protection. Despite this, dynamic analysis is 
becoming an important technique for market detection as well, as new paradigms 
based on Security-as-a-Service, such as Replicas in the Cloud, are gaining popularity.

For the sake of organization, in the remaining of this section we describe current 
research proposals grouped into three main categories:

i) Device monitoring systems.

ii) Automatic app-review systems for market protection.

iii) Attack-specific malware identification systems (both for user and market 
protection).

QQ 2.4.4. Device-based Monitoring Systems

Device-based malware detection systems have received much attention lately. 
They mostly use dynamic analysis techniques, although some combine them with 
static analysis to improve the detection strategy. In this regard, both anomaly and 
misuse detectors are proposed.
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QQ 2.4.4.1. Anomaly Detectors

Schmidt et al. [2011] leverage both static and dynamic analysis for detecting 
malware in Symbian OS and Android OS devices. On the one hand, function calls are 
first extracted, and monitored data is then analyzed using decision trees. Classifiers 
are trained to recognize normal and malicious apps. On the other hand, an anomaly-
based malware detection is used for dynamic analysis. Features such as free RAM 
memory, CPU usage, SMS count, etc. are monitored for further analyzing behavior. 
Analysis is done in the cloud using machine learning algorithms such as Artificial 
Immune Systems (AIS), Self-Organizing Maps (SOM), Support Vector Machines 
(SVM), and Tree Kernels.

A somewhat similar approach is Andromaly [Shabtai et al., 2012], which uses 
dynamic analysis for periodically monitoring a number of features and machine 
learning anomaly-based detectors for classifying apps as goodware or malware. 
In Andromaly, however, classification is done locally in the device. The scheme 
monitors various system features such as CPU consumption, number of network 
packages, number of running processes and battery level. Redundant features are 
first eliminated using three feature selection algorithms: Chi-Square, Fisher Score, 
and Information Gain.

LEGEND

Platform Type of Monitoring 
(ToM) Type of Analysis (ToA)

Place of Monitoring and 
Identification (PoMI) and 
Place of Analysis (PoA)

And: Android SYS: System calls E: Expert L: Local Outline
Win: Windows NET: Network ML: Machine Learning IRM: Local Inline (IRM)
Sym: Symbian EL: Event Log CL: Clustering C: Cloud

I: Instructions DG: Dependency Graphs DB: Distributed
Type of Detection (ToD) P: Permissions ST: Statistical HP: Honeypot

S: Static PT: Program Traces PRO: Probabilistic 
Models RC: Replica in the Cloud

D: Dynamic PCB: Process Control 
Block SB: Sandbox

API: API Calls Type of Identification 
(ToI) H: Hybrid

Other K: Kernel-level A: Anomaly
Ø : Unavailable U: User-level M: Misuse

SPEC: Specification
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Furthermore, collected observations are classified using K-Means, Logistic 
Regression, Histograms, Decision Trees, Bayesian Networks and Naive Bayes. 
Evaluation was performed testing a small number of self-implemented malware 
samples, and results show a detection rate accuracy ranging from 44% to 100%. 
More precisely, they show that Fisher Score with 10 top features selected, and using 
Naive Bayes and Logistic Regression, perform better than the other classifiers. 
Although no real malware is studied, their experiments help to understand which 
machine learning algorithms are superior as well as their degradation. In fact, their 
experiments show a 10% of performance degradation in the worst scenario, i.e., 8 
different classifiers with 30 features. However, it is not clear how this performance 
has been measured and whether the consumption exhibited is in the same conditions 
with the malware detector or without it.

Similarly to Andromaly [Shabtai et al., 2012], MADAM [Dini et al., 2012] uses 
dynamic analysis for periodically monitoring a number of features, and machine 
learning anomaly detectors for classifying goodware and malware, locally in the 
device. However, MADAM is evaluated using real malware samples, and consequently 
needs a higher number of features to model user behavior. Furthermore, collected 
observations are classified using K-Nearest Neighbor (K-NN) with K = 1 (1-NN). The 
evaluation was carried out with more than 50 goodware applications and 10 malware 
samples along with several user behaviors, improving the detection accuracy (93%) 
with respect to the same classifier used in Andromaly [Shabtai et al., 2012]. The 
results show an average number of number of 5 false positives per day. The reported 
performance overhead is 3% of memory consumption, 7% of CPU overhead and 5% 
of battery.

More recently, TStructDroid [Shahzad et al., 2013] presents a real-time malware 
detection system for Android OS devices. The proposed system monitors Process 
Control Blocks (PCB) and uses theoretical analysis, time-series feature logging, 
segmentation and frequency component analysis of data, and a learned classifier to 
analyze monitored data. Evaluation shows a 98% accuracy and less than 1% false 
alarm rate, together with a 3.73% of performance degradation.

Finally, Crowdroid [Burguera et al., 2011] is another anomaly-based malware 
detection system for Android OS devices. The main difference with Andromaly 
[Shabtai et al., 2012] and MADAM [Dini et al., 2012] is that authors analyze the 
monitored featured in the cloud, whereas the other two approaches train their 
classifiers locally in the device. Collected observations are classified using K-Means. 
Evaluation was also carried out using a self-implemented set of malware samples, 
showing a detection rate of 100%. Additionally, they also test their system with two 
malware instances observed in the wild, showing a detection rate of 85% and 100% 
respectively. A key limitation in their study is that they assume that outsourcing the 
analysis should present a lower battery degradation than approaches that classify 
locally. However, we consider that this assumption has to be formally proven as 
some detection approaches are quite lightweight and might consume less than 
continuously transmitting all traces through the network.
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QQ 2.4.4.2. Misuse Detection

AppGuard [Backes et al., 2012] is a malware prevention system for Android 
OS in which the monitoring system is placed inline (IRM) with the application. 
Applications are manipulated using the repackaging technique, and the monitoring 
system is, therefore, inserted inside the applications. Applications can thus trace 
themselves and a number of security policies can be defined to enforce system 
permissions at run-time. Evaluation was performed using 13 apps, each of which 
was inlined with 9 policies. One noteworthy characteristic is that inlined apps incur a 
negligible increment in their size.

Reported experiments in [Backes et al., 2012] also compare the execution of 
three function calls in both the original and the inlined app (the latter with no policies 
set), showing a degradation of 5.0%, 6.2%, and 1.0% of overhead respectively. In this 
regard, we consider that the three micro-benchmarks used are not conclusive due to 
their simplicity. Additionally, we consider that these results cannot be compared with 
Andromaly as they were not tested under the same conditions.

QQ 2.4.4.3. Replicas in the Cloud

Approaches such as Paranoid Android [Portokalidis et al., 2010] or Secloud 
[Zonouz et al., 2013] have focused on performing malware detection tasks over 
synchronized replicas of the device maintained in the cloud. Thus, all security 
monitoring, analysis and identification tasks can be done in an environment not 
subject to battery constraints. Additionally, multiple detection techniques can be 
applied simultaneously, as several replicas can be run at the same time.

The proposed systems introduce several attack detection mechanisms for 
dynamic analysis in the replicas such as AV scanners and tainting analysis. However, 
Secloud [Zonouz et al., 2013] extends those mechanisms and deploys a number of 
response and prevention techniques, including file removal, process termination, 
periodic backups, network filtering, and device quarantining.

Experiments on Paranoid Android [Portokalidis et al., 2010] show that 
synchronizing the device with the replicas does not introduce more than 2KB/s and 
64B/s of trace data for high-load and idle operation environments, respectively. This 
performance, however, cannot be compared with Secloud [Zonouz et al., 2013], as 
for the latter no information about the consumption of the device being replicated is 
provided.

QQ 2.4.5. Market Protection

Most of the aforementioned techniques are typically designed to monitor 
physical devices, although they can also be used in virtual environments for market 
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protection. Using specific monitoring techniques for virtual environments can bring 
about a number of benefits, such as (i) performing a resource-intensive security 
analysis, (ii) enabling virtual machine introspection [Garfinkel et al., 2003] to intercept 
OS-level semantics, or (iii) enabling the possibility of hosting exact replicas of the 
device in the cloud (e.g.: CloneCloud [Chun et al., 2011], and ThinkAir [Kosta et al., 
2012]) as mentioned before.

QQ 2.4.5.1. Sandboxing

Several approaches have been proposed for malware detection in the form 
of sandboxes. For example, AASandbox [Blasing et al., 2010] is an Android OS 
analysis sandbox for both static and dynamic analysis. AASandbox uses an android 
emulator, pre-loaded with a SYS call monitoring service.

DroidScope [Yan and Yin, 2012] is another sandbox for Android OS based 
on virtualization. It allows to monitor app features at the three layers of Android 
OS’s architecture, i.e., hardware, OS, and Dalvik Virtual Machine. Different types of 
monitoring can be enabled by developing custom plugins over DroidScope. In this 
regard, the authors include (i) a collector for native and Dalvik instructions traces, 
(ii) a profiler for API-level activity, and (iii) a tracking system for information leakage 
using taint analysis.

QQ 2.4.5.2. Smart Interaction

Sandbox analysis poses a limitation when interacting with samples in an 
automated way, due to the fact that some malicious apps hide their malicious 
activity through the User Interface (UI). In this regard, SmartDroid [Zheng et al., 
2012] presents an hybrid static and dynamic detection method to reveal UI-based 
trigger conditions in Android OS. While static analysis is used to generate Activity 
and Function Call Graphs (ACG and FCG, respectively), dynamic analysis is used 
to explore such paths.

AppsPlayground [Rastogi et al., 2013a] presents a similar approach combining 
detection techniques (ranging from taint tracing to SYS call monitoring) along with 
automatic exploration strategies. The proposed framework uses heuristics to guide 
the UI inputs, avoiding redundant explorations and using contextual information to 
fill editable text boxes.

QQ 2.4.5.3. Risk Analysis

Risk analysis techniques are emerging as a mechanism to palliate the ineffective 
way in which permissions are used to communicate potential threats to the user [Felt 
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et al., 2011c]. Here, Grace et al. propose the use of static assessment metrics to 
measure dangerous behaviors in Android OS called RiskRanker [Grace et al., 2012b]. 
Their proposal focuses on conducting a scalable, efficient and accurate proof-of-
concept rather than leveraging on sophistication. Contrary, Peng et al. [2012] 
propose the use use probabilistic generative models for risk ranking and scoring 
schemes. More precisely, they evaluate a range of models starting from simple Basic 
Naive Bayes (BNB) to advanced hierarchical mixture models, showing that these 
models offer a promising mechanism for risk scoring.

QQ 2.4.5.4. Similarity detection

Researchers have explored different ways to detect repackaging in markets 
by detecting similarity dependencies among population of applications. While early 
approaches use syntactic analysis such as string-based matching [Desnos, 2012], 
recently approaches elaborate on semantic analysis [Crussell et al., 2012], e.g., 
PDG, as it is resilient to code obfuscation. However, semantic analysis is generally 
more expensive than syntactic analysis.

A different approach is presented in [Desnos, 2012], where several compression 
algorithms are used to compute normalized information distances between two 
applications based on Kolmogorov complexity measurement. Their algorithm first 
identifies which methods are identical and calculates the similarity of the reminder 
methods using Normalized Compression Distances (NCD). In order to reduce 
complexity, the authors use a representation of each method based on structured 
control flow signatures [Cesare and Xiang, 2010]. Finally, authors apply Longest 
Common Subsequence (LCS) algorithm to identify differences between similar 
elements.

Zhou et al. [2012a] propose a system called DroidMOSS for detecting 
repackaged applications based on a fuzzy hashing technique. Distinguishing 
features are first extracted in the form of fingerprints, and then compared with those 
from other applications in order to identify similarities. These features are computed 
by applying traditional hash functions to pieces of code of variable size. The size of 
the pieces is bounded by smaller chunks of fixed size called reset points. A chunk is 
considered a reset point when the resulting hash is a prime number. Then, the edit 
distance is calculated between two applications by comparing their fingerprints on 
identical matching-basis. More recently, authors have extended their work in [Zhou 
et al., 2013]. While their former work is designed to detect repackaging in unofficial 
markets, the latter is capable of detecting repackaging among apps in the same 
market.

Authors in [Hanna et al., 2013] present Juxtapp, a system for detecting app 
similarity. They propose an optimization over the representation of the applications 
as an alternative to k-grams based on feature hashing and then use hierarchical 
clustering to classify similar applications.
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Authors in [Crussell et al., 2012] present DNADroid, a system for detecting 
cloned applications based on dependency graphs between methods. PDG is used 
to detect semantic similarities by comparing graph isomorphism. Prior to similarity 
detection, authors group applications based on meta-information retrieved from 
each application, and they use several filters to enhance efficiency. Although their 
experiments show better results than similar approaches such as [Desnos, 2012], 
the scheme is less efficient in terms of performance. In fact, their experimental 
testbed is deployed in a small cluster composed of one server and three desktop 
computers over Hadoop. Even there, the analysis rate is 0.7 applications per minute.

QQ 2.4.6. Attack-specific Malware Identification Systems

The majority of the approaches described above focus on general detectors 
using either anomaly or misuse detection for both static and dynamic analysis. 
However, due to the diversity of malware goals and incentives, other schemes are 
narrowing the complexity towards detecting specific classes of malware, such as 
privileged escalation, battery-depletion attacks, or money stealing.

QQ 2.4.6.1. Privilege Escalation

There are two common types of privilege escalation attacks according to 
whether the exploitation strategy focuses on inter-process capability leakage or 
system vulnerabilities. Approaches such as XManDroid [Bugiel et al., 2011a], 
Woodpecker [Grace et al., 2012a], Elish et al. [Elish et al., 2013] or CHEX [Lu et 
al., 2012] focus on the first class, while others such as [Checkoway et al., 2010] 
concentrate on the latter.

XManDroid [Bugiel et al., 2011a] is a privilege escalation detection tool for 
Android OS devices. Dynamic analysis is used to identify covert channels using 
DFG. Woodpecker [Grace et al., 2012a] is capable of identifying both explicit and 
implicit leakage by combining static with dynamic analysis. Static analysis is used to 
identify possible execution paths by means of CFG, and inter-procedural data flow 
analysis is used to filter out non-dangerous paths. Additionally, app permissions are 
examined to broaden leakage search. Similarly, Elish et al. [Elish et al., 2013] use 
DDG providing user-interaction dependencies of more than 1000 benign and malign 
apps, while CHEX [Lu et al., 2012] employs system dependence graphs over more 
than 5000 applications from Google Play.

ROPdefender [Davi et al., 2011b] is a generic ROP detection tool for Windows 
and Linux–based OS capable of enforcing a return address check. Although 
ROPdefender is not built for smart devices, the proposed framework can be applied 
in this context.
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QQ 2.4.6.2. Grayware

As discussed early in this chapter, grayware poses a serious challenge to 
privacy leakage detection system. Several approaches have focused on detecting 
such privacy leakages, such as TaintDroid [Enck et al., 2010] for Android OS devices 
and PiOS [Egele et al., 2011] for iOS.

TaintDroid [Enck et al., 2010] uses dynamic taint analysis to track sensitive 
information. It monitors variables, methods, files, and messages throughout the 
program execution according to data flow rules, and label the variables as they use 
the sensitive data. When a piece of sensitive information attempts to leave a taint 
sink, e.g., through the network interface, TaintDroid requests user consent to do 
so. The authors studied 30 popular applications, showing that at least 20 of them 
misused users’ private information. Experiments also show that TaintDroid incurs 
14% CPU and 4.4% memory overhead. A major limitation of TaintDroid is its inability 
to distinguish between legitimate and non-legitimate exfiltrations, especially when 
facing grayware. In fact, their experiments show that 37 out of 105 instances (35%) 
were incorrectly classified as false positives. Additionally, techniques such as tainting 
can be circumvented through leaks via implicit flows, i.e., using program control flow 
to disclose information.

AppProfiler [Rosen et al., 2013] uses dynamic tainting analysis along with static 
analysis to extract privacy-related behaviors. The scheme builds a knowledge base 
that maps application behaviors with API calls observed during static analysis, 
providing the user with valuable information about their apps.

Finally, PiOS [Egele et al., 2011] is an information leakage detection system 
for iOS devices that uses static analysis on apps. PiOS constructs CFG paths from 
the sources of sensitive information to data sinks by means of data-flow analysis. 
So far, static analysis of iOS apps does not have to face the obfuscation challenge, 
as obviously obfuscated apps would not pass the revision process. However, this 
might change in the coming years if non-walled-garden models such as Cydia gain 
popularity.

QQ 2.4.6.3. Battery-depletion

Traditional anomaly and misuse detection techniques have not paid much 
attention to unknown energy-depletion attacks. In this regard, Kim et al. [2008] 
proposes a power-aware malware detection system for smart devices. It uses 
dynamic analysis to monitor power samples and build a consumption model. Power 
signatures are generated from monitoring malicious samples in the device, and 
results are analyzed in the device or in the cloud using noise filtering and data 
compression algorithms. After building the model, malware is identified by using 
χ2-distance and comparing the results with a set of signatures.
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QQ 3.1. INTRODUCTION

The analysis of smart malware is currently constrained by the lack of a versatile 
and multipurpose laboratory for testing new research proposals. In this chapter, we 
describe the architecture of a framework gathering together the most cutting-edge 
tools for analyzing and dissecting Android malware.

This Chapter introduces Maldroid Lab, a framework aiming at providing grounds 
for smart malware research. Maldroid Lab gathers together several monitoring, 
analysis, and identification systems. On the one hand, it includes a number of open 
source static and dynamic tools over a virtual device manager [Android, 2014]. On 
the other hand, it also extends current systems and implements new functionalities, 
such as a proof-of-concept of a cloud clone system [Chun et al., 2011; Kosta et al., 
2012; Portokalidis et al., 2010].

Maldroid Lab is implemented using generic Java and Python components and it 
has been deployed with a sizeable dataset of both legitimate and malicious real-world 
samples. More precisely, the lab currently compiles over 25K apps from legitimate 
markets and 25K malicious apps. For the former, Google Play as well as Aptoide are 
constantly crawled to retrieve new samples. Similarly, we query Android Malware 
Genome Project,1 Virus Share2 and Contagio Mobile3 for the latter. Figure 3.1 
presents the architecture of our Maldroid Lab. All this together constitutes a research 
laboratory for testing new malware analysis techniques and will serve as a building 
block for the experimentation tasks of each contribution presented in this Thesis.

The architecture of Maldroid Lab has been designed to have the following 
features:

●● Facilitate the tasks of extracting assets, components, and resources from 
Android apps.

●● Automate the process of unpackaging and repackaging Android apps.

●● Guarantee the isolation of a fully controlled Android environment for testing 
apps via virtualization.

1 http://www.malgenomeproject.org/
2 http://virusshare.com/
3 http://contagiominidump.blogspot.com.es/
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Figure 3.1

MALDROID LAB’S ARCHITECTURE IN A NUTSHELL

Source: Own elaboration.

●● Allow the dynamic allocation of virtual devices and the installation of apps 
automatically.

●● Optimize the execution of such virtual devices using parallelization.

●● Provide the injection of Graphical User Interface (GUI) events, as well as 
other contextual information such as GPS locations or text SMS messages.

●● Allow the execution of certain security tasks over synchronized replicas 
maintained in the cloud.

The remaining of this chapter is organized as follows. Sections 3.2 and 3.3 
describe the main static-and dynamic-analysis tools deployed in this research 
laboratory, respectively. In Section 3.4 we describe our cloud-based system, which 
is used for offloading certain tasks from the device to the cloud. Finally, Section 3.5 
describes several online repositories used to retrieve both legitimate and malicious 
apps.

QQ 3.2. STATIC ANALYSIS

Apps are statically analyzed using several techniques aiming at unpackaging and 
disassembling apps. In our lab, this process is mainly performed using Androguard 
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[Desnos, 2014]. For unpackaging and repackaging apps into a modified app, we use 
ApkTool [Panxiaobo, 2014] and dex2jar [Alll and Tumbleson, 2014] tools.

Monkey [Android, 2014] and AndroidViewClient [Milano, 2014] are used to 
generate a common sequence of events to interact with the apps. These events 
should be generated specifically for each test to intelligently drive the GUI exploration 
[Rastogi et al., 2013a; Zheng et al., 2012], i.e., to test code implementing different 
functionalities of the app. In its current implementation, Maldroid Lab uses Monkey 
and AndroidViewClient to generate five classes of events: activity launch, service 
launch, action buttons, screen touch, and text input. We also use Culebra [Milano, 
2014] to create AndroidViewClient scripts for further automating the analysis.

We then describe in some detail most popular tools deployed in this lab. Further 
information about the particularities of each tool can be found in the references given 
throughout the document.

QQ 3.2.1. Androguard

Androguard [Desnos, 2014] is an interactive-oriented static analysis tool for 
third-party Android applications. It allows to disassemble apps and access their 
components throughout its API.4 Androguard’s API also provides access to each 
attribute of the binary code, such as classes, methods, and variables. The main 
features of its API are:

●● APK. The Android Application Package (APK) is a file format used to distribute 
Android apps from the markets to the devices. This package is an archive 
in JAR format containing a number of files and a well-structured directory 
hierarchy. Examples of files included in an APK file are: the Android Manifest 
file, the executable classes file, and other precompiled binaries and raw 
resources. Androguard allows to unpackage all these components and 
access them through the APK library.

●● DVM. The Dalvik Virtual Machine (DVM) is a component of Android OS 
responsible of running the apps on the device. Each Android APK packages  
a DVM file –known as Dalvik Executable Format (DEX)– containing 
the compiled Android application code. This component of Androguard 
disassembles the DEX file and provides access to its components. More 
precisely, it allows to retrieve Java Annotations (metadata) about a program, 
the name and size of its classes, methods, and variables, among other static 
features from the DVM.

●● Analysis. This library interprets Dalvik’s code and provides a semantic analysis 
of the DVM. It allows to identify where permissions are used in a specific 

4 http://doc.androguard.re/html/index.html
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app and when special libraries (such as crypto or reflection libs) are used. 
Additionally, it also provides a Control Flow Graph (CFG) representation of 
the Dalvik code flow. CFGs provided by Androguard are based on a grammar 
proposed by Cesare and Xiang [Cesare and Xiang, 2010] and shown in 
Figure 3.2.

●● Bytecode: The Dalvik code executed by the DVM is a compact and efficient 
instruction set (numeric codes, constants, and references) that encodes 
executable programs into a portable language called bytecode. This bytecode 
is translated into native machine code at run time. This facilitates the portability 
of the bytecode itself across different hardware-specific platforms. However, 
it also makes easier the reverse-engineering analysis of Android apps. This 
component of Androguard provides a number of methods that aid bytecode 
analysis.

Grammar.

Procedure ::= StatementList

StatementList ::= Statement | Statement StatementList

Statement ::= BasicBlock | Return | Goto | If | Field | Package | String

Return ::= ’R’

Goto ::= ’G’

If ::= ’I’

BasicBlock ::= ’B’

Field ::= ’F’0 | ’F’1

Package ::= ’P’ PackageNew | ’P’ PackageCall

PackageNew ::= ’0’

PackageCall ::= ’1’

PackageName ::= Epsilon | Id

String ::= ’S’ Number | ’S’ Id

Number ::= \d+

Id ::= [a-zA-Z]\w+

Examples

CC1 B[P0P1]B[I]B[P1R]B[P1P1I]B[P0SP1P1P1]B[P1G]|B[F1P1R]

CC2 B[SSF1F0P1SF0SP1P1I]B[SP1P1F1SP1F1F0I]B[F0P1I]B[F0SP1]B[ ] 

B[P1SP1SP1F1SF0P1I]B[F0I]B[F0P1I]B[F1F0P1P1I]B[F0P1I]B[ ]B[F0P1] 

B[F0I]B[S]B[P1I]B[F0P1]B[I]B[P1F0P1P1F0P1I]B[F0P1P1I]B[F0P1I]  

B[ ]B[F0P1F0P1]B[P0F0P1P1SP1F0P1SP1F0P1SP1F0P1P1F0P1F0P1S]

CC3 B[P1SF1R]

Figure 3.2 

CFG GRAMMAR USED BY ANDROGUARD TO EXTRACT CODE  
STRUCTURES

Source: Own elaboration.
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QQ 3.2.2. ApkTool

ApkTool [Panxiaobo, 2014] is a reverse engineering tool for third-party 
Android applications. This tool allows to decode Android apps into Smali code.5 
It also facilitates the modification of the app or the injection of new code before  
repackaging it.

.method static constructor <clinit>()V

new-array v0, v0, [B

fill-array-data v0, :array_0

sput-object v0, Lcom/google/ssearch/Utils;->defPassword:[B

.line 40 return-void

.line 228

:array_0

.array-data 0x1

0x46t

0x75t

0x63t

0x6bt

0x5ft

0x73t

0x45t

0x78t

0x79t

0x2dt

0x61t

0x4ct

0x6ct

0x21t

0x50t

0x77t

.end array-data
.end method

Figure 3.3 

EXCERPT OF AN ANDROID MALWARE SAMPLE CALLED DROIDKUNGFU,   
THIS PIECE OF CODE IS USED BY THE MALWARE SAMPLE TO DECRYPT 
AN EXPLOIT DISTRIBUTED TOGETHER WITHIN THE APK ASSETS

Source: Own elaboration. 

5 https://code.google.com/p/smali/
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Smali is a DEX code disassembler that transforms bytecode into a syntax 
similar to the one used in Jasmin’s6 and dedexer’s7 project. This syntax aims at 
alleviating the complexity of exploring Java Virtual Machine binaries. Thus, ApkTool 
allows to reconstruct the original resources into a human-friendly format to facilitate 
reverse engineering of the code as shown in Figure 3.3. This example shows a code 
fragment obtained from an Android malware sample known as DroidKungFu.

We then describe the main functions of ApkTool:

●● Decompile. It performs the inverse operation to that of Dalvik’s bytecode 
compiler and the APK packaging. The resulting folder contains the manifest of 
the app, all Java classes in Smali language, as well as assembled resources, 
libraries, and assets.

●● Recompile. Transforms Smali source code classes resulting from the previous 
step –together with any other resources contained in the app– in an Android 
APK file ready to be executed in the device. This new APK may well be 
different from the original one, e.g., it can contain piggybacked functionality.

QQ 3.2.3. Monkey and Monkeyrunner

Monkey and Monkeyrunner [Android, 2014] are two Android Developer tools 
for automatically testing Android apps. Monkey generates dummy random events to 
interact with the Operating System. These events typically include GUI actions such 
as touch, press a button, etc. Monkeyrunner provides the developer with a Python 
API to interact with the running apps and control the device from the command line. 
The main components of Monkeyrunner are:

●● Runner. This component provides a number of utility methods such as 
communicating with the device, creating user interfaces, and displaying built-
in help.

●● Device. This component facilitates the installation and removal of Android 
packages. It also provides the appropriate interface for starting Android Activities, 
sending keyboard or touch events to an app, etc.

●● Image. This component provides access to the device for capturing 
screenshots, converting bitmap images to various formats, and comparing 
two MonkeyImage images. This component is very useful for monitoring 
changes in an Activity running at a given time instant.

6 http://jasmin.sourceforge.net/
7 http://dedexer.sourceforge.net/
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QQ 3.2.4. AndroViewClient

AndroViewClient is a Python tool that facilitates the creation of scripts for 
interacting with the device. A remarkable feature of AndroViewClient is its ability 
to retrieve a tree view of the UI-components displayed on the device at any given 
moment. For instance, given an Activity, AndroViewClient allows to retrieve which 
other clickable views are nested into this one. Then, it allows the user to interact with 
those components by, for instance, clicking them or inserting text into a TextBox.

We instrumented our sandbox with AndroViewClient in order to generate smart 
UI-interactions. Figure 3.4 depicts a code fragment snipped from our middleware 
using AndroViewClient. This piece of code provides our lab with the capability to 
interact with a particular view.

Figure 3.4 

CODE SNIPPED OF OUR MIDDLEWARE USING ANDROVIEWCLIENT’S API 
TO INTERACT WITH AN APP RUNNING IN THE DEVICE

’ ’ ’

u u u u D u m p u c u r r e n t u w i n d o w u a n d u i n t e r a c t u w i t h u i t s u c h i l d r e n
u u ’ ’ ’

d e f i n t e r a c t D u m p W i n d o w ( s e l f , s e r i a l n o , v c , t i m e ) :
w i n d o w s  = v c . l i s t ( )
f o r w I d i n w i n d o w s . k e y s ( ) :

v i e w s  = v c . dump ( w i n d o w = w I d , s l e e p = t i m e )
f o r v i e w i n v i e w s :

i f n o t s e l f . r u n n i n g :
b r e a k

s e l f . i n t e r a c t V i e w ( v c , v i e w )
’ ’ ’

u u u u u u I n t e r a c t u w i t h u a u g i v e n u V i e w u u u ’ ’ ’
d e f i n t e r a c t V i e w ( s e l f , v c , v i e w , t e x t = ’ I n p u t T e x t ’ ) :

i f ’ a n d r o i d . w i d g e t . E d i t T e x t ’  ==  v i e w . g e t C l a s s ( ) :
v i e w . t y p e ( t e x t )

i f v i e w and v i e w . i s C l i c k a b l e ( )  and
n o t  v i e w . g e t I d ( )  i n  s e l f . i n t e r a c t e d :

p r i n t  v i e w . g e t I d ( ) ,  v i e w . g e t T e x t ( )
v i e w . t o u c h ( )
s e l f . i n t e r a c t e d . a p p e n d ( v i e w . g e t U n i q u e I d ( ) )

Source: Own elaboration.

QQ 3.3. DYNAMIC ANALYSIS

We have used an open source dynamic analysis tool called Droidbox [Lantz, 
2014] to monitor various activities that can be used to characterize app behavior and 
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tell apart benign from suspicious behavior [Suarez-Tangil et al., 2014b]. We then 
describe Droidbox together with another tool, called TaintDroid, that is instrumental 
for detecting information leakage.

QQ 3.3.1. Droidbox

Droidbox is a dynamic analysis tool that allows the execution of Android apps 
and provides a variety of data about how an app is behaving. More precisely, 
Droidbox monitors the execution of 11 different activities:

●● crypto: generated when calls to the cryptographic API are invoked.

●● netopen, netread, netwrite: associated with network I/O activities (opening a 
connection, receiving, and sending data).

●● fileopen, fileread, filewrite: associated with file system I/O activities (opening, 
reading, and writing a file).

●● sms: generated whenever a text message is sent or received.

●● call: generated whenever a call is made or received from the device.

●● leak: generated when a leakage of private information has occurred. This is 
determined using tainting analysis [Enck et al., 2010].

●● dexload: generated when native code is loaded dynamically.

We have extended Droidbox to allow the extraction of these activities 
programatically.

QQ 3.3.2. Taintdroid

As introduced in Chapter 2, Taintdroid [Enck et al., 2010] uses dynamic taint 
analysis to track sensitive information throughout a program execution. Taintdroid 
instruments the DVM interpreter to provide the device with a variable-level tracking 
system, as well as message- and file-level tracking. This enhancement offers a 
valuable awareness of an app’s information flow during its execution. Figure 3.5 
depicts Taintdroid’s architecture as illustrated by Enck et al. in [Enck et al., 2010].

Taintdroid source code is available at the Author’s site8 for several versions of 
Android such as the ones used by our sandbox, i.e., Android 2.1 and Android 2.3. In 
our research lab, we use a version of Taintdroid distributed with Droidbox.

8 http://appanalysis.org/
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QQ 3.4. CLOUD ANALYSIS AND CONSUMPTION METERING

Apart from traditional static and dynamic analysis techniques, a number of 
recent works have opted for a radically different approach based on maintaining 
a synchronized replica of the device in the cloud. Paranoid Android [Portokalidis 
et al., 2010], Secloud [Zonouz et al., 2013] and CloudShield [Barbera et al., 2013] 
are illustrative examples of such systems. In these cases, all security-related tasks, 
including monitoring, analysis, and detection can be performed in an environment 
not exposed to battery or computational constraints. Furthermore, multiple detection 
techniques can be applied simultaneously, as the clone can be easily replicated. 
Maldroid Lab implements a proof-of-concept cloud cloning system (see Figure 3.6) 
based on the aforementioned approaches. We then describe the components of our 
Clone Cloud system:

●● Physical device. We instrumented a Google Nexus One phone with various 
monitoring tools that collect user events, the context, etc. and transmit them 
to the cloud. For this purpose, we used a combination of logcat and getevent 
tools from Android Debug Bridge (ADB) [Android, 2014].

●● Cloud virtual device. In the cloud-end, a middleware implemented in Python 
processes all inputs received, generates the associated models, and runs the 

Figure 3.5

TAINTDROID’S ARCHITECTURE

Source: [Enck et al., 2010]
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simulation. We inject events and contexts from the physical device into apps 
using both Monkeyrunner [Android, 2014] and the Android emulator console 
[Android, 2014].

One critical issue with these approaches is that keeping the clone synchronized 
involves a constant exchange of activity update packets. For example, experiments 
on Paranoid Android show that synchronizing the device with the cloud replicas 
require exchanging traces at 2 KB/s for high-load scenarios and at 64 B/s for idle 
operation. This definitely consumes power, although it may be worth doing if the 
clone is a subject to intensive monitoring.

We also instrumented our physical device with a tool for estimating the energy 
consumption of the device. The technical issues on metering and modeling power 
consumption in mobile devices have received much attention lately. Built-in meters 
in platforms such as Android provide a coarse power profile and are inadequate 
for most applications. Our choice of Appscope [Yoon et al., 2012] in this Thesis 
is motivated by its accuracy, and also because it provides separate energy 
consumption for each app and process, detailing how much corresponds to CPU 
usage, networking, touchscreen, etc. Other alternatives include PowerTutor [Zhang 
et al., 2010], Systemtap [Dediu, 2014a], Eprof [Pathak et al., 2012], and also the 
schemes discussed in [Dong and Zhong, 2011; Hao et al., 2012; Nagata et al., 2012; 
Pathak et al., 2011].

We then describe Appscope and present a middleware called Crowdcosec 
implemented in this Thesis for offloading on-board information to the cloud.

Figure 3.6

PROOF OF CONCEPT OF A CLONE CLOUD SYSTEM

Source: Own elaboration.
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QQ 3.4.1. Appscope

AppScope [Yoon et al., 2012] is an energy metering framework that monitors 
the kernel activity of Android devices. AppScope collects usage information from the 
monitored device and estimates the consumption of each running application using 
an energy model given by DevScope [Jung et al., 2012]. AppScope provides the 
amount of energy consumed by an app in the form of several time series, each one 
associated with a component of the device (CPU, Wi-Fi, cellular, touchscreen, etc). 
AppScope uses event-driven monitoring method that produces low overhead and 
provides high accuracy. In fact, its authors report that AppScope incurs approximately 
35mW and 2.1% in power consumption and CPU utilization overhead, respectively.

We have instrumented our Google Nexus One phone with AppScope. Figure 3.7 
depicts the information provided by AppScope when measuring the power 
consumption of an app while being executed in the device. AppScope provides 
information about the power consumed by different applications running in the 
device. Additionally, it also offers information about the energy consumed by each 
individual process executed by every app. We have also implemented a number of 
shell scripts to automatically collect details of the energy consumed by the device 
from AppScope’s logs. (Incidentally, this process turned out to be very challenging 
due to the lack of documentation describing the format of AppScope’s logs.)

QQ 3.4.2. Crowdcosec

We have tested several open source sensing frameworks such as Funf9 
from MIT, SystemSens [Falaki et al., 2011] and ProfileDroid [Wei et al., 2012]. Our 
experience was that all these frameworks were still at their first stages by the time we 
tested them. Thus, we implemented our own sensing framework to retrieve system 
information from a crowd of devices. In particular, we are currently extracting system 
calls (syscalls) generated by the apps. We use for this purpose a tool called strace.10 
However, we can easily extend our framework to retrieve other information from the 
devices.

Our syscall module, only runs in rooted devices with super user privileges. 
Collected syscalls are processed and sent to a remote server implemented over 
Apache.11 Crowdcosec allows also to process collected traces locally in the device. 
In this regard, we instrumented our Crowdcosec app with a stripped version of Weka 
[Hall et al., 2009] capable of running any Machine Learning algorithm implemented 
in Weka.

9 http://www.funf.org/
10 Strace is a debugging tool for Linux and some other Unix-like systems that allows to monitor the system 
calls used by a program. strace for Android is available online at http://benno.id.au/blog/
11 http://www.apache.org/

Libro 1.indb   109 24/11/2016   11:02:00



110 ESTUDIOS DE LA FUNDACIÓN. SERIE TESIS

 Q 3.5. ONLINET MARKETS AND MALWARE REPOSITORIES

As introduced in Chapter 2, Android’s architecture implements an open-market 
model. Therefore, users are free to download applications from any market. We then 
describe the legitimate and malicious repositories used to carry out experimentation 
in our laboratory. We also introduce an open source remote access malware called 
Androrat used in this Thesis.

 Q 3.5.1. Crawling Online Markets

There are a substantial number of Android application markets with a variety 
of apps available for all users. Typically, legitimate developers upload paid apps to 
Android’s offi cial market, i.e., Google Play.12 Contrarily, unoffi cial markets such as 
Aptoide13 generally host the “very same” applications for free. To retrieve a large 
amount of samples, we have crawled the following two markets and downloaded 
apps from both of them:

Figure 3.7

METERING FACEBOOK’S POWER CONSUMPTION WITH APPSCOPE

Source: Own elaboration.

12 http://play.google.com/store/apps
13 http://www.aptoide.com/
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●● Google Play. Google Play is the official Android distributor for Android apps. 
Users are able to search for apps and download them, as well as get access 
to lists of apps ranked by popularity.

We have implemented a Google Play crawler in Python to automatically 
download apps from this market. The crawler uses an unofficial open-source 
API14 for automatically querying Google Play.

●● Aptoide. Aptoide is a popular framework for deploying your own alternative 
market. It has so far over 110K stores and a total of almost 200K apps and 
about 800M downloads.

We have implemented an Aptoide crawler in Ruby to automatically download 
apps from this market. The crawler uses the official Aptoide APIs to obtain 
metadata from the markets and get the location of the app. Then, we use our 
crawler to retrieve new apps.

We have currently crawled about 25K apps from both markets. We mainly have 
apps from Aptoide, as Google Play limits the number of downloads per day and user.

QQ 3.5.2. Malware Repositories

The growth of Android malware has come hand in hand with the proliferation of 
online repositories sharing the latest specimens. There are a number of public and/
or private malware repositories such as:

●● Malware Genome Project. The Android Malware Genome Project15 is a 
malware repository that covers the majority of malware families for Android 
OS. All these samples have been collected and characterized into families 
by Zhou and Jian in [Zhou and Jiang, 2012]. We accessed this repository at 
the end of 2011. Back then it contained 1247 malicious apps grouped into 
49 different families. These samples included specimens with a variety of 
infection techniques (repackaging, update attacks, and drive-by-download) 
and payload functionalities (privilege escalation, remote control, financial 
charge, and private information exfiltration).

●● Virus Share. Virus Share16 is a repository of malware samples for security 
researchers that counts with a massive number of malware samples –over 
15M of them. We visit this repository on a regular basis to retrieve the latest 
samples found in the wild.

●● Contagio Mobile. Contagio Mobile17 is a public malware repository managed 
by a group of independent security researchers and with great amount of 
support within the malware community. We also visit this repository regularly.

14 https://code.google.com/p/android-market-api/
15 Available at http://www.malgenomeproject.org
16 http://virusshare.com/
17 http://contagiominidump.blogspot.com.es/
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In total, our malware repositories in the lab currently have about 25K malware 
samples.

QQ 3.5.3. Open Source Malware Remote Access Tool

Androrat [Bertrand et al., 2014] is an an open source malware Android Remote 
Access Tool (RAT). RAT tools provide a backdoor to a remote operator, enabling 
access to the device and its personal data. Androrat is provided with two different 
components: (i) the remote manager running on a server, and (ii) the local agent 
running on the device. We then describe each of these two components:

■■ Server: This component implements command and control and allows the 
user to remotely control numerous devices. The devices are listed dynamically 
as new users are connected.

■■ Client: This component implements all functionality required to provide the 
server with the information requested. More precisely, Androrats counts in its 
current implementation with the following capabilities:

●● Get contacts (and all their information).

●● Get call and messages logs.

●● Get geolocation by GPS/Network.

●● Monitor received messages and phone state in real time.

Figure 3.8

EXFILTRATING PERSONAL INFORMATION (SMSS) WITH ANDRORAT

Source: Own elaboration.
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●● Take a picture from the camera and stream sound or video.

●● Do a toast.

●● Send a text message or make a call.

●● Open an URL in the default browser.

Figure 3.8 shows a snapshot of this tool running over our lab.
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QQ 4.1. INTRODUCTION

The impressive growth both in malware and benign apps is making increasingly 
unaffordable any human-driven analysis of potentially dangerous apps. For instance, 
when confronted with a continuously growing stream of incoming malware samples, 
it would be extremely helpful to differentiate between those that are minor variants of 
a known specimen and those that correspond to novel, previously unseen samples. 
Grouping samples into families, establishing the relationships among them, and 
studying the evolution of the various known “species” is also a much sought after 
application.

Problems similar to these ones have been successfully attacked with Artificial 
Intelligence and Data Mining techniques in many application domains, including 
malware detection [Egele et al., 2012]. For instance, machine learning [Hou et al., 
2010], data mining [Liao et al., 2012; Thiruvadi and Patel, 2011], expert systems 
[Sahin et al., 2012], and clustering [Delany et al., 2012], have been proposed to 
assist the analyst in classifying the malware. We refer the reader to Chapter 2 for an 
overview on automated malware analysis techniques.

In this chapter, we explore the use of text mining approaches to automatically 
analyze smartphone malware samples and families based on the code structures 
present in their software components. Such code structures are representations of 
the Control Flow Graph (CFG) of each method found in the app classes [Cesare 
and Xiang, 2010; Grace et al., 2012a]. A high level overview of the main building 
blocks and salient applications of our approach, namely Dendroid [Suarez-Tangil 
et al., 2014c], is provided in Figure 4.1. During the modeling phase, all different 
code structures are extracted from a dataset of provided malware samples. A vector 
space model is then used to associate a unique feature vector with each malware 
sample and family. This vector representation is then used to illustrate two main 
applications:

●● Automatic classification of unknown malware samples into candidate families 
based on the similarity of their respective code structures. Our classification 
scheme involves a preparatory stage where the sample is transformed into 
a query in the text mining sense. Thus, a slight variation of this process can 
be used to search for a set of given code structures in a database of known 
specimens, a task that could be remarkably useful for malware analysts and 
app market operators.
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●● We show how it is possible to perform an evolutionary analysis of malware 
families based on the dendrograms obtained after hierarchical clustering. The 
process is almost equivalent to the analysis of the so-called phylogenetic trees 
for biological species [Ruzgar and Erciyes, 2012], although using software 
code structures rather than physical and/or genetic features. This enables us 
to conjecture about evolutionary relationships among the various malware 
families, including the identification of common ancestors. Additionally, 
it also enables us to study the diversification process that they may have 
gone through as a consequence of code reuse and malware re-engineering 
techniques.

In other domains, many works have applied text mining and information retrieval 
techniques for decision making and classification, such as for example [Chibelushi 
et al., 2004], and [Gadia and Rosen, 2008]. Furthermore, recent approaches have 
also used text mining for detecting similarities [Oberreuter and Velásquez, 2013; 
Rodriguez-Gonzalez et al., 2013].

Dendroid is novel in two separate ways. On the one hand, to the best of our 
knowledge using code structures to characterize Android OS malware families has 
not been explored before. One major advantage of focusing on the internal structure 
of code units (methods) rather than on their specific sequence of instructions is an 
improved resistance against obfuscation (i.e., deliberate modifications of the code 

Figure 4.1

OVERVIEW OF DENDROID’S ARCHITECTURE

Source: Own elaboration.
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aimed at evading pattern-based recognition [Rastogi et al., 2013b]). Furthermore, 
such structures prove to be particularly useful for the case of smartphone malware, 
where rapid development methodologies heavily based on code reuse are prevalent. 
On the other hand, the idea of using text mining techniques to automate tasks such 
as classifying specimens, searching for code components, or studying evolutionary 
relationships of malware families is, to our knowledge, novel too. Besides, text 
mining techniques were developed to efficiently deal with massive amounts of 
data, a feature which turns out to be very convenient for the problems that we  
address here.

The remaining of this chapter is organized as follows. In Section 4.2 we describe 
the dataset of Android malware families used in this work, together with the tools 
and methodology followed to extract code structures from each app. In Section 4.3 
we analyze and discuss various statistical features of the code structures found in 
the malware instances. Based on our findings from this analysis, in Section 4.4 we 
propose Dendroid [Suarez-Tangil et al., 2014c], a text mining approach to classify 
and analyze malware families according to the code structures present in their apps. 
We first introduce a suitable vector space model, and report experimental results 
related to classifying instances into families, measuring similarity among families, and 
using dendrograms to analyze the evolutionary relationships among families. Finally, 
Section 4.5 concludes the chapter and discusses our main contributions.

QQ 4.2. DATASET AND EXPERIMENTAL SETTING

The work presented in this chapter is largely based on a sizable dataset of real-
world Android OS malware samples called Android Malware Genome Project and 
described in Chapter 3. As commented before, this dataset contains 1247 malicious 
apps grouped into 49 different families. For the purposes of this work, we discarded 
16 out of the 49 families as they only contain one specimen each, resulting in a final 
dataset of 1231 malware samples grouped into 33 families. More details on this will 
be later provided in Section 4.3.

QQ 4.2.1. Extracting Code Structures

One key aspect of our work is the decomposition of an app into a number of 
constituent code elements referred to as code chunks. Each code chunk corresponds 
to a method associated with a class within the app. Thus, an app will be fragmented 
into as many code chunks as methods contained in it. Rather than focusing on the 
specific sequence of instructions contained in a code chunk, we extract a high-level 
representation of the associated Control Flow Graph (CFG). CFGs use graphs as 
a representation of the paths that a program might traverse during its execution. 
Each node in a CFG represents a “basic block,” i.e., a piece of code that will be 
sequentially executed without any jumps. The CFG of a piece of code is explicit in 
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the source code, is relatively easy to extract, and has been extensively used in static 
analysis techniques [Nielson et al., 1999]. 

Each malware instance contained in the dataset described above has been 
first disassembled into Dalvik instructions. We then used Androguard [Desnos, 2014] 
to extract the code chunks of all malicious apps and compute their structure as 
described in Chapter 3. The sequence of instructions contained in a code chunk 
is thus replaced by a list of statements defining its control flow, such as a block 
of consecutive instructions (B), a bifurcation determined by an “if” condition (I), an 
unconditional go-to jump (G), and so on. After parsing each code chunk with this 
grammar, the resulting structure is a sequence of symbols of varying length (see 
Figure 3.2 at Chapter 3).

After this process, each malware sample app is represented by a sequence:

(4.1)

where ci is a string describing the code structure of the i th method in app, and |app| 
is the total number of methods contained in app. In the remaining of this chapter, we 
will refer to ci’s indistinctly as code chunks or code structures. The resulting dataset of 
code chunks, grouped by app and family as in the original Android Malware Genome 
Project, has been made publicly available.1

QQ 4.3. ANALYSIS OF CODE STRUCTURES IN ANDROID MALWARE 
      FAMILIES

In this section, we analyze and discuss various statistical features of the code 
structures found in the malware apps and families of the dataset described above. 
Our findings will subsequently motivate the use of text-mining techniques for tasks 
such as, for example, the classification of new apps into candidate malware families 
or the analysis of similarities among families.

QQ 4.3.1. Definitions

We are interested in exploring questions such as how large, in terms of number 
of code chunks (CCs), apps are; what the distribution of CCs across apps and families 
is; or how discriminant a subset of CCs is for a given family. We next introduce a 
number of measures that will be later used to perform this analysis.

Definition 1 (CC). We denote by CC(app) the set of all different CCs found in 
app app. We emphasize that CC(app) is a set and, therefore, it does not contain 
repeated elements.

,appapp c c ,...c1 2 l |

1 www.seg.inf.uc3m.es/~guillermo-suarez-tangil/dendroid/codechunks.zip
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Definition 2 (Redundancy). The redundancy, RD (app), of an app app is given 
by:

(4.2)

where |app| is the total number of CCs (possibly with repetitions) in app.

Note that redundancy measures the fraction of repeated CCs present in an 
app, with low values indicating that CCs do not generally appear multiple times in 
the app, and vice versa.

Definition 3 (FCC). The set of family CCs for a family Fi is given by:

				    ( )FCC( CCi
app

) .
∈

=
i

app


F
		          (4.3)

Definition 4 (CCC). The set of common CCs for a family Fi is given by:

(4.4)

In short, the set CCC(Fi) contains those CCs found in all apps of Fi. Even though 
this can be certainly seen as a distinctive feature of family Fi , it does not imply that all 
those CCs are unique to Fi. For instance, code reuse –which is a recurrent feature 
of malware in general and, particularly, of smartphone malware– will make the same 
CCs appear in multiple families.

Definition 5 (FDCC). Given a set of malware families M = {F1, ... , Fm }, a set  
C = {c1, ... , cn } of CCs is fully discriminant for Fi with respect to M iff: 

(i) C ⊆ CCC(Fi), and

(ii) ∀Fk ∈ M, Fk ≠ Fi: C ∩ FCC(Fk) = ∅.

We denote by FDCC(Fi |M) the maximal set of fully discriminant CCs for Fi with 
respect to M; that is, C = FDCC(Fi |M) iff C is fully discriminant for Fi with respect 
to M, and for all C' such that C' is fully discriminant for Fi with respect to M , C  ⊆ C.

Put simply, a set of CCs is fully discriminant for a family Fi if and only if every 
CC in the set appears in every app of Fi and, furthermore, no CC in the set appear 
in any app of any other family. Consequently, such a set unequivocally identifies the 
family, provided that it is not the empty set.

QQ 4.3.2. Results and Discussion

We computed the various measures and sets described above over all the 
apps and families in our dataset. Table 4.1 and Figure 4.2 summarize the most 
relevant results.

( )FCC( CCi
app

) .
∈

=
i

app


F

| | ,
| |

−
(app)RD(app)=

app
CC1
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App stats Family stats

Family Fi |Fi| Avg{|CC(app)|} Avg{RD (app) |FCC(Fi)| |CCC(Fi)| |FDCC(Fi|M)|

ADRD 22 416 0.59 2,726 21 8 

AnserverBot 187 367 0.64 17,635 44 9 

Asroot 8 78 0.57 462 1 0 

BaseBridge 122 433 0.53 9,918 5 0 

BeanBot 8 746 0.68 3,081 61 34 

Bgserv 9 384 0.53 487 67 34 

CruseWin 2 82 0.53 82 82 40 

DroidDream 16 302 0.51 2,545 10 0 

DroidDreamLight 46 529 0.54 3,339 40 13 

DroidKungFu1 34 501 0.58 7,609 10 0 

DroidKungFu2 30 295 0.51 2,418 9 0 

DroidKungFu3 309 872 0.58 19,092 48 11 

DroidKungFu4 96 936 0.56 9,239 19 2 

DroidKungFuSapp 3 351 0.66 411 310 0 

FakePlayer 6 6 0.73 7 10 2 

GPSSMSSpy 6 13 0.44 23 9 3 

Geinimi 69 430 0.58 12,141 77 37 

GingerMaster 4 223 0.64 297 159 108 

GoldDream 47 513 0.54 9,129 13 3 

Gone60 9 35 0.41 56 26 5 

HippoSMS 4 148 0.67 262 8 1 

KMin 52 502 0.50 795 120 42 

NickySpy 2 65 0.71 84 47 34 

Pjapps 45 1,160 0.58 15,128 6 0 

Plankton 11 133 0.52 876 14 2 

RogueLemon 2 962 0.54 1,441 483 321 

RogueSPPush 9 365 0.60 633 114 60 

SndApps 10 28 0.55 54 20 11 

Tapsnake 2 33 0.57 55 12 2 

YZHC 22 316 0.48 1,704 33 11 

Zsone 12 365 0.40 535 338 1 

jSMSHider 16 113 0.46 266 64 52 

zHash 11 1,348 0.56 2,344 645 390 

Table 4.1 

STATISTICAL INDICATORS OBTAINED FOR ALL APPS AND FAMILIES  
IN THE DATASET

Source: Own elaboraton.
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The entire dataset contains 84854 different CCs. In terms of number of unique 
CCs, apps do not display a uniform behavior, neither within the same family nor 
across families. Apps in some malware families have, on average, only a few 
different CCs: see for example FakePlayer (6), GPSSMSSpy (13), or SndApps (28). In 
contrast, others are quite large, such as for example zHash (1348), Pjapps (1160), or 
DroidKungFu4 (936).

The variance, both of apps’ length and redundancy within each family, is 
generally large, as illustrated by the boxplots shown in Figures 4.2(a) and 4.2(b). 
This can be explained by a number of factors, including the fact that in many cases 
malware belonging to the same family appears in very different apps, each one 
with its own set and distribution of CCs. In general, however, all apps display a 
redundancy between 0.4 and 0.7 regardless of their size.

The size of the FCC, CCC, and FDCC sets for each family reveal some 
remarkable details. The number of family CCs (FCC) varies quite significantly across 
families. Furthermore, such variability seems uncorrelated with the average number 
of CCs in the apps. The most likely explanation for this has to do with the proliferation 
and prevalence of each malware family. Families such as AnserverBot, Geinimi, 
Pjapps, and DroidKungFu appeared in a variety of very popular repackaged apps, 
and infected a significant number of devices. Thus, finding the same malware in very 
different apps induces a sharp increase in the size of FCC.

The CCC set removes this diversity and identifies code structures common to 
all available apps within a family. The size of this set varies across families, being 
quite low in families where the malware code has undergone significant evolution, 
possibly after being included in different apps. For example, only 6 CCs appear in 
each of the 45 samples of Pjapps. On the contrary, apps in unpopular or rare families 
share essentially the same version of the malware: see for example zHash, where all 
its 11 apps share 645 CCs.

Finally, the rightmost column in Table 4.1 shows the number of fully discriminant 
CCs for each family. Surprisingly, The FDCC set is non-empty for 26 out of the 33 
families. This suggest that, in principle, those CCs might be used as a “signature” 
to perfectly classify an app into one of those families. We believe, however, that 
such a scheme would be extremely weak for a number of reasons. One of the most 
important shortcomings of using FDCC as the basis to represent malware family 
features is that it is very fragile: the addition of a new app to a family such that it does 
not share any CCs with those already in the family automatically makes the CCC 
set empty, which in turn makes FDCC empty too. Such an app might have actually 
been incorrectly labeled as belonging to the family, or perhaps carefully constructed 
to avoid sharing CCs with all other apps. In either case, the characterization of the 
family would not be useful anymore.

We next study the distribution of CCs across families, which will motivate a 
more robust representation of family features.
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Figure 4.2

DISTRIBUTION OF (A) UNIQUE CCS (CC); (B) REDUNDANCY (RD);  
AND (C) COMMON AND FULLY DISCRIMINANT CCS FOR EACH  
FAMILY (CCC/FDCC)

Source: Own elaboraton.
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QQ 4.3.3. Distribution of Code Structures

Figure 4.3 shows the distribution of CCs as a function of the number of families 
where they appear. This plot is obtained by iterating over all different code structures 
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and computing, for each one of them, the number of different families where they 
appear. (A CC appear in a family if it appears in at least one app of that family.) The 
results reveal that 78.9% of all code structures appear in just one family. Note that 
this does not mean that such a family is the same, as different code structures may 
appear in different families. Rather, this value indicates that if a code structure is 
found in one family, it is unlikely to find that same code structure in an app belonging 
to a different family. Similarly, the number of code structures that appear in 2, 3, 4, 
and 5 different families drops to 12.6%, 3.5%, 1.5%, and 1.1%, respectively. 
Consequently, less than 1% of all available code structures appear in 6 or more 
different families.

This distribution of code structures across malware families suggests that each 
family can be sufficiently well characterized by just a few code structures, possibly 
accompanied by some extra information such as the frequency of that code structure 
in each app of the family, the fraction of apps where it appears, etc. We next elaborate 
on this.

Figure 4.3

DISTRIBUTION OF CCS AS A FUNCTION OF THE NUMBER OF FAMILIES 
WHERE THEY APPEAR

Source: Own elaboraton.
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QQ 4.4. MINING CODE CHUNKS IN MALWARE FAMILIES

Based on the findings discussed in the previous section, we next describe 
Dendroid, our approach to analyzing malware samples and families based on 
mining code structures. We first present the vector space model used and describe 
the main features of our prototype implementation. Subsequently we present two 
main applications –classifying unknown malware apps, and analyzing possible 
evolutionary paths of mal- ware families– and discuss the experimental results 
obtained.

QQ 4.4.1. Vector Space Model

In this section, we adapt to our problem various numerical indicators well 
researched in the field of information retrieval and text mining. One central concept 
in those fields is the so-called Vector Space Model (VSM) [Salton et al., 1975], 
sometimes known as Term Vector Model, where each object dj of a corpus is 
represented as a vector of identifiers

			   dj = (w1,j, ... , wk,j). 				             (4.5)

Each identifier wi,j is a measure of the relevance that the i-th term, mi, has in 
object dj. In the most common setting, objects and terms are documents and words, 
respectively. Thus, wi,j is an indicator of the importance of word mi in document dj.

Many interesting problems related to information retrieval and text mining 
can be easily reformulated in the VSM in terms of vector operations. For example, 
the cosine of the angle between two vectors is a good measure of the similarity 
between the associated documents. Such vector operations are the basis for a 
number of interesting primitives, such as comparing two documents or ranking 
various documents according to their similarity to a given query (after appropriately 
representing queries as vectors too).

One popular statistical indicator used in the VSM is the term frequency-inverse 
document frequency (tf-idf). Using the notation introduced above, the tf-idf wi,j of term 
mi in dj is the product of two statistics: (1) the term frequency (tf ), which measures  
the number of times mi appears in dj; and (2) the inverse document frequency (idf), 
which measures whether mi is common or rare across all documents in the corpus. 
Thus, a high tf-idf value means not only that the corresponding term appears quite 
often in a document, but also that it is not frequent in other documents. As a result, 
one important effect is that the tf-idf tends to filter out terms that are common across 
documents.

Our proposal essentially mimics the model discussed above. Each family Fj is 
represented by a vector vj = (I1,j, ..., Ik,j), where Ii,j = I (ci, Fj, M) is computed as

			   I (ci, Fj, M) = ccf(ci, Fj) · iff(ci, M). 		           (4.6)
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The indicators ccf (c, Fj ) and iff (c, M) are approximately equivalent to the tf 
and idf statistics, respectively, and can be computed as follows.

Definition 6 (CCF). The frequency of a CC c in a family Fj is given by

		  ( )
( )

( ){ }j max '
∈=

∈

∑
japp

i

c,app
c,

c,app app

freq
ccf

freq : F
FF 	 (4.7)

where freq(c, app) is the number of occurrences of CC c in app app.

Definition 7 (IFF). The inverse family frequency of a CC c with respect to a set 
of malware families M = {F1, ... , Fm} is given by

		  ( )
( ){ }1 FCCi

| |log=
+ ∈ ∈ i

c,
c

iff
: 
MM

M F
	 (4.8)

QQ 4.4.2. An example

We next illustrate the model presented above with a numerical example and 
discuss some relevant features. Assume two different datasets, M1 and M2, of 
malicious apps, with |M1| = 4 and |M2| = 400. Given a CC ci, we can easily see how 
each family feature vector varies according to the relevance of ci.

On the one hand, when ci is a rather common CC (see Figure 4.4a), i.e., it 
appears in most families, the iff value quickly vanishes (see Fig. 4.4b). Similarly, 
it can also be observed how the components of a family vector grow when the 
frequency of a CC increases, as shown in 4.4a. On the other hand, when ci is a very 
uncommon CC, the iff value grows significantly: see, e.g., Figure 4.4 where iff(ci, 
M2) is 16 times larger than iff(ci, M1). The overall result is that the relevance of a CC 
is strongly influenced by its frequency across families. Thus, CCs that are common 
to many families have a low influence in the family feature vector, even if they are 
very frequent.

QQ 4.4.3. Implementation

We have built a Java implementation of the VSM discussed above and applied 
it over all families in our dataset to obtain a family feature vector for each of them. 
The process is described by the algorithm shown in Figure 4.5 and outputs one 
vector vj for each malware family Fj, with each vector component representing the 
relevance of a CC in Fj.

The algorithm comprises three main steps: (i) initialization, (ii) inverse family 
frequency computation, and (iii) CC frequency computation. First, we extract  
the frequency freq(c, app) for every CC c ∈ CC(app) of each app app ∈ M (lines 2–5). 
The inverse family frequency is then computed for each extracted CC using Eq.  
(4.8) (lines 8–10). Finally, the frequency of each CC is computed by applying Eq. (4.8), 
and the associated indicator for the CC is obtained (lines 11–16).
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Figure 4.4

COMPUTATION OF I (CI , FJ , M) AND DISTRIBUTION OF THE IFF VALUE 
DEPENDING ON THE POPULARITY OF THE CC IN TWO  DIFFERENT 
MALWARE DATASETS: TINY (A) AND (B),  AND LARGE (C) AND (D)

�6 �4 �2 2 4 6

1

2

3

�x from �6 to 6�

F1 F2 F3 F4

Apps app1 app2 app3 app4 app5 app6 app7

Is ci in appk? √ X √ √ X X X

freq(ci, appk) 5 0 4 1 0 0 0

ccf (ci, Fj) 9/5 1/1 0 0

iff (ci, M1)
                                     

4log 0.288
1 2

=
+

I (ci, Fj, M1) 0.518 0.288 0.000 0.000

(a) Rather common CC with |M1| = 4

(b) iff (cj, M1)

F1 F2 ... F400

Apps app1 app2 app3 app4 app5 ... appn

Is ci in appk? √ X X √ √ X √

freq(ci, appk) 5 0 0 2 7 0 1

ccf (ci, Fj) 5/5 9/7 0 1/1

iff (ci, M2)
                                     

400log 4.605
1 2

=
+

I (ci, Fj, M2) 4.605 5.921 0.000 4.605

(c) Very uncommon CC with |M2|=400

Note: Figure (b) and (d) represents the resulting iff with respect to the FCC, i.e.: iff(ci, M) = log(|M|/x), 

where x = 1 + |{Fi ∈ M2: c ∈ FCC(Fj)}| and x = 1 + |{Fi ∈ M2 : c ∈ FCC(Fj)}| respectively.

Libro 1.indb   130 24/11/2016   11:02:07



131A TEXT MINING APPROACH TO ANALYZING AND CLASSIFYING CODE STRUCTURES IN MALWARE FAMILIES

 Q 4.4.4. Modeling Families and Classifying Malware Instances

In our fi rst experiment, we have tested the ability to correctly predict the 
family of a malware instance. To do this, we have randomly split our dataset into 
k complementary folds, being k = 10. During the generation of each fold, we have 
guaranteed that every family-subset contains at least one sample. Once the dataset 
is partitioned, we have randomly selected one fold as validation data, and the 
remaining ones are used as training data.

The training folds were used to derive a vectorial representation for each 
malware family as described in Section 4.4.1. A total number of 84854 CC were 
found across all instances in the dataset, so each family is represented by a vector 
with this dimensionality, as specifi ed in (4.6). We note, however, that such vectors 
are very sparse (as expected by the analysis given in Section 4.3), which in practice 
makes it very effi cient to store and manipulate them. For illustration purposes, the 
largest family vectors correspond to DroidKungFu3 (19091 non-null components), 
AnserverBot (17634), Pjapps (15127), and Geinimi (12140). On average, only around 
11% of each feature vector contains discriminant information.

The validation fold was processed in a similar way, obtaining a vectorial 
representation for each malware instance. We then implemented a 1-NN (nearest 
neighbor) classifi er [Tan, 2005] to compute the predicted family for each malware 
instance under test. Such a prediction is the family whose vector is closest to the 
instance’s vector (see Fig. 4.6). 1-NN is a widely used method in data mining that 

Figure 4.4 (continued)

COMPUTATION OF I (CI , FJ , M) AND DISTRIBUTION OF THE IFF VALUE 
DEPENDING ON THE POPULARITY OF THE CC IN TWO  DIFFERENT MA-
LWARE DATASETS: TINY (A) AND (B),  AND LARGE (C) AND (D)

Source: Own elaboraton.
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(d) iff (cj, M2)
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Figure 4.5

ALGORITHM FOR OBTAINING EACH FAMILY VECTOR

Source: Own elaboraton.

118 4. A Text Mining Approach to Analyzing and Classifying Code in Malware Families 

j=1

 
 

Algorithm 1. Computing Family Vectors
Input:

Dataset of labeled malware apps (sequences of code chunks):
M = {(app1,Fapp1 ), (app2,Fapp2 ), ... , ((appp,Fappm))} 

where Fappi ∈ {F1, ... ,Fq} 
Output:

Vectors vj = (I1,j , ... , Ik ,j ) for each Fj ∈ {F1, ... ,Fq} 
Algorithm:
1 FCC(Fj ) = 0/ ∀j = 1, ... ,q
2 For each (app,Fapp) ∈ M do
3 FCC(Fapp) = FCC(Fapp) ∪ CC(app)
4 Update freq(c ,app) for each c ∈ CC(app)
5 end-for
6 C(M ) = q

7 k = |C(M )| 
FCC(Fj)

8 For each i = 1, ... ,k do
9 Compute iff(ci ,M ) according to (4.8)

10 end-for
11 For each Fj do
12 For each i = 1, ... ,k do
13 Compute ccf(ci ,Fj ) according to (4.7)
14 vj[i ] = Ii ,j = ccf(ci ,Fj ) · iff(ci ,M )
15 end-for
16 end-for
17 return {v1, ... ,vq} 

 
 

Figure 4.5: Algorithm for obtaining each family vector.
 
 
 
every family-subset contains at least one sample. Once the dataset is partitioned, 

we have randomly selected one fold as validation data, and the remaining ones are 

used as training data.
 
 

The training folds were used to derive a vectorial representation for each malware 

family as described in Section 4.4.1.  A total number of 84854 CC were found 

across all instances in the dataset, so each family is represented by a vector with 

this dimensionality, as specified in (4.6). We note, however, that such vectors are

Figure 4.6

1-NN MALWARE CLASSIFICATION ALGORITHM

Source: Own elaboraton.

4.4. Mining Code Chunks in Malware Families 21 
 
 

Algorithm 2. 1-NN Malware Classifier
Input:

Family vectors {v1, ... ,vq}  and data structures
C(M ), iff(ci ,M )

Malware instance app
Output:

Predicted family Fj
Algorithm:
1 for each ci ∈ C(M ) do
3 z[i ]) = freq(ci ,app) · iff(ci ,M )
4 end-for
5 j = arg mini {dist(z,vi)} 
6 return Fj

 
 

Figure 4.6: 1-NN malware classification algorithm.
 
 
 

very sparse (as expected by the analysis given in Section 4.3), which in practice 

makes it very efficient to store and manipulate them. For illustration purposes, the 

largest family vectors correspond to DroidKungFu3 (19091 non-null components), 

AnserverBot (17634), Pjapps (15127), and Geinimi (12140). On average, only 

around 11% of each feature vector contains discriminant information.

 
 

The validation fold was processed in a similar way, obtaining a vectorial represen-

tation for each malware instance. We then implemented a 1-NN (nearest neighbor)

classifier [Tan, 2005] to compute the predicted family for each malware instance 

under test. Such a prediction is the family whose vector is closest to the instance’s 

vector (see Fig. 4.6). 1-NN is a widely used method in data mining that only requires 

to compute n distances and one minimum. To compute distances between vectors, 

we relied on the well-known cosine similarity:

 
 
 

Definition 8 (Cosine similarity). The cosine similarity between two vectors z =
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only requires to compute n distances and one minimum. To compute distances 
between vectors, we relied on the well-known cosine similarity:

Definition 8 (Cosine similarity). The cosine similarity between two vectors  
z = (z1, ... , zk) and v = (v1, ... , vk) is given by

(4.9)

The cosine similarity, which measures the cosine of the angle between 
vectors z and v, has been extensively used to compare documents in text mining 
and information retrieval applications. Besides, it is quite efficient to evaluate in 
domains such as ours, since vectors are sparse and, therefore, only a few non-
zero dimensions need to be considered in the computation. As for our purposes a 
distance, and not a similarity, is required, we use:

				    dist(z, v) = 1 − sim(z, v). 	 (4.10)

Results have been cross-validated with each of the k folds that were previously 
generated. The classification error per family attained in this experiment is shown 
in Table 4.2. A closer inspection reveals that the classification error is not uniform 
across families. On the contrary, errors concentrate on 6 out of the 33 malware 
families studied (AnserverBot, BaseBridge, and DroidKungFu1 through DroidKungFu4), 
while instances belonging to the remaining 27 families are perfectly classified.

Interestingly, DroidKungFu has been considered a milestone in Android OS 
malware sophistication [Zhou and Jiang, 2012]. After the release of its first version, a 
number of variants rapidly emerged, including DroidKungFu2 through DroidKungFu4 
or DroidKungFuApp. A common feature shared by all these variants is the use of 
encryption to hide their existence. In fact, some of them embedded their payloads 
within constant strings or even resource files (e.g., pictures, asset files, etc.). 
Furthermore, DroidKungFu aggressively obfuscates the class name and uses native 
programs (Java Native Interface, or JNI) precisely to made the analysis difficult.  
Similarly, AnserverBot use sophisticated techniques to obfuscate all internal classes, 
methods, and fields. Moreover, instead of enclosing the payload within the app, 
AnserverBot dynamically fetches and loads it at runtime (this is known as update 
attacks). In this regard, some authors (e.g., [Zhou and Jiang, 2012]) believe that 
AnserverBot actually evolved from BaseBridge and inherited this feature from it.  Our 
results seem to confirm this hypothesis.

More insights can be gained by observing the confusion matrix given by a larger 
dataset of k = 2 folds and approximately an equal number of malware instances in 
each fold (see Table 4.3). Each cell (x, y) in the matrix shows the number of instances 
belonging to family x whose predicted family is y. Here, for instance, we can observe 
that 5 out of the 61 samples of BaseBridge have been predicted as AnserverBot. 

k

i i
i 1

z,v k k
2 2
i i

i 1 i 1

u v
z·vsim(z, v) cos( ) .

z v
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Classification Error (%)

ADRD 0.00 GingerMaster 0.00

AnserverBot 4.66 GoldDream 0.00

Asroot 0.00 Gone60 0.00

BaseBridge 7.92 HippoSMS 0.00

BeanBot 0.00 KMin 0.00

Bgserv 0.00 NickySpy 0.00

CruseWin 0.00 Pjapps 0.00

DroidDream 0.00 Plankton 0.00

DroidDreamLight 0.00 RogueLemon 0.00

DroidKungFu1 12.92 RogueSPPush 0.00

DroidKungFu2 19.46 SndApps 0.00

DroidKungFu3 8.12 Tapsnake 0.00

DroidKungFu4 18.21 YZHC 0.00

DroidKungFuSapp 0.00 Zsone 0.00

FakePlayer 0.00 jSMSHider 0.00

GPSSMSSpy 0.00 zHash 0.00

Geinimi 0.00

Table 4.2 

AVERAGE MALWARE CLASSIFICATION ERROR PER FAMILY USING  
1-NN WITH 10-FOLD CROSS-VALIDATION

Source: Own elaboraton.

Similarly, we can observe that a few samples of DroidKungFu1 have been classified 
as DroidKungFu2 and, in a similar way, there is some misclassifications between 
DroidKungFu3 and DroidKungFu4. Thus, the aforementioned classification error is 
actually justified by the evolutionary relationships of these particular malware strands.

QQ 4.4.5. Evolutionary Analysis of Malware Families

In this section, we discuss the application of hierarchical clustering to the feature 
vectors that model samples and family. The resulting dendrograms are then used 
to conjecture about their evolutionary phylogenesis, giving a valuable instrument to 
discover relationships among families. We first describe the hierarchical clustering 
algorithm currently included in Dendroid. Subsequently we discuss the results 
obtained.
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Table 4.3 

CONFUSION MATRIX FOR MALICIOUS APP CLASSIFICATION

Source: Own elaboraton.

QQ 4.4.5.1. Single Linkage Hierarchical Clustering

Single Linkage Clustering, also known as nearest neighbor clustering, is a well-
known method to carry out an agglomerative hierarchical clustering process over a 
population of vectors. The algorithm, shown in Figure 4.7, keeps a set of clusters, 
K, which is initialized to the set of family vectors. At each iteration it, the two closest 
clusters r, s ∈ K are combined into a larger cluster vrs. The distance matrix between 
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each pair of clusters is then updated by removing both r and s, adding the newly 
created vrs, and finally computing the distances from vrs to each remaining cluster 
x through a linkage function. In our case, such a function is simply the shortest 
between the distance from x to r and the distance x to s. Furthermore, the algorithm 
keeps a list L(it) with the distances at which each fusion takes place. The process is 
iterated until the set of clusters K is reduced to one element.

QQ 4.4.5.2. Results and Discussion

The results of a hierarchical clustering can be visualized in a dendrogram as 
the one depicted in Figure 4.9 for the dataset used in this work. The dendrogram 
represents a tree diagram where links between the leaves (malware families) 
illustrate the parental relationships (ancestors and descendants) in a hierarchy. 
Thus, clusters (denoted as vrs in Figure 4.7–line 6) are tree nodes representing 
merged families, i.e., a common ancestor. The paths that group together different 
families illustrate the phylogenetic evolution of the “species.” Furthermore, the 
distance D(t) between an ancestor and its descendants is a measure of their 
similarity and, therefore, can be interpreted as an evolutionary (or diversification) 

Figure 4.7

SINGLE LINKAGE HIERARCHICAL CLUSTERING ALGORITHM  
FOR MALWARE FAMILIES

Source: Own elaboraton.
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Figure 4.8

DISTANCE MATRIX BETWEEN PAIRS OF MALWARE FAMILIES

Source: Own elaboraton.
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distance. Note that the sequence of such distances is provided as an output by the 
algorithm in Figure 4.7.

The initial proximity matrix, D(0), for all the families in our dataset is graphically 
shown in Figure 4.8. As anticipated by the results of the previous experiment, the 
similarity among some groups of families is striking, while in other cases there are 
substantial differences. The results after applying hierarchical clustering to the 
datasets are displayed in the dendrogram shown in Figure 4.9. There are a number 
of interesting observations:
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●● BaseBridge and AnserverBot are intimately related, hence that they appear as 
variants of a common ancestor. Besides, their linkage (distance) is very small 
compared to the rest of the families, which suggest a large share of relevant 
code structures and, perhaps of functionality too.

●● The case of the DroidKungFu variants is remarkably captured. It transpires 
from our results that DroidKungFu1 and DroidKungFu2 are alike, and the same 
occurs with the pair DroidKungFu3 and DroidKungFu4. Furthermore, both 
pairs descend from a common ancestor, say DroidKungFuX, which in turn is 
connected with GoldDream. This branch connects with another one formed 
by the pair Plankton-DroidDreamLight, and both groups relate to Pjapps, which 
is among the oldest examples of sophisticated Android OS malware. Finally, 
the relationship between this group, Zsone-DroidDream, and BaseBridge- 

Figure 4.9

DENDROGRAM OBTAINED AFTER HIERARCHICAL CLUSTERING OVER  
THE DATASET

Source: Own elaboraton.
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AnserverBot could be explained by a number of reasons, including the fact 
that they probably share common engines.

●● The remaining malware families seem rather unrelated, and no significant 
evolutionary relationship can be inferred. Note, too, that distances approach 
1 in this area of the dendrogram, which suggest a very weak connection.

QQ 4.5. CONCLUSIONS

In this chapter, we have proposed a text mining approach to automatically 
classify smartphone malware samples and analyze families based on the code 
structures found in them. Our proposal is supported by a statistical analysis of the 
distribution of such structures over a large dataset of real examples. Our findings 
point out that the problem bears strong resemblances to some questions arising in 
automated text classification and other information retrieval tasks. By adapting the 
standard Vector Space Model commonly used in these domains, we have explored 
the suitability of such techniques to measure similarity among malware samples, and 
to classify unknown samples into known families. Our experimental results suggest 
that this technique is fast, scalable and very accurate. We have subsequently studied 
the use of hierarchical clustering to derive dendrograms that can be understood as 
phylogenetic trees for malware families. This provides the analyst with a means 
to analyze the relationships among families, the existence of common ancestors, 
the prevalence and/or extinction of certain code features, etc. As discussed in this 
Thesis, automated tools such as these will be instrumental for analysts to cope with 
the proliferation and increasing sophistication of malware.

Libro 1.indb   139 24/11/2016   11:02:08



Libro 1.indb   140 24/11/2016   11:02:08



PART III

DYNAMIC-BASED ANALYSIS
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5 ALTERDROID: DIFFERENTIAL FAULT ANALYSIS  
OF OBFUSCATED MALWARE BEHAVIOR
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QQ 5.1. INTRODUCTION

More sophisticated obfuscation techniques, particularly in code, are starting to 
materialize [Huang et al., 2013; Linn and Debray, 2003; Rastogi et al., 2013b]. These 
techniques and trends create an additional obstacle to malware analysts, who see their 
task further complicated and have to ultimately rely on carefully controlled dynamic 
analysis techniques to detect the presence of potentially dangerous pieces of code.

Approaches based on dynamic code analysis such as the ones described in Chapter 2 
are promising, but current works [Egele et al., 2012], [Rastogi et al., 2013a], 
[Shabtai et al., 2014] only provide an holistic understanding of the behavior of an app. 
This feature challenges the identification of grayware and the attribution of malicious 
behavior to components of the app. Thus, current approaches are prone to miss on 
their identification and further human –costly– efforts are required as shown by Zhou 
and Jiang in [Zhou and Jiang, 2012].

Recent works approach the detection of obfuscated malware by mining identifiable 
static features such as cryptographic functions [Calvet et al., 2012]. However, 
Schrittwieser et al. [Schrittwieser et al., 2013] demonstrate the incompleteness of 
these and other semantic-aware detectors [Christodorescu et al., 2005] by means of 
“covert computation”. As regards the various ways to obfuscate or locate obfuscated 
code in binary data, [Ker et al., 2013] describes most relevant steganography and 
steganalysis techniques including active [Fisk et al., 2003; Li and Craver, 2011] 
and passive wardens.

Fuzz Testing or Fuzzing is a technique commonly used for providing inputs when 
testing software for security purposes [Takanen et al., 2008]. Fuzzing technique is 
recently gaining popularity for automating the dynamic analysis of apps in smartphones 
[Machiry et al., 2013; Mahmood et al., 2012; Rastogi et al., 2013a; Shabtai et al., 
2014; Zheng et al., 2012]. Basically, Fuzzing aims at providing different streams of events 
to the app for further monitoring the behavior of the device. Fuzzing was originally proposed 
for finding software crashes or unexpected behaviors by deliberately introducing faulty 
inputs.

In this chapter we describe Alterdroid [Suarez-Tangil et al., 2014a], a fuzzing- 
based technique for detecting obfuscated malware components distributed as parts 
of an app package. Such components are often hidden outside the app main code 
components, as these may be subject to static analysis by market operators. The key 
idea in Alterdroid consists of analyzing the behavioral differences between the original 
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app and an altered version where a number of modifications (faults) have been 
carefully introduced. Such modifications are designed to have no observable effect on 
the app execution, provided that the altered component is actually what it should be and 
does not have any hidden functionality. For example, replacing the value of some pixels 
in a picture or a few characters in a string encoding an error message should not affect 
execution. However, if after doing so it is observed that a dynamic class loading action 
crashes or a network connection does not take place, it may well be that the picture was 
actually a piece of code or the string a network address or a URL.

At high level, Alterdroid has two differentiated major components: fault injection 
and differential analysis. The first one takes a candidate app –the entire package– as 
input and generates a fault-injected one. This is done by first extracting all components 
in the app and then identifying those suspicious of containing obfuscated functionality. 
Such identification is done on an anomaly-detection basis by comparing certain statistical 
features of the component’s contents with a predefined model for each possible type of 
resource (i.e., code, pictures and video, text files, databases, etc.). Faults are then 
injected into candidate components, which are subsequently repackaged, together 
with the unaltered ones, into a new app. This process admits simultaneous injection 
of different faults into different components and is driven by a search algorithm that 
attempts to identify where the obfuscated functionality is hidden. Both the original 
and the fault-injected apps are then executed under identical conditions (i.e., context and 
user inputs), and their behavior is monitored and recorded in the form of two activity 
signatures. Such signatures are merely sequential traces of the activities executed by 
the app, such as for example opening a network connection, sending or receiving data, 
loading a dynamic component, sending an sms, interacting with the file system, etc. 
Both behavioral signatures are then treated as in a string-to-string correction problem, 
in such a way that computing the Levenshtein distance (also known as edit distance) 
between them returns the list of observable differences in terms of insertions, deletions 
and substitutions. Such a list, called the differential signature, is finally matched against 
a rule set where each rule encodes a relationship between the type of functionality 
presumably hidden and certain patterns in the differential signature.

The contributions of this chapter can be summarized in what follows:

1. We introduce the notion of differential fault analysis for detecting obfuscated 
malware functionality in smartphone apps.

2. We provide simple yet powerful theoretical models for fault injection operators, 
behavioral signatures and rule-based analysis of differential behavior.

3. We describe the functional components of Alterdroid, a prototype implemen- 
tation of our differential fault analysis model for Android apps. The system 
includes instantiations for key tasks such as identifying components to be fault- 
injected and a search-based approach to track down obfuscated components 
in an app.
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4. We also show how Alterdroid’s functional architecture supports a distributed 
deployment of different modules, which allows offloading various analysis to 
the cloud and running them in parallel.

Additionally, we illustrate our approach by discussing the step-by-step analysis of 
three Android malware samples that incorporate hidden functionality in repackaged apps: 
DroidKungFu, AnserverBot, and GingerMaster.

Fault injection analysis has been widely used for software assurance against 
fault tolerance [Gray, 1986; Natella et al., 2013]. Our approach uses Fuzzing both for 
automating the generation of inputs given to the sandbox and to inject fault conditions 
into components of the program. To the best of our knowledge differential fault 
analysis is a novel approach compared to existing works aiming at analyzing malware in 
smartphones.

The rest of this chapter is organized as follows. In Section 5.2 we introduce formal 
models for fault injection and differential analysis. Section 5.3 describes Alterdroid’s 
architecture and its key functional components, discusses the complexity of differential 
fault analysis, and provides an overview of our proof-of-concept implementation. 
Subsequently in Section 5.4 we describe the analysis of three Android malware samples 
with Alterdroid. Finally, in Section 6.6 we conclude the chapter by summarizing our 
main contributions and discussing limitations and directions for future research.

QQ 5.2. A DIFFERENTIAL FAULT ANALYSIS MODEL

This section introduces the theoretical background used in Alterdroid [Suarez-
Tangil et al., 2014a] to inject faults into apps, represent behavioral differences between 
apps, and deducing properties from such behavioral differences considering injected faults 
and observed differences. The overall dynamics of the differential fault analysis process 
(i.e., the mechanism governing which faults are injected and where) is external to this 
model and will be discussed later in Section 5.3.

QQ 5.2.1. Fault Injection Model

An app P can be seen as a collection of components

			   P = {c1, c2, ... , ck}. 				               (5.1)

A component can be composed of a number of classes (i.e., code), but also 
other resources that are dynamically accessed, such as for example asset files. Components 
have a type, such as for example code, picture, video, database, etc. We define a type 
function τ(c) that returns the type of component c.
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Fault conditions can be injected into an app by altering one or more of its 
components. Assume that  is the set of all possible app components and ψ(c) is the 
alteration made over a component c ∈ C. A Fault Injection Operator is a transformation

ψci : 2P → 2C 

	 	 	         ψci (P) = P \ {ci} ∪ {ψ(ci)}	 (5.2)

That is, ψci (P) returns a modified version of P where component ci has 
been replaced by ψ(ci). Depending on the functionality of c and the nature of the 
modifications introduced by ψ, replacing c by ψ(c) may, or may not, translate into 
observable differences in the execution of P. In this work, we restrict ourselves 
to FIOs that make alterations to data components only, not to instructions. Data 
components include the value of variables found in the code, and also asset files 
such as databases, pictures, audio and video files, etc. We will abuse notation 
and write τ(ψci) for τ(ci); i.e., we consider that the type of a FIO is the type of all 
components it can be applied to.

FIOs can be arbitrarily complex and, in some cases, their operation may depend 
on the type and/or current value of the component to be altered. We will also make 
use of very simple FIOs that treat components as a bit string, such as for example:

• rrepc (·): replaces the value of component c for a randomly chosen bit string.

• zeroc (·): replaces the value of component c for a string of zeros of the same 
length.

• rmutc (·): flips the j-th bit of of component c.

The FIOs defined above are rather generic. In some cases, we might want to 
define further datatype-specific operators. These will be useful to modify in a syntax- 
preserving way certain data objects (e.g., multimedia files) when the focus is on 
changing the content without rendering the object unusable.

QQ 5.2.2. Modeling Differential Behavior

A key task in our system is the analysis of the behavioral differences between 
an original app and a slightly modified version of it after applying a FIO. We next 
introduce a model to represent traces of activities and differences between traces.

QQ 5.2.2.1. Behavioral Signatures

An app interacts with the platform where it is executed by requesting services 
through a number of available system calls. These define an interface for apps that 
need to read/write files, send/receive data through the network, make a phone call, 
etc. Rather than focusing on low-level system calls, in this work we will describe an 
app’s behavior through the activities it executes (see also Chapter 7–Section 7.2.3).
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In some cases there will be a one-to-one correspondence between an activity 
and a system call, while in others an activity encompasses a sequence of system calls 
executed in a given order. In what follows, we assume that

	 	 	 	 A = {a1, a2, ... , ar}	 (5.3)
is a set of all relevant and observable activities an app can execute.

The execution flow of an app P may follow different paths depending on its 
inputs. We group such inputs into two main classes:

●● A sequence u of user-provided inputs U, such as for example those acquired 
through the touchscreen.

●● A sequence of contexts g, defining the state of the environment when 
the execution takes place. Each context (state) is represented by a set of 
variables that provide the app with information such as current location, 
time, energy level, temperature, etc.

We will denote by P (u|g) the execution of P with user inputs u in context g.

The observable behavior resulting from the execution of P (u|g) is summarized 
in a behavioral signature β[P (u|g)], this being a time series given by

			   β[P (u|g)] = hs1, s2, ..., sni,      si ∈ A 	 (5.4) 
Note that this signature model does not take into account the duration of each 

activity or the time elapsed between each two of them, but only their relative order. 
We will abuse notation and omit the associated app and its inputs when it is irrelevant 
or clear from context.

Finally, we will denote by len(β) the length of signature β, defined as the number 
of activities in the series.

QQ 5.2.2.2. Differential Signatures

We are interested in analyzing the differences between two observed behaviors 
given by their respective behavioral signatures. We approach this problem as one 
of string-to-string correction, where differences are represented as the minimum 
number of edit operations needed to transform one signature into the other. Given an 
behavioral signature β = s1, s2, ..., sn, we define the next three families of signature 
transformation operators (STO):

• Insa
i (β) = hs1, ..., si , a, si +1, ... , sni        ∀a ∈ A,       ∀i ∈ [1, n]

• Deli (β) = hs1, ..., si−1, si+1, ..., sni                ∀si ∈ A,       ∀i ∈ [1, n]

• Suba
i (β) = hs1, ..., si−1, a, si +1, ..., sni	 ∀a ∈ A,      ∀i ∈ [1, n]

Let

				    ( )=


O Ins  U Del  U Suba a
i i i

i,a
	 (5.5)
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be the set of all possible STOs. Given two behavioral signatures β1 and β2, we  
define the differential signature ∆(β1, β2) as an ordered sequence of STOs:

			   ∆(β1, β2) = ho1, o2, ... , oki	 oi ∈ O	 (5.6)

such that

			   ok ◦ ok −1 ◦ ··· ◦ o1(β1) = β2	 (5.7)

where oi ◦ oj denotes the composition of STOs oi and oj . In other words, the 
differential signature ∆(β1, β2) provides a sequence of insertions, deletions and 
substitutions that transforms β1 into β2. Note that, in general, ∆(β1, β2) ≠ ∆(β2, β1).

For the purposes of this work, we are interested in minimal differential signatures, 
i.e., sequences of minimum length. The most straightforward way to compute the 
minimal differential signature is by computing the Levenshtein distance (also known 
as edit distance) between β1 and β2 assuming that all operators have equal cost 
[Kumazawa and Tamai, 2011]. This computation returns not only the distance, but 
also the optimal differential signature.

QQ 5.2.3. Analyzing Differential Signatures

Let

		  ( ) ( )1
1' = Ψ = ψ ψ ⋅ ⋅ ⋅ Ψ  o or r -1c c c

r r -1 		  (5.8)

be the app resulting after the sequential application of FIOs Ψ1, ..., Ψr to components 
c1, ..., cr of app P. Let β[P] and β[ψ(P)] be the behavioral signatures obtained after 
executing P and Ψ(P) under the same conditions,1 and let ∆(β[P], β[ψ(P)]) be their 
differential signature. The analysis model used in this work is based on deducing 
properties of P from the presence or absence of certain patterns in ∆(β[P], β[ψ(P)]) 
and the properties of the FIO ψ. We next describe these two elements in turn.

Note than Ψ denotes a single FIO operating on a given component and ψ a 
number of of FIOs operating on a collection of components of an app P.

QQ 5.2.3.1. FIO Classes

We identify two broad classes of FIOs:

●● A FIO Ψci is said to be indistinguishable if ∆(β[P], β[Ψci(P)]) = Ø for all apps 
P containing component ci. In other words, a FIO is indistinguishable if it 
does not affect the execution flow of any app and, therefore, the behavioral 
signatures before and after applying it coincide.

1 That is, the same sequence of user inputs and contexts.
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●● A FIO Ψci is said to be distinguishable if ∆(β[P], β[ψ(P)]) ≠ Ø for all apps 
P containing component ci. Thus, distinguishable FIOs always manifest as 
nonempty differential signatures.

In what follows, the predicate ind(Ψci) models this property:

			   ( ) true if is indistinguishable
false otherwise

 Ψ
Ψ = 



 
ind

i
i

c
c      

  
	 (5.9)

QQ 5.2.3.2. Properties of Differential Signatures

Patterns in differential signatures will be modeled as first-order logical predicates 
upon which Boolean formulae can be defined. Thus, analyzing a differential signature 
reduces to evaluating a number of Boolean formulae linked to properties of the app 
and the FIO, i.e.:

		  P has property x ⇐⇒ Φx (Ψ, ∆(β[P], β[Ψ(P)])) = true 	 (5.10)

We consider two basic predicates:

• equal(∆1, ∆2) = true iff ∆1 = ∆2, where ∆1 and ∆2 are differential signatures.

Note that the empty set is a valid differential signature.

• contains(∆, o) = true  iff ∆ = ho1, o2, ... , oki   and ∃ oj ∈ ∆ such that oj = o.

Standard symbols will be used for Boolean formulae, including quantifiers (∃, 
∀), negation (¬), conjunction (∧), disjunction (∨), etc.

QQ 5.2.3.3. Examples

We next illustrate the concepts introduced above through a number of examples.

Example 1. Assume that cicon is an icon image used by an app P in its user 
interface. Modifying some pixels of such icon, or even replacing it by another valid 
icon does not affect at all the execution flow of P. If nonetheless the icon is replaced 
and the modified app behaves different from the original app under exactly the same 
conditions, it can be deduced that the original icon contained some functionality, 
such as e.g., a piece of compiled code masqueraded as an icon. This intuition can be 
generalized through the following rule (hidden functionality in component, or HFC):

		  RHFC : c ∈ P contains hidden functionality ⇐⇒

		  ind(Ψc) ∧ ¬equal(∆(β[P], β[Ψc (P)]), Ø)

Example 2. A more specific case of the situation discussed above occurs when 
modifications on a component c result in the absence of a dynamic loading action, 
which are used to load code pieces into memory. In such a case, it may be possible 
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that c contains hidden code that is dynamically loaded. The following rule captures

this:

RCDC : c ∈ P contains dynamic code ⇐⇒

	 ind(Ψc) ∧ ∃ i : contains (∆(β[P], β[Ψc (P)]), Deli ), si = dex_load	 (5.11)

Example 3. Let v be a variable such that their content has no influence on the 
program flow. For example, v could be a string containing an error message which 
may be displayed at some point. Such strings have been broadly used in existing 
malware to hide URLs that point to services from where the malware can download 
further code, receive instructions, send data, etc. To avoid detection, the string is 
often obfuscated and the URL is only revealed at execution time after applying some 
transformations. Thus, any modification on the string such that the URL is damaged 
will likely result on the impossibility of establishing a connection. The following rule 
captures this intuition:

			   RURL : v ∈ P contains an URL  ⇐⇒

		  ind(Ψv) ∧ ∃ i : contains (∆(β[P], β[ψv (P)]), Deli), si = net	
(5.12)

Example 4. Similarly to the cases discussed above, it may be possible to find 
out whether a component c leaks information through a number of sensors (e.g., 
accelerometer, GPS, etc.) if, after modifying it, the differential signature lacks an 
access to such a sensor and a network connection:

		  RSDL : c ∈ P leaks sensor data ⇐⇒ ind(Ψc) ∧

		  ∃ i1 : contains(∆(β[P], β[Ψc (P)]), Deli) ∨	 (5.13)

		  ∃ i2 : contains(∆(β[P], β[Ψc (P)]), Deli) ∨

	              .

	              

.

		

.

		

∧ ∃ j : contains(∆(β[P], β[Ψc (P)]), Delj)

where si1 = accelerometer, si1 = gps, and sj = network

QQ 5.3. ALTERDROID: DIFFERENTIAL FAULT ANALYSIS  
      OF OBFUSCATED APPS

In this section we describe Alterdroid, our approach to study obfuscated malware 
code based on the differential fault analysis model discussed in the previous section. 
The high level architecture of Alterdroid is shown in Figure 5.1. There are two 
differentiated major blocks. The first one generates a number of fault-injected apps. 








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This process is carried out by fi rst extracting all app components and identifying 
those of interest (CoI), i.e., those suspicious of containing hidden functionality. An 
iterative process then selects candidate CoI and injects faults into them. Both the 
modifi ed and the unmodifi ed components are then repackaged together into a new 
app. The second block generates stimuli for both apps (user inputs and context) and 
executes them, generating a pair of behavioral signatures. The differential signature is 
then computed and matched against a database of patterns to identify the presence of 
hidden functionality.

Figure 5.1

ALTERDROID ARCHITECTURE

Source: Own elaboration.
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We next provide a detailed description of the key modules of Alterdroid and the 
current prototype implementation.

 Q 5.3.1. Identifying Components of Interest

The fi rst step in the analysis of an app is to identify component of interest (CoI). 
Such components will be later fault injected according to some strategy in order to 
analyze the resulting behavior.

We say that a component c of type τ(c ) in an app P is of interest if it does not 
fi t a model Mτ(c) defi ned for all components of type τ(c). In our current version of 
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Alterdroid, models measure statistical features only, such as for example the expected 
entropy, the byte distribution, or the average size. Such features are computed from 
a dataset of components of the same type, such as text files, pictures, code, etc. 
For each model M, we assume a Boolean function test(c , M) that returns true 
if c complies with M, and false otherwise. For example, if M is a byte distribution, 
then test() could be a goodness-of-fit test (e.g., chi-square) between M and c’s byte 
distribution. More formally,

			   c ∈ CoI(P) ⇐⇒ test(c , Mτ(c)) = false 	 (5.14)

In our experience, such simple models suffice to spot the most common –and 
rather simple– obfuscation methods observed in smartphone malware, including 
code camouflaged as supplementary multimedia files, connection data hidden in 
text variables, etc.

Alterdroid also supports an exhaustive analysis mode in which some additional 
components may be considered CoI, even if they comply with their type model. In 
this mode, a component is considered CoI if it is CoI as defined above or there exists 
an indistinguishable operator for it. Formally

			   c ∈ CoI(P) ⇐⇒ (test(c, Mτ(c)) = false) or	
(5.15)

∃ Ψc  : ind(Ψc))

The rationale of this mode is to also check components for which we know in 
advance that alterations do not translate into noticeable differences. This is very 

Figure 5.2

ALGORITHM FOR OBTAINING COMPONENTS OF INTEREST FROM AN APP

Source: Own elaboration.
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useful to detect more sophisticated obfuscation methods that try to evade detection by 
carefully modifying the code so as it fits the statistical model of the component. As 
a side effect, however, the exhaustive analysis mode may end up with a large set of 
CoI.

The algorithm shown in Figure 5.2 describes the process discussed above to 
identify COI in Alterdroid.

QQ 5.3.2. Generating Fault-injected Apps

Components of interests identified in the previous stage are injected with faults 
and reassembled, together with the remaining app components, to generate a faulty 
app P'. This process can generate several fault-injected apps, as there are multiple 
ways of applying different FIOs to different components in the CoI set. In Alterdroid, 
fault-injected apps are generated one at a time and sent for differential analysis. If no 
evidence of malicious behavior is found in the differential analysis, the fault injection 
process is invoked again to generate a different faulty app, and so on.

Assume that CoI = {c1, c2, ... , cn} and that for each ci ∈ CoI there is a set of 
FIOs { }1 2

, ,...,= Ψ Ψ ΨF i i i

mi

c c c
i i i i  that can be applied to ci. Recall that FIOs can be quite 

specific and, therefore, not all FIOs are applicable to all components. All possible 
fault-injected apps can be generated by a naïve strategy that applies each FIO to each 
component one at a time:

		  ( ) ( ) ( ) ( )1

1 1 1
,..., ,..., ,...,Ψ Ψ Ψ Ψ   i n n

m mn

c c c c
i i i i 	 (5.16)

Thus, there are possible fault-injected 1∑n
jj=

m  apps, one for each possible 
component-FIO pair.

All FIOs in Alterdroid are indistinguishable. This allows for a more efficient fault 
injection process based on the fact that the composition of indistinguishable FIOs 
is an indistinguishable FIO. Consequently, if the same FIO is applied to multiple 
components and there is hidden functionality in just one of them, the resulting app 
will behave exactly as if just the malicious component would have been fault injected. 
The resulting fault injection process is as follows:

1. For each FIO Ψj, generate jP '  by applying it to all ci ∈ CoI

			    jP '  = ψj (P) = 1Ψ
j

c
i ◦ 2Ψ

j

c
i ◦· · ·◦Ψ n

j

c
i  (P) 	 (5.17)

   where Ψ ic
j  is the void operator if ψj is not applicable to ci. The resulting jP '  is  

           sent for differential analysis with respect to the original P.

2. If there is one jP '  such that the differential analysis spots malicious behavior, 
the component responsible for it can be identified by searching over all ci ∈ CoI with 
just the corresponding FIO Ψj . This process can be done in logarithmic time by 
ordering all components and recursively applying ψj to half of them, rather than in 
linear time by just applying ψj to each ci ∈ CoI in turn.
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The overall process, which is entwined with the differential analysis stage 
discussed later, is summarized in the algorithm shown in Figure 5.3. Note that in 
this description the process stops when just one malicious component is identified. 
Extending the algorithm to search for all of them is straightforward.

QQ 5.3.3. Applying Differential Analysis

Differential analysis between a candidate fault-injected app and the original 
app is carried out by following the model described in Sections 5.2.2 and 5.2.3. The 
process comprises the following steps:

1.	Generate an appropriate usage pattern u and context g [Rastogi et al., 2013a; 
Zheng et al., 2012] to feed both apps and extract their behavioral signatures, 

Figure 5.3

ALGORITHM FOR INJECTING FAULTS AND SEARCHING FOR MALICIOUS 
COMPONENTS AFTER DIFFERENTIAL ANALYSIS

Source: Own elaboration.
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β[P(u|g)] and β[P(u|g)]. Both the original and the fault-injected app are tested 
under the same conditions and using the same input. Note that this assumes 
that the execution of an app is completely deterministic.

2.	Generate the differential signature ∆(β[P(u|g)], β[P(u|g)]) from the behavioral 
signatures obtained above.

3.	Apply sequentially all rules Ri over ∆(β[P(u|g)], β[P(u|g)]) and return those that 
match.

The process is summarized in the algorithm given in Figure 5.4.

Figure 5.4

ALGORITHM DIFFANALYSIS FOR GENERATING DIFFERENTIAL SIGNATURES 
AND IDENTIFYING MATCHING RULES

Source: Own elaboration.

QQ 5.3.4. Implementation

Alterdroid is implemented over our Maldroid Lab described in Chapter 3. App 
components are extracted and later on (after fault injection) repackaged using our static 
analysis component. We then generate common sequences of events and execute 
each app dynamically. In order to generate behavioral signatures, Alterdroid monitors 
the execution of the following different activities: crypto, netopen, netread, netwrite, 
fileopen, fileread, filewrite, sms, call, leak, and dexload.

Our prototype allows performing analysis tasks in parallel. We presently limit 
our implementation to a small number of CoI models, FIO operators, and differential 
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matching operators. Nonetheless, our architecture allows security experts to furthe 
extend this and configure their own operators based on their experience.

QQ 5.3.4.1. CoI Models

Alterdroid currently supports the following models for identifying CoIs:

●● EXEFileMatch. This model analyzes components of type Dalvik Executable 
Format (DEXFileMatch), Application Package file format (APKFileMatch), and 
Executable and Linkable Format (ELFFileMatch), i.e., τ(c) = hDEX, APK, ELFi. 
The model defined for these components is based on the magic number 
defined in the header of the file.

●● ImgFileMatch. This model analyzes components of type picture, such as 
PNG, JPG, or GIF images, i.e., τ(c) = hPNG , · · · , JPGi. This model is based 
on the magic number defined in the file header, similarly to the model above.

●● EncryptedOrCompressedMatch. This model matches any file whose entropy, 
measured at the byte level, exceeds a given threshold. In such a case, the 
file is considered to contain random or encrypted information and, therefore, 
is selected for fault analysis. We set the current threshold to 3.9. Such value was 
chosen after measuring the entropy of several files before and after being 
encrypted with DES.

●● ExtensionMismatch. This model identifies files such that their magic numbers do 
not match the file extension. For instance, we found several APK files with DB 

FIO Type Targeted CoIs ind

GenericFMutation Any file

ImgExtensionMismatch 
EncryptedOrCompressed 
APKFExtensionMismatch

Ö
–
Ö

ImgFileChange Any image ImgFileMatch Ö

ScriptFileChange Non-compiled program TextScriptMatch X

APKFileChange Android app APKFileMatch X

DEXFileChange Dalvik executable DEXFileMatch X

ELFFileChange Executable and linkable ELFFileMatch X

Table 5.1 

FIOS IMPLEMENTED IN ALTERDROID’S CURRENT VERSION AND THEIR 
CORRESPONDING COIS

Source: Own elaboration.
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extension and several encrypted files with JPG extension. We currently support 
two submodels: ImgFileExtensionMismatch and APKFileExtensionMismatch.

●● TextScriptMatch. This model analyzes components that match any ASCII text 
executable file, i.e., τ(c) = Script. This model is also based on the magic 
number defined in the file header.

All CoIs described above are implemented in Python. The set can be easily 
extended to incorporate additional models by simply adding the corresponding 
Python module.

QQ 5.3.4.2. Fault Injection Operators

FIOs in Alterdroid are strongly typed. This avoids syntactic or unexpected errors 
during the execution of the modified app. For instance, if a generic FIO modifies 
randomly chosen bits of a JPEG without considering the file structure, it may end 
up with a malformed picture that could cause the app to crash during execution. We 
currently support the next list of FIOs (see also Table 5.1):

●● ImgFileChange. This FIO changes a number of pixels of image file 
components. The FIO type matches components of type ImgFileMatch. This 
is an indistinguishable FIO due to the nature of the changes and the type of 
compo- nent. Thus, although the image resulting from the injection will be 
different, this change should not alter the app execution flow.

●● EXEFileChange. This FIO replaces the file with a well-formed APK, DEX or 
ELF file that effectively does nothing, equivalent to a NOP (no-operation) 
injection. This change should cause a different behavior in the resulting 
differential signature as the former EXE file has been replaced. Thus, this 
FIO is distinguishable.

●● ScriptFileChange. This FIO replaces the file with a valid NOP script. It 
only matches components of type ScriptFileChange. This FIO is also 
distinguishable.

●● GenericFileMutation. It randomly changes several bytes of a file. This FIO is 
applied when there is no information about the file type and its structure, 
e.g., when injecting faults to encrypted files (EncryptedOrCompressedMatch)  
or when the file extension does not match its magic number ExtensionMismatch. 
This FIO might be distinguishable or indistinguishable, depending on the file 
type.

As in the case of CoI models, FIOs are implemented in Python and provided 
with Alterdroid’s current version. Again, the set can be easily extended with additional 
FIOs by adding the corresponding Python module.
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Table 5.2 

BASIC INDISTINGUISHABLE DIFFERENTIAL  RULES IMPLEMENTED  
IN ALTERDROID

Source: Own elaboration.

Name Contains Rule

RNAC

Net. Activity Component ind(Ψc) ∧ ∃ i1 : contains(∆(β[P], β[Ψc (P)]), Deli1 =netopen)
         ∨ ∃ i2 : contains(∆(β[P], β[Ψc (P)]), Deli1 =netread)
         ∨ ∃ i3 : contains(∆(β[P], β[Ψc (P)]), Deli2 =netwrite)

RFAC

File Activity Component ind(Ψc) ∧ ∃ i1 : contains(∆(β[P], β[Ψc (P)]), Deli1 =fileopen)
         ∨ ∃ i2 : contains(∆(β[P], β[Ψc (P)]), Deli1 =fileread)
         ∨ ∃ i3 : contains(∆(β[P], β[Ψc (P)]), Deli2 =filewrite)

RDLC Data Leakage Component ind(Ψc) ∧ ∃ i : contains(∆(β[P], β[Ψc (P)]), Deli =leak)

RSAC SMS Activity Component ind(Ψc) ∧ ∃ i : contains(∆(β[P], β[Ψc (P)]), Deli =sms)

RPAC Payload Activity Component ind(Ψc) ∧ ∃ i : contains(∆(β[P], β[Ψc (P)]), Deli =dexload)

RUPC

Update Payload Component ind(Ψc) ∧ ∃ i1 : contains(∆(β[P], β[Ψc (P)]), Deli1 =netread)
ind(Ψc) ∧ ∃ i : contains(∆(β[P], β[Ψc (P)]), Deli =dexload)

RCAC Crypto Activity Component ind(Ψc) ∧ ∃ i : contains(∆(β[P], β[Ψc (P)]), Deli =crypto)

RCPC

Crypto Payload Component ind(Ψc) ∧ ∃ i1 : contains(∆(β[P], β[Ψc (P)]), Deli1 =crypto)
ind(Ψc) ∧ ∃ i : contains(∆(β[P], β[Ψc (P)]), Deli =dexload)

RHFC Hidden Functionality Component ind(Ψc) ∧ ¬equal(∆(β[P], β[Ψc (P)]), Ø)

QQ 5.3.4.3. Differential Rules

The basic set of differential rules incorporated in Alterdroid comprises the  
9 rules shown in Table 5.2. They all apply to indistinguishable FIOs and cover  
the most common examples of obfuscated functionalities: network activity, file activity, 
data leakage, SMS activity, hidden payloads, update attacks, cryptographic 
activity, cryptographic payloads, and generic hidden functionality.

To reduce the complexity of the search space, all basic rules apply to 
indistinguishable FIOs. However, for the sake of completeness our implementation 
incorporates several distinguishable FIOs, and new rules can be further added 
to match them. For instance, given an app that incorporates a DEX program used to 
enhance photos taken from the camera, we can use a rule to check whether this CoI 
actually does just that or not.

Thus, if after applying a FIO over this component the differential signature 
shows, for instance, changes in network activity, we may suspect that the CoI 
contained other functionality piggybacked on the DEX.

Formally, given DEXFileMach ∈ CoIs and its corresponding distinguishable FIO 
(i.e., DEXFileChange), the following rule captures this intuition:

		  RDEX : dex ∈ P contains NET activity ⇐⇒
		  ¬ind(Ψdex) ∧ ∃ i : contains(∆(σ[P], σ[Ψdex (P)]), Deli =net) 	

(5.18)
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Note that we limit our implementation to a small number of indistinguishable 
FIOs and matching rules. Nonetheless, our architecture allows security experts to 
further extend this and configure their own FIOs and rules based on their experience.

QQ 5.4. EVALUATION

We next report a number of experimental results obtained with our prototype 
implementation of Alterdroid. These results illustrate how our system can be used 
by market operators and security analysts to facilitate the analysis of complex 
obfuscated mobile malware. We first present the results of testing Alterdroid 
against two datasets of smartphone malware samples found in the wild, including 
a performance analysis of the entire differential fault analysis process. We finally 
discuss in more detail three representative case studies.

QQ 5.4.1. Analytical Results

We tested Alterdroid against a dataset composed of around 6K apps retrieved 
from Aptoide (AP) alternative market and VirusShare (VS) repository (see Chapter 3 
–Section 3.5.2). Every app was executed over a time span of 120 seconds– current 
malware is generally quite eager to run their payloads promptly [Suarez-Tangil et al., 
2014a], so this time suffices to activate most malicious payloads. Table 5.3 provides  
a summary of the obtained experimental results, including the average time required 
for analyzing one app (this includes the time for extracting CoIs and injecting faults 
into them.

When analyzing the distribution of CoIs throughout the apps in our datasets, 
we observed that some apps have a fairly large amount of CoIs (see Figure 5.5). For 
instance, we can find some apps with over 5K images (ImgFileMatch). Conversely, 
we could find many apps with fewer CoIs. On average, our experiments show that 
there are about 146 and 284 CoIs per app in VS and AP respectively, as shown in 
Table 5.3. Note that the number of CoIs from AP is twice the number of CoIs from 
VS. In any case, the amount of potentially malicious components is significant and 
the time required to analyze each of them manually is shown affordable.

Finally, our results report a number of apps matching against the rules 
implemented in our prototype. For instance, we could identify 220 apps reporting 
components containing SMS functionality (RSAC) from all 2.9K samples in VirusShare. 
Conversely, we could not find any RSAC rule in Aptoide (see Table 5.3). One alarming

result is that we found a significant number of apps, i.e.: 669, reporting 
components containing data leakage functionality (RDLC) in Aptoide.

One interesting aspect of Alterdroid is that it can inject all selected FIOs at once.
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VirusShare (VS) Aptoide (AP)

Su
m

.

No. Apps 2 913 2 994

Avg. No. CoIs 145.6 284.4

Avg. No. FIOs 138.3 273.5

C
oI

s

ImageFileMatch 3279 5215

EncryptedOrCompressed 16 687 35 293

ImageExtensionMismatch 5 771 5 246

DEXFileMatch 2 827 2 995

APKFileMatch 1 087 58

APKExtensionMismatch 517 39

FI
O

s ImageFile 397 248 813 754

GenericMutationFile 5 714 5 237

Ru
le

s

No. RFAC 2 802 2 962

No. RNAC 2 773 2 929

No. RDLC 1 971 669

No. RSAC 220 0

– Avg. Overhead 584.51 s. 666.67 s.

Table 5.3 

ANALYSIS OF THE VS AND AP DATASETS

Note: The number of CoIs and FIOs is given on average per app. The number of matches (NAC and 
DLC) is given in absolute value, and the overhead is on average per app 

Source: Own elaboration.

Furthermore, Alterdroid allows performing several analyses concurrently. In 
fact, our current experimental setup allows the execution of 15 instances of Android 
in parallel. Thus, this simple optimization strategy reduces the average execution 
time per app at 32.62 and 44.44 seconds for VS and AP, respectively.

One challenge we faced when analyzing apps from Aptoide is identifying 
whether some behaviors were malicious or not. Many legitimate apps are not fully 
malicious but carry out activities that may constitute a privacy risk for some users. 
During our analysis, most such suspicious behaviors were related with accessing 
local data and exfiltrating it over the network. We did not analyze in detail whether 
this was an intrinsic behavior of the app caused by the fault-injection process, for 
example because the app contained an integrity check. Nonetheless, this indicates 
that the app was behaving suspiciously and therefore it is worth analyzing.
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 Q 5.4.2. Performance

The time taken by the entire differential analysis process depends on the 
number of different fault-injected apps to be explored, the time required to generate 
each of them, and the time taken by the differential analysis over each one:

   t = nfaultApps · tgenFaultApp · tdiffAnalysis (5.19) 

As for the fi rst term, if |CoIs| = n and there are m FIOs, the fault injection 
algorithm shown in Figure 5.3 generates O (m + log n) different fault-injected apps to 
be analyzed. Each one of those apps has been injected with at most n faults, one per 
component. The time tgenFaultApp required to inject one fault depends on the specifi c 
FIO, although most of them run in constant time or are linear in the size of the 
component to be fault-injected. Finally, differential analysis requires:

 ● Executing the two apps. In Alterdroid this is done by a component which 
admits as input the time texec during which the app will be executed.

 ● Obtaining the differential signature, which reduces to computing an edit 
distance between the two activity signatures. If these signatures have lengths 
h1 and h2, then this process takes O (h1 · h2) steps.

 ● Pattern-matching the differential signature with the rule-set, which takes O 
(|R|).

Apart from texec, the two most critical parameters affecting the total analysis time are 
n and m, as defi ned above (i.e., number of CoIs and FIOs, respectively). Fig. 5.6 shows 

Figure 5.5

DISTRIBUTION OF THE NUMBER OF IMAGEFILEMATCH IN 
THE VIRUSSHARE (VS) AND APTOIDE (AP) DATASETS

Source: Own elaboration.
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the average execution time of the SearchComponent identification algorithm  
at the core of Alterdroid for different values of n, m, and texec. For example, the analysis 
of an app containing 100 CoIs for which 10 FIOs are applicable, and executing each 
fault-injected app 120 s, will require around 5 minutes. The time increases to 2.5 
hours and 4.5 hours if the app contains 1K or 10K CoIs, respectively. If we decrease 
the dynamic execution time of each app to 60 s, these figures reduce to 2.7 minutes, 
1.3 hours, and 2.9 hours, respectively.

Figure 5.6

AVERAGE EXECUTION TIME OF THE SEARCHCOMPONENT ALGORITHM 
FOR DIFFERENT NUMBER OF FIOS AND DYNAMIC ANALYSIS TIME

Source: Own elaboration.
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QQ 5.4.3. Case Studies

We next illustrate how Alterdroid can be used by market operators and 
security analysts to facilitate the analysis of complex obfuscated mobile malware. We 
present three case studies of malicious apps found in Android markets: GingerBread, 
DroidKungFu, and AnserverBot. These three samples constitute representative cases 
as they incorporate obfuscation techniques of various degrees of sophistication, as well as 
some malicious features common in malware for smart devices (see Chapter 2) such 
as aggressive privilege escalation exploits, C&C-like functions and information leakage. 
Figure 5.7 summarizes the behavior of the malware that will be discussed throughout 
this section. Subsequently, we evaluate the performance of our approach over a number 
of malware samples found in the wild [Zhou and Jiang, 2012].
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 Q 5.4.3.1. DroidKungFu

DroidKungFu (DKF) is one of the major Android malware outbreaks. DKF’s 
main goal is to collect a variety of information on the infected device, including the 
IMEI number, phone model, as well as the Android OS version.

DKF is mostly distributed through open or alternative markets through 
repackaging, i.e., by piggybacking the malicious payload into a variety of legitimate 
appli- cations. Apps infected with DKF are distributed together with a root exploit 
hidden within the app’s assets, namely Rage Against the Cage (RAC). In order to 
hinder static analysis, this encrypted payload is only decrypted at runtime.

In this case study, we analyze one DKF variant by fi rst extracting its components 
of interest and further applying fault injection and differential analysis over them. We 
observed that the sample contained about 170 resource fi les, including PNG (153 
fi les), MP3 (6 fi les), XML (2 fi les), DEX (1 fi le) and RSA key fi le, among others. All 
these assets are, in principle, suspected of containing obfuscated functionality. We
note here that applying stand-alone static detection techniques would not be enough 
to identify malicious payloads without requiring human-driven inspections. This is 
due to the way that DKF obfuscates its core components. Specifi cally, each variant 
uses a different encryption key hidden throughout the code. Even when we attempt 
to apply stand-alone dynamic analysis, we observe that this technique only gives a 
rough notion of the holistic behavior of the app. In fact, the behavior introduced by 

Figure 5.7

MALWARE’S ACTIVITY DURING A TIME SPAN OF 120 SECONDS. 
THE X-AXIS REPRESENT THE SEQUENCE OF ACTIVITIES OBSERVED 
DURING THE EXECUTION

Source: Own elaboration.
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DKF is strongly entwined with the original code of the repackaged app, in such a way 
that some of its key activities, such as for instance network connections, might be 
easily seen as normal.

The above-mentioned variant of DKF was fed to Alterdroid. It first identified 
a number of components of interest, being in all the cases assets associated with 
the app. Various faults were then injected into such components, and the resulting 
app was executed and compared with the original one. Figure 5.7 (DroidKungFu) 
graphically shows the differential behavior reported by Alterdroid when analyzing 
such fault-injected app. Activities launched by the original piggybacked app 
correspond to the full plot, while the behavior after fault injection is given just by 
the green (legitimate app) and red spots (DKF). In this particular case, a text file 
pertaining to the assets was randomly modified. This file was later identified as the 
component containing the RAC exploit. Our analysis shows that disabling the access 
to such a functionality stops the malware from: establishing a network connection 
(netopen, netwrite), leaking some information through it (leak), and later performing 
some Input-Output (I/O) operations (fileread). These findings agree with previous 
reports about DKF, including those undertaken by Jiang and Zhou [Zhou and Jiang, 
2012].

QQ 5.4.3.2. AnserverBot

Our second case study deals with AnserverBot (ASB), a specimen similar to 
the first versions of DKF in terms of sophistication and distribution strategy [Suarez-
Tangil et al., 2014c]. However, ASB introduces an update component that allows it to 
retrieve at runtime secondary payloads and the latest C&C URLs from public blogs. 
Additionally, it also incorporates advanced anti-analysis methods to avoid detection. 
On the one hand, it introduces an integrity component to check if the app has been 
modified. On the other hand, it piggybacks the main payload in native runnable code. 
Furthermore, ASB obfuscates its internal classes and methods, and partitions the 
main payload in two different parts: while one of them will be installed, the other one 
is dynamically loaded without actually being installed. More specifically, ASB hides 
one of these components into the assets folder under any of the following names: 
anservera.db or anserverb.db. Furthermore, ASB inserts a new component named 
com.sec.android.provider.drm that executes a root exploit known as Asroot [Grace 
et al., 2012b].

As in the case of DKF, we observed that all ASB samples contain a non-
negligible amount of candidate components to be analyzed. The specimen we deal 
with in this case study contained about 78 resource files, including 54 image files, 
one database, one DEX file, and a ZIP file, to name a few. After a few iterations of the 
fault injection process Alterdroid succeeds in positively identifying the actual payload 
within the DB file, as well as the behavior related to such component. More precisely, 
this CoI is triggered after observing a mismatch between the magic number of the 
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file (APK) and the actual extension of the data base (DB). In fact, when a fault is 
injected over the database, the ASB’s integrity check naturally aborts its execution 
and produces a result similar to that expected from the original app. Figure 5.7 
(AnserverBot) graphically shows the exhibited differential behavior. As observed, 
ASB first establishes a network connection (netopen and netwrite) after loading 
the main payload (fileread operations followed by dexload). After that, it keeps on 
reading data that is finally leaked out. Interestingly, the legitimate application uses 
the network as well, although it does not leak any personal information.

QQ 5.4.3.3. GingerMaster

GingerMaster (GM) was the first known Android malware to use root exploits for 
privilege escalation on Android 2.3. GM’s main goal is to exfiltrate private information 
such as the device ID (IMEI, MSI, etc.) or the contact list stored in the phone. GM 
is generally repackaged with a root exploit known as GingerBreak [Grace et al., 
2012b], which is stored as a PNG and a JPG asset file. Right after infecting the 
device, GM connects to the C&C server and fetches new payloads.

We analyzed a GM sample containing around 61 asset resources, 30 of which 
were pictures in different formats. From those 30 pictures, Alterdroid identified 4 as 
strongly suspicious. (Actually, a detailed analysis shows that they are malformed 
PNGs and that they also contain several ASCII text scripts.) Alterdroid was also able 
to identify that such malformed images files play a key role in triggering the payloads 
piggybacked into the legitimate app, including the ASCII text scripts.

Figure 5.7 (GingerMaster) shows the differential behavior obtained when one 
of such images is fault injected. Our analysis shows that GM starts the execution of 
a service that performs some IO operations (file-read and file-write) before finally 
leaking private information through the network (net-write and leak). Again, even when 
the malicious components are hidden, Alterdroid proved to be able to discriminate 
them and facilitate the identification of the underlying malicious behavior.

QQ 5.5. CONCLUSIONS

Today’s mobile security requires new approaches to protect users’ devices 
as traditional detection techniques are overwhelmed by the sophistication and 
obfuscation of current mobile malware [Leavitt, 2013]. Furthermore, the current 
panorama and trends suggest that automated malware detection and analysis is a 
major requirement for apps review.

Differential fault analysis in the way implemented by Alterdroid is a powerful and 
novel dynamic analysis technique that can identify potentially malicious components 
hidden within an app package. Additionally, empowering dynamic analysis with a 
fault injection approach can be used to differentiate the ”gray“ behavior from the 
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legitimate when analyzing grayware. This is a good complement to static analysis 
tools, more focused on inspecting code components but which could well miss 
pieces of code hidden in data objects or just obfuscated.

Alterdroid is thought as a general purpose framework with a very versatile 
architecture that can be extended in a number of ways. In this chapter, we have 
described this architecture together with a formal notion of differential fault analysis. 
Additionally, we present an open-source engineered version Alterdroid striving 
on offering an automated tool for malware analysis. Furthermore, based on our 
experimental results, we reduced from 6K apps to 2.6K apps suspicious of containing 
data leakage functionality. In addition, performance figures are given and discussed, 
showing the feasibility of such a novel approach to differential analysis. Even though 
Alterdroid is presently a perfectly functional proof of concept, its open architecture 
and available open sources can make it the basis for further research work and 
production/professional software.

Although current malware is relatively naïve, more sophisticated obfuscation 
techniques –particularly in code– are starting to materialize. Cryptography is 
one recurrent technique used by malware developers. Nonetheless, we believe 
that malware could be already using other advanced techniques for hiding their 
components such as, for instance, Steganography. This technique would allow 
them to conceal their malicious components within other objects of the code. 
This is specially critical when these components are hidden within distinguishable 
components.
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QQ 6.1. INTRODUCTION

Many security issues can be essentially reduced to the problem of separating 
malicious from non-malicious activities. Such a reformulation has turned out to be 
valuable for many classic computer security problems, including detecting network 
intrusions, filtering out spam messages, or identifying fraudulent transactions. But, 
in general, defining in a precise and computationally useful way what is harmless or 
what is offensive is often too complex. To overcome these difficulties, many solutions 
to such problems have traditionally adopted a machine learning approach, notably 
through the use of classifiers to automatically derive models of good and/or bad 
behavior that could be later used to identify the occurrence of malicious activities.

Anomaly-based detection strategies have proven particularly suitable for 
scenarios where the main goal is to separate “self” (i.e., normal, presumably 
harmless behavior) from “non-self” (i.e., anomalous and, therefore, potentially 
hostile activities). In this setting, one often uses a dataset of self instances to obtain 
a model of normal behavior. In detection mode, each sample that does not fit the 
model is labelled as anomalous. This notion has been thoroughly explored over  
the last two decades and applied to multiple domains in the security arena [Chandola 
et al., 2009; Estévez-Tapiador et al., 2004; Garcia-Teodoro et al., 2009].

More recently, many security problems related to smartphone platforms have 
been approached with anomaly-based schemes (see, e.g., [Burguera et al., 2011; 
Dini et al., 2012; Feizollah et al., 2014; Rosen et al., 2013; Shabtai et al., 2012]). One 
illustrative example is found in the field of continuous –or implicit– authentication 
through behavioral biometrics [De Luca et al., 2012; Jakobsson et al., 2009; Shi et 
al., 2011]. The key idea here is to equip the device with the capability of continuously 
authenticate the user by monitoring a number of behavioral features, such as for 
example the gait –measured through the built-in accelerometer and gyroscope–, 
the keystroke dynamics, the usage patterns of apps, etc. These schemes rely on 
a model learned from user behaviors to identify anomalies that, for example, could 
mean that the device is mislaid, in which case it should lock itself and request a 
password.

Proposals for detecting malware in smartphones have also made extensive use 
of anomaly detection approaches. Most schemes are built upon the hypothesis that 
malicious apps somehow behave differently from goodware. The common practice 
consists of monitoring a number of features for non-malicious apps, such as for 
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example the amount of CPU used, network traffic generated, system/API calls made, 
permissions requested, etc. These traces are then used to train models of normality 
that, again, can be used to spot suspicious behavior. Modeling app behavior in this 
way is particularly useful in two scenarios. The first one is related to the problem of 
repackaged apps, which constitutes one of the most common distribution strategies 
for smartphone malware. In this case, the malicious payload is piggybacked into a 
popular app and distributed through alternative markets. Detecting repackaged apps 
is a challenging problem, in particular when the payload is obfuscated or dynamically 
retrieved at runtime. The second problem is thwarting the so-called grayware, i.e., 
apps that are not fully malicious but that entail security and/or privacy risks of which 
the user may not be fully aware. For instance, an increasing number of apps access 
user-sensitive information such as locations frequently visited, contacts, etc., and 
send it out of the phone for obscure purposes [Kranz et al., 2013]. As users find it 
difficult to define their privacy preferences in a precise way, automatic methods to tell 
apart good from bad activities constitute a promising approach.

Essentially all machine learning-based anomaly detection solutions can be 
broken down into the following functional blocks:

●● Data acquisition. Activity traces are required both for (re-)training the model 
of normality and in detection mode. The nature of the data collected varies 
across applications and may include events such as system calls, network 
activities, user-generated inputs, etc.

●● Feature extraction. Machine learning algorithms require data to be expressed 
in particular formats, commonly in the form of feature vectors. A number of 
features are extracted from the acquired activity traces during a preprocessing 
stage. The complexity of such preprocessing depends on the problem and 
ranges from computationally straightforward procedures (e.g., obtaining 
simple statistics from the data) to more resource intensive transformations.

●● Training. A representative set of feature vectors is used to train a model that 
captures the underlying notion of normality. This process may be done offline, 
in which case periodic re-training is often necessary in order to adapt the 
model to drifts in behavioral patterns, or else constantly as new data arrives.

●● Detection. Once a behavioral model is available, it is used along with a 
similarity function to obtain an anomaly score for each observed feature 
vector. This process is often carried out in real time and requires constant 
data acquisition and feature extraction.

All the functions described above can be quite demanding –particularly if they 
must operate constantly– and it is debatable whether they can be afforded in energy- 
constrained devices with limited computational capabilities. As a consequence, a 
number of recent works (see, e.g., [Barbera et al., 2013; Portokalidis et al., 2010; 
Zonouz et al., 2013]) have suggested externalizing some of these tasks to dedicated 
servers in the cloud or to other mobile devices nearby [Yu et al., 2013]. However, 
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these proposals do not provide a detailed analysis of the cost in terms of energy 
consumption.

Although off-loading computation seems intuitively advantageous, such a 
strategy has an implicit trade-off between the energy savings resulting from not 
performing on-platform computations and the costs involved in data exchanges 
over the network. Intermediate strategies are also possible, such as for example 
off-loading the training stage only and performing detection locally, or externalizing 
everything but the data acquisition and preprocessing stages. Additionally, each 
plausible placement strategy has consequences in aspects other than energy 
consumption. For example, off-loaded detection may result in delays in detecting 
anomalous events, or even malfunctions if network connectivity is unavailable.

Intuition suggests that intensive monitoring is prohibitive for platforms such as 
the current generation of smartphones [Rachuri et al., 2014]. However, the energy 
consumption trade-offs among the various on-platform and externalized computation 
strategies are unclear. Several works (e.g., [Kumar and Lu, 2010; Namboodiri 
and Ghose, 2012; Tandel and Venkitachalam, 2013]) have addressed the issue of 
deciding whether to cloud is a better option than not to cloud for mobile systems. For 
example, in [Namboodiri and Ghose, 2012] it is shown that determining an energy 
efficient strategy is a complex task and require a fine characterization of the impact 
of several parameters, including the type of device and the application domain. Their 
approach focuses on three rather generic applications: word processing, multimedia, 
and gaming for both laptops and mobile devices. Authors conclude that “cloud-based 
applications consume more energy than non-cloud ones” when using platforms such 
as mobile devices. In contrast, other works such as [Tandel and Venkitachalam, 
2013] and [Kumar and Lu, 2010] show that offloading is generally profitable energy-
wise, particularly for intensive computation tasks that require relatively small amount 
of communications.

In this chapter, we address the problem discussed above and assess the 
energy-consumption trade-offs among different strategies for off-loading, or not, 
functional tasks in machine learning based anomaly detection systems. Our analysis 
is motivated by, and hence strongly biased towards, security applications of anomaly 
detectors, such as for example malware detection or behavioral authentication. 
Nevertheless, the majority of our experimental setting, results and conclusions are 
general and may be of interest to other domains where smartphone-based anomaly 
detectors are used (e.g., health monitoring applications [Kranz et al., 2013]).

In summary, our results confirm the intuition that externalized computation 
is, by far, the best option energy-wise. However, one rather surprising finding is 
that it is several orders of magnitude cheaper than on-platform computations, 
which suggests that networking is much more optimized than computation in such 
platforms. Furthermore, we have noticed substantial differences among the machine 
learning algorithms tested. Since some of them appear not to scale well for large 
feature vectors and/or datasets, developers should make careful choices when 
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opting for one algorithm or another. In addition, anomaly detectors are found to 
consume considerably more energy than popular apps such as games or online 
social networks, which motivates the need for more lightweight machine learning 
algorithms.

The rest of the chapter is organized as follows. Section 6.2 describes the 
experimental setting used in our work, including the platform used, the anomaly 
detectors tested and the experiments carried out. Empirical results are discussed 
in Section 6.3, and energy-consumption linear models are numerically derived for 
each separate function. Such models are used in Section 6.4 to analyze various off-
loading strategies and provide a comparative discussion. In Section 6.5 we illustrate 
the main findings discussed throughout the chapter using an anomaly-based 
detector of repackaged malware. Section 6.6 concludes the chapter by summarizing 
our contributions and main conclusions.

QQ 6.2. EXPERIMENTAL SETTING

In this section, we describe the experimental framework used for evaluating 
energy consumption in Android devices, including the machine learning algorithms 
evaluated, the tests carried out, and the tools and operational procedures used to 
measure power.

QQ 6.2.1. Machine Learning Algorithms

We have tested three machine learning algorithms that can be used as anomaly 
detectors. Our choosing of these particular schemes is motivated by the different 
computational approaches followed by each one of them, and also because they 
are representative of broad classes of machine learning strategies: decision trees 
[Quinlan, 1986], clustering [Fisher, 1987], and probabilistic approaches [Hastie et al., 
2005]. For completeness, we next provide an overview of each algorithm’s working 
principles.

●● J48 is a Java implementation of the classic C4.5 algorithm [Hastie et al., 2005]. 
The procedure builds a decision tree from a labelled training dataset using 
information gain (entropy) as a criterion to choose attributes. The algorithm 
starts with an empty tree and progressively grows nodes by choosing those 
attributes that most effectively split the dataset into subsets where one class 
dominates. This procedure is recursively repeated until reaching nodes where 
all instances belong to the same class [Hastie et al., 2005].

The resulting tree can be used as a classifier that outputs the class of future 
observations based on their attributes. The binary setting (i.e., two classes: 
normal and anomalous) is commonly used in anomaly detection problems, 
although it is perfectly possible to train a classifier with more a complex class 
structure.
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●● K-means is a clustering algorithm that groups data into k clusters and returns 
the geometric centroid of each one of them. Given a dataset composed of 
feature vectors D = {x1, ... , xn}, the algorithm searches for a partition of D into 
k clusters {s1, ... , sk} such that the within-cluster sum of squares
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is minimized, where µi is the geometric mean of the vectors in si.

When used in a supervised training setting, each centroid µi receives a 
class label derived from the labels of the samples associated with the 
corresponding cluster. Labelled centroids can be then used, together with a 
nearest neighbor classifier, to determine the class of an observation by simply 
assigning it to a cluster according to some distance. Clustering algorithms 
have been extensively used in anomaly detection, particularly in one-class 
settings where only normal training instances are available. In such cases, 
a sample is often labelled as anomalous if its sufficiently far away from its 
nearest centroid.

●● OCNB (One Class Naïve Bayes) [Hastie et al., 2005] is a supervised learning 
algorithm that has been successfully used in a wide range of applications. 
OCNB is often a very attractive solution because of its simplicity, efficiency 
and excellent performance. It uses the Bayes rule to estimate the probability 
that an instance x = (x1, ... , xm) belongs to class y as
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so the class with highest P (y|x) is predicted. (Note that P (x) is independent of 
the class and therefore can be omitted.) The naïvety comes from the assumption 
that in the underlying probabilistic model all the features are independent, and 
hence ( ) ( )

1=

=


| |
m

i
i

P x y P x y . The probabilities P (xi|y) are derived from a training set 

consisting of labelled instances for all possible classes. This is done by a simple 
counting procedure, often using some smoothing scheme to ensure that all terms 
appear with non-zero probability. The priors P (y) are often ignored.

In a one-class (OC) setting the training set consists exclusively of normal data. 
Since a profile of non-self behavior is not required, the detection is performed by 
simply comparing the probability of a sample being normal (or, equivalently, the 
anomaly score) to a threshold. Such a threshold can be adjusted to control the false 
and true positive rates, and the resulting ROC (Receiver Operating Characteristic) 
curve provides a way of measuring the detection quality.

QQ 6.2.2. Instrumentation

The experiments have been conducted in a Google Nexus One smartphone. 
Power consumption has been measured by applying a battery of tests involving 
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both computation and communication capabilities. Each test is an app containing 
some of the functionality present in a given anomaly detector, such as for example 
the training process or the detection stage. The app is loaded into the device and 
repeatedly executed using some provided configuration. The process is sequential, 
so only one execution is run at a time.

The device was previously instrumented with AppScope [Yoon et al., 2012] as 
described in Chapter 3. As mentioned before, AppScope provides the amount of 
energy consumed by an app in the form of several time series, each one associated 
with a component of the device (CPU, Wi-Fi, cellular, touchscreen, etc.). We restrict 
our measures to CPU for computations and Wi-Fi for communications, as our tests 
do not have a graphical user interface, do not require user interaction and, therefore, do 
not use any other component.

QQ 6.2.3. Energy Consumption Tests

The energy consumption tests were independently carried out over the four 
functional tasks described in Section 6.1 in order to obtain a separate consumption 
model for each anomaly detection component. With this aim in mind, we designed 
the following four families of tests:

1.	Data preprocessing. The underlying machine learning algorithm takes as 
input a dataset of behavioral patterns encoded in some specific format, 
often in the form of feature vectors. Obtaining such patterns may involve 
non-negligible computations, such as for example computing histograms, 
obtaining statistics, applying data transformations, etc. In our case, this stage 
consisted of processing a trace file where an ordered list of system calls 
executed by a monitored app was provided. The trace is sequentially read 
using a sliding window and a feature vector is computed for each window. 
The vector is then written into an Attribute-Relation File Format (ARFF) 
file, which will be later used for training or detection purposes. Overall, the 
preprocessing requires some on-platform computations and also reading and 
writing files. We used generic I/O Java components for this task, such as 
FileInputStream and BufferedReader.

2.	Training. The training process reads an ARFF dataset and builds a model of 
normal behavior according to some machine learning algorithm. We prepared 
three different subtests, one for each algorithm discussed above. We used an 
stripped version of the well known Weka [Hall et al., 2009] library for Android 
devices, as this implementation is reasonably optimized. Training involves 
a number of parameters that may influence the algorithm’s running time. In 
our case, each algorithm was provided with the configuration yielding optimal 
detection results as discussed in the previous section.

3.	Detection. This tests measures the amount of energy consumed by a 
constantly running detector. Again, we prepared one sub-test for each 
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machine learning algorithm and implemented the detector using the stripped 
version of Weka. Each detector is assumed to have the behavioral model 
already loaded, so the test only measures energy consumption associated 
with loading a test vector and deciding its class (normal or anomalous).

4.	Communications. In this test we measured the amount of energy consumed 
by sending and receiving data over a Wi-Fi connection. As the amount of 
data exchanged and the frequency of such exchanges may vary across 
operational scenarios, we focused on obtaining a model of energy consumed 
per exchanged byte. We identified three subtests here, depending on whether 
a secure (encrypted and authenticated) channel is necessary or not. The tests 
were implemented using standard Java libraries, such as HttpURLConnect 
and HttpsURLConnect for insecure and secure communications, respectively. 
Besides, we tested two different networking scenarios. In the first one, the 
detector communicates with a locally reachable device, which implies low 
network latency. For these cases we tested both open and WPA-protected 
Wi-Fi networks. In this case, the time required for a packet to travel from 
the device to the server and back (Round-Trip Time, RTT) is about 0.6 ms. 
In the second scenario, we assumed that the detector communicates with 
a device located reasonably far away in terms of network latency, such as 
for example in a cloud service accessible via Internet. In our experimental 
setting, the server is accessed via Internet using a WPA-protected Wi-Fi 
network with a network latency of around 31 ms.

Test Subtest No. Executions

Data preprocessing Preprocessing 30

Training
Training.J48
Training.K-means
Training.OCNB

30
30
30

Detection
Detection.J48
Detection.K-means
Detection.OCNB

30
30
30

Comms

Comms.LoLat.Open.HTTP  
Comms.LoLat.Open.HTTPS  
Comms.LoLat.WPA.HTTP  
Comms.LoLat.WPA.HTTPS  
Comms.HiLat.WPA.HTTP  
Comms.HiLat.WPA.HTTPS

30
30
30
30
30
30

Table 6.1 

ENERGY CONSUMPTION TESTS EXECUTED

Source: Own elaboration.

As indicated above, each test is a separate app that is installed on the device, 
executed, measured with AppScope, and finally uninstalled. Each test was executed 
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30 times with different input parameters, such as the length and number of feature 
vectors in the training dataset and the frequency of sending and receiving data over 
the network. We elaborate on this later when discussing the experimental results.

The test suite is summarized in Table 6.1.

QQ 6.3. ENERGY CONSUMPTION OF ANOMALY DETECTION COMPONENTS

We next present the experimental results obtained after running the tests 
described in the preceding section. We group the results into two separate categories: 
computation and communications. The first one includes data preprocessing, training, 
and detection, while the second focuses on data exchange over the network. 
We finally obtain and discuss linear regression models for each algorithm and  
functional task.

QQ 6.3.1. Computation

We experimentally found that energy consumption related to preprocessing, 
training, and detection tasks depends on:

●● The length |v| of the feature vectors, measured as the number of attributes 
that each vector has.

●● The size |D| of the dataset, measured as the number of vectors to be 
processed, i.e., generated during preprocessing, used for training, or 
evaluated during detection.

We executed all the preprocessing, training, and detection tests with values 
of |v| = 10, 100, 200, 300, and 400. These lengths are representative of the feature 
vectors used in most security applications of machine learning. On the other hand, 
for each vector length we generated datasets of sizes |D| = 10, 50, 100, 200, 500, 
and 1,000, and then computed the average energy consumption per vector. The 
average energy consumption in Joules (J) per vector for each vector length is shown 
in Figure 6.1. Several conclusions can be drawn from these results:

1.	Data preprocessing consumes very little energy when compared to detection 
and training. This cannot be easily generalized, as it strongly depends on the 
sort of preprocessing applied. In our case data preprocessing is quite straight- 
forward (computing histograms) and consumes less than 10 J/vector.

2.	For a given algorithm, detection is significantly cheaper than training in terms 
of energy consumption, but there are exceptions. For example, for both J48 
and OCNB, and vectors of length 100 training requires around 50 J/vector 
more than detection. This difference increases to more than 100 J/vector for 
lengths greater than 300. K-means is an exception, with training and detection 
consuming approximately the same power.
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3.	The algorithm matters: K-means consumes far less than J48 and OCNB. In turn, 
OCNB is more expensive power-wise than J48, both in training and detection.

4.	For the three tasks, consumption increases approximately linearly in |v|.

QQ 6.3.2. Communications

Each communication test consists of the app sending and receiving 10 large 
files to/from a server, using both HTTP and HTTPS. After each test, the total energy 
consumed is divided by the number of bytes sent or received to obtain a normalized 
measure in Joules per byte. Each test was repeated 30 times, resulting in the 
boxplots shown in Figure 6.2.

The results are quite surprising. On the one hand, we found no significant 
difference between using HTTP or HTTPS. In other words, key establishment plus 
encryption/decryption for each packet sent/received seems to be extremely efficient 

Figure 6.1

ENERGY CONSUMPTION RESULTS IN JOULES PER VECTOR  
FOR DIFFERENT VECTOR LENGTHS FOR THE PREPROCESSING,  
TRAINING, AND DETECTION TESTS

Source: Own elaboration.
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in terms of energy consumption. One possible explanation for these figures might 
be related to the granularity used by AppScope to measure energy and compute the 
attribution of consumption. AppScope uses application-specific energy consumption 
data for each hardware component. However, authors argue that the “system” 
consumes a certain amount of energy when communications are used. It may be 
the case that AppScope is not attributing the consumption of crypto operations to the 
app using HTTPS.

Figure 6.2

ENERGY CONSUMPTION RESULTS IN JOULES PER BYTE EXCHANGED 
(SENT OR RECEIVED) FOR THE COMMUNICATION TEST

Source: Own elaboration.
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Apart from the observation above, our results suggest that network latency has  
a clear influence in the consumption. In our experiments, increasing latency from 0.6 ms 
to 31 ms resulted in 8 times more power. This may just be a consequence of the app 
execution taking more time to transmit the data.

QQ 6.3.3. Linear Models

We used the figures obtained above to derive linear energy consumption models 
that could be later used to determine the best deployment strategy for each function 
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depending on aspects such as the remaining energy available on the device or the 
detection architecture. To do this, we applied a simple linear regression analysis 
using least squares over the energy consumption data.

In the case of the computation functions, each model has the form:
				    Ef (|v|) = αf  · |v| + yf	 (6.3)

where f ∈ {pre, tra, det}, i.e., preprocessing, training, and detection, respectively. 
Similarly, energy consumption incurred by communications is estimated by a linear 
model:

				    Ecomms(nb) = γ · nb	 (6.4)
where nm is the number of bytes to be sent or received, and γ is the average energy 
consumption of the network configuration used by the device.

The coefficients thus estimated are provided in Table 6.2 and confirm the 
conclusions drawn above. For example the slope α of the three training algorithms 
reveals the difference between K-means, which introduces a multiplying factor  
of 0.11 J per additional attribute in the vector, and J48/OCNB, for which such a factor is  
0.45 J and 0.57 J, respectively. Similarly, OCNB is clearly much more costly in terms 
of detection, with a 0.15 J factor per additional vector attribute against 0.05 and 0.08 
for J48 and K-means, respectively.

QQ 6.4. DEPLOYMENT STRATEGIES AND TRADE-OFFS

Based on the findings presented in the previous section, we next discuss 
different deployment strategies for the various functions composing an anomaly 
detection system and analyze the associated energy consumption costs.

Function Model
Computation αf yf

Preprocessing – 0.00 2.82

Training
Training.J48
Training.K-means
Training.OCNB

0.45
0.11
0.57

24.45
7.85

18.78

Detection
Detection.J48
Detection.K-means
Detection.OCNB

0.05
0.08
0.15

9.04
7.16
6.34

Communications γ

Comms

Comms.LoLat.Open.HTTP 
Comms.LoLat.Open.HTTPS 
Comms.LoLat.WPA.HTTP 
Comms.LoLat.WPA.HTTPS 
Comms.HiLat.WPA.HTTP 
Comms.HiLat.WPA.HTTPS

8.74 · 10−7

5.09 · 10−7

5.81 · 10−7

5.18 · 10−7

8.31 · 10−6

8.34 · 10−6

Table 6.2 

REGRESSION COEFFICIENTS  FOR THE LINEAR ENERGY CONSUMPTION 
MODELS FOR COMPUTATION AND COMMUNICATION TASKS

Source: Own elaboration.
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QQ 6.4.1. Energy Consumption Strategies

We make two assumptions in our subsequent analysis. Firstly, data acquisition 
is executed in the device by means of some instrumentation procedure, e.g., through 
the system API to get access to activity traces. This would not be strictly true for 
some recently proposed approaches based on keeping a synchronized clone of 
the device in the cloud [Chun et al., 2011; Portokalidis et al., 2010; Zonouz et al., 
2013]. We believe, however, that the overhead incurred by such approaches may be 
equivalent to that of directly monitoring the device, although this issue needs further 
investigation. Secondly, our envisioned applications require relatively straightforward 
data preprocessing (see Table 6.2) that can easily be incorporated into the data 
acquisition module. As a result, both acquiring the data and preparing the feature 
vectors incur a constant overhead for all discussed strategies and will be left out of 
our analysis.

The two remaining functional blocks are training and detection. Each one, or 
both, of them can be placed locally in the device (L) or off-loaded to a remote server 
(R). This gives rise to four possible strategies that will denoted by LL, LR, RL, and 
RR. In all cases, energy consumption is a linear function:

				    Ei, j (t ) = πi, j · t 	 (6.5)

with i, j ∈ {L, R}, where πi, j is determined by each strategy.

In what follows |v| represents the length in bytes of each feature vector; |D| is 
the size of the dataset used for training, measured in number of vectors; |M| is the 
size in bytes of the normality model returned by the training process; and ωt and ωd 

represent the frequencies at which training and detection take place, respectively.

●● Local Training, Local Detection (LL). In this case the entire operation of the 
detector is executed locally in the device. The energy consumption factor 
πLL is composed of two terms: Et (|v|) Joules per vector in the dataset during 
training, plus Ed (|v|) Joules per vector for each detection event. Overall, we 
have:

	 	 	 πLL = ωt |D|Et (|v|) + ωd Ed (|v|)	 (6.6)

●● Local Training, Remote Detection (LR). In this scenario training takes place 
in the device but detection is off-loaded. During training, energy consumption 
is equivalent to the corresponding term in (6.6) plus the cost of sending the 
model M to the cloud (Ed (|M|)). In detection mode, every vector must be 
also sent out for analysis. We consider here that receiving the result has a 
negligible cost, as it may just be 1 bit (normal/anomalous). In summary:

	 	 πLR = ωt (|D|Et (|v|) + Ec (|M|))	 + ωd Ec (|v |)	 (6.7)

●● Remote Training, Local Detection (RL). This strategy captures the idea of 
off-loading the model training stage while performing detection locally. To do 
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this, every time that a (re-)training event is triggered the entire dataset must 
be sent out for analysis and, subsequently, the model must be received. In 
detection mode, energy consumption for each analyzed vector is ascribed to 
the device, resulting in:

	 	 	 πRL = ωt (|D|Ec (|v|) + Ec (|M|)	 + ωd Ed (|v |)	 (6.8)

●● Remote Training, Remote Detection (RR). Finally, this strategy considers the  
possibility of externalizing all functions to a remote server. Consequently,  
the only energy consumption attributed to the device is that related to sending 
and receiving feature vectors both for training and detection. Thus:

	 	 	 	 πRR = ωt |D|Ec (|v|) + ωd Ec (|v|)	 (6.9)

We then discuss the tradeoffs between these four possibilities. In particular, we 
compare the LL strategy with the other three to understand the potential gains from 
off-loading training, detection, or both.

QQ 6.4.2. LL vs LR

The LL strategy is preferred to LR if:

	 	 	 	 πLL  ≤  πLR
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Note that, in general, ωd » ωt, in which case the term 
ω + ω

ω
t d

d
≈ 1. Alternatively, in the 

extreme case of training being done for each incoming vector, we have ωd = ωt and 	
ω + ω

ω
t d

d

= 2. Renaming this term as

				    [ ]ω + ω
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ω
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d

z = 1,2 	 (6.11)

and using the linear forms of Ed and Ec we can rewrite the inequality above as:
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A simple analysis of the orders of magnitude of the quantities involved in (6.12) 
provides some insights. Recall that α ≈ 10−2, y ≈ 10 and γ ≈ 10−7 (see Table 6.2).
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Replacing these values in (6.12), and ignoring the factor z, we get
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Consequently, the right-hand term in (6.12) will be negative unless |M| is of the 
order of 106 or greater. However, almost all machine learning algorithms produce 
models that rarely exceed a few hundred kilobytes.

The main conclusion that can be drawn is that the LL strategy is worse energy- 
wise than the LR unless the model is so large and the vectors tiny enough so that the 
energy consumed by sending both the model and the vectors to the cloud outweighs 
the energy of performing detection locally.

QQ 6.4.3. LL vs RL

In this case we have:

	 	 	            πLL  ≤  
πRL
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(6.14)

Expression (6.14) presents a trade-off somewhat similar to that discussed in 
the previous section, but more acute. The fact that training takes place remotely 
factors in the size of the dataset in the inequality, which must be transferred for the 
remote server to build up the model. The overall consequence is however similar: 
the RL strategy consumes less than LL unless the model is sufficiently large with 
respect to the size of the dataset. Since the factor −|D|y appears in the numerator of 
(6.14), the model size must now be even greater than in the previous case.

In summary, outsourcing the training stage is consistently better than performing 
it locally unless the datasets to be sent for analysis and the models received are 
massive.
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QQ 6.4.4. LL vs RR

Local training and detection consumes less than a fully off-loaded operation if:

πLL 	 ≤  πRR

		  ωt |D|Et (|v|) + ωd Ed (|v|)   ≤   ωt |D|Ec (|v|) + ωd Ec (|v|)

		     ωt |D| (Et (|v|) − Ec (|v|)   ≤   ωd Ec (|v|) − Ed (|v|)	
(6.15)

Note that in (6.15) the various energy consumption functions are applied 
to inputs of the same length |v|. However, communications are several orders of 
agnitude cheaper than training and detection, so

			    Et (|v|) − Ec (|v|) ≈ Et (|v |)	 (6.16)

and

			   Ec (|v|) − Ed (|v|) ≈ − Ed (|v|)	 (6.17)

Replacing this in (6.15) we get

			   ωt |D|Et (|v|) ≤ − ωd Ed (|v|)	 (6.18)

which never holds. The conclusion is clear and, in a sense, rather expected from the 
findings discussed in the two previous sections: off-loading the entire operation of 
the detector is always better in terms of energy consumption than operating locally 
in the device.

Taking another look at (6.15), the only scenario where LL may be competitive 
against RR arises when Ec (|v|) ≥ Ed (|v|). This situation may correspond to extremely 
lightweight detectors in which computing the anomaly score takes less power than 
sending the vector over the network. In such a case, (6.15) can be reduced to:

			 
( )

( ) ( )
ω

≤
− ω

t d

c d t

E v
D

E v E v
| |

| |
| | | |

	 (6.19)

which essentially establishes that local operation pays off power-wise if training is 
very infrequent, does not consume much energy, and the datasets are not very large.

QQ 6.4.5. Discussion

The analysis conducted in the previous three sections point out to one definite 
conclusion: externalizing computation, both training and detection activities, is by 
far the best option in terms of energy consumption. A deeper look at the trade-offs 
derived above reveals that the core of this argument is intimately related to the 
enormous differences in energy consumption existing between computation and 
networking activities. In platforms such as the current generation of smartphones, 
communications appear to be extraordinarily optimized in terms of energy 
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requirements, whereas computation is significantly more demanding. In fact, we 
have seen that communications in current Android devices have similar energy 
consumption than early wireless sensor devices such as MICAz or TelosB [De 
Meulenaer et al., 2008]. In the case of applications such as anomaly detection, 
the best strategy is undoubtedly to externalize all computation functions, including 
continuous detection, whenever possible.

In terms of performance criteria other than energy consumption, off-loading 
may or may not have an impact depending on the application domain. Loss of 
network connectivity –or even sufficient degradation– is a major threat for outsourced 
detection, as the device may be forced to functioning without the detection service 
while the remote server is unreachable. Similarly, network delays may be a critical 
point in applications where near real-time detection is required. In such cases, these 
aspects must be weighed against the energy saving benefit.

Offloading resource-intensive tasks to the cloud is a topic that has gained 
momentum in recent years. Several works (e.g., [Kumar and Lu, 2010; Namboodiri 
and Ghose, 2012; Tandel and Venkitachalam, 2013]) have addressed the issue of 
decid- ing whether to cloud is a better option than not to cloud for mobile systems. For 
example, in [Namboodiri and Ghose, 2012] it is shown that determining an energy 
efficient strategy is a complex task and require a fine characterization of the impact 
of several parameters, including the type of device and the application domain. Their 
approach focuses on three rather generic applications: word processing, multimedia 
and gaming for both laptops and mobile devices. Authors conclude that “cloud-based 
applications consume more energy than non-cloud ones” when using platforms such 
as mobile devices. In contrast, other works such as [Tandel and Venkitachalam, 
2013] and [Kumar and Lu, 2010] show that offloading is generally profitable energy-
wise, particularly for intensive computation tasks that require relatively small amount 
of communications.

Finally, the security and privacy aspects of offloading computation to the cloud 
is a major concern that may prevent many users from relying on external services, 
particularly when confidential data is involved in the training and detection datasets. 
In this context, many works have dealt with the problem of securely outsourcing 
computation (see, e.g. [Wang et al., 2011]). One common assumption is to consider 

Cipher γ

AES-128 CTR 7.62 · 10−9

3DES CTR 9.52 · 10−9

RC4 -- 7.62 · 10−9

Table 6.3 

AVERAGE ENERGY CONSUMPTION PER ENCRYPTED BYTE

Source: Own elaboration.
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the external server as untrusted and to encrypt all data sent out for processing. In 
order to assess the extra energy consumption incurred by encrypting data prior to 
sending it, we evaluated three of the most common ciphers found in cryptographic 
libraries and used nowadays: AES, 3DES, and RC4. The experimental setting and 
energy consumption tests are identical to those described in Section ?. We carried 
out 30 independent tests and divided, in each case, the total energy consumed 
by the number of encrypted bytes to obtain a normalized measure in Joules per 
byte. The γ factor obtained is shown in Table 6.3. As it can be observed, the cost of 
encryption is negligible when compared to that of training and detection tasks and does 
not affect the general conclusions discussed above. These results indicates that current 
encryption algorithms are extremely efficient in terms of energy consumption. This is 
further supported by the results shown in the literature during the last years aiming at 
providing low budget cryptography to enable wireless security [De Meulenaer et al., 
2008; Fan et al., 2013; Karaklajiić et al., 2010; Kerckhof et al., 2012; Verbauwhede, 2011].

QQ 6.5. CASE STUDY: A DETECTOR OF REPACKAGED MALWARE

We next illustrate some of the conclusions drawn in the preceding sections 
with realworld application: an anomaly-based detector for repackaged malware in 
Android apps. The use of anomaly detectors for this purpose has been proposed 
in a number of recent works (see, e.g., [Burguera et al., 2011; Shabtai et al., 2012]). 
Although in all cases the performance of such approaches is reasonably good in 
terms of detection quality, to the best of our knowledge none has explored the energy 
consumption savings gained by outsourcing it.

QQ 6.5.1. The Detector

Sequences of system calls have been recurrently used by anomaly detection 
systems for security applications in smartphones [Blasing et al., 2010; Burguera et 
al., 2011; Lin et al., 2013; Shabtai et al., 2012]. All apps interact with the platform 
where they are executed by requesting services through a number of available 
system calls. These calls define an interface that allow apps to read/write files, send/
receive data through the network, read data from a sensor, make a phone call, etc. 
Legitimate apps can be characterized by the way they use such an interface [Lin 
et al., 2013], which facilitates the identification of malicious components inserted into 
an seemingly harmless app and, more generally, other forms of malware [Suarez-
Tangil et al., 2014b].

Based on this idea, we have built an anomaly detector that combines some 
of the ideas already proposed in previous works.1 Feature vectors consist of 

1 We deliberately omit a number of details about our detector, particularly those related to the detection 
quality for different parametrizations, as this is not the main focus of this work and has been reported 
elsewhere.
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histograms computed from a trace of system calls using a sliding window of length 
W. We determined experimentally that windows of length 400 result in very good 
detection performance. The number of systems calls varies across architectures 
and it is often between 200 and 400. Thus, during the training period all processes of 
normal apps are monitored and the corresponding feature vectors are generated. 
Such vectors are then used to train a normality model.

In detection mode, the algorithm takes as input a sequence sq of N system calls 
and extracts the N − W + 1 feature vectors using a sliding window. Each one o these 
feature vectors is then classified as normal or anomalous. Let A be the number of 
vectors identified as anomalous. Then, the sequence –and, therefore, the app– is 
classified according to the following rule:

			   ( )det
 
 ρ=  
  

A
N -W +sq

legitimate if 

repackaged otherwise

	 (6.20)

where ρ is an adjustable detection threshold.

The detection procedure described above is intimately related to the nature 
of repackaged malware. In general, not all the system call windows issued by a 
repackaged app will be anomalous, as they may be generated by non-malicious 
code. Thus, detection must be based on analyzing sets of windows and seeking 
if a fraction of them are anomalous. In our experiments, we obtained good results 
with sequences of at least 10 windows and thresholds ρ around 0.1. For example, 
one of the apps we used for testing detection performance is a popular game 
named Mx Moto by Camel Games. The app can be purchased from Google Play for  
1.49 eand so far has been downloaded 100K times. The same app can also be 
found in alternative markets for free [Zhou and Jiang, 2012], in most cases repackaged 
with a malware known as Anserverbot. We tested the original app together with 
various repackaged variants, obtaining in all cases a detection rate of 100% 

Type No. Apps No. Events Throttle (ms) Syscalls

Goodware

10 5,000 1,000 180.43

35 1,000 5,000 453.91

50 5,000 1,000 307.62

Malware

10 5,000 1,000 112.39

35 1,000 5,000 128.66

50 5,000 1,000 161.90

All 190 -- Average 224.16

Table 6.4 

AVERAGE NUMBER OF SYSTEM CALLS PER SECOND IN DIFFERENT  
EXECUTIONS OF BOTH GOODWARE AND MALWARE

Source: Own elaboration.
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with no false positives with the OCNB detector. These results are congruent with  
those reported in similar works based on anomaly detection [Burguera et al., 2011; 
Shabtai et al., 2012].

QQ 6.5.2. Testing Framework

We tested the energy consumption of three detectors built as described above, 
one for each machine learning algorithm evaluated. Only the LL and RR strategies 
were studied, as they represent opposite cases for placement decisions. For the 
latter, the high latency configuration with WPA and HTTPS was used. In order to 
study energy consumption for different apps and/or detector configurations, we 
gathered a dataset of 190 apps containing both goodware and malware. For each 
one of them, we derived the average number of system calls per second issued 
depending on different usage intensity rates (throttle). These figures are obtained 
by running each app in a controlled environment and automatically injecting user 
events at a throttle pace. The results are shown in Table 6.4 and reveal that apps 
can generate up to a few hundred system calls per second. Even though user-driven 
apps may well function at lower paces, these rates are useful for apps where high 
frequency testing is required.

Each detector is evaluated for different vector lengths. Again, our goal is 
measuring how the amount of energy varies in a real setting depending on the choice 
of this parameter. (Recall that in terms of detection quality, best results are obtained 
for |v| = 100.) Finally, each detector was continuously executed during 1 week, and 
the amount of energy consumed so far was measured at 4 control points: after  
10 minutes, 1 hour, 1 day, and 1 week. During this period, detection is triggered as 
of-ten as a sufficiently large sequence of system calls is available, and retraining 
occurs every 10 minutes.

QQ 6.5.3. Results and Discussion

Figure 6.3 shows the average energy consumed by the three detectors for the 
LL and RR strategies. (Note that the latter is independent of the algorithm as only 
communications are involved.) The plots are consistent with the results discussed 
in the previous section and confirm that outsourced detection is much more efficient 
energy-wise than on-platform operation. Consider, for example, the case of vectors 
of 100 attributes. During the first 10 minutes, both the OCNB and the J48 detectors 
have consumed more than 105 J. During the same period, the detector located in 
the cloud has required less than 104 J. After 1 day, cloud-based detectors consume 
roughly the same amount of energy than on-platform detectors over 1 hour. Note, 
too, that the frequency of re-training is extremely high in this setting, and that the 
difference would be substantially greater if training occur more sporadically.
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Another interesting finding is that differences among algorithms are noticeable 
after some time, especially for large vectors. In general, OCNB is much more 
demanding than K-means and J48 when vectors with a hundred attributes are 
involved.

Finally, in order to contextualize the energy implications of constantly running 
a detector, we have measured the energy consumed by some popular apps during 
10 minutes (see Table 6.5). These apps are representative of three broad classes 
of popular activities: games, online social networking, and multimedia content. The 
amount of energy consumed by the three ranges between approximately 550 J 
and 645 J, most of it being related to the graphical user interface. For comparison 
purposes, running our detector in the device with the less demanding algorithm 
(J48) takes around 15 J per detection. At full throttle (i.e., around 224 detections per 
second) this implies a consumption of around 2 MJ in 10 minutes. Even if detection 
only takes place at a rate of 1 per second, the overall consumption in 10 minutes 

Figure 6.3

AVERAGE ENERGY CONSUMPTION FOR DIFFERENT DETECTORS USING 
THE LL (COMPUTATION) AND RR (COMMUNICAIONS) STRATEGIES

Source: Own elaboration.
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is still around 9 KJ. In contrast, outsourced detection using WPA, HTTPS, and high 
latency consumes around 112 J and 0.5 J in the same conditions, respectively.

The figures discussed above reinforce the conclusion that externalized operation 
of anomaly detection seems to be the only reasonable choice in terms of energy 
consumption. However, given that cloud-based processing may raise some privacy 
concerns in certain applications, this also motivates the need for more lightweight 
anomaly detection techniques that may be suitable for on-platform operation.

QQ 6.6. CONCLUSIONS

In this chapter, we have discussed the power consumption trade-offs among 
various strategies for executing anomaly detection components directly on mobile 
platforms or remotely in the cloud. Both our theoretical analysis and experimental 
results confirm that there is actually little choice but to offload everything to the 
cloud. Reasons for this include the differences between the energy efficiency of 
computation and communications in current platforms, and also various parameters 
related to the anomaly detection setting, such as the dataset sizes and the operation 
frequency. We believe that the linear models provided in this work may be useful 
in other contexts to obtain estimates about the energy consumption of different 
alternatives. Furthermore, such models can be easily extended to other machine 
learning algorithms by simply deriving the appropriate coefficients α and y.

App CPU Comms Display Total

YouTube 30.11 12.59 508.90 551.59

MX Moto 129.24 5.75 509.54 644.52

Facebook 137.76 27.42 471.42 637.27

Table 6.5 

CONSUMPTION (IN JULES) OF THREE POPULAR APPS DURING A TIME 
SPAN OF 10 MINUTES

Source: Own elaboration.
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QQ 7.1. INTRODUCTION

Malware for smartphones is a problem that has rocketed in the last few years 
[Juniper, 2013]. The presence of increasingly powerful computing, networking and 
sensing functions in smartphones has empowered malicious apps with a variety 
of advanced capabilities [Suarez-Tangil et al., 2014b], including the possibility to 
determine the physical location of the smartphone, spy on the user’s behavioral 
patterns, or compromise the data and services accessed through the device. These 
capabilities are rapidly giving rise to a new generation of targeted malware that makes 
decisions on the basis of factors such as the device location, the user’s profile, or 
the presence of other apps (e.g., see [Felt et al., 2011c; Hasan et al., 2013; Raiu and 
Emm, 2013; Zawoad et al., 2013]). The idea of behaving differently under certain 
circumstances was also successfully applied in the past. For instance, Stuxnet 
[Langner, 2011] remained dormant until a particular app was installed and used at 
certain location, having as a target Iranian Nuclear Plants. Other malware targeted 
governments and private corporations–mostly in the financial and pharmaceutical 
sectors [Corporation, 2013]. Another representative example of targeted malware 
is Eurograbber [Kalige and Burkey, 2012], a “smart” Trojan targeting online banking 
users. The situational awareness provided by smartphone platforms makes this type 
of attacks substantially easier and potentially more dangerous. More recently, other 
examples of targeted malware include FinSpy Mobile [Marquis-Boire et al., 2013], 
a general surveillance software for mobile devices, and Dendroid Remote Access 
Toolkit (RAT) [Rogers, 2014], which offers capabilities to target specific users.

A similar problem is the emergence of the so-called grayware [Felt et al., 2011c], 
i.e., apps that cannot be completely considered malicious but whose behavior may 
entail security and/or privacy risks of which the user is not fully aware. For example, 
many apps using targeted advertisements are particularly aggressive in the amount 
of personal data they gather, including sensitive contextual information acquired 
through the device sensors. The purpose of such data gathering activities is in many 
cases questionable, and many users might well disapprove it, either entirely or in 
certain contexts.1

Both targeted malware and grayware share a common feature that complicates 
their identification: the behavior and the potential repercussions of executing an 

1 Classical examples include two popular games, Aurora Feint and Storm8, which were removed from 
the Apple Store for harvesting data and phone numbers from the user’s contact list and sending them to 
unknown destinations as introduced in Chapter 2.
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app might depend quite strongly on the context where it takes place [Capilla et al., 
2014] and the way the user interacts with the app and the device [Gianazza et  
al., 2014]. We stress that this problem is not addressed by current detection 
mechanisms implemented in app markets, as operators are overwhelmed by the 
number of apps submitted for revision every day and cannot afford an exhaustive 
analysis over each one of them [Chakradeo et al., 2013]. A possible solution to tackle 
this problem could be to implement detection techniques based on dynamic analysis 
(e.g., Taintdroid [Enck et al., 2010]) directly in the device. However, this is simply too 
demanding for battery-powered platforms. Several recent works [Chun et al., 2011; 
Kosta et al., 2012; Portokalidis et al., 2010; Zonouz et al., 2013] have proposed to 
keep a synchronized replica (clone) of the device virtualized in the cloud. This would 
facilitate offloading resource-intensive security analysis to the cloud, but still does not 
solve one fundamental problem: grayware and targeted malware instances must be 
provided with the user’s particular context and behavior, so the only option left would 
be to install the app, use it, and expect that the analysis conducted over the clone  
–hopefully in real time– detects undesirable behaviors. This is a serious limitation that 
prevents users from learning in advance what an app would do in certain situations, 
without the need of actually reproducing such a situation.

Recent works such as PyTrigger [Fleck et al., 2013] have approached the 
problem of detecting targeted malware in Personal Computers (PC). To do so, it 
is sought to trigger specific malware behaviors by injecting activities collected from 
users (e.g., mouse clicks and keyword inputs) and their context. This approach 
cannot be adopted to platforms such as smartphones because the notion of sensed 
context is radically different here. Other schemes, including the work presented in 
[Gianazza et al., 2014; Jensen et al., 2013; Rastogi et al., 2013a; Zheng et al., 
2012], do focus on smartphones but concentrate exclusively on interactions with 
the Graphical User Interface (GUI) and are vulnerable to context-based targeted 
attacks. Two works closer to our proposal are Context Virtualizer [Liang et al., 2013] 
and Dynodroid [Machiry et al., 2013], where a technique called context fuzzing is 
introduced in the former and used in the latter. The main aim in [Liang et al., 2013; 
Machiry et al., 2013] is to automatically test apps with real-world conditions, including 
user-based contexts. These tools, however, are intended for developers who want 
to learn how their apps will behave when used in a real setting. Contrarily, our focus 
is on final users who want to find out if they will be targeted by malicious or privacy-
compromising behaviors. Finally, other works such as CopperDroid [Reina et al., 
2013] focus on malware detection as we do, but with a static approach (based on 
information extracted from the manifest) that, besides, does not consider the user 
context.

In this chapter, we address the problem of identifying targeted grayware and 
malware and propose a more flexible approach compared to other proposals to 
determining whether the behavior of an app is compliant with a particular set of 
security and privacy preferences associated with an user. Our solution is based on 
the idea of obtaining an actionable model of user behavior that can be leveraged to 
test how an app would behave should the user executes it in some context. Such 
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a testing takes place over a clone of the device kept in the cloud. This approach 
removes the need of actually exposing the device (e.g., we let the device access 
only fake data and not real). More importantly, the analysis is tailored to a given 
user, either generally or for a particular situation. For example, a user might want 
to explore the consequences of using an app in the locations visited during working 
days from 9 to 5 or during a planned trip.

Section 7.2 introduces the theoretical framework used to model triggering 
patterns and app behavior. In Section 7.3, we describe the architecture of our 
proposal and a proof-of-concept prototype, and discuss the experimental results 
obtained in terms of testing coverage and efficiency. In Section 7.4, we discuss 
the detection performance with two representative case studies of grayware and 
targeted malware instances. Finally, Section 7.5 extracts some conclusions.

QQ 7.2. BEHAVIORAL MODELS

This section introduces the theoretical framework used in our proposal 
(presented in Section 7.4) to trigger particular app behaviors and determining whether 
they entail security risks to the user (as shown in Section 7.4). More precisely, we 
present models for the user-provided inputs, the resulting app behavior, and the 
mechanism used to assess potential risks.

QQ 7.2.1. Triggering Patterns

Inputs provided by the user to his device constitute a major source of stimuli 
for triggering certain app behaviors. We group such inputs into two broad classes of 
patterns, depending on whether they refer to inputs resulting from the user directly 
interacting with the app and/or the device (e.g., through the touchscreen), or else 
indirectly by the context (e.g., location, time, presence of other devices in the 
surroundings).

QQ 7.2.1.1. Usage Patterns

Usage patterns model sequences of events resulting from the actions of the user 
during his interaction with an app. Such events are internal messages passed on to 
the app by the device, such as starting an activity, or clicking a button. We underline 
that our focus is on the events and not on the actions that generate them, as the 
same event can be triggered through different input interfaces (e.g., touchscreen, 
voice). Let the following be a set of all possible events for all apps:

			   B = {e1, e2, ... , en}. 	 (7.1)
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Thus, the interaction of a user with an app can be represented as an ordered 
sequence:

			   u = hε1, ε2, ... , εki,   	 εi ∈ B . 	 (7.2)

We will refer to such sequences as usage traces. Interactions with an app at 
different times and/or with different apps will result in different usage traces.

QQ 7.2.1.2. Context Patterns

Apps may behave differently depending on conditions not directly provided by 
the user, such as the device location, the time and date, the presence of other apps 
or devices, etc. We model this using the widely accepted notion of context [Conti et 
al., 2012]. Assume that v1, ... , vm are variables representing contextual elements of 
interest, with vi ∈ Vi . Let the following be the set of all possible contexts:

				    X = V1 × · · · × Vm. 	 (7.3)

As above, monitoring a user during some time interval will result in a sequence 
refer to as context traces:

			   g = hx1, x2, ... , xli, 	 xi ∈ X. 	 (7.4)

QQ 7.2.2. Stochastic Triggering Model

Usage and context traces are used to derive a model that captures how the 
user interacts with an app or a set of apps. For this purpose, we rely on a discrete-
time first-order Markov process (i.e., a Markov chain [Norris, 1998]) M = (S, A, Π) 
where:

●● The set of states S is given by:

			   S = B × X = {s1, ... , sN}. 	 (7.5) 

We will denote by q(t) ∈ S the state of the model at time t = 1, 2, ... , representing 
one particular input event executed in a given context.

●● The transition matrix is given by:

			   A = [aij] = P [q(t + 1) = sj |q(t) = si ], 	 (7.6)

where aij ∈ [0, 1] and 
1

1.
=

=∑N
ijj

a
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●● The vector of initial probabilities is given by:

				    Π = (πi) = P [q(1) = si], 	 (7.7)

with πi ∈ [0, 1] and 
1

1.
=

π =∑N
ii

The model above is simple yet powerful to model user-dependant behavioral 
patterns when interacting with an app. The model parameters can be easily estimated

from a number of usage and context traces. Assume that O = {o1, o2, ... , oT} is 
a sequence of observed states (i.e., event-context pairs) obtained by monitoring the 
user during a representative amount of time. The transition matrix can be estimated 
as:

( ) ( )
( )

2 2

2 2

1
,= =

= =

   = − = = =   = =
   = =   

∑ ∑
∑ ∑
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j i t j t -1 jt t

ij T T
j t jt t

P q t s | q t s P O s |O s
a

P q t s P O s
	 (7.8)

where both probability terms are obtained by simply counting occurrences from O. 
The process can be trivially extended when several traces are available.

The model above should be viewed as a general modeling technique that can 
be applied at different levels. Therefore, if one is interested in modeling input events 
irrespective of context, the set of states –and, therefore, the chain– can be reduced 
to B. The same applies to context; e.g., states could be composed exclusively of 
time-location pairs.

Markov chains are often represented as a directed graph where vertices 
represent states and edges between them are labelled with the associated transition 
probability. We will call the degree of a state, denoted by deg(si), to the number of 
states reachable from s in just one transition with non-null probability

				    deg(si) = #{pij|pij > 0}. 	 (7.9)

The degree distribution of a chain is given by:

				    P(k) = P [deg(s) = k]. 	 (7.10)

QQ 7.2.3. App Behavior and Risk Assessment

An app interacts with the device by requesting services through a number of 
available system calls. These define an interface for apps that need to read/write 
files, send/receive data through the network, make a phone call, etc. Rather than 
focusing on low-level system calls, in this chapter we will describe an app behavior 
through the sequence of activities it executes (see Chapter 5-Section 5.2.2). Activities 
represent high-level behaviors, such as for example reading from or writing into a 
file, opening a network connection, sending/receiving data, etc. In some cases, there 
will be a one-to-one correspondence between an activity and a system call, while in 
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others an activity may encompass a sequence of system calls executed in a given 
order. In what follows, we assume that

	 	 	 	 A = {a1, a2, ... , ar}	 (7.11)

is the set of all relevant activities observable from an app execution.

The execution flow of an app may follow different paths depending on the input 
events provided by the user and the context. Let σ = hσ1, ... , σki be a sequence of 
states as defined above. We model the behavior of an app when executed with σ as 
input as the sequence

			   β(σ) = hαi, ... , αi, 	 αi ∈ A, 	 (7.12)

which we will refer to as the behavioral signature induced by σ.

Behavioral signatures constitute dynamic execution traces generated with 
usage and context patterns specific to one particular user. Analysis of such traces 
will be instrumental in determining whether there is evidence of security and/or 
privacy risks for that particular user. The specific mechanism used for that analysis 
is beyond the scope of our current work. In general, we assume the existence of 
a Risk Assessment Function (RAF) implementing such a analysis. For example, 
general malware detection tools based on dynamic analysis could be a natural 
option here. The case of grayware is considerably more challenging, as the user’s 
privacy preferences must be factored in to resolve whether a behavior is safe or not.

QQ 7.3. TARGETED TESTING IN THE CLOUD

In this section, we first describe the architecture and the prototype implementation 
of a cloud-based testing system for targeted malware and grayware based on the 
models discussed in the previous section. We then provide a detailed description 
of various experimental results obtained in two key tasks in our system: obtaining 
triggering models and using them to test a cloned device.

QQ 7.3.1. Architecture and Prototype Implementation

A high level architectural view of our system is shown in Figure 7.1. There are 
two differentiated major blocks: (i) the evidence generation subsystem, and (ii) the 
behavioral modeling and risk assessment subsystem. The first one extracts usage 
and context traces from the device and generates the stochastic triggering model. This 
process is carried out by first cloning the user device into the cloud and then injecting 
the triggering patterns over the clone. The second block extracts the behavioral 
signatures from the clone(s) and applies the RAF over the evidences collected. We 
next provide a detailed description of our current prototype implementation.
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The experiments have been conducted over the laboratory described in 
Chapter 3. Specifi cally, we instrumented both a physical device and a cloud-virtual 
device. We inject events and contexts into apps and monitor the resulting behavior. 
We chose 20 relevant activities to characterize app behavior (see Table 7.1), which 
include information about calls to the crypto API (cryptousage), I/O network and fi le 
activity (opennet,	 sendnet,	 accessedfi	les, etc.), phone and SMS activity (phonecalls, 
sendsms), data exfi ltration through the network (dataleak), and dynamic code 
injection (dexclass), among others.

Finally, we implemented a simple yet powerful RAF (Risk Assessment 
Function) for analyzing behavioral signatures. In essence, the scheme is based 
on a patternmatching process driven by a user-specifi ed set of rules that identify 
behaviors of interest according to his security and privacy preferences. Such rules 

Figure 7.1

SYSTEM ARCHITECTURE AND MAIN BUILDING BLOCKS

Source: Own elaboration.
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Table 7.1

SET OF ACTIVITIES (A) MONITORED FROM AN APP EXECUTION AND 
USED TO CHARACTERIZE ITS BEHAVIOR

Source: Own elaboration.

Activities

● sendsms ● servicestart ● phonecalls ● udpConn ● cryptousage

● sendnet ● netbuffer ● activities ● dexclass ● activityaction

● dataleak ● enfperm ● opennet ● packages ● permissions

● recvs ● recvnet ● recvsaction ● fdaccess ● accessedfi les
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are fi rst-order predicates over the set of activities A, allowing the user to specify 
relatively complex patterns relating possible activities in a signature through logical 
connectives. Regardless of this particular RAF, our prototype supports the inclusion of 
standard security tools such as, e.g., antivirus packages or other security monitoring 
components. These can be easily uploaded to the clone and run while the testing 
carries on.

 Q 7.3.2. Experiment I: The Structure of a Triggering Model

In this fi rst experiment, we monitored all events triggered by a user executing 
several apps on his device during a representative amount of time. The resulting event 
set contained about |S| =8K states, distributed over various observations traces of 
around |O| = 37K states. We then used such traces to estimate the transition matrix 
using Eq. (7.8). The resulting Markov chain turned out to have various interesting 
features. For example, its degree distribution follows a power-law of the form P(k) 
= k−α (see Fig. 7.2) with α = 2.28 for k ≥ 2. This suggests that events and contexts 
follow a scale-free network [Clauset et al., 2009], which is not surprising. Recall that 
an edge between two nodes (events) indicates that the destination event occurs 
after the source event.

A power-law distribution such as the one shown in Figure 7.2 reveals that 
most events have an extremely low number of “neighbors”; i.e., once an event has 

Figure 7.2

(A) MARKOV MODEL REPRESENTING CONTEXTUAL AND KERNEL INPUT 
EVENTS FOR A USER INTERACTING WITH AN ANDROID PLATFORM; 
(B) DEGREE DISTRIBUTION, IN LOG-LOG SCALE, OF THE MODEL IN 
(A) AS DEFINED IN SECTION 7.2.2

Source: Own elaboration.
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happened, the most likely ones coming next reduce to about 100 out of the 8K 
possible. Only a small fraction of all events are highly connected, meaning that 
almost any other event is possible to occur after them. For instance, in our traces we 
found that over half of the states were only connected to just one state. In contrast, 
one state was found to be connected to more than 4000 other states.

These results make sense due to the following reason: input and context 
events do depend quite strongly on those issued immediately before. For example, 
the probability of moving from one place to another nearby is much higher than to 
a remote place. The same applies to sequences of events, where the probability 
distribution of the next likely event reflects the way we interact with the app. As we 
will next see, this structure makes testing extremely efficient.

QQ 7.3.3. Experiment II: Speed of Testing

We performed a number of experiments to measure how fast input events 
can be injected into an Android application sandbox. Such events include not only 
input events, but also a variety of contexts’ traces comprising phone calls, SMS 
messages and GPS locations. We studied the time taken by both the sandbox and 
the operating system to process each injected event. Our results suggest that the 
time required to process injected states (input or context events) varies depending 
on the type of state (see Table 7.2). For instance, it takes around 0.35 seconds, on 
average, to inject an SMS and process it trough the operating system. In contrast, 
geolocation events can be injected almost 100 times faster. We also observed a 
significant difference between the capabilities of the sandbox and the OS running on 
top of it. For instance, while the sandbox is able to process about 2800 geolocation 
states per second, the OS can only absorb around 100 each second. We suspect 

Table 7.2

EVENT INJECTION RATES FOR DIFFERENT TYPES OF EVENTS OVER  
A VIRTUALIZED ANDROID DEVICE (TOP), AND RATES GENERATED  
BY REAL USERS BASED ON PROFILING 67 APPS (BOTTOM)

Source: Wei et al., 2012.

Automatic Injection
Injected Event Emulator Layer App Layer

Sensor event 7407.66 events/s 1.26 events/s
Power event 361.77 events/s 19.16 events/s
Geolocation event 2810.15 events/s 111.87 events/s
SMS event 451.27 events/s 0.35 events/s
GSM call/cancel event 1726.91 events/s 0.71 events/s

Human Generated
Event Type Average Peak

Usage patterns 5 events/s 10 events/s
Context patterns 10 events/s 25 events/s
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that this throughput might be improved by using more efficient virtual frameworks, 
such as Qemu for Android x862 or ARM-based hardware for the cloud.3

For comparison purposes, the lower rows in Table 7.2 show the average and 
peak number of events generated by human users, both for usage (e.g., touch 
events) and context events, as reported in previous works [Wei et al., 2012].

QQ 7.3.4. Experiment III: Coverage and Efficiency

We perform a number of experiments to evaluate the performance of our 
proposal. We aim at measuring the time required to reach an accurate decision by 
means of simulation. More precisely, we simulate an injection system configured 
with an specific u and g randomly generated and with different number of states  
|S| = 100, 1000, 10000.

The configuration of each experiment is based on the findings shown in 
previous section as detailed bellow. First, we generated two types of Markov model 
chains: (i) one random scale-free network of events using a preferential attachment 
mechanism as defined by Barabási–Albert (BA) [Albert and Barabási, 2002], and 
(ii) another random network with attachment mechanism as defined by Erdős-Rényi 
(ER) model [Erdős and Rényi, 1960]. Then, we simulated a user providing inputs to 
a device together with its context at a rate of 10 events per second. We chose this 
throughput as it is a realistic injection rate (see Table 7.2).

In each experiment, we generate a number of random Markov chains and 
calculate the cumulative transition probability covered when traversing from one 
state to another of the chain for the first time. Formally, let

			   rw = si1, si2, ... , sin   , 	 sij ∈ S	 (7.13)

be a random walk over the chain, with aijij+1 > 0 ∀ ij , and let

			   T (rw ) = {(sij, sij+1) | sij ∈ S \ {sin}}	 (7.14)

be the set of all transitions made during the random walk. We define the coverage of 
rw as the amount of transitions seen by rw , weighted by their respective probabilities 
and normalized to add up to one, i.e.:

			   Coverage(rw) = 
( ) ( )

1 .
∈
∑ pq

p,q T rw

a
N

	 (7.15)

The coverage is used to evaluate both the efficiency and the accuracy of our 
system. On the one hand, it can be used to measure the amount of a user’s common 
actions triggered given a limited period of testing time. Additionally, it also shows 
how fast the system tests the most common actions. Results for sets of events of 

2 http://www.android-x86.org/
3 http://armservers.com/

Libro 1.indb   206 24/11/2016   11:02:15



207DETECTING TARGETED SMARTPHONE MALWARE WITH BEHAVIOR-TRIGGERING STOCHASTIC MODELS

various sizes are shown in Figure 7.3, where the curves have been averaged over 10 
simulations. The results show that the coverage reached when testing networks of 
sizes |S| = 100, 1000, and 4000 states is very satisfactory. Such a good performance 
is related to the scale-free distribution of states through time. Thus, a coverage 
above 80% is reached in less than two minutes for 100 states, and in approximately 
1 hour for 4000 states.

It is important to emphasize that the coverage reported in Figure 7.3 corresponds 
to one test sequence randomly drawn according to the user’s behavioral model. 
If the process is repeated or carried out in parallel (e.g., over a clone), other test 
sequences may well explore behaviors not covered by the first one. This is illustrated 
in Table 7.3, where we show the total testing coverage as a function of the number 
of clones tested in parallel, each on with a different input sequence. Thus, after two 
hours testing just one clone results in a coverage slightly above 84%. However, if 
five clones are independently tested in parallel, the overall results is a coverage of 
around 93% of the total user behavior. This time-memory trade-off is a nice property, 
allowing to increase the coverage by just testing multiple clones simultaneously 
rather than by performing multiple test over the same clone.

Reaching a 100% coverage is, in general, difficult due to the stochastic nature 
of the models. This is not critical, as those behavioral patterns that are left unexplored 

Figure 7.2

EFFICIENCY AND ACCURACY OF THE DECISION FOR A BARABÁSI-ALBERT 
AND ERDŐS-RÉNYI NETWORK MODEL

Source: Own elaboration.
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correspond to actions extremely unlikely to be executed by the user. In practical terms 
this is certainly a risk, but one relatively unimportant as the presumably uncovered 
malware instance would not activate for this user except with very low probability.

QQ 7.4. CASE STUDIES

In this section we present two case studies illustrating how the injection of user-
specific behavioral patterns can contribute to reveal malware with targeted activation 
mechanisms. We cover dormant and anti-analysis malware, as these scenarios 
constitute representative cases of targeted behaviors in current smart devices 
[Suarez-Tangil et al., 2014b]. For each case, we first provide a brief description of 
the rationale behind the malware activation condition and then discuss the results 
obtained after applying the injection strategy presented in this work. In all cases, 
the evaluation has been conducted using the android remote access tool (RAT) 
described in Chapter 3. More precisely, we have adapted Androrat [Bertrand et al., 
2014] to incorporate the specific triggering conditions.

QQ 7.4.1. Case 1: Dormant Malware/Grayware

Piggybacked malware [Zhou et al., 2013] is sometimes programmed to remain 
dormant until an specific situation of interest presents itself [Zhou and Jiang, 2012].

This type of malware is eventually activated to sense if the user context is 
relevant for the malware. If so, then some other malicious actions are executed. 
For instance, a malware aiming at spying a very specific industrial system, such as 
the case of Stuxnet, will remain dormant until the malware hits the target system. 
Similarly, in a Bring-Your-Own-Device (BYOD) context, malware targeting a specific 
office building can remain dormant until the device is near a certain location.

Typically, malicious apps are activated when the BOOT_COMPLETED event is 
triggered regardless of the context of the infected device. A recent study on Android 
malware [Zhou and Jiang, 2012] suggests that the tendency is shifting towards more 

Table 7.3

COVERAGE GIVEN BY OUR MODEL WHEN RUNNING MULTIPLE PARALLEL 
CLONE GIVEN A LIMITED TESTING TIME FOR A NETWORK OF |S | = 4000 
STATES

Source: Own elaboration.

Number of parallel clones

1 2 3 4 5 6 7 8 9 10

10 min. 42% 60% 68% 73% 76% 79% 81% 81% 82.5% 83.4%

60 min. 79% 86% 89% 90% 90% 91% 91% 91% 91% 95%

120 min. 84% 87% 88% 88% 93% 93% 93% 93% 93% 93%
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sophisticated activation triggers so as to better align with the malware incentives and 
the pursued goals. This results in a variety of more complex activation conditions, 
such as those shown in Table 7.4.

We instrumented Androrat to activate the RAT component only when the device 
is in a certain location. We use a mock location near the Bushehr’s nuclear plant, 
simulating a possible behavior for a Stuxnet-like malware. Specifically, the RAT is only 
activated when the device is near the location: 28.82781◦ (latitude) and 50.89114◦ 
(longitude). Once the RAT is activated, we send the appropriate commands to 
exfiltrate ambient and call recordings captured through the microphone, the camera, 
and the camcorder.

For testing purposes, we built a symbolic model representing the abstract 
geographic areas of a given user working at Bushehr’s plant. Figure 7.4 represents 

Table 7.4

TYPICAL WAKE-UP CONDITIONS FOR MALWARE ACTIVATION

Source: Own elaboration.

Wake-up conditions

User presence USB connected, screen-on action, accelerator changed, etc.

Location Location change event, near an address, leaving an area, etc.

Time A given day and time, after a certain period of time, etc.

Hardware Power and LED status, KEY action, LOCK event, etc.

Configuration Apps installed, a given contact/phone number in the agenda, etc.

Figure 7.3

MARKOV CHAIN FOR THE LOCATION

Source: Own elaboration.
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the Markov Model chain for the different areas and the transitions between them. For 
instance, the model represents a user traveling from HOME (xH) to WORK (xW ) with 
a probability of P (xH|xW) = 0.7.

Given the above model, we then inject testing traces drawn from the chain 
into the sandbox instrumented with Androrat. The sandbox is configured with a 
generic RAF aiming at identifying when operations involving personal information 
occur together with network activity. Results show how the malware is not activated 
until we start injecting mock locations. A few seconds after the first injection, the 
behavioral signature collected reported, as expected, both data leakage (dataleak) 
and network activity (sendnet).

We next defined an alternative scenario in which an app accesses the user 
location and sends an SMS to one of his contacts whenever he is leaving a certain 
region, such as for instance WORK (xW). To this end, we implement an app and 
tested it against three users with different contexts and concerns about their privacy. 
The first user has strict privacy policies and visits very frequently the location xW. 
The second user has the same policy as the first one but has never visited such a 
location.

Finally, the last user visits xW as well but has a more flexible privacy policy. For 
the sake of simplicity, we use the same triggering model described in the previous 
example for user one and three (see Figure 7.4), while the second user has a 
different Markov chain. Results show that:

●● For the first user, the behavioral signature reported data leakage activity 
(dataleak) as well as SMS activity (sendsms). As both are in conflict with this 
user’s privacy preferences, this is marked as undesirable behavior.

●● In the case of the second user, the model injects locations other than those 
triggering the grayware component. Consequently, no significant behavioral 
signature is produced.

●● Finally, the events injected for the third user trigger the grayware component, 
resulting in data leakage and SMS activity. However, as these do not oppose 
his privacy preferences, no alert is issued.

This example reinforces the view that not only malware activation can be user 
specific, but that the consequences of such a malware may also be perceived very 
differently by each user.

QQ 7.4.2. Case 2: Anti-analysis Malware

Malware analysis is typically performed in a virtual sandbox rather than in a 
physical device due to economic and efficiency factors [Suarez-Tangil et al., 2014b]. 
These sandboxes often have a particular hardware configuration that can be 
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leveraged by malware instances to detect that they are being analyzed and deploy 
evasion counter-measures [Rogers, 2014], for example by simply not executing the 
malicious payload if the environment matches a particular configuration. Sandboxes 
for smartphone platforms have such artifacts. For instance, the IMEI, the phone 
number, or the IP address are generally configured by default. Furthermore, 
other hardware features such as the battery level are typically emulated and kept 
indefinitely at the same status: e.g., AC on and Charging 50%. Table 7.5 summarizes 
some of these features in most Android emulators along with their default value.

Hardware features such as those described above can be set prior to launching 
the sandbox. This will prevent basic fingerprinting analysis, for example by setting 
random values for each execution. However, smarter malware instances might 
implement more sophisticated approaches, such as waiting for a triggering condition 
based on a combination of hardware changes. Motivated by this, we modified 
Androrat to activate the RAT component only after AC is off and the battery status is 
different from 50%. Once the RAT is activated, we send appropriate commands to 
exfiltrate some personal information from the device such as SMSs, call history, etc.

In principle, there are as many triggering conditions as combinations of possible 
hardware events. Although our framework support injection of all possible hardware 

Table 7.5

DEFAULT HARDWARE CONFIGURATION FOR ANDROID EMULATOR

Source: Own elaboration.

HW feature Default value

IMEI 000000000000000

IMSI 012345678912345

SIM 012345678912345

Phone Number 1-555-521-PORT (5554)

Model Number sdk

Network Android

Battery Status AC on Charging 50%

IP Address 10.0.2.X

Table 7.6

DIFFERENT HARDWARE STATES FOR POWER STATUS OF THE DEVICE

Source: Own elaboration.

Status Health Present AC Capacity

unknown charging discharging 
not-charging full

unknown good overheat 
dead overvoltage failure

false 
true

off 
on 0 - 100%
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events via the Android emulator console [Android, 2014], for simplicity we restricted 
our experimentation to the subset of power-related events described in Table 7.6.

Based on the different power states, we built a model of the battery usage 
extracted from an actual device when used by a real user. The resulting model is 
shown in Figure 7.5. We then tested Androrat against this model generated using the 
same RAF configuration used in previous cases. The results show that the behavioral 
signature not only reported dataleak and sendnet, but also file activity (accessedfiles), 
thus confirming that the malware activated as it failed to recognize its presence in a 
sandbox.

QQ 7.5. CONCLUSIONS

The problem of detecting targeted malware via behavioral analysis requires 
the ability to reproduce an appropriate set of conditions that will trigger the malicious 
behavior. Determining those triggering conditions by exhaustively searching through 
all possible states is an undecidable problem. In this chapter, we have proposed 
a novel system for mining the behavior of apps in different user-specific usage 
scenarios and contexts. Our experimental results show that modeling such patterns 
as Markov chains reduces the complexity of the search space while still offering an 
effective representation of the usage and context patterns.

Figure 7.4

MARKOV CHAIN FOR THE BATTERY STATUS

Source: Own elaboration.

Libro 1.indb   212 24/11/2016   11:02:16



213DETECTING TARGETED SMARTPHONE MALWARE WITH BEHAVIOR-TRIGGERING STOCHASTIC MODELS

Our approach represents a robust building block for thwarting targeted malware, 
as it allows the analyst to automatically generate patterns of input events to stimulate 
apps. As the focus of this chapter has been on the design of such a component, 
we have relied on ad hoc replication and risk assessment components to discuss 
the quality of our proposal. We are currently extending our system to support:  
(a) a replication system to automatically generate and test clones of the device 
under inspection; and (b) a general framework to specify risk assessment functions 
and analyze behavioral signatures obtained in each clone. Finally, in this chapter 
we have not discussed the potential privacy implications associated with obtaining 
user behavioral models. Even if such profiles are just used for testing purposes, they 
do contain sensitive information and must be handled with caution. This and other 
related privacy aspects of targeted testing will be tackled in future work.
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Smart devices equipped with powerful sensing, computing, and networking 
capabilities have increasingly become the platform of choice –mostly in the 
form of smartphones and tablets– for many users, outselling the number of PCs 
worldwide. The rapid development of smartphone technologies and its widespread 
user acceptance have come hand in hand with a similar increase in the number 
of malicious software targeting such platforms. This increase is accompanied, in 
some cases, by sophisticated techniques purposely designed to overcome security 
architectures and detection mechanisms. This Thesis examines the problem of such 
smart malware and addresses several fundamental issues when automating its 
analysis in large-scale scenarios.

This Chapter provides the conclusions of this dissertation. We first summarize 
the main contributions and discuss how they meet the objectives established. Next, 
we identify and discuss a number of challenging open issues that should be tackled 
in future work. Finally, we list various results (publications, software, etc.) that have 
resulted from this Thesis.

QQ 8.1. CONTRIBUTIONS

We next summarize the contributions made in this work and discuss the main 
conclusions that arise from them:

1.	The comprehensive analysis presented in Chapter 2 on the evolution of 
malware in smart devices motivates the need for intelligent instruments to 
automate their analysis. To do so, we have first provided an overview of the 
security models and protection mechanisms present in current platforms for 
smart devices. Next, we have proposed a characterization of malware in terms 
of three key factors: pursued goals and associated behaviors; distribution and 
infection channels; and privilege acquisition strategies. Our analysis of some 
representative samples demonstrates that malware is becoming increasingly 
complex and adaptive, with constantly changing goals and using multiple 
distribution and infection strategies. We have also provided an analysis of 
the 20 most significant proposals for detecting and analyzing malware for 
smart devices proposed between 2010 and 2014. First, we have identified 
and classified all device features where malware behavior could manifest. 
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This taxonomy has been complemented with additional elements, such as 
where the monitoring and analysis tasks take place, or the specific detection 
technique used. Then, we have provided key elements for the design of 
novel techniques aiming at detecting and analyzing smart malware. Finally, 
Chapter 3 presents the design and development of a research lab for smart 
malware analysis and detection. This lab compiles together –and extends–
the most cutting-edge open source tools for all static-, dynamic-, and cloud-
based analysis. This lab facilitates the automation of smart malware analysis, 
and we believe it will be extremely useful to other researchers aiming at 
automating malware analysis for smart detection.

2.	Static analysis is a relatively fast approach to identify malicious software. 
For this reason, it has been widely used by existing techniques to search for 
suspicious components. The techniques introduced in Chapter 4 demonstrate 
that exploiting static features for mining structural patterns in smart malware 
is extremely efficient. In particular, we have successfully applied a text 
mining approach to automatically classify smartphone malware samples and 
analyze families based on the code structures found in them. Our proposal 
is supported by a statistical analysis of the distribution of such structures 
over a large dataset of real examples. Our findings point out that the problem 
bears strong resemblances to some questions arising in automated text 
classification and other information retrieval tasks. By adapting them to these 
domains, we have explored the suitability of such techniques to measure 
similarity among malware samples, and to classify unknown samples into 
known families. Our results suggest that this technique is fast, scalable, and 
very accurate. Furthermore, this technique also provides the analyst with a 
means to analyze the relationships among families, the existence of common 
ancestors, the prevalence and/or extinction of certain code features, etc. 
Altogether, this reveals that automated tools are instrumental for analysts to 
cope with the proliferation and increasing sophistication of malware.

3.	Smart malware often relies on obfuscation techniques to avoid detection 
and to make static analysis harder. Chapter 5 uses dynamic analysis to 
address this type of malware and introduces a novel technique based on 
differential fault analysis to automate its identification in large-scale markets. 
Our approach demonstrates how fault injection can be used to analyze the 
behavioral differences between the original app and a number of automatically 
generated versions of it where a number of modifications (faults) have been 
carefully injected. Observable differences in terms of activities that appear 
or vanish in the modified app are used to successfully identify potentially 
malicious components hidden within an app package. Finally, we show how 
this approach is a good complement to static analysis tools, more focused on 
inspecting code components but which could well miss pieces of code hidden 
in data objects or just obfuscated.
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4.	Adapting and adopting both static- and dynamic-based analysis tools to 
battery- powered devices is a challenging problem. Relying on offloaded (i.e., 
cloud-based) engines has been suggested an alternative for empowering 
constrained devices with powerful detection capabilities. In Chapter 6, we 
have discussed the power consumption trade-offs among various strategies 
for executing anomaly detection components directly on mobile platforms or 
remotely in the cloud. When researchers are confronted with this dilemma, 
we have shown that there is actually little choice but to offload everything 
to the cloud. Reasons for this include the differences between the energy 
efficiency of computation and communications in current platforms, and also 
various parameters related to the anomaly detection setting, such as the 
dataset sizes and the operation frequency.

5.	The consumption model previously proposed reveals that the use of detection 
techniques built in the device is unaffordable. Chapter 7 shows that cloud-
based approaches can be adopted to analyze targeted malware. Current 
dynamic- based detection strategies are shown to be extremely inefficient 
when dealing with this type of malware, as analysts must reproduce very 
specific activation conditions to trigger malicious payloads. First, we position 
that determining those triggering conditions by exhaustively searching through 
all possible states is an undecidable problem. To this end, we have proposed 
a novel system based on cloud cloning for mining the behavior of apps in 
different user-specific usage scenarios and contexts. We have revealed that 
using a simple yet powerful stochastic model reduces the complexity of the 
search space while still offering an effective representation of the usage and 
context patterns of the targeted device. Finally, we have provided the analyst 
with a robust system for automatically detecting targeted malware. The main 
building blocks of this system are: the evidence generation subsystem, and the 
behavioral modeling and risk assessment subsystem. The first one extracts 
usage and context traces from the device and generates the stochastic 
triggering model. The second block ex- tracts the behavioral signatures from 
the clone(s) and applies a risk assessment over the evidences collected.

QQ 8.2. OPEN ISSUES AND FUTURE WORK

Malware in smart devices still pose many challenges and a number of important 
issues need to be further studied and addressed with novel solutions. This section 
identifies some open issues where research is needed.

●● Cooperative security. In the near future it is very likely that many users will 
own a network of smart devices, including smartphones, smart TVs and other 
home appliances, and wearable computing platforms. Such networks could 
be leveraged to implement cooperative security functions, as a complement 
to cloud-based and on-platform monitoring and analysis mechanisms. Ideally, 
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several connected devices could cooperate to improve security in a number 
of ways. For example, resource-intensive tasks can be delegated to devices 
with a permanent power source to preserve the battery of mobile platforms. 
Similarly, mutually monitoring schemes could be interesting, where each 
device monitors the behavior of others to detect compromise.

●● Trusted software. In the case of current smartphones and tablets, trust on 
the non-malicious nature of an app is based on two factors: (i) the implicit 
assumption that the market operator has conducted some security review 
before making the app available for download; and (ii) the identity of the 
developer, given by the signature attached to the app, which also provides 
some evidence of the app’s integrity. The first point is not fully reliable, 
as operators cannot afford to carry out an exhaustive analysis over every 
submitted app; and, even if they could, there is still some non-negligible 
probability of sophisticated malware evading detection. As for the identify of 
the developer and the app’s integrity, evidence suggests that most users do 
not pay much attention to them, or positively ignore them when downloading 
apps from alternative markets.

We believe that further efforts to improve trust in software are required. 
This will be increasingly necessary in the near future, as the number of 
developers –and, hence, apps– will likely grow very significantly. Reputation 
systems [Viriyasitavat and Martin, 2012; Zacharia et al., 2000] adapted to this 
context might offer some added value, in particular by exploiting interactions 
in large user communities such as, for example, those provided by online 
social networks [Govindan and Mohapatra, 2012]. But other mechanisms 
for building trust could also apply, such as for example remote attestation 
protocols [Nauman et al., 2010; Saroiu and Wolman, 2010; Viriyasitavat and 
Martin, 2012] or any other schemes to ensure the authenticity and integrity 
of software.

●● Malware in other smart devices. The experience gained from current 
smartphones suggests that malware will also hit other smart devices as soon 
as they appear. Evidence in other pervasive technologies already exists. 
For example, nowadays Radio Frequency Identification (RFID) systems are 
used in a wide range of applications, such as transport tickets, access control 
systems, e-passports, e-health applications, etc. The benefits of adopting 
RFID technology for identification purposes are clear, but its associated 
security risks need to be addressed. One of them –often underestimated– 
is malware. The use of Internet-enabled mobile devices as RFID readers 
makes this sort of attacks potentially more harmful. Most previous works 
have focused on securing the communication link between the tag and the 
(mobile) reader. There are, however, some preliminary works [Rieback et al., 
2006; Yan et al., 2009] on RFID malware, but further studies and solutions are 
required. Similarly, Implantable Medical Devices (IMDs) and other medical 
devices will likely be an attractive target for attackers due to the economic 
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value of the information they can provide [Burleson et al., 2012; Clark and Fu, 
2012; Clark et al., 2013].

●● Forensics-based analysis for smart device protection. Sometimes malicious 
programs uninstall themselves after achieving their goals. However, 
analyzing evidences that they leave behind could be used as an input for 
detecting future propagation using the same infection vector. Identifying 
such traces is a great challenge, particularly due to the availability of anti-
forensic tools for devices such as smartphones [Distefano et al., 2010]. In this 
regard, two different approaches might be worth exploring. On the one hand, 
deleting evidences or attempting to neutralize any source of evidence usually 
produces fresh new evidences. On the other hand, new paradigms such as 
the aforementioned replicas in the cloud, allow the creation of novel forensic 
approaches on the cloud based on virtual introspection.

●● Offloaded security. Applications are increasingly requiring the user to authorize 
the transference of personal information to the cloud as part of the normal 
use of the application. For instance, WhatsApp sends the user’s address 
book to establish friendship connections [WhatsApp, 2014]. However, even if 
the user authorizes such a transference, it does not mean that it will be used 
for purposes other than those conveyed to the user, such as for example 
market research. In other cases, users are only informed that some personal 
information will be sent, but the particulars about what specific items or how 
it will be used are not given. Identifying misuse of personal information, both 
on-platform and in the cloud, is a challenging problem that is typically tackled 
by legal enforcement mechanisms, but technical approaches should be 
explored. For instance, in the same way that Google App Engine [Google, 
2014a] is used to deploy in-the-cloud applications –monitored by Google–, 
back-end services for smartphones and other smart devices could be moved 
to a cloud controlled and monitored by a trusted third party. This could make 
feasible to monitor behavior and enforce security policies in the cloud end of 
the service, thus complementing other security mechanisms applied in the 
device.

Similar privacy-related problems arise in cloud-based monitoring schemes, 
primarily in those that maintain a virtualized replica of the device to carry 
out monitoring tasks that are unaffordable to perform directly on the device. 
Privacy-preserving monitoring systems for this scenario are required, 
but also more lightweight monitoring and detection mechanisms that can 
run on platform with an appropriate balance between efficacy and power 
consumption.

●● Stegomalware. In the case of smart malware, one commonly observed 
technique consists of hiding modules containing malicious functionality in 
places that static analysis tools overlook (e.g., within data objects). More 
sophisticated hiding techniques, particularly in code, are starting to materialize. 
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These techniques and trends create an additional obstacle to malware 
analysts, who see their task further complicated and have to ultimately rely 
on carefully controlled dynamic analysis techniques, such as Alterdroid, to 
detect the presence of potentially dangerous pieces of code. We believe that 
smart malware could be using advanced techniques, such as steganography, 
for concealing their modules within another components of the code. This 
is specially critical when this components are hidden within distinguishable 
components (see Alterdroid-Chapter 5).

QQ 8.3. RESULTS

All contributions resulting from this Thesis (see Section 1.3 in Chapter 1) have 
been sent for publication to top ranked peer reviewed journals and international 
conferences in the Computer Science area. Furthermore, software produced as a 
result of this Thesis has been sent for copyright protection and made available for 
fair use1 to the research community.

This section reports all results published and/or submitted during this PhD, and 
Table 8.1 presents a summary. The index used for evaluating the journals we aim at 
this dissertation is the Impact Factor (I.F.) as defined by the Journal Citation Report 
(JCR) from Thomson Reuters.2 Similarly, the Computer Research and Education 
ranking (CORE) from Computer Research & Education3 is used to evaluate the 

Publications Indexes Rank
Journals Published: 5 JCR Q1
Conferences Published : 1 CORE A
Others Copyrighted : 4 -- --
Total 10

Table 8.1 

SUMMARY OF THE PUBLICATIONS OF THIS THESIS AND THE CITATION 
INDEXES OF THEIR CORRESPONDING PUBLICATION VENUE

Source: Own elaboration.

1 Permits the use of a copyrighted work for nonprofit or educational purposes.
2 http://thomsonreuters.com/journal-citation-reports/
3 www.core.edu.au/

conferences. These rankings are typically based on the acceptance ratio, number 
of submissions, citations, and the position of the publication venue with respect to 
others in the same category.

QQ 8.3.1. Publications Thesis

We list all publications that arise from this Thesis organized by contribution:
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P1: “Evolution, Detection and Analysis of Malware for Smart Devices.”

●● Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris- Lopez, 
and Arturo Ribagorda.

●● In: IEEE Comms Surveys & Tutorials, vol. 16:2, pp. 961-987 (2014).

●● I.F. (2012): 4.81.

●● Position in category: 2/132 (Q1) in Computer Science.

P2: “Dendroid: A Text Mining Approach to Analyzing and Classifying Code 
Structures in Android Malware Families.”

●● Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-Lopez, 
and Jorge Blasco.

●● In: Expert Systems with Applications, vol. 41, pp. 1104-1117 (2014).

●● I.F. (2012): 1.85.

●● Position in category: 56/243 (Q1) in Engineering.

P3: “Thwarting Obfuscated Malware via Differential Fault Analysis.”

●● Authors: Guillermo Suarez-Tangil, Flavio Lombardi, Juan E. Tapiador, 
and Roberto Di Pietro.

●● In: IEEE Computer, vol. 47:6, pp. 24-31 (2014).

●● I.F. (2012): 1.68.

●● Position in category: 9/50 (Q1) in Computer Science.

P4: “Detecting Targeted Smartphone Malware with Behavior-Triggering 
Stochastic Models.”

●● Authors: Guillermo Suarez-Tangil, Mauro Conti, Juan E. Tapiador, and 
Pedro Peris-Lopez.

●● To: European Symposium On Research In Computer Security  
(ES- ORICS), September 2014.

●● Rank (2013): CORE A in Computer Software.
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QQ 8.3.2. Copyright Software and Patents

We list the copyright software submissions resulting from this Thesis:

●● Software Registration I: Alterdroid. This software compiles all source code 
related to the following contribution: Differential fault analysis of obfuscated 
malware behavior.
●● Software Registration II: CloneCloud. A stochastic behavioral-triggering model 
for targeted malware detection requires a number of scripts to automatically 
generate android apps equipped with a number of anomaly detection 
algorithms.
●● Software Registration III: CrowdDroid. This software comprises an Android 
app for monitoring system calls from physical Android smartphones and an 
Apache server app for collecting such information. This software has been 
used to evaluate the anomaly detectors described in A stochastic behavioral- 
triggering model for targeted malware detection.
●● Software Registration IV: Maldroid Lab. This software compiles all source 
code related to the following contribution: A research lab of malware for smart 
malware analysis and detection. Additionally, it compiles software used in:
-- A text mining approach for analyzing and classifying malware families.

-- Power-aware anomaly detection in smartphones.

P5: “Alterdroid: Differential Fault Analysis of Obfuscated Malware Behavior.”

●● Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Flavio Lombardi, 
and Roberto Di Pietro.

• To: IEEE Transactions on Mobile Computing, submitted September 2014.

●● I.F. (2012): 2.91.

●● Position in category: 12/135 (Q1) in Computer Science.

P6: “Power-aware Anomaly Detection in Smartphones: An Analysis of 
On-Platform versus Externalized Operation.”

●● Authors: Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris- Lopez, 
and Sergio Pastrana.

●● To: Pervasive and Mobile Computing, submitted February 2014.

●● I.F. (2012): 1.63.

●● Position in category: 27/172 (Q1) in Computer Science.
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QQ 8.3.3. Research Visits

We finally list the research visits performed during this PhD:

●● Università degli Studi di Padova: I visited Dr. Mauro Conti between September 
and October 2013. As a result of this visit, we have published the following 
contribution Detecting Targeted Smartphone Malware with Behavior- 
Triggering Stochastic Models in ESORICS 2014. We are currently working on 
extending our proposal.

●● Università degli Studi di Roma Tre: I visited Dr. Roberto Di Pietro between 
September and December 2012. Resulting from this visit, we have 
published Thwarting Obfuscated Malware via Differential Fault Analysis in 
IEEE Computer 2014, and submitted Alterdroid: Differential Fault Analysis 
of Obfuscated Malware Behavior” to an IEEE Transactions 2014. We are 
currently working on other proposals.

Libro 1.indb   227 24/11/2016   11:02:16



Libro 1.indb   228 24/11/2016   11:02:16



REFERENCES

Libro 1.indb   229 24/11/2016   11:02:16



Libro 1.indb   230 24/11/2016   11:02:16



231

Albert, R. and Barabási, A. L. (2002), Statistical mechanics of complex networks. Reviews of modern 
physics, 74(1): 47–97.

Alll, B. and Tumbleson, C. (Visited May 2014), Dex2jar: Tools to work with android .dex and java. class 
files. https://code.google.com/p/dex2jar

Android (Visited May 2014), Android developers. http://developer.android.com/ 

Andrus, J., Dall, C., Hof, A. V., Laadan, O., and Nieh, J. (2011), Cells: a virtual mobile smartphone 
architecture. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems 
Principles, SOSP ’11, pages 173–187. ACM.

Apple (May 2012), ios security. http://images.apple.com/ipad/business/docs/iOS_ Security_Feb14.pdf

— (Visited May 2014), Apple answers fcc questions. http://www.apple.com/hotnews/apple-answers-fcc-
questions/.

Apvrille, A. (2011), Cryptography for mobile malware obfuscation. In RSA, editor, RSA Conference. 
Fortinet.

Asokan, N., Davi, L., Dmitrienko, A., Heuser, S., Kostiainen, K., Reshetova, E., and Sadaghi, A.-R. (2013), 
Mobile Platform Security. Morgan & Claypool Publishers, elisa bertino and ravi sandhu edition.

Au, K., Zhou, Y., Huang, Z., Gill, P., and Lie, D. (2011), Short paper: a look at smartphone permission 
models. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and 
mobile devices, SPSM’11, pages 63–68. ACM.

Auriemma, L. (Visited May 2014), Samsung devices with support for remote controllers. http://aluigi.org/
adv/samsux_1-adv.txt

Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky, P. (2012), Appguard —real-time 
policy enforcement for third-party applications. Technical report, Universitats- und Landesbibliothek, 
Postfach 151141, 66041 Saarbracken. http://scidok. sulb.uni-saarland.de/volltexte/2012/4902

Barbera, M. V., Kosta, S., Mei, A., and Stefa, J. (2013), To offload or not to offload? the bandwidth and 
energy costs of mobile cloud computing. In Proc. of IEEE INFOCOM, volume 2013, pages 1285–
1293.

Barrera, D., Kayacik, H. G., van Oorschot, P. C., and Somayaji, A. (2010), A methodology for empirical 
analysis of permission-based security models and its application to android. In Proceedings of the 
17th ACM conference on Computer and communications security, pages 73–84. ACM.

Batyuk, L., Herpich, M., Camtepe, S., Raddatz, K., Schmidt, A., and Albayrak, S. (2011), Using static 
analysis for automatic assessment and mitigation of unwanted and malicious activities within 
android applications. In 6th International Conference on Malicious and Unwanted Software 
(MALWARE 2011), pages 66–72.

Bertrand, A., David, R., Akimov, A., and Junk, P. (Visited May 2014), Remote administration tool for 
android devices. https://github.com/DesignativeDave/androrat

Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V., and Iftode, L. (2010), Rootkits on smart phones: attacks, 
implications and opportunities. In Proceedings of the Eleventh Workshop on Mobile Computing 
Systems & Applications, HotMobile ’10, pages 49–54, New York, NY, USA. ACM.

Libro 1.indb   231 24/11/2016   11:02:16



232 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

Blasing, T., Batyuk, L., Schmidt, A., Camtepe, S., and Albayrak, S. (2010), An android application 
sandbox system for suspicious software detection. In 5th International Conference on Malicious 
and Unwanted Software, MALWARE’10, pages 55–62. IEEE.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., and Sadeghi, A. (2011a), Xmandroid: A new android evolution 
to mitigate privilege escalation attacks. Technical report, Technische Universitat Darmstadt.

Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.-R., and Shastry, B. (2011b), Practical and 
lightweight domain isolation on android. In Proceedings of the 1st ACM workshop on Security and 
privacy in smartphones and mobile devices, SPSM ’11, pages 51–62, New York, NY, USA. ACM.

Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. (2011), Crowdroid: behavior-based malware detection 
system for android. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones 
and mobile devices, pages 15–26. ACM.

Burleson, W. P., Clark, S. S., Ransford, B., and Fu, K. (2012), Design challenges for secure implantable 
medical devices. In Proceedings of the 49th Design Automation Conference, DAC’12, pages 12–17, 
New York, NY, USA. ACM.

Cai, L. and Chen, H. (2011), Touchlogger: inferring keystrokes on touch screen from smartphone motion. 
In Proceedings of the 6th USENIX conference on Hot topics in security, HotSec’11, pages 9–9, 
Berkeley, CA, USA. USENIX Association.

Calvet, J., Fernandez, J. M., and Marion, J.-Y. (2012), Aligot: cryptographic function identification in 
obfuscated binary programs. In Proceedings of the 2012 ACM conference on Computer and 
communications security, CCS ’12, pages 169–182, New York, NY, USA. ACM.

Capilla, R., Ortiz, O., and Hinchey, M. (2014), Context variability for context-aware systems. Computer, 
47(2): 85–87.

Cesare, S. and Xiang, Y. (2010), Classification of malware using structured control flow. In Proceedings 
of the Eighth Australasian Symposium on Parallel and Distributed Computing- Volume, volume 107 
of AusPDC ’10, pages 61–70. Australian Computer Society, Inc.

Chakradeo, S., Reaves, B., Traynor, P., and Enck, W. (2013), Mast: Triage for market- scale mobile 
malware analysis. In Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless 
and Mobile Networks, WiSec ’13, pages 13–24, New York, NY, USA. ACM.

Chan, M., Esteve, D., Fourniols, J.-Y., Escriba, C., and Campo, E. (2012), Smart wearable systems: 
Current status and future challenges. Artificial Intelligence in Medicine, 56(3): 137–156.

Chandola, V., Banerjee, A., and Kumar, V. (2009), Anomaly detection: A survey. ACM Comput. Surv., 
41(3):15:1–15:58.

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., and Winandy, M. (2010), Return-
oriented programming without returns. In Proceedings of CCS 2010, pages 559–72. ACM.

Chibelushi, C., Sharp, B., and Salter, A. (2004), A text mining approach to tracking elements of decision 
making: a pilot study. In NLUCS, pages 51–63. Citeseer.

Chin, E., Felt, A., Greenwood, K., and Wagner, D. (2011), Analyzing inter-application communication in 
android. In Proceedings of the 9th international conference on Mobile systems, applications, and 
services, pages 239–252. ACM.

Chin, E., Felt, A. P., Sekar, V., and Wagner, D. (2012), Measuring user confidence in smartphone security 
and privacy. In Symposium on Usable Privacy and Security, pages 1:1–1: 16, Washington. 
Advancing Science, Serving Society.

Christodorescu, M., Jha, S., Seshia, S., Song, D., and Bryant, R. (2005), Semantics-aware malware 
detection. In Security and Privacy, 2005 IEEE Symposium on, pages 32–46.

Chubb, D. (Visited May 2014), Data privacy of ios 6 release notes. http://www.product-reviews.
net/2012/06/15/ios-6-release-notes-show-heightened-security/

Libro 1.indb   232 24/11/2016   11:02:16



233REFERENCES

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011), Clonecloud: elastic execution between 
mobile device and cloud. In Proceedings of the sixth conference on Computer systems, EuroSys 
’11, pages 301–314. ACM.

Clark, S. S. and Fu, K. (2012), Recent results in computer security for medical devices. In Wireless 
Mobile Communication and Healthcare, volume 83 of Lecture Notes of the Institute for Computer 
Sciences, Social Informatics and Telecommunications Engineering, pages 111–118. Springer 
Berlin Heidelberg.

Clark, S. S., Ransford, B., Rahmati, A., Guineau, S., Sorber, J., Xu, W., and Fu, K. (2013), Wattsupdoc: 
Power side channels to nonintrusively discover untargeted malware on embedded medical devices. 
In Presented as part of the 2013 USENIX Workshop on Health Information Technologies, Berkeley, 
CA. USENIX.

Clauset, A., Shalizi, C. R., and Newman, M. E. (2009), Power-law distributions in empirical data. SIAM 
review, 51(4): 661–703.

Conti, M., Crispo, B., Fernandes, E., and Zhauniarovich, Y. (2012), Crepe: A system for enforcing fine-
grained context-related policies on android. Information Forensics and Security, IEEE Transactions 
on, 7(5): 1426–1438.

Conti, M., Nguyen, V., and Crispo, B. (2011), Crepe: Context-related policy enforcement for android. 
Information Security, 6531:331–345.

Corporation, S. (2013), Internet security threat report. Technical report, Symantex. http://www.symantec.
com/content/en/us/enterprise/other_resources/ b-istr_main_report_v18_2012_21291018.en-us.pdf

Crussell, J., Gibler, C., and Chen, H. (2012), Attack of the clones: Detecting cloned applications on 
android markets. Computer Security–ESORICS 2012, pages 37–54.

CuteCircuit (Visited May 2014), T–shirtos: The future is getting closer. http://www. cutecircuit.com/tshirtos-
the-future-is-getting-closer/

Damopoulos, D., Kambourakis, G., and Gritzalis, S. (2011), isam: An iphone stealth airborne malware. 
In Camenisch, J., Fischer-Hubner, S., Murayama, Y., Portmann, A., and Rieder, C., editors, Future 
Challenges in Security and Privacy for Academia and Industry, volume 354 of IFIP Advances in 
Information and Communication Technology, pages 17–28. Springer Berlin Heidelberg.

Davi, L., Dmitrienko, A., Sadeghi, A.-R., and Winandy, M. (2011a), Privilege escalation attacks on android. 
In Burmester, M., Tsudik, G., Magliveras, S., and Ilic, I., editors, Information Security, volume 6531 
of Lecture Notes in Computer Science, pages 346–360. Springer Berlin / Heidelberg.

Davi, L., Sadeghi, A.-R., and Winandy, M. (2011b), Ropdefender: A detection tool to defend against 
return-oriented programming attacks. In Proceedings of the 6th ACM Symposium on Information, 
Computer and Communications Security, pages 40–51. ACM.

De Luca, A., Hang, A., Brudy, F., Lindner, C., and Hussmann, H. (2012), Touch me once and i know it’s 
you!: implicit authentication based on touch screen patterns. In Proceedings of the 2012 ACM 
annual conference on Human Factors in Computing Systems, pages 987–996. ACM.

De Meulenaer, G., Gosset, F., Standaert, F.-X., and Pereira, O. (2008), On the energy cost of 
communication and cryptography in wireless sensor networks. In Networking and Communications, 
2008. WIMOB’08. IEEE International Conference on Wireless and Mobile Computing, pages 580–
585. IEEE.

Dediu, H. (2012), When will tablets outsell traditional pcs? http://www.asymco.com/2012/03/02/when-will-
the-tablet-market-be-larger-than-the-pc-market/

— (2013), Measuring platform churn. http://www.asymco.com/2013/05/05/platform-churn/

— (2014b), When will smartphones saturate? http://www.asymco.com/2014/01/07/when-will-
smartphones-saturate/

Libro 1.indb   233 24/11/2016   11:02:17



234 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

— (Accessed February 2014a), Systemtap. https://sourceware.org/systemtap/. Dediu, H., Schmidt, D., 
and Salle, R. (Visited May 2014). Asymco. http://www.asymco.com/

Delany, S. J., Buckley, M., and Greene, D. (2012), Sms spam filtering: methods and data. Expert Systems 
with Applications, 39(10): 9899–9908.

Desnos, A. (2012), Android: Static analysis using similarity distance. In 45th Hawaii International 
Conference on System Science, HICSS’12, pages 5394–5403. IEEE.

Desnos, A. (Visited May 2014), Androguard reverse engineering tool. http://code.google. com/p/
androguard/

Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and Wallach, D. S. (2011), Quire: Lightweight provenance for 
smart phone operating systems. In Proceedings of the 20th USENIX symposium on security, page 
16. USENIX Association.

Dini, G., Martinelli, F., Saracino, A., and Sgandurra, D. (2012), Madam: a multi-level anomaly detector 
for android malware. In Proceedings of the 6th international conference on Mathematical Methods, 
Models and Architectures for Computer Network Security: computer network security, MMM-
ACNS’12, pages 240–253. Springer-Verlag.

Distefano, A., Me, G., and Pace, F. (2010), Android anti-forensics through a local paradigm. Digital 
Investigation, 7, Supplement: S83–S94.

Dong, M. and Zhong, L. (2011), Self-constructive high-rate system energy modeling for battery-powered 
mobile systems. In Proceedings of the 9th international conference on Mobile systems, applications, 
and services, pages 335–348. ACM.

Dunham, K. (2008), Mobile malware attacks and defense. Syngress.

Egele, M., Kruegel, C., Kirda, E., and Vigna, G. (2011), Pios: Detecting privacy leaks in ios applications. In 
Proceedings of the Network and Distributed System Security Symposium, NDSS’11.

Egele, M., Scholte, T., Kirda, E., and Kruegel, C. (2012), A survey on automated dynamic malware-
analysis techniques and tools. ACM Computing Surveys, 44(2):6:1–6:42.

Elish, K. O., Yao, D. D., Ryder, B. G., and Jiang, X. (2013), A static assurance analysis of android 
applications. Technical report, Virginia Polytechnic Institute and State University.

eMarketer (2014), Smartphone users worldwide will total 1.75 billion in 2014. http://www.emarketer.com/
Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536

Enck, W. (2011), Defending users against smartphone apps: techniques and future directions. In 
Proceedings of the 7th international conference on Information Systems Security, ICISS’11, pages 
49–70. Springer-Verlag.

Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., and Sheth, A. (2010), Taintdroid: an 
information-flow tracking system for realtime privacy monitoring on smartphones. In Proceedings of 
the 9th USENIX conference on Operating systems design and implementation, pages 1–6. USENIX 
Association.

Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. (2011), A study of android application security. 
In Proceedings of the 20th USENIX conference on Security, SEC’11, pages 21–21, Berkeley, CA, 
USA. USENIX Association.

Enck, W., Ongtang, M., and McDaniel, P. (2009a), On lightweight mobile phone application certification. 
In Proceedings of the 16th ACM conference on Computer and communications security, pages 
235–245. ACM.

— (2009b). Understanding android security. Security & Privacy, IEEE, 7(1): 50–57.

Erdős, P. and Rényi, A. (1960), On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. 
Közl, 5: 17–61.

Libro 1.indb   234 24/11/2016   11:02:17



235REFERENCES

Estévez-Tapiador, J. M., Garcia-Teodoro, P., and Díaz-Verdejo, J. E. (2004), Anomaly detection methods 
in wired networks: a survey and taxonomy. Computer Communications, 27(16): 1569–1584.

F-Secure (April 2012), Mobile threat report q1 2012. Technical report, F–Secure. “http: //www.f-secure.
com/weblog/archives/MobileThreatReport_Q1_2012.pdf”

— (Visited May 2014), F–secure mobile threats. http://www.f-secure.com/en/web/labs_global/mobile-
security

Falaki, H., Mahajan, R., and Estrin, D. (2011), Systemsens: a tool for monitoring usage in smartphone 
research deployments. In Proceedings of the sixth international workshop on MobiArch, MobiArch, 
11, pages 25–30. ACM.

Fan, J., Reparaz, O., Rožić, V., and Verbauwhede, I. (2013), Low-energy encryption for medical devices: 
Security adds an extra design dimension. In Proceedings of the 50th Annual Design Automation 
Conference, DAC ’13, pages 15: 1–15:6, New York, NY, USA. ACM.

Fang, Z., Han, W., and Li, Y. (2014), Permission based android security: Issues and countermeasures. 
Computers & Security.

Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. R., and Shamshirband, S. (2014), A study 
of machine learning classifiers for anomaly-based mobile botnet detection. Malaysian Journal of 
Computer Science, 26(4).

Felt, A., Wang, H., Moshchuk, A., Hanna, S., and Chin, E. (2011a), Permission redelegation: Attacks 
and defenses. In Proceedings of the 20th USENIX Security Symposium, pages 1–16. USENIX 
Association.

Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. (2011b), Android permissions demystified. 
In Proceedings of the 18th ACM conference on Computer and communications security, pages 
627–638. ACM.

Felt, A. P., Finifter, M., Chin, E., Hanna, S., and Wagner, D. (2011c), A survey of mobile malware in the 
wild. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile 
devices, SPSM ’11, pages 3–14, New York, NY, USA. ACM.

Felt, A. P., Greenwood, K., and Wagner, D. (2011d), The effectiveness of application permissions. In 
Proceedings of the 2nd USENIX conference on Web application development, WebApps’11, pages 
7–7. USENIX Association.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and Wagner, D. (2012), Android permissions: User 
attention, comprehension, and behavior. In Proceedings of the Eighth Symposium on Usable 
Privacy and Security, SOUPS ’12, pages 3: 1–3: 14, New York, NY, USA. ACM.

Fenske, J. (2012), Biometrics in new era of mobile access control. Biometric Technology Today, 2012(9): 
9–11.

Fisher, D. H. (1987), Knowledge acquisition via incremental conceptual clustering. Machine learning, 2(2): 
139–172.

Fisk, G., Fisk, M., Papadopoulos, C., and Neil, J. (2003), Eliminating steganography in internet traffic with 
active wardens. In Revised Papers from the 5th International Workshop on Information Hiding, IH 
’02, pages 18–35, London, UK, UK. Springer-Verlag.

Fleck, D., Tokhtabayev, A., Alarif, A., Stavrou, A., and Nykodym, T. (2013), Pytrigger: A system to trigger 
&amp; extract user-activated malware behavior. In Availability, Reliability and Security (ARES), 
2013 Eighth International Conference on, pages 92–101. IEEE.

Fleizach, C., Liljenstam, M., Johansson, P., Voelker, G., and Mehes, A. (2007), Can you infect me now?: 
malware propagation in mobile phone networks. In Proceedings of the 2007 ACM workshop on 
Recurring malcode, pages 61–68. ACM.

Gadia, V. and Rosen, G. (2008), A text-mining approach for classification of genomic fragments. In 
Bioinformatics and Biomeidcine Workshops, 2008. BIBMW 2008. IEEE International Conference 
on, pages 107–108. IEEE.

Libro 1.indb   235 24/11/2016   11:02:17



236 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

Garcia-Teodoro, P., Díaz-Verdejo, J. E., Maciá-Fernández, G., and Vázquez, E. (2009), Anomaly-based 
network intrusion detection: Techniques, systems and challenges. Computers & Security, 28 
(1–2):18–28.

Garfinkel, T., Rosenblum, M., et al. (2003), A virtual machine introspection based architec- ture for intrusion 
detection. In Proceedings on Network and Distributed Systems Security Symposium, volume 3 of 
NDSS’03, pages 191–206.

Gianazza, A., Maggi, F., Fattori, A., Cavallaro, L., and Zanero, S. (2014), Puppetdroid: A user-centric 
ui exerciser for automatic dynamic analysis of similar android applications. arXiv preprint arXiv: 
1402.4826.

Gilbert, P., Chun, B.-G., Cox, L. P., and Jung, J. (2011), Vision: automated security validation of mobile 
apps at app markets. In Proceedings of the second international workshop on Mobile cloud 
computing and services, MCS ’11, pages 21–26, New York, NY, USA. ACM.

Goasduff, L. and Pettey, C. (Visited May 2014), Gartner says worldwide smartphone sales soared in 
fourth quarter of 2011 with 47 percent growth. http://www.gartner.com/it/ page.jsp?id=1924314

Goodin, D. (Visited May 2014), Apple expels serial hacker for publishing iphone exploit. http://www.
theregister.co.uk/2011/11/08/apple_excommunicates_charlie_ miller/

Google (Visited May 2014a), Google app engine. www.google.com/enterprise/cloud/appengine

— (Visited May 2014b). Google glass. http://http://www.google.com/glass/

Govindan, K. and Mohapatra, P. (2012), Trust computations and trust dynamics in mobile adhoc networks: 
A survey. IEEE Communications Surveys & Tutorials, 14(2): 279–298.

Grace, M., Zhou, Y., Wang, Z., and Jiang, X. (2012a), Systematic detection of capability leaks in stock 
android smartphones. In Proceedings of the 19th Annual Symposium on Network and Distributed 
System Security, NDSS’12.

Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X. (2012b), Riskranker: scalable and accurate zero-
day android malware detection. In Proceedings of the 10th international conference on Mobile 
systems, applications, and services, pages 281–294. ACM.

Gray, J. (1986), Why do computers stop and what can be done about it? In Symposium on reliability in 
distributed software and database systems, pages 3–12. Los Angeles, CA, USA.

Gudeth, K., Pirretti, M., Hoeper, K., and Buskey, R. (2011), Delivering secure applications on commercial 
mobile devices: the case for bare metal hypervisors. In Proceedings of the 1st ACM workshop on 
Security and privacy in smartphones and mobile devices, SPSM ’11, pages 33–38. ACM.

Guido, D. and Arpaia, M. (2012), Mobile exploit intelligence project. http://www. trailofbits.com/resources/
mobile_eip-04-19-2012.pdf

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009), The weka data 
mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1): 10–18.

Halperin, D., Heydt-Benjamin, T. S., Ransford, B., Clark, S. S., Defend, B., Morgan, W., Fu, K., Kohno, 
T., and Maisel, W. H. (2008a), Pacemakers and implantable cardiac defibrillators: Software radio 
attacks and zero-power defenses. In Proceedings of the 29th Annual IEEE Symposium on Security 
and Privacy, pages 129–142. IEEE.

Halperin, D., Kohno, T., Heydt-Benjamin, T., Fu, K., and Maisel, W. (2008b), Security and privacy for 
implantable medical devices. Pervasive Computing, IEEE, 7(1): 30–39.

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., and Song, D. (2013), Juxtapp: A scalable system for 
detecting code reuse among android applications. In Proceedings of the 9th Conference on 
Detection of Intrusions and Malware & Vulnerability Assessment, volume 7591 of Lecture Notes in 
Computer Science, pages 62–81.

Libro 1.indb   236 24/11/2016   11:02:17



237REFERENCES

Hao, S., Li, D., Halfond, W., and Govindan, R. (2012), Estimating android applications’ cpu energy usage 
via bytecode profiling. In Green and Sustainable Software (GREENS), 2012 First International 
Workshop on, pages 1–7. IEEE.

Hasan, R., Saxena, N., Haleviz, T., Zawoad, S., and Rinehart, D. (2013), Sensing-enabled channels for 
hard-to-detect command and control of mobile devices. In Proceedings of the 8th ACM SIGSAC 
symposium on Information, computer and communications security, pages 469–480. ACM.

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. (2005), The elements of statistical learning: data 
mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–85.

Hornyack, P., Han, S., Jung, J., Schechter, S., and Wetherall, D. (2011), These aren’t the droids you’re 
looking for: retrofitting android to protect data from imperious applications. In Proceedings of the 
18th ACM conference on Computer and communications security, pages 639–652. ACM.

Hou, Y.-T., Chang, Y., Chen, T., Laih, C.-S., and Chen, C.-M. (2010), Malicious web content detection by 
machine learning. Expert Systems with Applications, 37(1): 55–60.

Huang, H., Zhu, S., Liu, P., and Wu, D. (2013), A framework for evaluating mobile app repackaging 
detection algorithms. In Trust and Trustworthy Computing, pages 169–186. Springer.

Husted, N., Saïdi, H., and Gehani, A. (2011), Smartphone security limitations: conflicting traditions. In 
Proceedings of the 2011 Workshop on Governance of Technology, Information, and Policies, GTIP 
’11, pages 5–12, New York, NY, USA. ACM.

IIH-uBox (Visited May 2014), Smart pillbox. http://www.innovatorsinhealth.org/solutions/

Jakobsson, M., Shi, E., Golle, P., and Chow, R. (2009), Implicit authentication for mobile devices. In 
Proceedings of the 4th USENIX conference on Hot topics in security, pages 9–9. USENIX 
Association.

Jensen, C. S., Prasad, M. R., and Møller, A. (2013), Automated testing with targeted event sequence 
generation. In Proceedings of the 2013 International Symposium on Software Testing and Analysis, 
pages 67–77. ACM.

Jeon, J., Micinski, K., Vaughan, J., Reddy, N., Zhu, Y., Foster, J., and Millstein, T. (2011), Dr. android 
and mr. hide: Fine-grained security policies on unmodified android. Technical report, University of 
Maryland.

Jiang, X. and Zhou, Y. (2013), Android Malware. Springer Briefs in Computer Science. Springer.

Jung, W., Kang, C., Yoon, C., Kim, D., and Cha, H. (2012), Devscope: a nonintrusive and online power 
analysis tool for smartphone hardware components. In Proceedings of the eighth IEEE/ACM/IFIP 
international conference on Hardware/software codesign and system synthesis, pages 353–362. 
ACM.

Juniper (2012), 2011 mobile threats report. Technical report, Juniper Networks. Juniper (2013). 2013 
mobile threats report. Technical report, Juniper Networks.

Kalige, E. and Burkey, D. (2012), A case study of eurograbber: How 36 million euros was stolen via 
malware. Technical report, Versafe.

Karaklajiić, D., Kneževiić, M., and Verbauwhede, I. (2010), Low cost built in self test for public key crypto 
cores. In Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC’10, pages 97–103.

Ker, A. D., Bas, P., Böhme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J., and Pevný, T. (2013), 
Moving steganography and steganalysis from the laboratory into the real world. In Proceedings 
of the first ACM workshop on Information hiding and multimedia security, IH&MMSec ’13, pages 
45–58, New York, NY, USA. ACM.

Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., and Standaert, F.-X. (2012), Towards green cryptography: 
A comparison of lightweight ciphers from the energy viewpoint. In Cryptographic Hardware and 
Embedded Systems, volume 7428 of Lecture Notes in Computer Science, pages 390–407. 
Springer Berlin Heidelberg.

Libro 1.indb   237 24/11/2016   11:02:17



238 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

Kim, H., Smith, J., and Shin, K. (2008), Detecting energy-greedy anomalies and mobile malware variants. 
In Proceedings of the 6th international conference on Mobile systems, applications, and services, 
MobiSys ’08, pages 239–252. ACM.

Knappmeyer, M., Kiani, S. L., Reetz, E. S., Baker, N., and Tonjes, R. (2013), Survey of context provisioning 
middleware. IEEE Communications Surveys & Tutorials, 15(3): 1492–1519.

Kosta, S., Aucinas, A., Hui, P., Mortier, R., and Zhang, X. (2012), Thinkair: Dynamic resource allocation 
and parallel execution in the cloud for mobile code offloading. In Proceedings of IEEE International 
Conference on Computer Communications (INFOCOM), pages945–953. IEEE.

Kostiainen, K., Reshetova, E., Ekberg, J.-E., and Asokan, N. (2011), Old, new, borrowed, blue: a 
perspective on the evolution of mobile platform security architectures. In Proceedings of the first 
ACM conference on Data and application security and privacy, CODASPY ’11, pages 13–24. ACM.

Kraemer, S. and Carayon, P. (2007), Human errors and violations in computer and information security: 
The viewpoint of network administrators and security specialists. Applied Ergonomics, 38(2): 143–
154.

Kramer, S. (2010), Rage against the cage.

Kranz, M., Moller, A., Hammerla, N., Diewald, S., Plotz, T., Olivier, P., and Roalter, L. (2013), The 
mobile fitness coach: Towards individualized skill assessment using personalized mobile devices. 
Pervasive and Mobile Computing, 9(2): 203–215. Special Section: Mobile Interactions with the 
Real World.

Kumar, K. and Lu, Y.-H. (2010), Cloud computing for mobile users: Can offloading computation save 
energy? Computer, 43(4): 51–56.

Kumazawa, T. and Tamai, T. (2011), Counter example-based error localization of behavior models. In 
Proceedings of the Third international conference on NASA Formal methods, NFM’11, pages 222–
236, Berlin, Heidelberg. Springer-Verlag.

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., and Peter, M. (2011), L4android: a generic operating 
system framework for secure smartphones. In Proceedings of the 1st ACM workshop on Security 
and privacy in smartphones and mobile devices, SPSM ’11, pages 39–50, New York, NY, USA. 
ACM.

Langner, R. (2011), Stuxnet: Dissecting a cyberwarfare weapon. Security & Privacy, IEEE, 9(3): 49–51.

Lantz, P. (Visited May 2014), Android application sandbox. https://code.google.com/p/droidbox/

Larner, S. (2012), Smartphones and tablets in the hospital environment. British Journal of Healthcare 
Management, 18(8): 404–405.

Leavitt, N. (2013), Today’s mobile security requires a new approach. IEEE Computer, 46(11): 16–19.

Li, E. and Craver, S. (2011), A square-root law for active wardens. In Proceedings of the thirteenth ACM 
multimedia workshop on Multimedia and security, MM&Sec ’11, pages 87–92, New York, NY, USA. 
ACM.

Li, Q. and Clark, G. (2013), Mobile security: A look ahead. Security Privacy, IEEE, 11(1): 78–81.

Liang, C.-J. M., Lane, N. D., Brouwers, N., Zhang, L., Karlsson, B., Liu, H., Liu, Y., Tang, J., Shan, X., 
Chandra, R., et al. (2013), Context virtualizer: A cloud service for automated large-scale mobile app 
testing under real-world conditions. Technical report, Microsoft.

Liao, S.-H., Chu, P.-H., and Hsiao, P.-Y. (2012), Data mining techniques and applications - a decade 
review from 2000 to 2011. Expert Systems with Applications, 39(12): 11303 –11311.

Lin, Y.-D., Lai, Y.-C., Chen, C.-H., and Tsai, H.-C. (2013), Identifying android malicious repackaged 
applications by thread-grained system call sequences. Computers & Security, 39, Part B(0): 340–
350.

Linn, C. and Debray, S. (2003), Obfuscation of executable code to improve resistance to static disassembly. 
In Proceedings of the 10th ACM conference on Computer and communications security, pages 
290–299. ACM.

Libro 1.indb   238 24/11/2016   11:02:17



239REFERENCES

Lockheimer, H. (Visited May 2014), Android and security. http://googlemobile. blogspot.com.es/2012/02/
android-and-security.html

Lookout (Visited May 2014), Security alert: Hacked websites serve suspicious android apps 
(notcompatible). http://goo.gl/yJEgn

Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. (2012), Chex: statically vetting android apps for component 
hijacking vulnerabilities. In Proceedings of the 2012 ACM conference on Computer and 
communications security, pages 229–240. ACM.

Luo, T., Hao, H., Du, W., Wang, Y., and Yin, H. (2011), Attacks on webview in the android system. In 
Proceedings of the 27th Annual Computer Security Applications Conference, pages 343–352. ACM.

Machiry, A., Tahiliani, R., and Naik, M. (2013), Dynodroid: An input generation system for android apps. 
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 
2013, pages 224–234, New York, NY, USA. ACM.

Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek, S., and Stavrou, A. (2012), A whitebox 
approach for automated security testing of android applications on the cloud. In Automation of 
Software Test (AST), 2012 7th International Workshop on, pages 22–28.

Marquis-Boire, M., Marczak, B., Guarnieri, C., and Scott-Railton, J. (2013), You only click twice: Finfisher‚Äôs 
global proliferation. Research Brief. https://citizenlab.org/ wp-content/uploads/2013/07/15-2013-
youonlyclicktwice.pdf

McAfee (2011), Threats report:fourth quarter 2010. Technical report, McAfee. McAfee (2012). Threats 
report:fourth quarter 2011. Technical report, McAfee. McAfee (2013). Threats report:fourth quarter 
2012. Technical report, McAfee.

Microsoft (2012), Windows phone 8 security overview. Technical report, Microsoft Coorporation. http://
go.microsoft.com/fwlink/?LinkId=266838

Milano, D. T. (Visited May 2014), Android view client. https://github.com/dtmilano/ AndroidViewClient

Mulliner, C. and Seifert, J.-P. (2010), Rise of the iBots: 0wning a telco network. In Proceedings of the 5th 
IEEE International Conference on Malicious and Unwanted Software (Malware), pages 71–80, 
Nancy, France.

Mulliner, C., Vigna, G., Dagon, D., and Lee, W. (2006), Using labeling to prevent cross- service attacks 
against smart phones. In Buschkes, R. and Laskov, P., editors, Detection of Intrusions and Malware 
and Vulnerability Assessment, volume 4064 of Lecture Notes in Computer Science, pages 91–108. 
Springer Berlin Heidelberg.

Nagata, K., Yamaguchi, S., and Ogawa, H. (2012), A power saving method with consideration of 
performance in android terminals. In Ubiquitous Intelligence & Computing and 9th International 
Conference on Autonomic & Trusted Computing (UIC/ATC), 2012 9th International Conference on, 
pages 578–585. IEEE.

NakedSecurity (Visited May 2014), Malicious cloned games attack google android market. http://
nakedsecurity.sophos.com/2011/12/12/ malicious-cloned-games-attack-google-android-market/

Namboodiri, V. and Ghose, T. (2012), To cloud or not to cloud: A mobile device perspective on energy 
consumption of applications. In IEEE International Symposium on a World of Wireless, Mobile and 
Multimedia Networks (WoWMoM), pages 1–9.

Natella, R., Cotroneo, D., Duraes, J., and Madeira, H. (2013), On fault representativeness of software 
fault injection. Software Engineering, IEEE Transactions on, 39(1): 80–96.

Nauman, M., Khan, S., Zhang, X., and Seifert, J.-P. (2010), Beyond kernel-level integrity measurement: 
enabling remote attestation for the android platform. In Trust and Trust-worthy Computing, pages 
1–15. Springer.

Newcomb, D. (Visited May 2014), Weblink aims to bridge the nagging smartphone-car disconnect. http://
www.wired.com/autopia/2013/03/weblink-abalta-auto-apps

Libro 1.indb   239 24/11/2016   11:02:17



240 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

Ni, X., Yang, Z., Bai, X., Champion, A. C., and Xuan, D. (2009), Diffuser: Differentiated user access control 
on smartphones. In Mobile Adhoc and Sensor Systems, 2009. MASS’09. IEEE 6th International 
Conference on, pages 1012–1017. IEEE.

Nielsen (2012), State of the appnation —a year of change and growth in u.s. smartphones. Technical 
report, Nielsen.

Nielson, F., Nielson, H., and Hankin, C. (1999), Principles of Program Analysis. Springer. Norris, J. R. 
(1998). Markov chains. Cambridge university press.

Oberreuter, G. and Velásquez, J. D. (2013), Text mining applied to plagiarism detection: The use of words 
for detecting deviations in the writing style. Expert Systems with Applications, 40(9): 3756 – 3763.

O’Connor, J. (2006), Blackberry security: Ripe for the picking? Technical report, Symantec.

Ongtang, M., McLaughlin, S., Enck, W., and McDaniel, P. (2009), Semantically rich application-centric 
security in android. In Computer Security Applications Conference, ACSAC’09, pages 340–349.

Panxiaobo (Visited May 2014), Apktool: A tool for reverse engineering android apk files. https://code.
google.com/p/android-apktool/

Pathak, A., Hu, Y., and Zhang, M. (2012), Where is the energy spent inside my app?: fine grained energy 
accounting on smartphones with eprof. In Proceedings of the 7th ACM european conference on 
Computer Systems, pages 29–42. ACM.

Pathak, A., Hu, Y., Zhang, M., Bahl, P., and Wang, Y. (2011), Fine-grained power modeling for smartphones 
using system call tracing. In Proceedings of the sixth conference on Computer systems, pages 
153–168. ACM.

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C., and Molloy, I. (2012), Using 
probabilistic generative models for ranking risks of android apps. In Proceedings of the 2012 ACM 
conference on Computer and communications security, pages 241–252. ACM.

Porras, P. A., Saidi, H., and Yegneswaran, V. (2010), An analysis of the ikee.b iphone botnet. In Schmidt, 
A. U., Russello, G., Lioy, A., Prasad, N. R., and Lian, S., editors, Security and Privacy in Mobile 
Information and Communication Systems (MobiSec), Second International ICST Conference, 
volume 47 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and 
Telecommunications Engineering, pages 141–152. Springer.

Portokalidis, G., Homburg, P., Anagnostakis, K., and Bos, H. (2010), Paranoid android: versatile protection 
for smartphones. In Proceedings of the 26th Annual Computer Security Applications Conference, 
pages 347–356.

Quinlan, J. R. (1986), Induction of decision trees. Machine learning, 1(1): 81–106.

Rachuri, K. K., Efstratiou, C., Leontiadis, I., Mascolo, C., and Rentfrow, P. J. (2014), Smartphone sensing 
offloading for efficiently supporting social sensing applications. Pervasive and Mobile Computing, 
10, Part A(0): 3–21.

Raiu, C. and Emm, D. (2013), Kaspersky security bulletin. Technical report, Kaspersky. http://media.
kaspersky.com/pdf/KSB_2013_EN.pdf

Rassameeroj, I. and Tanahashi, Y. (2011), Various approaches in analyzing android applications with 
its permission-based security models. In Electro/Information Technology (EIT), 2011 IEEE 
International Conference on, pages 1–6.

Rastogi, V., Chen, Y., and Enck, W. (2013a), Appsplayground: automatic security analysis of smartphone 
applications. In Proceedings of the third ACM conference on Data and application security and 
privacy, CODASPY’13, pages 209–220. ACM.

Rastogi, V., Chen, Y., and Jiang, X. (2013b), Droidchameleon: evaluating android anti- malware against 
transformation attacks. In Proceedings of the 8th ACM SIGSAC symposium on Information, 
computer and communications security, ASIA CCS ’13, pages 329–334, New York, NY, USA. ACM.

Libro 1.indb   240 24/11/2016   11:02:17



241REFERENCES

Reina, A., Fattori, A., and Cavallaro, L. (2013), A system call-centric analysis and stimulation technique 
to automatically reconstruct android malware behaviors. In Proceedings of the 6th European 
Workshop on System Security, EUROSEC’13, Prague, Czech Republic.

Rieback, M. R., Simpson, P. N., Crispo, B., and Tanenbaum, A. S. (2006), Rfid malware: Design principles 
and examples. Pervasive and mobile computing, 2(4): 405–426.

Rodriguez-Gonzalez, A. Y., Martinez-Trinidad, J. F., Carrasco-Ochoa, J. A., and Ruiz- Shulcloper, J. 
(2013), Mining frequent patterns and association rules using similarities. Expert Systems with 
Applications, 40(17): 6823 – 6836.

Rogers, M. (2014), Dendroid malware can take over your camera, record audio, and sneak into google 
play. https://blog.lookout.com/blog/2014/03/06/dendroid/

Rohrer, F., Zhang, Y., Chitkushev, L., and Zlateva, T. (2012), Poster: Role based access control for android 
(rbaca). Technical report, Boston University, MA USA.

Rosen, S., Qian, Z., and Mao, Z. M. (2013), Appprofiler: a flexible method of exposing privacy-related 
behavior in android applications to end users. In Proceedings of the third ACM conference on Data 
and application security and privacy, pages 221–232. ACM.

Russello, G., Conti, M., Crispo, B., and Fernandes, E. (2012), Moses: supporting operation modes 
on smartphones. In Proceedings of the 17th ACM symposium on Access Control Models and 
Technologies, SACMAT ’12, pages 3–12, New York, NY, USA. ACM.

Russello, G., Jimenez, A. B., Naderi, H., and van der Mark, W. (2013), Firedroid: Hardening security 
in almost-stock android. In Proceedings of the 29th Annual Computer Security Applications 
Conference, ACSAC ’13, pages 319–328, New York, NY, USA. ACM.

Ruzgar, E. and Erciyes, K. (2012), Clustering based distributed phylogenetic tree construction. Expert 
Systems with Applications, 39(1): 89–98.

Sahin, S., Tolun, M. R., and Hassanpour, R. (2012), Hybrid expert systems: A survey of current approaches 
and applications. Expert Systems with Applications, 39(4): 4609–4617.

Salton, G., Wong, A., and Yang, C.-S. (1975), A vector space model for automatic indexing. Communications 
of the ACM, 18(11): 613–620.

Samsung (Visited May 2014), Samsung smart tv. http://www.samsung.com/us/2012-smart-tv/

Saroiu, S. and Wolman, A. (2010), I am a sensor, and i approve this message. In Proceedings of the 11th 
Workshop on Mobile Computing Systems & Applications, HotMobile ’10, pages 37–42, New York, 
NY, USA. ACM.

Schipka, M. (2009), Dollars for downloading. Network Security, 2009(1): 7–11.

Schmidt, A.-D. (2011), Detection of Smartphone Malware. PhD thesis, Universitätsbibliothek.

Schreckling, D., Posegga, J., and Hausknecht, D. (2012), Constroid: Data-Centric Access Control for 
Android. In Proceedings of the 27th Symposium on Applied Computing (SAC): Computer Security 
Track.

Schrittwieser, S., Katzenbeisser, S., Kieseberg, P., Huber, M., Leithner, M., Mulazzani, M., and Weippl, E. 
(2013), Covert computation: hiding code in code for obfuscation purposes. In Proceedings of the 8th 
ACM SIGSAC symposium on Information, computer and communications security, ASIA CCS ’13, 
pages 529–534, New York, NY, USA. ACM.

Seriot, N. (2010), iphone privacy. Black Hat DC, pages 1–30.

Shabtai, A., Fledel, Y., and Elovici, Y. (2010a), Securing android-powered mobile devices using selinux. 
Security & Privacy, IEEE, 8(3): 36–44.

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., and Glezer, C. (2010b), Google android: A 
comprehensive security assessment. Security & Privacy, IEEE, 8(2): 35–44.

Libro 1.indb   241 24/11/2016   11:02:17



242 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss, Y. (2012), Andromaly: a behavioral malware 
detection framework for android devices. Journal of Intelligent Information Systems, 38: 161–190.

Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Rokach, L., Shapira, B., and Elovici, Y. (2014), Mobile 
malware detection through analysis of deviations in application network behavior. Computers & 
Security.

Shahzad, F., Akbar, M., Khan, S., and Farooq, M. (2013), Tstructdroid: Realtime malware detection 
using in-execution dynamic analysis of kernel process control blocks on android. Technical report, 
National University of Computer & Emerging Sciences, Islamabad, Pakistan.

Shahzad, F., Akbar, M. A., and Farooq, M. (2012), A survey on recent advances in malicious applications 
analysis and detection techniques for smartphones. Technical report, National University of 
Computer & Emerging Sciences, Islamabad, Pakistan.

Shi, E., Niu, Y., Jakobsson, M., and Chow, R. (2011), Implicit authentication through learning user 
behavior. In Information Security, pages 99–113. Springer.

Shih, D., Lin, B., Chiang, H., and Shih, M. (2008), Security aspects of mobile phone virus: a critical survey. 
Industrial Management & Data Systems, 108(4): 478–494.

Skycure (Visited May 2014), Malicious profiles - the sleeping giant of ios security. http: //blog.skycure.
com/2013/03/malicious-profiles-sleeping-giant-of.html

Sony (Visited May 2014), Smartwatch. http://www.sonymobile.com/us/products/accessories/smartwatch/

Sophos (Visited May 2014a), First anti–virus software for connected tv. http://goo.gl/ Ww67D

— (Visited May 2014b), Sophos endpoint protection. http://www.sophos.com

— (Visited May 2014c), Sophos mobile security threat report. http://www.sophos. com/en-us/medialibrary/
PDFs/other/sophos-mobile-security-threat-report. ashx

Suarez-Tangil, G., Lombardi, F., Tapiador, J. E., and Pietro, R. D. (2014a), Thwarting obfuscated malware 
via differential fault analysis. IEEE Computer, 47(6): 24–31.

Suarez-Tangil, G., Tapiador, J. E., Peris, P., and Ribagorda, A. (2014b), Evolution, detection and analysis 
of malware for smart devices. IEEE Communications Surveys & Tutorials, 16(2): 961–987.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., and Blasco, J. (2014c), Dendroid: A text mining 
approach to analyzing and classifying code structures in android malware families. Expert Systems 
with Applications, 41(1): 1104–1117.

Symantec (Visited May 2014), Symantec security threats. http://www.symantec.com/security_response/
landing/threats.jsp

Takanen, A., Demott, J. D., and Miller, C. (2008), Fuzzing for software security testing and quality 
assurance. Artech House.

Tan, S. (2005), Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Systems with 
Applications, 28(4): 667–671.

Tandel, M. H. and Venkitachalam, V. S. (2013), Cloud computing in smartphone: Is offloading a better-
bet? Technical report, Electrical Engineering and Computer Science, Wichita State University.

Thiruvadi, S. and Patel, S. C. (2011), Survey of data-mining techniques used in fraud detection and 
prevention. Information Technology Journal, 10(4): 710–716.

Titze, D., Stephanow, P., and Schuette, J. (2013), App-ray: User-driven and fully automated android app 
security assessment. Technical report, Fraunhofer Institute.

Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., McDaniel, P., and La Porta, T. (2009), On cellular 
botnets: measuring the impact of malicious devices on a cellular network core. In Proceedings of 
the 16th ACM conference on Computer and communications security, CCS ’09, pages 223–234, 
New York, NY, USA. ACM.

Libro 1.indb   242 24/11/2016   11:02:17



243REFERENCES

Verbauwhede, I. (2011), Low budget cryptography to enable wireless security. 4th ACM Conference on 
Wireless Network Security. WiSec’11.

Verdult, R. and Kooman, F. (2011), Practical attacks on nfc enabled cell phones. In 3rd International 
Workshop on Near Field Communication, NFC’2011, pages 77–82.

Viriyasitavat, W. and Martin, A. (2012), A survey of trust in workflows and relevant contexts. IEEE 
Communications Surveys & Tutorials, 14(3): 911–940.

Vockley, M. (2012), Safe and secure? healthcare in the cyberworld. Biomedical instrumentation & 
technology/Association for the Advancement of Medical Instrumentation, 46(3): 164.

Wang, C., Ren, K., and Wang, J. (2011), Secure and practical outsourcing of linear programming in cloud 
computing. In Proceedings of INFOCOMM 2011, pages 820–828.

Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M. (2012), Profiledroid: multi-layer profiling of android 
applications. In Proceedings of the 18th annual international conference on Mobile computing and 
networking, Mobicom ’12, pages 137–148. ACM.

WhatsApp (Visited May 2014), Legal info. http://www.whatsapp.com/legal/?l=en_en

Wu, C., Zhou, Y., Patel, K., Liang, Z., and Jiang, X. (2014), Airbag: Boosting smartphone resistance to 
malware infection. In Network and Distributed System Security (NDSS), NDSS’14, San Diego, CA, 
USA. Internet Society.

Xiang, C., Binxing, F., Lihua, Y., Xiaoyi, L., and Tianning, Z. (2011), Andbot: towards advanced mobile 
botnets. In Proceedings of the 4th USENIX conference on Large-scale exploits and emergent 
threats, LEET’11, pages 11–11, Berkeley, CA, USA. USENIX Association.

Xu, Y., Bruns, F., Gonzalez, E., Traboulsi, S., Mott, A., and Bilgic, A. (2010), Performance evaluation of 
para-virtualization on modern mobile phone platform. In Proceedings of International Conference 
on Computer, Electrical, and Systems Science and Engineering, ICCESSE ’10, pages 272–280. 
Waset.

Yan, L. and Yin, H. (2012), Droidscope: Seamlessly reconstructing the os and dalvik semantic views for 
dynamic android malware analysis. In Proceedings of the 21st USENIX conference on Security 
symposium, Security’12, pages 29–29. USENIX Association.

Yan, Q., Li, Y., Li, T., and Deng, R. (2009), A comprehensive study for rfid malwares on mobile devices. In 
5th Workshop on RFID Security (RFIDsec 2009 Asia).

Yoon, C., Kim, D., Jung, W., Kang, C., and Cha, H. (2012), Appscope: Application energy metering 
framework for android smartphone using kernel activity monitoring. In USENIX Annual Technical 
Conference, USENIX ATC’12. USENIX Association.

Yu, P., Ma, X., Cao, J., and Lu, J. (2013), Application mobility in pervasive computing: A survey. Pervasive 
and Mobile Computing, 9(1): 2–17. Special Section: Pervasive Sustainability.

Zacharia, G., Moukas, A., and Maes, P. (2000), Collaborative reputation mechanisms for electronic 
marketplaces. Decision Support Systems, 29(4): 371–388.

Zawoad, S., Hasan, R., and Haque, M. (2013), Poster: Stuxmob: A situational-aware malware for targeted 
attack on smart mobile devices.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R., Mao, Z., and Yang, L. (2010), Accurate online power 
estimation and automatic battery behavior based power model generation for smartphones. In 
Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign 
and system synthesis, pages 105–114. ACM.

Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., and Zou, W. (2012), Smartdroid: an automatic 
system for revealing ui-based trigger conditions in android applications. In Proceedings of the 
second ACM workshop on Security and privacy in smartphones and mobile devices, pages 
93–104. ACM.

Libro 1.indb   243 24/11/2016   11:02:17



244 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

Zhou, W., Zhou, Y., Grace, M., Jiang, X., and Zou, S. (2013), Fast, scalable detection of piggybacked 
mobile applications. In Proceedings of the third ACM conference on Data and application security 
and privacy, pages 185–196. ACM.

Zhou, W., Zhou, Y., Jiang, X., and Ning, P. (2012a), Detecting repackaged smartphone applications in 
third-party android marketplaces. In Proceedings of the second ACM conference on Data and 
Application Security and Privacy, pages 317–326. ACM.

Zhou, Y. and Jiang, X. (2012), Dissecting android malware: Characterization and evolution. In Proceedings 
of the 33rd IEEE Symposium on Security and Privacy, pages 95–109.

Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. (2012b), Hey, you, get off of my market: Detecting malicious 
apps in official and alternative android markets. In Proc. of the 19th Annual Network and Distributed 
System Security Symposium, NDSS’12.

Zonouz, S., Houmansadr, A., Berthier, R., Borisov, N., and Sanders, W. (2013), Secloud: A cloud-based 
comprehensive and lightweight security solution for smartphones. Computers & Security, pages 
215–227.

Libro 1.indb   244 24/11/2016   11:02:17



BIOGRAPHY

Libro 1.indb   245 24/11/2016   11:02:17



Libro 1.indb   246 24/11/2016   11:02:17



247

Guillermo Suarez-Tangil is Research Assistant at the Systems Security 
ResearchLab (S2Lab) within the world-leading Information Security Group (ISG) at 
Royal Holloway University of London, UK (RHUL). Prior to joining RHUL, he was 
Teaching Assistant at Carlos III University of Madrid, Spain, where he obtained a 
PhD based on this dissertation with distinction in the Computer Security (COSEC). 
He also obtained a M.Sc and a B.Sc in Computer Sciences at the same university. 
There, he graduated with honors and received the Best Student Academic Award. His 
main research interests are in computer/network security and his current research 
focuses on malware detection, security in smart and IoT devices, intrusion detection, 
event correlation, and cyber security. He has participated in various research projects 
related to network security and trusted computing and obtained a couple of mobility 
fellowships.  He has also taught several B.Sc and M.Sc security courses and review 
several papers and projects related to cyber security.

Libro 1.indb   247 24/11/2016   11:02:17



Libro 1.indb   248 24/11/2016   11:02:17



249ESTUDIOS DE LA FUNDACIÓN

Últimos números publicados

N.º 40.	 DOS ENSAYOS SOBRE FINANCIACIÓN AUTONÓMICA 
(Serie ECONOMÍA Y SOCIEDAD),
por Carlos Monasterio Escudero e Ignacio Zubiri Oria.

N.º 41.	 EFICIENCIA Y CONCENTRACIÓN DEL SISTEMA BANCARIO ESPAÑOL 
(Serie ANÁLISIS),
por Fernando Maravall, Silviu Glavan y Analistas Financieros Internacionales.

N.º 42.	 ANÁLISIS DE REFORMAS DEL IMPUESTO SOBRE LA RENTA PERSONAL 
A PARTIR DE MICRODATOS TRIBUTARIOS (Serie ANÁLISIS),
por José Félix Sanz Sanz, Juan Manuel Castañer Carrasco y Desiderio Romero Jordán.

N.º 43.	 COMPORTAMIENTO ESTRATÉGICO DE LA BANCA AL POR MENOR EN ESPAÑA: 
FUSIONES Y ESPECIALIZACIÓN GEOGRÁFICA (Serie TESIS),
por Cristina Bernad Morcate.

N.º 44.	 LA VERTIENTE CUALITATIVA DE LA MATERIALIDAD EN AUDITORÍA: MARCO TEÓRICO  
Y ESTUDIO EMPÍRICO PARA EL CASO ESPAÑOL (Serie TESIS),
por Javier Montoya del Corte.

N.º 45.	 LA DECISIÓN DE INTERNACIONALIZACIÓN DE LAS EMPRESAS: UN MODELO TEÓRICO  
CON INVERSIÓN HORIZONTAL Y VERTICAL (Serie TESIS),
por Jaime Turrión Sánchez.

N.º 46.	 FINANCIACIÓN DE LA ENSEÑANZA OBLIGATORIA: LOS BONOS ESCOLARES EN LA TEORÍA  
Y EN LA PRÁCTICA (Serie ECONOMÍA Y SOCIEDAD),
por Javier Díaz Malledo (coordinador), Clive R. Belfield, Henry M. Levin, Alejandra Mizala, 
Anders Böhlmark, Mikael Lindahl, Rafael Granell Pérez y María Jesús San Segundo.

N.º 47. 	 SERVICIOS Y REGIONES EN ESPAÑA (Serie ECONOMÍA Y SOCIEDAD),
por Juan R. Cuadrado Roura y Andrés Maroto Sánchez.

N.º 48.	 LAS EMPRESAS DEL SECTOR DE LA CONSTRUCCIÓN E INMOBILIARIO EN ESPAÑA:  
DEL BOOM A LA RECESIÓN ECONÓMICA (Serie ECONOMÍA Y SOCIEDAD),
por Belén Gill de Albornoz (Dir.), Juan Fernández de Guevara, Begoña Giner y Luis Martínez.

N.º 49.	 INSTRUMENTOS PARA MEJORAR LA EQUIDAD, TRANSPARENCIA Y SOSTENIBILIDAD  
DE LOS SISTEMAS DE PENSIONES DE REPARTO (Serie TESIS),
por M.ª del Carmen Boado-Penas.

N.º 50.	 EL IMPUESTO DE FLUJOS DE CAJA EMPRESARIAL: UNA ALTERNATIVA  
AL IMPUESTO SOBRE LA RENTA DE SOCIEDADES (Serie TESIS),
por Lourdes Jerez Barroso.

N.º 51.	 LA SUBCONTRATACIÓN DE SERVICIOS DE I+D: EVIDENCIA DE EMPRESAS EUROPEAS  
Y DE EE.UU. (Serie TESIS),
por Andrea Martínez Noya.

N.º 52.	 IMPOSICIÓN EFECTIVA SOBRE LAS RENTAS DEL CAPITAL CORPORATIVO: MEDICIÓN 
E INTERPRETACIÓN. EL IMPUESTO SOBRE SOCIEDADES EN ESPAÑA Y EN LOS PAÍSES 
DE LA UNIÓN EUROPEA EN EL CAMBIO DE MILENIO (Serie ANÁLISIS),
por José Félix Sanz Sanz, Desiderio Romero Jordán y Begoña Barruso Castillo.

N.º 53.	 ¿ES RENTABLE EDUCARSE? MARCO CONCEPTUAL Y PRINCIPALES EXPERIENCIAS 
EN LOS CONTEXTOS ESPAÑOL, EUROPEO Y EN PAÍSES EMERGENTES 
(Serie ECONOMÍA Y SOCIEDAD),
por José Luis Raymond (coordinador).

N.º 54.	 LA DINÁMICA EXTERIOR DE LAS REGIONES ESPAÑOLAS (Serie ECONOMÍA Y SOCIEDAD),
por José Villaverde Castro y Adolfo Maza Fernández.

N.º 55.	 EFECTOS DEL STOCK DE CAPITAL EN LA PRODUCCIÓN Y EL EMPLEO DE LA ECONOMÍA 
(Serie TESIS),
por Carolina Cosculluela Martínez.

Libro 1.indb   249 24/11/2016   11:02:17



250 ESTUDIOS DE LA FUNDACIÓN.  SERIE TESIS

N.º 56.	 LA PROCICLICIDAD Y LA REGULACIÓN PRUDENCIAL DEL SISTEMA BANCARIO 
(Serie TESIS),
por Mario José Deprés Polo.

N.º 57. 	 ENSAYO SOBRE ACTIVOS INTANGIBLES Y PODER DE MERCADO 
DE LAS EMPRESAS. APLICACIÓN A LA BANCA ESPAÑOLA (Serie TESIS),
por Alfredo Martín Oliver.

N.º 58.	 LOS ATRACTIVOS DE LOCALIZACIÓN PARA LAS EMPRESAS ESPAÑOLAS. EXPLOTACIÓN 
DE LA ENCUESTA SOBRE ATRACTIVOS DE LOCALIZACIÓN (Serie ECONOMÍA Y SOCIEDAD),
por Encarnación Cereijo, David Martín, Juan Andrés Núñez, Jaime Turrión y Francisco J. Velázquez.

N.º 59.	 ESTUDIO ECONÓMICO DE LOS COSTES DE LA ENFERMEDAD: APLICACIÓN EMPÍRICA 
AL CASO DEL ALZHEIMER Y LOS CONSUMOS DE DROGAS ILEGALES (Serie TESIS),
por Bruno Casal Rodríguez.

N.º 60.	 BUBBLES, CURRENCY SPECULATION, AND TECHNOLOGY ADOPTION (Serie TESIS),
por Carlos J. Pérez.

N.º 61.	 DISCAPACIDAD Y MERCADO DE TRABAJO: TRES ANÁLISIS EMPÍRICOS 
CON LA MUESTRA CONTINUA DE VIDAS LABORALES (Serie TESIS),
por Vanesa Rodríguez Álvarez.

N.º 62.	 EL ANÁLISIS DE LOS IMPUESTOS INDIRECTOS A PARTIR DE LA ENCUESTA 
DE PRESUPUESTOS FAMILIARES (SERIE ANÁLISIS),
por José Félix Sanz Sanz, Desiderio Romero Jordán y Juan Manuel Castañer Carrasco.

N.º 63.	 EUROPA, ALEMANIA Y ESPAÑA: IMÁGENES Y DEBATES EN TORNO A LA CRISIS 
(Serie ECONOMÍA Y SOCIEDAD),
por Víctor Pérez-Díaz, Juan Carlos Rodríguez y Elisa Chuliá.

N.º 64.	 INTEGRACIÓN, INMIGRANTES E INTERCULTURALIDAD: MODELOS FAMILIARES  
Y PATRONES CULTURALES A TRAVÉS DE LA PRENSA EN ESPAÑA (2010-11) 
(Serie ECONOMÍA Y SOCIEDAD),
por Enrique Uldemolins, Alfonso Corral, Cayetano Fernández, Miguel Ángel Motis, Antonio Prieto y María 
Luisa Sierra.

N.º 65.	 SOSTENIBILIDAD DEL SISTEMA DE PENSIONES DE REPARTO EN ESPAÑA  
Y MODELIZACIÓN DE LOS RENDIMIENTOS FINANCIEROS 
(Serie TESIS),
por Clara Isabel González Martínez.

N.º 66.	 EVOLUCIÓN DE LAS FUNDACIONES BANCARIAS ITALIANAS: DE HOLDING DE SOCIEDADES 
BANCARIAS A UN MODELO INNOVADOR DE “BENEFICIENCIA PRIVADA” 
(Serie ECONOMÍA Y SOCIEDAD),
por Paolo Baroli, Claudia Imperatore, Rosella Locatelli y Marco Trombetta.

N.º 67. 	 LAS CLAVES DEL CRÉDITO BANCARIO TRAS LA CRISIS 
(Serie ECONOMÍA Y SOCIEDAD),
por Santiago Carbó Valverde, José García Montalvo, Joaquín Maudos y Francisco Rodríguez Fernández.

N.º 68. 	ENTRE DESEQUILIBRIOS Y REFORMAS. ECONOMÍA POLÍTICA, SOCIEDAD  
Y CULTURA ENTRE DOS SIGLOS 
(Serie ECONOMÍA Y SOCIEDAD),
por Víctor Pérez-Díaz y Juan Carlos Rodríguez.

N.º 69. 	REFORMA DEL MERCADO DE SERVICIOS PROFESIONALES EN ESPAÑA 
(Serie ECONOMÍA Y SOCIEDAD),
por María Paz Espinosa, Aitor Ciarreta y Aitor Zurimendi.

N.º 71. 	BUILDING A EUROPEAN ENERGY MARKET: LEGISLATION, IMPLEMENTATION  
AND CHALLENGES 
(Serie ECONOMÍA Y SOCIEDAD),
por Tomás Gómez y Rodrigo Escobar.

Libro 1.indb   250 24/11/2016   11:02:17



251ESTUDIOS DE LA FUNDACIÓN

N.º 72.	 ESSAYS IN TRADE, INNOVATION AND PRODUCTIVITY 
(Serie TESIS),
por Aránzazu Crespo Rodríguez.

N.º 73.	 ENDEUDAMIENTO DE ESPAÑA: ¿QUIÉN DEBE A QUIÉN? 
(SERIE ECONOMÍA Y SOCIEDAD),
por Analístas Financieros Internacionales (AFI).

N.º 74.	 AGENTES SOCIALES, CULTURA Y TEJIDO PRODUCTIVO EN LA ESPAÑA ACTUAL 
(SERIE ECONOMÍA Y SOCIEDAD),
por Víctor Pérez-Díaz, Juan Carlos Rodríguez, Joaquín Pedro López-Novo y Elisa Chuliá.

N.º 75.	 EVOLUCIÓN RECIENTE DEL CRÉDITO Y LAS CONDICIONES DE FINANCIACIÓN: ESPAÑA  
EN EL CONTEXTO EUROPEO 
(SERIE ECONOMÍA Y SOCIEDAD),
por Joaquín Maudos.

N.º 76.	 EFICIENCIA DE LOS SISTEMAS REGIONALES DE INNOVACIÓN EN ESPAÑA 
(SERIE ANÁLISIS),
por Mikel Buesa, Joost Heijs, Thomas Baumert y Cristian Gutiérrez.

N.º 77.		 ENCOURAGING BLOOD AND LIVING ORGAN DONATIONS 
(Serie TESIS),
por María Errea y Juan M. Cabasés (director).

N.º 78.	 EMPLEO Y MATERNIDAD: OBSTÁCULOS Y DESAFIOS A LA CONCILIACIÓN DE LA VIDA 
LABORAL Y FAMILIAR (Serie ECONOMÍA Y SOCIEDAD),
por Margarita León Borja (coordinadora).

N.º 79.	 PEOPLE MANAGEMENT IN MICRO AND SMALL COMPANIES - A COMPARATIVE ANALYSIS. 
EMPLOYEE VOICE PRACTICES AND EMPLOYMENT RELATIONS, 
(Serie ANÁLISIS),
por Sylvia Rohlfer, con la colaboración de Carlos Salvador Muñoz y Alesia Slocum.

N.º 80.	 LA CRISIS, ¿UNA OPORTUNIDAD PARA LA ECONOMÍA SOCIAL ESPAÑOLA 
(Serie ECONOMÍA Y SOCIEDAD),
por Pierre Perard.

N.º 81.	 UN TRIÁNGULO EUROPEO: ELITES POLÍTICAS, BANCOS CENTRALES Y POPULISMOS 
(Serie ECONOMÍA Y SOCIEDAD),
por Víctor Pérez Díaz, Juan Carlos Rodríguez y Elisa Chuliá.

N.º 82.	 EL MERCADO ESPAÑOL DE ELECTRICIDAD 
(Serie ECONOMÍA Y SOCIEDAD),
por Aitor Ciarreta, María Paz Espinosa y Aitor Zurimendi.

N.º 83.	 THREE ESSAYS IN LONG-TERM ECONOMIC PERSISTENCE 
(Serie TESIS),
por Felipe Valencia Caicedo.

N.º 84.	 ROLE OF MICROPARTICLES IN ATHEROTHROMBOSIS 
(Serie TESIS),
por Rosa Suades Soler.

N.º 85.	 IBERISMOS. EXPECTATIVAS PENINSULARES EN EL SIGLO XIX 
(Serie TESIS),
por César Rina Simón.

Libro 1.indb   251 24/11/2016   11:02:17



Libro 1.indb   252 24/11/2016   11:02:17



MINING STRUCTURAL  
AND BEHAVIORAL PATTERNS  
IN SMART MALWARE

Guillermo Suarez-Tangil

M
IN

IN
G

 S
TR

U
CT

U
R

A
L 

A
N

D
 B

EH
A

VI
O

R
A

L 
PA

TT
ER

N
S 

IN
 S

M
A

R
T 

M
A

LW
A

R
E

G
ui

lle
rm

o 
Su

ár
ez

-T
an

gi
l

E S TUD IOS
DE LA FUNDACIÓN

S E R I E  TESIS

Pedidos e información:

Funcas

Caballero de Gracia, 28
28013 Madrid
Teléfono: 91 596 54 81
Fax: 91 596 57 96

publica@funcas.es
www.funcas.es

P.V.P.: Edición papel, 12€ (IVA incluido)

EST
UDIO

S DE
 LA F

UND
ACIÓ

N

86

ISBN 978-84-15722-62-5

978-84-15722-62-5

E S TUD IOS
DE LA FUNDACIÓN

S E R I E  TESIS


	1. INTRODUCTION
	1.1. SMART MALWARE AND SMART DEVICES
	1.2. MOTIVATION AND OBJECTIVES
	1.3. CONTRIBUTIONS AND ORGANIZATION

	PART I. FOUNDATIONS AND TOOLS
	2. EVOLUTION, DETECTION AND ANALYSISOF MALWARE FOR SMART DEVICES
	2.1. INTRODUCTION
	2.2. SECURITY MODELS IN CURRENT SMART DEVICES
	2.3. MALWARE IN SMART DEVICES: EVOLUTION, CHARACTERIZATIONAND EXAMPLES
	2.4. MALWARE DETECTION AND ANALYSIS

	3. MALDROID LAB: RESEARCH MALWARELAB FOR SMART MALWARE ANALYSISAND DETECTION
	3.1. INTRODUCTION
	3.2. STATIC ANALYSIS
	3.3. DYNAMIC ANALYSIS
	3.4. CLOUD ANALYSIS AND CONSUMPTION METERING
	3.5. ONLINET MARKETS AND MALWARE REPOSITORIES


	PART II. STATIC-BASED ANALYSIS
	4. A TEXT MINING APPROACH TO ANALYZINGAND CLASSIFYING CODE STRUCTURESIN MALWARE FAMILIES
	4.1. INTRODUCTION
	4.2. DATASET AND EXPERIMENTAL SETTING
	4.3. ANALYSIS OF CODE STRUCTURES IN ANDROID MALWAREFAMILIES
	4.4. MINING CODE CHUNKS IN MALWARE FAMILIES
	4.5. CONCLUSIONS


	PART III. DYNAMIC-BASED ANALYSIS
	5. ALTERDROID: DIFFERENTIAL FAULT ANALYSISOF OBFUSCATED MALWARE BEHAVIOR
	5.1. INTRODUCTION
	5.2. A DIFFERENTIAL FAULT ANALYSIS MODEL
	5.3. ALTERDROID: DIFFERENTIAL FAULT ANALYSISOF OBFUSCATED APPS
	5.4. EVALUATION
	5.5. CONCLUSIONS


	PART IV. CLOUD-BASED ANALYSIS
	6. POWER-AWARE ANOMALY DETECTIONIN SMARTPHONES
	6.1. INTRODUCTION
	6.2. EXPERIMENTAL SETTING
	6.3. ENERGY CONSUMPTION OF ANOMALY DETECTION COMPONENTS
	6.4. DEPLOYMENT STRATEGIES AND TRADE-OFFS
	6.5. CASE STUDY: A DETECTOR OF REPACKAGED MALWARE
	6.6. CONCLUSIONS

	7. DETECTING TARGETED SMARTPHONE MALWAREWITH BEHAVIOR-TRIGGERING STOCHASTICMODELS
	7.1. INTRODUCTION
	7.2. BEHAVIORAL MODELS
	7.3. TARGETED TESTING IN THE CLOUD
	7.4. CASE STUDIES
	7.5. CONCLUSIONS


	PART V. CONCLUSIONS, FUTURE WORKAND REFERENCES
	8. CONCLUSIONS
	8.1. CONTRIBUTIONS
	8.2. OPEN ISSUES AND FUTURE WORK
	8.3. RESULTS


	REFERENCES
	BIOGRAPHY

