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Abstract    

This paper presents the distribution of t he present value of a project or asset  

under different processes for future payoffs. For all hypothesized processes, the 

coefficient of variation (rela tive uncertainty) is proporti onal to the coefficient of  

variation of the nex t payoff, the factor  of proportionality be ing function of the 

discount rate. The variability of the present value may increase or decrease with 

respect to the discount rate, depending on the type of process. It is higher when 

payoffs follow a random walk  than for the hypo thesized processes with 

independent payoffs, and becomes extremely large for low discount rates. 
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1.  Introduction 

 

Present value relationship, one of the ma in economic relationships, constitutes 

the core of many economic theories  and models. It is ubiquitous , and is us ed 

throughout the valuation of economic projects and a variety of assets, such as  

companies, stocks, real state and even  human lives. The origin of this  

relationship is very remote, trac ing back to the beginning of the 13 th century 

(see Goetzmann, 2004). 

 

 This relationship equals the value of the project or asset at a certain moment 

in time, ݐ, to the total of discounted future net payoffs: 

 
     ௧ܲ ൌ ∑ ሺ1 ൅ ௧ା௜ܦሻି௜ݎ

ஶ
௜ୀଵ                                      (1.1) 

 
where ௧ܲ is the net present value in ܦ ,ݐ௧ାଵ, ,௧ାଶܦ … are net payoffs 

corresponding to moments ݐ ൅ 1, ݐ ൅ 2,… and ݎ ൐ 0 is the discount rate. 

 

 Though future payoffs are often unsure, their uncertainty is hardly ever taken 

into account and the contributions that ex plicitly deal with the random nature of 

the present value relationship are very  limited Very often only t heir expected 

values are used and, consequently, only th e expectation of the present value of  

these payoffs is obtained. One clear example may be found in investment  

analysis or capital budgeting. As stated in Lee and Tai (2013), three alternativ e 

methods are used: statistical, decis ion-tree and s imulation methods. Thes e 

methods do not allow obtaining t he statistical distribution of the present value;  

even the model proposed by Hillier (1 963) presents an ad-hoc treatment of 

uncertainty of future payoffs (see also Chen and Moore (1982) or Rajaratnam et 

al. (2014) for a recent appl ication of certainty equiv alent method). However, 

given their uncertain nature, they may be represented by random variables wit h 

certain characteristics. Then, if the di scount rate is cons idered deterministic, 

(1.1) expresses the present value as a combination of r andom variables with 

decreasing weights. This paper  aims to study the distribution of ௧ܲ under 

different stochastic models for future payoffs . Two features of the distribution of 

௧ܲ will be specia lly interesting: the expectation and the variance (or, 
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equivalently, the standard devia tion or the coefficient  of variation). They will 

provide measures of the expected value and the risk, respectively. In addition, it 

will also be interesting to analyz e the relationship between these two features  

and the discount rate, ݎ. To achieve thes e objectives, Section 1 proposes 

different statistical distributions  for future payoffs, Section 2 obtains  the 

distributions of ௧ܲ under these distributions, and Section 3 comments on their  

properties. 

 
 
2.  Different models for future payoffs 

 

Future payoffs may follow very  different random distributions. While so me 

distributions are rather unrealistic for mo st projects or assets, others could  be 

reasonably hypothesized in certain situations. In what follows, the presumptions 

made will be based on the plau sibility and mathematical tractability of the 

distributions. A first convenient assumption  will be their normality, as the lin ear 

combination of normally distributed payoffs  will yield  a distribution also normal 

for ௧ܲ.1 These normal distributions are det ermined by their expec tations and 

variances. Initially, expectations will be considered constant over time for the 

different payoffs, while variances will be constant or increasing over time, thus 

reflecting the fact that more distant pay offs are usually more uncertain. Thes e 

assumptions permit us to consider the following class of mod els for future 

payoffs:  

,ഥܦܰሺ	~	௧ା௜ܦ ݅ఈߪଶሻ, ݅ ൌ 1, 2, …                               (2.1) 

 
with ܦ௧ା௜ and ܦ௧ା௝ being independent random variables if ݅ ് ഥܦ ,݆ ൐ 0 and ߙ ൒

0. The parameter ߙ regulates the variability of future payoffs. Taking ߙ ൌ 0, ߙ ൌ

1 and ߙ ൌ 2,		the following respective processes are hypothesized: 

 

Process 1 (P1):   ܦ௧ା௜	~	ܰሺܦഥ, ,ଶሻߪ ݅ ൌ 1, 2, … 

Process 2 (P2): ܦ௧ା௜	~	ܰሺܦഥ, ,ଶሻߪ݅ ݅ ൌ 1, 2, … 

Process 3 (P3): ܦ௧ା௜	~	ܰሺܦഥ, ݅ଶߪଶሻ, ݅ ൌ 1, 2, … 

                                                 
1 In any case, central limit theorems may be invoked when other distributions are considered for future 
payoffs. 
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P1 follows from (2.1) with ߙ ൌ 0. The uncertainty of future payoffs (measured by 

their standard deviations or variances) will be co nstant. Uncertainty does  not 

increase with the time interval to the moment of payoff. When ߙ ൌ 1 in (2.1), 

one obtains P2. In this model, uncertainty in creases with the time interval to the 

payoff; the variances increase propor tionally, and the standard deviations 

increase less than proportionally . That is, the varianc e of payoff in ݐ ൅ ݊ is ݊ 

times the variance of payoff in ݐ ൅ 1, and the standard devia tion of payoff in 

ݐ	 ൅ ݊ is √݊ times the standard deviation of payoff in ݐ ൅ 1 for any ݊ ൐ 1.  P3 

follows from (2.1) with ߙ ൌ 2. In this case, the standard dev iation is proportional 

to the time interval (a payoff in ݐ ൅ ݊ has a standard deviat ion equal to ݊ times 

the standard deviation of payoff in ݐ ൅ 1). In all three cases the unc ertainty of 

the next payoff is the same, but the uncertainty of payoffs that will take place in  

ݐ ൅ ݊, for any ݊ ൐ 1, will increase with ߙ. 

 

 The independence assumption between the different payoffs may be relaxed 

by supposing that they follow a random walk, 

 
Process 4 (P4): ܦ௧ା௜ ൌ ௧ା௜ିଵܦ ൅ ,௧ା௜ߝ ݅ ൌ 1, 2, …   

 
with ܦ௧ ൌ ഥܦ ൐ ,ܰሺ0	௧ା௜~ߝ ,0 ,௧ା௜ߝ൫ݒ݋ܥ ଶሻ for all ݅, andߪ ௧ା௝൯ߝ	 ൌ 0 for any 

݅, ݆ ൐ 0, ݅ ് ݆. In this model the e xpected value of every future payoff will be  

constant, ܦഥ. As ܸܽݎሺܦ௧ା௜ሻ ൌ ଶ, their variancesߪ݅  will increase with the time 

horizon to the payoff date, and will be equal  to those under P2 (pr oportional to 

the time i nterval). This proces s P4 may also be extend ed by allowing the 

expectations of future payoffs to grow at rate ݃:  

 
Process 5 (P5): ܦ௧ା௜ ൌ ሺ1 ൅ ݃ሻܦ௧ା௜ିଵ ൅ ,௧ା௜ߝ ݅ ൌ 1, 2, …      

 
with ܦ௧ ൌ ഥܦ ሺ1 ൅ ݃ሻ⁄ ൐ 0, 0 ൏ ݃ ൏ ,ܰሺ0	~	௧ା௜ߝ ,ݎ  ଶሻ for all ݅, andߪ

,௧ା௜ߝ൫ݒ݋ܥ ௧ା௝൯ߝ	 ൌ 0 for any ݅, ݆ ൐ 0, ݅ ് ݆. In this model ݃ is the non-random rate 

of growth of the expec tations of future payoffs. If ݃ ൌ 0, P4 would be obtained.  

As ݃ ൐ 0, both the expected value of payoffs  and their uncertainty will increase  

with the time horizon. The expectation and the standard deviation of the first  

payoff, ܦ௧ାଵ, are the sam e for P5 a s for the other processes P1-P4. Table 1 
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shows the standard deviations of differ ent payoffs under P1-P4,  and under P5 

for different values of ݃. 

 
 ݅ ൌ 1 ݅ ൌ 2 ݅ ൌ 3 ݅ ൌ 4 ݅ ൌ 5 ݅ ൌ 10 ݅ ൌ 20 ݅ ൌ 50
P1 1 1 1 1 1 1 1 1 
P2 1 1.41 1.73 2 2.24  3.16 4.47 7.07 
P3 1 2 3 4 5 10 20 50 
P4 1 1.41 1.73 2 2.24  3.16 4.47 7.07 
P5 (݃ ൌ 3%) 1 1.44 1.79 2.09 2.38 3.64 6.09 17.30 
P5 (݃ ൌ 10%) 1 1.49 1.92 2.33 2.75 5.22 14.52 256.16

 
Table 1. Standard deviations of se veral future payoffs ܦ௧ା௜, expressed as times th e 
standard deviation of payoff ܦ௧ାଵ ሺߪሻ,  under processes P1-P5.  
 

 
3.  Distributions of present value under the different models for future 

payoffs 

 

Under P1-P5, ௧ܲ is normally distributed, given t hat future payoffs are normally  

distributed. These normal distributions ar e fully determined by their respectiv e 

expectations and variances, which are stated in the following propositions. 

 

3.1. Under P1, 

																																																	 ௧ܲ 	~	ܰ ቆ
ഥܦ

ݎ
,

ଶߪ

ሺ1 ൅ ሻଶݎ െ 1
ቇ.																																																			ሺ3.1ሻ 

(See Appendix A1). 

 

 3.2. Under P2, 

																																																	 ௧ܲ 	~	ܰ ቆ
ഥܦ

ݎ
,

ሺ1 ൅ ሻଶݎ

ሺሺ1 ൅ ሻଶݎ െ 1ሻଶ
 ሺ3.2ሻ																																									ଶቇ.ߪ

(See Appendix A2). 

 

3.3. Under P3,  

																																																	 ௧ܲ 	~	ܰ ቆ
ഥܦ

ݎ
,
ሺ1 ൅ ሻସݎ ൅ ሺ1 ൅ ሻଶݎ

ሺሺ1 ൅ ሻଶݎ െ 1ሻଷ
 ሺ3.3ሻ																																	ଶቇ.ߪ

(See Appendix A3). 
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3.4. Under P4, 

 

												 ௧ܲ 	~	ܰ ቆ
ഥܦ

ݎ
,

ሺ1 ൅ ଶߪሻଶݎ

ሺሺ1 ൅ ሻଶݎ െ 1ሻଶ
൅

ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻ
൅

ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻଶ
ቇ.										ሺ3.4ሻ 

 

(See Appendix A4). 

 

3.5. Under P5, 

௧ܲ 	~	ܰ ቆ
ഥܦ

ݎ െ ݃
,	 

ሺ1 ൅ ଶߪሻଶݎ

ሺሺ1 ൅ ሻଶݎ െ 1ሻሺሺ1 ൅ ሻଶݎ െ ሺ1 ൅ ݃ሻଶሻ
൅ 

	

																																								൅	
2ሺ1 ൅ ݃ሻଷߪଶ

ሺݎ െ ݃ሻሺሺ1 ൅ ݃ሻଶ െ 1ሻሺሺ1 ൅ ሻଶݎ െ ሺ1 ൅ ݃ሻଶሻ
െ 

	

																																																					െ	
2ሺ1 ൅ ݃ሻߪଶ

ሺݎ െ ݃ሻሺሺ1 ൅ ݃ሻଶ െ 1ሻሺሺ1 ൅ ሻଶݎ െ 1ሻ
ቇ.																		ሺ3.5ሻ 

 

(See Appendix A5). 

 

 
4.  Properties of the distributions of present value 

 

Under P1-P4, it is clear that ܧሺ ௧ܲሻ  is decreasing and is strictly convex with 

respect to ܧ .ݎሺ ௧ܲሻ tends to ൅∞	ሺ0ሻ when ݎ tends to 0	ሺ൅∞ሻ. See Fig. 1.  

Changes in ݎ provoke higher ab solute changes in ܧሺ ௧ܲሻ when ݎ is low than 

when ݎ is high. This does not apply to rela tive changes; in fact, a relative 

change in ݎ equal to ߣ implies a relative change in ሺܧ	 ௧ܲሻ  equal to െߣ ሺ1 ൅ ⁄ሻߣ  

for any r. Under P5 the expectation of ௧ܲ is: 

 

ሺܧ ௧ܲሻ ൌ
ഥܦ

ݎ െ ݃
 

 

an expression known as ‘Gordon growth model’. When ݃ is close to ܧ ,ݎሺ ௧ܲሻ will 

be high and, furthermore, chang es in any  of these v ariables will hav e strong 

effects on the expectations of ௧ܲ.  
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Fig. 1. Expectation of the present value ܧሺ ௧ܲሻ, expressed as times the expectation of 
the next payoff ሺܦഥሻ, against the discount rate ݎ under processes P1-P4. 
 
 

 A relative measure of risk or uncertainty of ௧ܲ will be  its coefficient of 

variation, its standard deviation divided by its expect ation. Under P1-P4 t he 

expectations of ௧ܲ are directly proportional to ܦഥ, and their standard deviations  

are directly proporti onal to ߪ. Given these proportionality relations, the 

coefficients of variation of ௧ܲ will be directly proportional to the coefficient of 

variation of the next payoff, ߪ ⁄ഥܦ , and then may be written as: 

 

ܥ																							 ௜ܸ ൌ
ߪ
ഥܦ ௜݂ሺݎሻ,	 ݅ ൌ 1, 2, 3	and	4																													ሺ4.2ሻ 

 

where ܥ ଵܸ, ܥ ଶܸ, ܥ ଷܸ	and	ܥ ସܸ denote the coefficients of variation of ௧ܲ under 

processes P1, P 2, P3 and P4, respectively, and ௜݂ሺݎሻ, with	݅ ൌ

1, 2, 3	and	4,		denote different functions with ݎ as the only argument.  

 

 Table 2 and Fig. 2 show the coeffi cients of variation as functions of r 

expressed as times the ratio ߪ ⁄ഥܦ . The selected range for ݎ intends to cover a 

range of plausible values (from 0% to 20%), though the disparit y in values for 

the discount rate in previous res earch is enormous (see Frederick et al., 2002). 

Under the different processes, the coeffi cients of variation present the following 

properties: 

0
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i) Under P1 the coefficient of vari ation of ௧ܲ increases with respect to ݎ. 

However, it is relatively low, ranging appr oximately from 0 to 0.3 times the ratio 

ߪ ⁄ഥܦ  for 0 ൏ ݎ ൏ 20%. Thus, taking, for example, ߪ ⁄ഥܦ ൌ 0.1, a ratio which could 

be a reas onable value in certain c ircumstances, the coefficient of variation 

moves approximately from 0 to 3% when ݎ changes from 0 to 20%.  

 

ii) Under P2 the coefficient of variation of  ௧ܲ is almost constant, ranging 

approximately from 0.50 to 0.55 times the ratio ߪ ⁄ഥܦ  for 0 ൏ ݎ ൏ 20%. This 

implies that, for example, for ߪ ഥܦ ൌ 0.1⁄  the coeffi cient of variation moves  

approximately from 5.0% to 5.5% when ݎ changes from 0 to 20%. 

 

iii) Under P3 the coefficient of variation of ௧ܲ is much higher than under P1 or 

P2, and decreases with respect to ݎ. The diminution is  important. For example, 

for ݎ ൌ 1% the coefficient of variation is  approximately 5 times the ratio ߪ ⁄ഥܦ , 

while for ݎ ൌ 5%  it is about 2.3 times. As  reflected in Fig. 2, when ݎ is high,  

changes in ݎ have a small effect on the c oefficient of variation of ௧ܲ, but when ݎ 

is low, they have a large effect. 

 

iv) Under P4 the coefficient of variation of ௧ܲ is higher than under P1-P3. Its 

behavior is similar to that  found under P3. It also decreases with respect to r, 

and the decrement is very pr ominent for low values of ݎ. When ݎ is hig h, 

changes in ݎ have a much more limited effect on the coefficient of variation of 

௧ܲ.  

  

ݎ  ൌ ݎ 1% ൌ ݎ 3% ൌ ݎ 5% ൌ ݎ 10% ൌ ݎ 15% ൌ 20% 

P1 0.07 0.12 0.16 0.22 0.26 0.30 
P2 0.50 0.51 0.51 0.52 0.53 0.55 
P3 5.04 2.95 2.32 1.70 1.44 1.28 
P4  7.12 4.17 3.28 2.40 2.03 1.81 

 
Table 2. Coefficients of variation of the  present value, expressed as t imes the 
coefficient of variation of the next pa yoff, ߪ ⁄ഥܦ ,  for different values of the discount rate 
  .under P1-P4 ݎ
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Fig. 2.  Coefficients of variation of  the present value, expressed a s times the coefficient of variation of the next payoff ሺߪ ⁄ഥܦ ሻ, 
against the discount rate ݎ under processes P1-P4.  
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 The standard deviation of future independent payoffs, ܦ௧ା௜, with ݅ ൐ 1, is 

greater under P3 than under P2, and greater under P2 than under P1;  

therefore, for a given ܥ ,ݎ ଵܸ ൏ ܥ ଶܸ ൏ ܥ	 ଷܸ. It should be noted that the relative 

difference depends on ݎ. Thus, for example, for ݎ ൌ 20%, the coefficient of 

variation under P3 is a little more t han double the coefficient under P2, but for  

ݎ ൌ 1%, it is more than tenfold. It is also interesting to compare ܥ ଶܸ and ܥ ସܸ. 

The expectations and standard deviations of future payoffs are exactly  equal 

under these models. However, the variance of ௧ܲ under P2 is: 

 

																																																																						
ሺ1 ൅ ଶߪሻଶݎ

ሺሺ1 ൅ ሻଶݎ െ 1ሻଶ
																																																		ሺ4.3ሻ 

but under P4 it is  

 

																																
ሺ1 ൅ ଶߪሻଶݎ

ሺሺ1 ൅ ሻଶݎ െ 1ሻଶ
൅

ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻ
൅

ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻଶ
															ሺ4.4ሻ 

 
One can observe that (4.3) is the first summand of (4.4). It is the part of the 

variance of ௧ܲ that is due to the variances of future payoffs. The difference 

between (4.4) and (4.3),  

											
ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻ
൅

ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻଶ
 

 
is the component of the variance of ௧ܲ under P4 due to the co-variability o f 

future payoffs. As this second com ponent is po sitive, the variance and,  

therefore, the coefficient of variation of ௧ܲ will always be higher  under P4 than 

under P2. In fact, for typical values of ݎ, the second component due to the co-

variability is much larger than the firs t component d ue to the variability, and 

therefore ܥ ସܸ is much hi gher than ܥ ଶܸ, as shown in Fig. 2 for values of ݎ 

comprised between 0% and 20%, 

   

 Let us now examine the coefficient of  variation of the present value under  

P5, ܥ ହܸ. As both the expectation and the standard deviation of the present 

value depend on both ݎ and ݃, one could think that ܥ ହܸ also depends on both ݎ 

and ݃. However, the following propositio n states that it only depends on ݎ, and 

that it is equal to that under P4. 
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Proposition 4.1  Under P5, the coefficient of variation of the present value is: 

 

ݎ
ഥܦ
ඨ

ሺ1 ൅ ଶߪሻଶݎ

ሺሺ1 ൅ ሻଶݎ െ 1ሻଶ
൅

ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻ
൅

ଶߪ2

ሺሺ1ݎ ൅ ሻଶݎ െ 1ሻଶ
 

 

Proof.  It is easy (but rather cumbersome) to prove that the quotient of the 

variance and the square of the expectation of the pr esent value under P5 is 

equal to that under P4. Thus, equality of the coefficients of variation follows.  

 

 Therefore, under P5, ݃ determines the expectatio ns and the standard 

deviations of future payoffs. It also determines the expectation and the standard 

deviation of the present value. However,  it does not determine the coefficient of 

variation of the present value, which is equal to that under P4, ܥ ହܸ ൌ ܥ ସܸ. 

 

 
5  Conclusions 

 

This paper provides the distribution of the present value under different feasible 

processes for future payoffs, with specia l attention paid to its relative variab ility 

measured by the coefficient of variat ion. The results obt ained with the 

hypothesized processes show that the re lationship of the variability of the 

present value with the discount  rate depends on the process of the future 

payoffs taken into account. While pr ocesses with independ ent payoffs of  

constant or slowly increasing uncert ainty may present an increasing (though 

limited) variability of the pr esent value with respect to the disc ount rate, the 

opposite pattern may occur when the uncer tainty of the payoffs increases more 

quickly. Processes with dependent payoffs present a higher variability of the 

present value due t o the co-variation of  future payoffs, and this clearly  

decreases with respect to the discount ra te. When considering extensions of a 

random walk for future payoffs that also  allow expec tations to increase ov er 

time at a given rate, it is found that t he coefficient of vari ation of the present  

value does not depend on the rate of growth.  
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The series  
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


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iri  is convergent (D’Alembert criterion). Then, if 

       2 4 6 221 4 1 9 1 1 i
iS r r r i r            , 
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Appendix A4 
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 tPVar  is expressed as the s um of two component s: the first,   22

1
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




 , is 

the part of  tPVar  due to t he variability of future payoffs, while the second,  

   2
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 

  
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different payoffs. The first component is: 
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 
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 

 
  (see Appendix A2), and the second is 
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     
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 642 1

3
1

2
1

1
rrrrrr

 is an arithmetic-geometric series with 

first term equal to 
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1
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, difference equal to 
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Appendix A5 
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And the second component is:  
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            
 
 

 

=    
       

   
       

2 1 2 1 2 1
2

2 1 2 1
1 1

1 1 1 1
2

1 1 1 1 1 1 1 1 1 1

i i i

i i

r g r g

g r g g r g


     

 
 

                 
 
   

   
       

 

   
       

   

3 3 3

2 1 2 1

2
2 2 2

1 r 1 1 r 1

1 1 1 1 1 1 1 1 1 1
2

1 1 1 1 1

g g

g r g g r g

r r g


 

 

 

    
 
           
   

     
 
 
 

 

   
          

   
            

3

2 1 2

2
3 3

2 1 2 2

1 r 1

1 1 1 1 1 1 1
2

1 r 1

1 1 1 1 1 1 1 1

g

g r g r

g

g r g r g





 



 

  
 

       
 
  
 
        
 

= 

 
      

 
        

3
2

2 2 2 2 2

1 1
2

1 1 1 1 1 1 1 1

g g

g g r r g g r r g


                
 

. 

 
Then,  

  ttPVar
 

       
2 2

2 2 2

1

1 1 1 1

r

r r g



    
+ 

 
        

 
      

3
2

2 2 2 2 2

1 1
2

1 1 1 1 1 1 1 1

g g

g r g r g g r g r


                
 

. 
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