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Abstract 

This paper examines whether the comparison of VaR models depends on the loss function 

used for such purpose. We show a detailed comparison for several VaR models for two 

groups of loss functions (designed for regulators and for risk managers). Additionally, we 

propose a firm’s loss function that exactly measures the opportunity cost of the firm when the 

losses are covered. We find that the VaR model that minimises the total losses is robust 

within groups of loss function but differs across firm’s and supervisor’s loss functions. 
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1.- Introduction 

The global financial crisis suffered in the last years has taught us the importance of 

measuring risk accurately. Because the Basel Committee on Bank Supervision (BCBS) at the 

Bank for International Settlements requires that financial institutions meet capital 

requirements for the base Value at Risk (VaR), this methodology has become a basic market 

risk management tool. Consequently, the last decade has witnessed the growth of literature 

proposing new models to estimate the VaR. To know which is the best of these models has 

been and still is a primary aim of the empirical literature.  

Several studies dedicated to comparing VaR models have used a standard backtesting 

procedure (see Bhattacharyya and Ritolia (2008), Yu et al. (2010), Nozari et al. (2010), Bao et 

al. (2006), and Mittnik and Paolella (2000), among others). The standard backtesting is based 

on calculating the number of times that losses exceed the VaR and comparing this value with 

the expected number using statistical tests. Jorion (2001) defines backtesting as an ex-post 

comparison of a risk measure generated by a risk model against actual changes in the 

portfolio value over a given period. The Basel Committee on Banking Supervision (1996a) 

and the amendments of the Basel Committee on Banking Supervision (1996b) developed 

several statistical tests to evaluate the accuracy of the VaR estimates. More recently, in Basel 

III (2010), the committee pointed outnotes the necessity of verifying the model’s accuracy 

through frequent backtesting, although no particular backtesting technique is recommended.  

A different perspective is given by Lopez (1998, 1999) who indicates that it is also 

important to know the size of the losses not covered. To calculate the uncovered losses, he 

proposes using a loss function. The loss function is based not on a hypothesis-testing 

framework such as the statistical test but on examining the distance between the observed 

returns and the forecasted VaR(α) when the losses are uncovered. Some papers dedicated to 

comparing VaR models use both backtesting procedures: statistical tests and loss function 

(see Abad and Benito (2013), Orhan and Köksal (2012), Marimoutou et al. (2009) and 

Angelidis and Degiannakis (2007), among others).  

There is the trade-off between the regulators and the financial enterprises regarding 

the aims in the market risk management tool. Supervisors are concerned about how many 

times losses exceed the VaR and the size of the non-covered losses. However, the risk 

managers have a conflict between the goal of safety and the goal of profit maximisation. An 

excessively high VaR forces them to hold too much capital, imposing the opportunity cost of 
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capital upon the firm. Considering this factor, Sarma et al. (2003) propose a firm’s loss 

function. 

This paper focuses on loss functions. We examine whether the results of comparing 

the VaR models depend on the loss function used. In a comparison of a large set of VaR 

models, we compare these models using several loss functions proposed in the literature 

from the point of view of the regulator and from the point of view of the firm. Additionally, we 

propose a new firm’s loss function, in line with Sarma et al. (2003). This function has the 

advantage of precisely computing the opportunity cost of the firm when the losses are 

covered.  

The relevance of this study is twofold. First, it fills a gap in the literature regarding the 

comparison of VaR models, as this is the first paper to analyse whether the results of the VaR 

model comparison are robust to the loss function used. Second, we propose a new loss 

function that better captures the aim of the firm. Our results can help market participants, 

supervisors and risk managers to select the best VaR models, taking into account the 

different utility functions facing each. 

The rest of the paper is organised as follows: in the next section, we describe the 

backtesting procedure, focusing mainly on the role of the loss function. In section 3, we 

present the data we have used in the paper and the results of the empirical application. The 

last section includes the main conclusions. 

 

2.- Loss Functions 

Since the late 1990s, a wide variety of tests have been proposed for evaluating the 

performance of the VaR models. The backtesting procedures used in the literature can be 

classified into two groups: backtesting based on any statistical test and backtesting based on 

the loss function.1 

The unconditional coverage test (Kupiec (1995)), the conditional coverage test and the 

independence test of Christoffersen (1998), the Dynamic Quantile test proposed by Engle 

and Manganelli (2004) and the Backtesting Criterion Statistic are the most usual backtesting 

procedures based on any statistical test. To implement all these tests, the exception indicator 

(It) must be defined. We have an exception when rt<VaR(), and then It is equal one (zero 

otherwise). 

                                                 
1 There is no general agreement in the literature addressing what backtesting really comprises 
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The unconditional coverage test assumes that an accurate VaR() measure provides 

an unconditional coverage; i.e., the percentage of exceptions observed ( ) should be 

consistent with the theoretical proportion of failures (). Thus, the null hypothesis of this test 

is   = . A similar test for the significance of the departure of ̂  from   is the backtesting 

criterion statistic. 

The conditional coverage test proposed by Christoffersen (1998) jointly examines 

whether the model generates a correct proportion of failures and whether the exceptions are 

statistically independent from one another. The independence property of exception is an 

essential property because the measures of risk must reply automatically to any new 

information; a model that does not consider this factor would provoke exceptions clustering.  

The Dynamic Quantile test proposed by Engle and Manganelli (2004) suggests 

another approach based on a linear regression model, examining whether the exception 

indicator is uncorrelated with any variable that belongs to the information set 1t  available 

when the VaR was calculated. This is a Wald test of the hypothesis that all slopes in the 

regression model 1
1 1

p q

t i j j tt
i j

I I X    
 

      are zero, where Xj are explanatory variables 

contained in 1t . VaR(α) is usually an explanatory variable to determine whether the 

probability of an exception depends on the level of the VaR. 

The backtesting procedures based on certain statistical tests present a drawback; they 

only show whether the VaR estimates are accurate, so this toolbox does not allow us to rank 

the models. 

Backtesting based on the loss function pays attention to the magnitude of the failure 

when an exception occurs. Lopez (1998, 1999), who is a pioneer in this area, proposes to 

examine the distance between the observed returns and the forecasted VaR(α). This 

difference represents the loss that has not been covered. The loss function enables the 

financial manager to rank the models. The model that minimises the total loss will be 

preferred to the other models.  

Lopez (1999) proposed a general form of the loss function: 

 
 t

,VaR if VaR
,VaR if VaR

t t

t t

f r rL g r r







=   (1) 

where  ,VaRtf r and  ,VaRtg r are functions such that  ,VaRtf r ≥  ,VaRtg r , thereby 

penalising to a greater extent those cases where the real returns fall bellow the VaR 

estimations. He considers three loss functions: (i) the Binomial loss function that assigns the 
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value 1 when the VaR estimate is exceeded by its loss and 0 otherwise, (ii) the Zone loss 

function based on the adjustments to the multiplication factor used in market risk amendment 

(see Sajjad et al. (2008), Hass (2001) and Lopez (1998) among others), and (iii) the 

Magnitude loss function, which assigns a quadratic numerical score when a VaR estimate is 

exceeded by its loss and 0 otherwise. Subsequently, not only the VaR exception but also the 

magnitude of the losses is incorporated.  

Depending on the form adopted by  ,VaRtf r  and  ,VaRtg r , we can speak of two 

types of functions: regulator’s loss functions and firm’s loss functions. 

 The regulator’s loss functions pay attention to the magnitude of the losses only when 

they occur. Thus, the Lopez’s Magnitude loss function has the following quadratic 

specification:  

 21
0

t t t t

t t

VaR r if r VaRRQL
if r VaR

 




-=   (2) 

In this loss function, the quadratic term ensures that large failures are penalised more 

than small failures. This function was built mainly for regulatory purposes for evaluating the 

bank internal models. Applications of this loss function are numerous (see Ozun et al. (2010), 

Campell (2005), Marimoutou et al. (2009), Zatul (2011), Osiewalski and Pajor (2012) and 

Orhan and Köksal (2012), among others). 

Since the reporting of Lopez (1998, 1999), many authors have proposed other 

alternative functions with the same goal, to measure the distance between returns and VaR 

estimates when an exception occurs. In column 1 of Table 1, we report some of these 

functions. 

Sarma et al. (2003) defined the regulator’s loss function as follows: 

 2
t t t tVaR r if r VaRRQ
0 otherwise





-=   (3) 

Applications of this function can be found in Angelidis et al. (2007) and Abad and 

Benito (2013), among others. Caporin (2008) notes that there is an open issue with the 

function aforementioned. At a parity exception, we may reject a correctly specified and 

identified model only because it provides higher losses. For this author, what is important is 

not the losses uncovered but their relative size. To solve this point, he divides  ,VaRtf r by 

VaR. The mathematical expression of these functions can be found in the first column of 

Table 1. 
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The aforementioned loss function only takes into account the magnitude of the failure 

but does not consider the cases in which the returns exceed the VaR estimates. This is an 

important point because a too high VaR overestimation would lead firms to hold much more 

capital than necessary, thus imposing an opportunity cost of capital above. Firms must 

resolve the conflict related to safety, in the same way that a regulator does, but they also 

have the objective of maximising their owner profits. For this purpose, Sarma et al. (2003) 

define a firm’s loss function (FS), where the non-exception days are penalised according to 

the opportunity cost of the reserved capital held by the firm for risk management purposes: 

 t t t t

t t t

VaR r if r VaR
VaR if r VaR

2

.
FS




  


-

-=   (4) 

where α is the cost of capital for the firm. Thus, a model that may be adequate because it 

provides few exceptions becomes inadequate if the opportunity capital cost is high. Caporin 

(2008) suggests applying the same loss function not only to the exceptions but also to the 

entire sample, (an exception occurs and does not), i.e., he suggests applying a function such 

as  tf r ,VaR =  tg r ,VaR .  

In line with these papers, we propose a new loss function to capture the aim of the 

firm. The expression of the function we propose is as follows:  

 
 

t t

t t

VaR r if r VaR
r VaR if r VaR

2-FABL=
-






 

  (5) 

As can be determined in this function, the exceptions are penalised as usual in the 

literature, following the instructions of the regulator. When there are no exceptions, the loss 

function penalises the difference between the VaR and returns weighted by a factor α that 

represents an interest rate. This product is the opportunity cost of the capital, i.e., the excess 

capital held by the firm.  

Sarma et al. (2003) penalises the cases in which there are no exceptions for 

multiplying the VaR estimate by a factor α. From our point of view, this product does not 

precisely capture the opportunity cost of the capital. Unlike Sarma et al. (2003), we are 

committed to measuring the real cost of opportunity, rather than the cost of security imposed 

by Basel. On the other hand, Sarma et al. (2003) do not identify factor α. We propose the 

price of the capital opportunity cost to be an interest rate. Other firm´s loss functions are 

presented in the second column of Table 1.  
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Table 1. Loss functions 
 

Regulator’s loss function (RLF) Firm’s loss functions (FLF) 

Lopez’s quadratic 
(RQL) 

 2
t t t t

t t

1
0

VaR r if r VaR
if r VaR

 




-
 Sarma 

(FS) 
 2

t t t t

t t t.
VaR r if r VaR

VaR if r VaR



  

-
-

 

Lineal 

(RL) 

 t t t t

t t0
VaR r if r VaR

if r VaR

 

-
 

Caporin_1 

(FC_1) 
t

t
r1 r

VaR
-  

Quadratic 

(RQ) 
 2

t t t t

t t0
VaR r if r VaR

if r VaR





-
 

Caporin_2 

(FC_2) 

 
t

2
t r

r VaR
VaR


-

 

Caporin_1 

(RC_1) 

t
t

t

r1 if r VaR
VaR

0 if r VaR


 

 

-
 

Caporin_3 

(FC_3) tt rVaR-r   

Caporin_2 

(RC_2) 

 
t

t

2
t if r VaR

0 if r VaR

r VaR
VaR


 
 

-
 

Abad_Benito_López 

(FABL) 

 
 

2
t t t t

t t t

VaR r if r VaR
r -VaR if r VaR






 

-
 

Caporin_3 

(RC_3) 
t

t

t if r VaR
0 if r VaR

VaR-r 
 

   

This table presents the different loss functions used in this paper. In the first column, we show the regulator’s loss functions (Lopez’ 
magnitude loss function (RQL), lineal regulatory function (RL), Sarma et al. (2003) quadratic loss function (RQ) and the three loss function 
suggested by Caporin (2008) ((RC_1), (RC_2), and (RC_3)). The second column lists the firm’s loss functions (Sarma et al. (2003) (FS), the 
three loss function suggested by Caporin (2008) (FC_1), (FC_2), and (FC_3) from the viewpoint of the firms, and our new loss function 
(FABL)). 

 

 3. Empirical results. 

The purpose of this paper is to check whether the comparison of different VaR models 

is independent of the loss function used to perform the selection of the best model. With this 

aim, we replicate Marimoutou et al. (2009). In this paper, the authors compare several VaR 

models using a two-stage selection approach. In the first stage, Kupiec and Christoffersen’s 

tests are applied. In the second stage, and only for the survived models, they calculate the 

Lopez’s quadratic loss function given by the expression (2). The VaR models included in the 

comparison are as follows: Historical Simulation (HS), Filtered Historical Simulation (FHS), 

Conditional and Unconditional Extreme Value Theory (GPD) and Parametric approach below 

a normal and t-Student distribution. Next, consider the conditional and unconditional volatility 

measure. The study has been performed using two spot prices for crude oil: the Brent and the 

West Texas Intermediate (WTI).  

3.1.- Data  

In this study, we have only taken one of the spot prices for oil used in Marimoutou et al. 

(2009). The data consists of daily prices of the Brent crude oil extracted from the Datastream 
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database. The data set covers the same period (from May 20 1987 to January 24 2006). The 

computation of the daily returns (rt) is based on the given expression, rt=ln(Pt/Pt-1) where Pt is 

the price of the oil for period t.   

Figures 1 and 2 show the daily prices of crude oil Brent measured in US $/Barrel and 

daily returns, respectively. Table 2 provides basic descriptive statistics of the data.  

       Figure 1: Daily prices of crude oil Brent (US $/Barrel)                        Figure 2: Daily returns of crude oil                   
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Table 2. Descriptive statistics of the daily returns of the crude oil 

 Mean (%) Median Maximum Minimum Std. Dev. Skewness Kurtosis 
Jarque-

Bera 

BRENT 
0.026* 

(0.0004) 
0.000 0.131 -0.439 0.024 

-1.427* 

(0.035) 

28.204* 

(0.070) 

162849 

(0.001) 

Note: This table presents the descriptive statistics of the daily returns of the Brent crude oil. The sample covers from May 20th, 1987, to 
January 24th, 2006. The return is calculated as rt=ln(Pt)/(Pt-1), where Pt is the price level for period t. The standard errors of the skewness, the 

mean and excess kurtosis are calculated as n/6 , n   and n24 , respectively. The Jarque-Bera statistic is distributed as the 

Chi-square with two degrees of freedom. (*) denotes significance at the 5% and 1% levels, respectively. 

 

The unconditional mean daily return is very close to zero (0.026%), which is significant, 

and the unconditional standard deviation is especially high (2.4%). The skewness statistic is 

negative, and the distribution of the returns is skewed to the left. The kurtosis coefficient 

(28.20) implies that the distribution has much thicker tails than the normal distribution does. 

Similarly, the Jarque-Bera statistic is statistically significant, rejecting the assumption of 

normality. All of this evidence shows that the empirical distribution of the return must not be fit 

by a normal distribution, as it exhibits a significantly excess of kurtosis and asymmetry (fat 

tails and peakness).  

Going back to Figure 2, we can see that the range fluctuation of the returns is not 

constant, which means that the variance of these returns changes over time. The volatility of 

the series was high during the early 1900s, coinciding with the beginning of the Gulf War. In 

the last years of the sample, we observe a period more stable. According to Marimoutou et al. 

(2009), we estimate an AR(1)-GARCH(1,1) specifications using a rolling window of 1000 days 

data. Table 3 shows our estimated parameters for the AR(1)-GARCH(1,1) of the mean and 

volatility of the returns.  
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Table 3. AR(1)-GARCH(1,1) estimation result for Brent returns 

t 0 1 t 1
2 2 2
t 0 1 t 1 t 1

r  
     

-

- -

=
=  

Parameter Estimates p-value 

0  0.001* 0.018 

1  -0.079 0.992 

0  0.000* 0.016 

1   0.890* 0.000 

  0.048* 0.001 

The asterisk denotes parameters significantly different 
from zero at the 5% confidence level. 

 

The set of models we have included in the comparison are the same models used in 

Marimoutou et al. (2009). In Table 4, we show the expressions for the different approaches. 

The VaR is calculated the forthcoming day for two confidence levels: 99.5% and 99.9%2.  

Table 4. Statistical approaches for estimating the Value at Risk 

 

 

 

 

 

For evaluating the performance of each model in terms of the VaR, we also use a 

backtesting procedure in two stages. Unlike Marimoutou et al. (2009) who apply only two 

                                                 
2 In Marimoutou et al. (2009), the VaR is calculated for eight levels of confidence (0.1%, 0.5%, 1% and 
5% to left and right tails). We believe that two levels are sufficient. 

Normal  1
t 1 pVaR -
+ =  

Historical Simulation   n
tt 1 t 1VaR Quantile r+ =

=  

Filtered Historical Simulation   n
tt 1 t+1 t 1 t 1VaR Quantile r + + =

= +  

Unconditional GPD  
u

t 1
n 1 p 1

N
VaR u

    
    





 -

+ - -= +  

Conditional Normal  1
t 1 t 1 t 1 pVaR   -
+ + += +  

Conditional Student  1
t 1 t 1t 1

2F pVaR 


  -
+ ++

-
= +  

Conditional GPD  tt 1 t 1VaR ZVaR  t+ += +  

Note: 
1-

(p) is the quantile of the standard normal distribution, u  is the threshold,   is the estimated scale parameter, 




is the estimated shape parameter, Nu is the number of exceedances over the threshold, t+1 t 1and  +  are the 

conditional forecasts of the mean and the standard deviation, F-1(p) and ν are the quantile the t-distribution and the 
degrees of freedom, respectively, and Z is the standardised residual series.  
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accuracy tests, in the first stage, we use five accuracy tests (the unconditional coverage test 

(LRUC), Backtesting criterion (BTC), the conditional coverage test (LRcc), the independence 

test (LRind) and the Dynamic Quantile test (DQ). If a model survives in all tests, the model is 

accurate. In the second stage, we evaluate the magnitude of the loss function for the first 

stage overcoming models, but unlike Marimoutou et al. (2009) who only use a single loss 

function, eleven loss functions have been used in our comparative: six loss functions, which 

reflect the utility function of the regulator and five loss functions from the viewpoint of the 

firms. 

Overall, we design an exhaustive comparison. We estimate the VaR by using seven 

different models for two levels of confidence and follow a two-stage backtesting procedure to 

assess the forecasting power of each model: five accuracy tests and eleven loss functions.  

3.2.- Results    

The results of the accurate tests are presented in Table 5. We show the percentage of 

exception obtained with each VaR model at the 99.9% and 99.5% confidence levels. The 

table reports the p-value obtained for the different tests. When the null hypothesis that “the 

VaR estimate is accurate” has not been rejected by any test, we have shaded the percentage 

of exceptions.  

According to Table 5 and for both levels of confidence, we can assert that the VaR 

estimates obtained by the unconditional and conditional normal distribution are very poor. The 

Historical Simulation, Filtered Historical Simulation, unconditional GPD and conditional 

Student yield good VaR estimations at 0.1% and 0.5%. The conditional GPD model performs 

well only at 0.1%. For the survived models, in comparing our results with these obtained by 

Marimoutou et al. (2009), we observe some differences. There are more models that pass the 

first stage than these found by Marimoutou et al. (2009). In table 5, we denote with an 

asterisk (*) the models that pass the first stage in Marimoutou et al. (2009). The differences in 

the data source and the tests used may explain the discrepancies.   
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Table 5. Accuracy tests 

 0.1% 0.5%

Normal 0.59 0.90

LRUC 0.0000 0.0352 

BTC 0.0000 0.0007 

LRIND 0.7298 0.5180 

LRcc 0.0001 0.0883 

DQ 0.0000 0.0000 

HS 0.10 0.46

LRUC 0.9662 0.8352 

BTC 0.3981 0.3800 

LRIND 0.9522 0.7870 

LRcc 0.9973 0.9435 

DQ 1.0000 0.9997 

FHS 0.15 0.44*

LRUC 0.5101 0.7164 

BTC 0.2225 0.3449 

LRIND 0.9283 0.7986 

LRcc 0.8018 0.9062 

DQ 0.8567 0.9923 

Uncond.GPD 0.13 0.52

LRUC 0.7182 0.9253 

BTC 0.3387 0.3949 

LRIND 0.9403 0.7639 

LRcc 0.9344 0.9517 

DQ 0.9926 1.0000 

Cond. Normal 0.57 1.26

LRUC 0.0000 0.0002 

BTC 0.0000 0.0000 

LRIND 0.7411 0.7670 

LRcc 0.0002 0.0009 

DQ 0.0000 0.0000 

Cond.Student 0.08* 0.59*

LRUC 0.7604 0.5967 

BTC 0.3614 0.2834 

LRIND 0.9643 0.7298 

LRcc 0.9536 0.8190 

DQ 0.9971 0.9466 

Cond.GPD 0.13 0.10

LRUC 0.7182 0.0050 

BTC 0.3387 0.0009 

LRIND 0.9403 0.9522 

LRcc 0.9344 0.0193 

DQ 0.9926 0.0000 

VaR violation ratios of the daily returns (%) are boldfaced. The table reports the p-values of the 
following tests: (i) the unconditional coverage test (LRuc); (ii) the backtesting criterion (BTC); (iii) 
statistics for serial independence (LRind); (iv) the conditional coverage test (LRcc); (v) the Dynamic 
Quantile test (DQ). A p-value greater than 5% indicates that the forecasting ability of the VaR model 
is accurate. The shaded cells indicate that the null hypothesis that the VaR estimate is accurate is 
not rejected by any test. An asterisk indicates that the results are identical to the results obtained in 
Marimoutou et al. (2009). 
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For the survived models, we calculate the loss functions. The model that provides the 

lowest loss function value will be considered the best. Tables 6 and 7 reports the results 

obtained by the regulator´s loss functions and the firm’s loss functions, respectively. For each 

loss function, we marked in bold the model that provides the lowest losses. To calculate the 

FABL firm’s loss function, we proxy the price of capital with the interest rate of the 

Eurosystem monetary policy operations of the European Central Bank since the first of 1999 

and the Deutsche Bundesbank’s interest rate for the previous period.  

According to the quadratic loss function of Lopez (1998, 1999) from the viewpoint of 

the regulator, our results are the same as Marimoutou et al. (2009) (see Table 6). At the 

99.9% confidence level, the best model is the conditional Student and for 99.5% level of 

confidence is the Filtered Historical Simulation. Furthermore, all the regulator´s loss functions 

provide the same results. Thus, the results of the comparison are robust to the regulator´s 

loss function, but depend on the level of confidence. However, the firm’s loss functions point 

to other models as being optimal (see Table 7). From the viewpoint of the firm, the best model 

at the 99.9% confidence level is the conditional GDP, whereas at the 99.5% confidence level, 

the conditional Student provides the lowest losses. This result is robust to the firm´s loss 

function.  

Table 6. Magnitude of the regulator’s loss functions 

 level HS FHS Uncond.GPD Cond.Student Cond.GPD

RQL 
0.10% 4.0023 6.0019 5.0043 3.0015 5.0024 

0.50% 18.0127 17.0061 20.0142 23.0104  

RL 
0.10% 0.0687 0.0773 0.1183 0.0623 0.092 

0.50% 0.3367 0.2094 0.3593 0.3228  

RQ 
0.10% 0.0023 0.0019 0.0043 0.0015 

0.0024 
0.50% 0.0127 0.0061 0.0142 0.0104 

RC_1 
0.10% 0.8631 0.9345 1.424 0.6944 1.1295 

0.50% 5.1171 3.2809 5.6399 5.0781  

RC_2 
0.10% 0.0319 0.0212 0.0526 0.0155 

0.0278 
0.50% 0.1942 0.0889 0.2255 0.154 

RC_3 
0.10% 0.0687 0.0773 0.1183 0.0623 0.092 

0.50% 0.3367 0.2094 0.3593 0.3228  

Note: The table reports the values of the sum of the different loss functions of each VaR model at both confidence 
levels. The boldface figures denote the minimum value of the function. 
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Table 7. Magnitude of the firm’s loss functions 

 level HS FHS Uncond.GPD Cond.Student Cond.GPD

FS 
0.10% 38.6488 17.4877 24.6294 13.5053 13.1329

0.50% 13.7859 9.7707 13.4868 9.1305  

FC_1 
0.10% 3437.374 3269.0552 3327.208 3218.6995 3189.4691

0.50% 3121.3939 2993.6661 3093.4115 2942.9809  

FC_2 
0.10% 662.0202 323.4116 420.2661 254.7756 242.3176

0.50% 227.066 171.1829 217.8154 152.3774  

FC_3 
0.10% 769.5652 427.0749 524.5131 357.17 343.8888

0.50% 325.4232 267.5742 315.3856 247.2837  

FABL 
0.10% 38.6826 17.5287 24.6655 13.5359 13.1708

0.50% 13.8533 9.8392 13.5575 9.2071  

Note: The table reports the values of the sum of different loss functions for each VaR model at both confidence 
levels. The boldface figures denote the minimum value of the function. 

 

Overall, our comparison points to some interesting results. First, the optimal VaR 

model is a function of the confidence level. Second, the optimal model depends on the group 

of loss functions (regulator’s loss function versus firm’s loss function) used to evaluate the 

losses. Third, the best VaR model is robust within both groups of loss functions. 

4. Conclusions 

This paper investigates whether the results of the comparison VaR models depend on 

the loss function used for such purpose. We use daily returns of the Brent price from May 

1987 to January 2006. Following Marimotou et al. (2009), the models that we have included 

in the comparison are Historical Simulation (HS), Filtered Historical Simulation (FHS), 

Conditional and Unconditional Normal, Conditional Student and Conditional and 

Unconditional Extreme Value (GPD).  

The best model is selected by a two-stage selection approach. First, we apply a 

backtesting procedure based on five statistical tests. For the models that survive the first 

stage, we compute the losses using several loss functions from two groups: firm´s loss 

functions and regulator/supervisor’s loss functions. Our results indicate that in terms of their 

ability to forecast the VaR, the best model is robust to the regulator’s loss function. The same 

results are obtained with the firm’s loss function. However, we find important differences in 

terms of the main actor, the regulator/supervisor and the risk manager.  

In particular, we find that from the viewpoint of the regulator, the best models are 

conditional Student at the 99.9% confidence level and Filtered Historical Simulation at the 

99.5% confidence level. From the viewpoint of the firm, the best model at the 99.9% 

confidence level is the conditional GPD and at 99.5% confidence level is conditional Student.  

Finally, although the model that minimises the losses is robust to the firm’s loss 

functions, we consider that the loss function has to compute the real opportunity cost of the 
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firm and, particularly, if the VaR models are very prudent. We propose a firm’s loss function 

that meets this condition. 

Our results can help market participants make effective selections between VaR 

models. The market participants (supervisors and risk managers) must consider that they 

have specific loss functions, and the final result depends on who is the end-user of the VaR 

model. Finally, our results can also help researchers understand the different results 

presented in the compared literature.  
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