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Abstrac:  
This paper shows evidence that the higher moments parameters (skewness 
and kurtosis) of the distribution of financial returns are time-varying. This 
means that the distribution of financial returns is not i.i.d. as many 
approaches for portfolio risk management assume. Therefore it may be 
preferable to assume that the stochastic process for returns has time-varying 
conditional distributions. The possible dependence of these parameters on 
the sign and the size of unexpected returns have also been analyzed. The 
Engel and Ng. (1993) test was used to do so. The tests carried out provide 
some evidence that the skewness and kurtosis parameters respond 
asymmetrically to shocks of different signs and sizes. This result suggests 
that if we are interested in modeling the dynamic behavior of these 
parameters we should take asymmetric GARCH specifications into account. 
Besides, it has been detected that in volatile periods, when the size of 
unexpected returns is bigger, the tails of empirical distributions grow fatter, 
and the distribution is not as peaky. If the empirical distribution is skewed to 
the left skewness rises, otherwise it goes down.   
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1. Introduction 

 

Volatility (variance) is the most popular and traditional risk measure. 

In fact, the traditional financial theory defines risk as the dispersion of returns 

due to movements in financial variables. Under this premise, risk can be 

measured using the conditional variance of the returns of a portfolio. 

Another way of measuring risk, which is the most commonly used at 

present, is to evaluate the losses that may occur when the financial variables 

change. This is what Value at Risk (VaR) does. The VaR of a portfolio 

indicates the maximum amount that an investor may lose over a given time 

horizon and with a given probability1. In this case, the concept of risk is 

associated with the danger of losses. Since the Basel Committee on Bank 

Supervision at the Bank for International Settlements requires a financial 

institution to meet capital requirements on the basis of VaR estimates, 

allowing them to use internal models for VaR calculations, this measurement 

has become a basic market risk management tool for financial institutions.  

Despite VaR´s conceptual simplicity, its calculation is complex. Many 

approaches have been developed to forecast VaR. These include non-

parametric approaches, e.g. Historical Simulation; semi-parametrics 

approaches, e.g. Extreme Value Theory and the Dynamic quantile regression 

CaViar model (Engle and Manganelli (2004))  as well as parametric 

approaches e.g. Riskmetrics (JP. Morgan (1996)).  

Many of these assume that the distribution of returns standardised by 

conditional means and conditional standard deviation is independent and 

identically distributed (i.i.d.). However, there is some empirical evidence that 

the distribution of financial returns standardised by conditional means and 

volatility is not i.i.d. (see Mandelbrot 81963), Hansen (1994), Harvey and 

Siddique (1999), Jondeau and Rockinger (2003), Bali and Weinbaum (2007) 

and Brooks et al. (2005)).  Others studies also suggested that the process of 

negative extreme returns at different quantiles may differ from one another 

(Engle and Manganelli (2004), Bali and Theodossiou (2007)).  

                                                            
1 According to Jorion (2001), VaR measure is defined as the worst expected 
loss over a given horizon under normal market conditions at a given level of 
confidence. 
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Focusing on this particular aspect, recent papers such as Ergun and 

Jun (2010) and Bali et al. (2008) stress that in the context of the parametric 

method, the techniques that relax the conventional assumption that the 

distribution of standardized returns is i.i.d. and model the dynamic 

performance of the high-order conditional moments (asymmetry and kurtosis) 

provide more reliable results than those considering functions that imply 

constant high-order moments. 

In the line of the studies aforementioned, this paper contributes to the 

existing literature by showing that the high-order moment parameters of the 

distribution financial return are time-varying. Therefore, it may be preferable 

to assume the stochastic process for returns has time-varying conditional 

distributions. Moreover, it has been observed that the high-order moments 

parameters depend on the sign and size of  unexpected returns so that a 

leverage effect is detected when taking these parameters into consideration.  

The results stress that the probability distribution of the financial return 

are time-varying and also that the shape of theses distributions depends on 

the sign and size of unexpected returns. This is what some extensions of the 

CaViar method implicitelly assume, in particular those that introduce 

asymmetric specifications for quantiles (see Gerlach et al. (2011) and Yu et 

al. (2010)).  

In the following section the Skewness Generalized t distribution 

(SGT) proposed by Theodosiou (1998) is presented while in section 3 

empirical results are discussed. Finally, section 4 includes the main 

conclusions.  

 

2.  Methodology 

 

The empirical distribution of the financial return has been documented 

to be asymmetric and exhibits a significant excess of kurtosis (fat tail and 

peakness). Therefore, assuming a normal distribution for risk management 

and particularly to estimate the VaR of a portfolio does not produce satisfying 

results. Under this assumption, the size of the losses will be much higher 

than those predicted in the case of a normal distribution. 
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As the t-Student distribution has fatter tails than the normal 

distribution, this distribution that has been commonly used in finance and risk 

management, particularly to model conditional asset returns (Bollerslev 

(1987)). However, although the t-Student distribution can often account 

satisfactorily for the excess kurtosis found in common asset returns, this 

distribution does not capture the skewness of the return.  

Taking this into account, one direction for research in risk 

management involves searching for other distribution functions that capture 

this characteristic. The skewness t-Student distribution (SSD) of Hansen 

(1994), the exponential generalized beta of the second kind (EGB2) of 

McDonald and Xu (1995), the generalized error distribution (GED) of Nelson 

(1991), the skewness generalized-t distribution (SGT) of Theodossiou (1998), 

the skewness error generalized distribution (SGED) of Theodossiou (2001) 

and the inverse hyperbolic sign (IHS) of Johnson (1949) are the most 

commonly used in  VaR literature (see Abad at al. (2013), Chen et al. (2012), 

Polanski and Stoja (2010), Xu and Wirjanto (2010), Bali and Theodossiou 

(2008), Bali et al. (2008), Haas (2009) and Ausín and Galeano (2007)). On 

the whole, these papers show that skewness distributions are extremely 

reliable to forecast VaR.  

In a comparison of these distributions, Abad et al. (2013), show that 

SGT distributions are the most appropriate in fitting financial returns 

outperforming the normal and t-Student distribution not only in fitting data but 

also in forecasting VaR.  

The SGT introduced by Theodossiou (1998) is a skewed extension of 

the generalised t distribution that was originally proposed by McDonald and 

Newey (1988). The SGT is a distribution that allows for a very diverse level of 

skewness and kurtosis, and it has been used to model the unconditional 

distribution of daily returns for a variety of financial assets. The SGT 

probability density function for the standardised residual is: 
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  is the skewness parameter, 1  ;   is a tail-thickness parameter, 2  ; k 

is a peakness parameter, k>0; sign  is the sign function; B(.) is the Beta 

function;   is the Pearson’s skewness; and the mode of f(zt); t t t t z =(r  -µ )/ is 

the standardised residual. 

The skewness parameter   controls the rate of descent of the density 

around the mode of zt. In the case of positive skewness ( 0  ), the density 

function is skewed to the right. In contrast, the density function is skewed to 

the left with negative skewness ( 0  ).  

In the following section we fit an SGT distribution to our data set. The 

results suggest that high-order moment parameters are time-varying, 

providing evidence that the standardized financial returns are not i.i.d., as 

assumed in traditional financial literature.  

 

3. Empirical results 

 

3.1 Data and descriptive statistics 

 

The data consist of closing daily returns on six composite indexes from 

3/01/2000 to 31/10/2013 (around 3,500 observations). The indexes are: the 

Japanese Nikkei, Hong Kong Hang Seng, US S&P 500 and Dow Jones, UK 

FTSE100 and the French CAC40. The data were extracted from the Yahoo 

Finance web page (.http://es.finance.yahoo.com/).  

The computation of the returns of the indexes (rt) is based on the 

formula, rt=ln(It)-ln(It-1) where It is the value of the stock market index for 

period t.  

Figure 1 shows the daily returns of the data and Table 1 provides 

basic descriptive statistics of the data. The unconditional mean of daily return 

is very close to zero for all indexes. The unconditional standard deviation 

varies between 1.234 Dow Jones and 1.586 Hang Seng. In August 2007 the 
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financial market tensions started then followed by a global financial and 

economic crisis leading in turn to significantly rising volatility of returns. This 

increase was especially important after August 2008 coinciding with the fall of 

Lehman Brothers. From mid 2008 to the end of 2009, the volatility of the 

S&P500, Nikkei and Hang Seng indexes, measured using the standard 

deviation of returns reached 2.585, 2.671 and 2.899 respectively, more than 

1 point higher than the standard deviation observed during the whole of the 

period 2000-2013. A similar increase is observed in the case of all indexes.  

A reduced volatility has also been observed in the last four years.  

Skewness statistics are negative and significant for all indexes 

considered except in the case of the CAC40, which means that the 

distribution of those returns is skewed to the left. For all the indexes, the 

excess kurtosis statistic is very large and significant at 1% level implying that 

the distributions of those returns have much thicker tails than the normal 

distribution. Those results are in line with those that were obtained by 

Bollerslev (1987), Bali and Theodossiou (2007), and Bali et al. (2008) 

amongst others. All of them find evidence that the empirical distribution of the 

financial return is asymmetric and exhibits a significantly excessive kurtosis 

(fat tails and peakness).  

In order to capture the non-normal characteristics observed in the data 

set, an SGT distribution of Theodossiou (1998) has been fitted. The 

parameters of this distribution are presented in Table 2. The first and second 

columns of the table provide the estimates for the unconditional mean and 

unconditional standard deviation of log-returns. Standard errors are 

presented in brackets. As expected, these estimates are quite similar across 

distributions and do not differ much from the simple arithmetic means and 

standard deviations of log-returns presented in Table 1. The unconditional 

mean is close to zero for all indexes and the unconditional standard deviation 

varies around 1.5. The third column presents the skewness parameter λ. For 

all indexes considered, including the CAC40, this parameter is negative and 

significant at 1% level, which means that the distributions of these returns are 

skewed to the left.  

The fourth and fifth columns provide estimates for the kurtosis 

parameters η (fat-tail) and κ (peakness). The value of κ varies around 1.5, 
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except in the case of the Nikkei index, which reaches 1.887. The value of η 

reaches approximately 4.5, except in the case of the Hang Seng index, which 

reaches 8.084. These estimates are quite different from those predicted 

when using a normal distribution (κ = 2 and η = ∞), thus indicating that the 

set of returns we considered are characterized by excess kurtosis. As the 

SGT distribution nets the normal distribution it is possible to use a log-

likelihood ratio test for testing the null hypothesis of normality against that of 

SGT. For all indexes considered, the ܴܮேைோெ statistics are statistically 

significant at the 1% level, providing evidence against the normality 

hypothesis (table 2).  

 

3.2 Time-varying scaling parameters 

 

In the above section, the whole sample (2000-2013) was used to fit 

SGT distributions. To investigate if higher-order moment parameters are 

time-varying, an SGT distribution was fitted in a recursive manner to analyze 

the January 2002 - October 2013 period. Initially the sample used was the 

period dating 03/01/2000 to 31/12/2001. Then the sample was amplified 

adding a daily data and  re-estimating  model parameters each time. This 

allowed for a sample of 3.000 data of the skewness and kurtosis (peakness 

and fat-tail) parameters.  

 The estimates of the skewness (λ), peakness (κ) and fat-tail (η) 

parameters are presented in figures 2, 3 and 4. In table 3 descriptive 

statistics of that parameter are presented. In these pictures, two vertical lines 

are drawn. The first line indicates values reached on August,1 2007 and the 

second line indicates values obtained in September 2008. The former date 

indicates the beginning of the global financial and economic crisis2 that led to 

a significant rise in the volatility of returns. This increase was particularly 

                                                            
2 In August of 2007 there was a liquidity crisis that prompted a substantial 

injection of capital into the financial markets by the FED, European Central 

bank and the Bank of England.  
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important after August 2008 (second line), coinciding with the fall of Lehman 

Brothers. 

In figure 2, skewness parameters show important differences along 

the sample. In 2002 the empirical distribution of the Ftse, DJA and CAC40 

returns was skewed to the left while the empirical distribution of the S&P500, 

Nikkei and Hans Seng indexes was skewed to the right. However, at the 

beginning of 2004 all empirical distributions were skewed to the right. Since 

then, the value of λ has showed a decreasing trend indicating that the 

empirical distribution of these returns is skewed to the left. In August 2008, 

just before the fall of Lehman Brothers, λ reaches a minimum value of -0.09 

in the case of the CAC40 index, -0.08 in the case of the S&P500 index, -0.07 

in the case of the DJA and Ftse indexes, -0.06 in the case of the Nikkei index 

and -0.05 in the case of the Hang Seng index. Since then the value of λ has 

increased slightly becoming a little less asymmetric.  

The two kurtosis parameters (k and η) perform differently. The 

peakness parameter (k) is smooth while the fat-tail parameter (η) is more 

volatile.  

For all indexes considered, the peakness parameter (k) shows a 

decreasing trend. At the beginning of the sample the value of this parameter 

was close to 2 in the case of most indexes, indicating no peakness of the 

empirical distribution in the first years of the analysis. Nevertheless, the value 

of this parameter decreases along the sample. In August of 2008, before the 

fall of Lehman Brothers, k reaches a minimum figure close to 1.0 in the case 

of the Hang Seng and S&P500 indexes and reaches an approximate figure of 

1.5 in the case of the other indexes observed. Throughout August and 

September 2008, depending on the index, the value of k jumps up indicating 

that an increased volatility leads to a reduced peakness of the empirical 

distribution of the returns.   

Differences were observed across the indexes used. The average 

value of k is 1.8 in the case of the Nikkei, DJ and CAC40 while in the case of 

the FTSE the average value of k is 1.6 and 1.4 in the case of the S&P500 

and Hang Seng indexes.  

The fat-tail parameter (η) fluctuates much more than the skewness 

and peakness parameter. At the beginning of the sample this parameter was 
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close to 5 although its value changes significantly along the sample. In the 

case of the Hang Seng, Nikkei and S&P500 indexes this parameter reaches 

approximately 30 in August of 2008, just before the fall of Lehman Brothers. 

The value of Ftse and CAC40 also show an increasing trend but their 

increase is moderate. It fell suddenly in August and/or September of 2008 

indicating that the empirical distribution tail of the returns became fatter due 

to the global financial crisis. In the case of all indexes it is also observed that 

August and/or September of 2008, depending on the index, this parameter 

go down suddenly indicating that with the global financial crisis the empirical 

distribution tail of the returns becomes fatter.  

From this analysis, it seems evident that the financial returns are not 

independent over time and identically distributed (i.i.d.) as we find evidence 

that the high-order moment parameters significantly change over time. In the 

next section we evaluate if the dynamic behavior of the high-order moment 

parameter depends on the sign and size of unexpected returns. 

 

3.3 Evaluating asymmetric effect in high-order moment parameter 

 

Having found evidence that the high-order moment parameters are 

time-varying, it seems reasonable to analyze the dependence of skewness, 

fat-tail and peakness parameters on the sign and size of the past 

standardized returns (see Bali et al. (2008)).  

To test this hypothesis it has been used the Sing-Bias test and Size-

Bias test proposed by Engle and Ng. (1993. The Sign-Bias test focuses on 

the different impacts that positive and negative innovations have on these 

parameters. This test is defined as the t-ratio of the coefficient bଵ in the OLS 

regression: z௧ ൌ a  bଵܵ௧ିଵ
ି  ݁௧. The Size-Bias test focuses on the different 

impacts that may have over the skewness, peakness and fat tail parameters 

large and small innovations. The Negative-Size-Bias test is defined as the t-

ratio of the coefficient bଶ in the OLS regression: z௧ ൌ a  bଶܵ௧ିଵ
ି ݁௧ିଵ  ݁௧. The 

positive-Size-Bias Test statistic is defined as the t-ratio of the coefficient bଶ in 

the same regression equation with ܵ௧ିଵ
ା =1- ܵ௧ିଵ

ି
. It is important to distinguish 

between positive and negative innovations while examining the size effect of 



 
 

10 
 

a piece of news of a negative nature compared to that of a positive nature on 

high-order moment parameters.  

The joint test is the F statistics from the OLS regression: z௧ ൌ a 

bଵܵ௧ିଵ
ି  bଶܵ௧ିଵ

ି ݁௧ିଵ  bଷܵ௧ିଵ
ା ݁௧ିଵ  ݁௧. In all of these regressions ݁௧. 

represents the innovations returns and z௧
 represents the high-order moment 

parameters (λ௧,	η௧ and k௧). ܵ௧ିଵ
ି    is a dummy variable that takes a value of 1 

if ݁௧ିଵ is negative and zero otherwise. 

For λ parameter, the results of these tests are presented panel (a) of 

table 4. The coefficient bଵ in the regression λ௧ ൌ a  bଵܵ௧ିଵ
ି  ݁௧ is not 

statistically significant in any cases. This result seems to indicate that the 

skewness parameter does not depend on the sign of the unexpected returns. 

However, the coefficient bଶ in the following regression λ௧ ൌ a  bଶܵ௧ିଵ
ି ݁௧ିଵ 

݁௧ is statistically significant at 99% confidence level in five of the six indexes 

considered. The sign of bଶ	is positive in all cases, which implies that the 

higher the impact of a negative piece of news, the lower the value of λ. This 

means that, for example, if the empirical distribution of the financial return is 

skewed to the left, skewness will be increased in the case of a piece of news 

of a negative nature.  

In the case of the positive size-bias test the coefficient bଶ is statistically 

significant at 99% confidence level only in the case of the Hang Seng and 

DJA indexes. The sign of this coefficient is negative meaning that the 

stronger the impact, the lower the value of λ. In addition, the value of bଶ in 

the negative size-bias test is always higher than the value of this coefficient 

in the positive size-bias test which means that a piece of news of a negative 

nature has a bigger impact on the skewness parameter than in the opposite 

case.  

Panel (b) of table 4 indicates the results of the test for the fat-tail 

parameter. The coefficient bଵ in the regression η௧ ൌ a  bଵܵ௧ିଵ
ି  ݁௧ is not 

statistically significant in any cases. This result indicates that the fat-tail 

parameter does not depend on the sign of the unexpected returns. However, 

results show that the fat-tail parameter may depend on the size of the 

unexpected returns. In 50% of the indexes considered (DJA, Ftse, and 

CAC40) the coefficient bଶ in the regression η௧ ൌ a  bଶܵ௧ିଵ
ା ݁௧ିଵ  ݁௧ is 
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negative and statistically significant at 99% confidence level. This means that 

when the volatility increases the fat-tail parameter decreases implying a 

fatter-tail distribution. Similar results are obtained for the negative size-bias 

test. The sign of bଶ in the regressions η௧ ൌ a  bଶܵ௧ିଵ
ି ݁௧ିଵ  	݁௧ is positive in 

the case of the DJA and CAC40 indexes, indicating that a piece of news of a 

negative nature may reduce the value of η increasing the tail-thickness-

distribution.  

Finally, the results of the test to measure the peakness parameter are 

presented in panel (c) of table 4. In the case of the S&P500, DJA and CAC40 

indexes, the coefficient bଵ in the regression k௧ ൌ a  bଵܵ௧ିଵ
ି  ݁௧ is statistically 

significant at 95% confidence level providing some evidence that the 

peakness parameter depends on the sign of the unexpectetd returns. In the 

case of the majority of indexes, there is evidence that this parameter 

depends on the size of innovations. The size-bias test failed only in the case 

of the Nikkei and S&P500 indexes. The sign of the coefficients seems to 

indicate that regardless of the sign of innovations, bigger unexpected returns 

imply bigger values for the peakness parameter, which in turn means less 

peakness in the case of an empirical distribution. This result is coherent with 

those observed in September 2008 coinciding with the fall of Lehman 

Brothers when the peakness parameter increased significantly. Only in the 

case of the Hang Seng index did the sign of these coefficients indicate the 

opposite.  

On the whole, the joint test provides significant evidence that the 

innovations of different sign and size provoke a different impact on high order 

moment parameters.  

These results stress that the shape of the probability distribution of the 

financial return depends on the sign and size of unexpected returns. This is 

what some extensions of the CaViar method assume to estimate VaR, in 

particular those that introduce asymmetric specifications for the quantiles 

(see Gerlach et al. (2012) and Yu et al. (2010)). These authors show that 

when we use an asymmetric version of the CaViaR model the VaR estimates 

improve significantly. The paper published by Sener et al. (2012) supports 

this hypothesis. By comparing various CaViaR models (asymmetric and 
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symmetric) they found that the asymmetric CaViaR model outperforms the 

result obtained when using the standard CaViaR model. 

In this line, but in the context of parametric methods the results 

obtained in this paper suggest that if we want to model the dynamic behavior 

of the high moment parameters as Ergun and Jun (2010) and Bali et al. 

(2008) propose we should consider asymmetric GARCH specifications for 

these parameters. Analyzing if the use of such specifications actually 

improve VaR estimates it’s left for future research.  

 

3.4 Analyzing the behavior of skewness and kurtosis in high volatility periods 

 

The previous analysis showed significant evidence that skewness, 

peakness and fat-tail parameters respond asymmetrically to shocks of 

different sizes and different sign. In particular, it has been found that in a 

volatile period, when the size of the unexpected returns is bigger, the tails of 

empirical distributions becomes fatter, and the distribution becomes less 

peaky. With regards to skewness, if the empirical distribution is skewed to the 

left, skewness increases and if not, it goes down. This explains the fact that 

while in a stable period a parametric approach under a normal distributions  

seems to be appropriate to estimate VaR, in a volatile period this approach 

clearly underestimates risk (Abad and Benito (2013) and Bao et al. (2006)).  

In order to assess the robustness of these results, correlations 

between the conditional standard deviation of the returns and the high-order 

moment parameters have been calculated (see table 5). The correlation 

between volatility and skewness parameters is negative in all cases and it is 

especially important in the case of the Hang Seng (-0.36), the DJA (-0.26) 

and the S&P500 (-0.12) indexes, for which scatter plots are presented in 

figure 4. These figures clearly illustrate the inverse link between the volatility 

and the asymmetry of a distribution.  

The correlation between the conditional standard deviation of the 

returns and the fat-tail parameters are also negative. It is especially 

significant in the case of the Nikkei (-0.11), the DJA (-0.25) and the CAC40 (-

0.20) indexes. It confirms that there is an inverse link between the fat-tail 

parameter and volatility, which can be checked in figure 5. Finally, the 
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correlation between the peakness parameter and the conditional standard 

deviation of the returns is positive for in the case of the DJA (0.11), Ftse 

(0.25) and CAC40 (0.19) indexes meaning that in this particular case, when 

volatility increases the distribution of the returns becomes less peaky. For 

these indexes the positive relationship between volatility and the peakness 

parameter can be checked in figure 6. In case of the Nikkei, Hang Seng and 

S$P500 indexes, the correlation is negative but very close to zero. Only in 

the case of the Hang Seng index is this correlation relatively high (-0.19). The 

sign of this correlation is in the line of the results of the size-bias test that 

shows that in the case of this index, a piece of news that causes a greater 

impact will imply a greater peakness of the distribution.  

 

 

 

4. Conclusion 

This paper contributes to the existing literature showing that the 

distribution of standardised financial returns is not independent and 

identically distributed (i.i.d.). This, in turn, may have significant implications in 

the field of risk management.  

Empirical distributions of the portfolio returns have been documented 

in the literature to be asymmetric and to exhibit important kurtosis. In this 

paper, an SGT distribution was fitted to a set of six stock markets indexes, 

Nikkei, Hang Seng, S&P500, Dow Jones, Ftse, and CAC40 to capture these 

results. The sample used ranged from January 2000 to the end of October 

2013.  

For all indexes considered, estimates of the skewness, peakness and 

fat-tail parameters are statistically significant, indicating that the empirical 

return distributions are skewed, peaky and have fatter tails than normal 

distributions.  

In addition, estimating the SGT distribution recursively produce a 

sample of about 3.000 estimates of skewness, peakness and fat-tail 

parameters. The analysis of these time series shows that higher-order 

moment parameters are time-varying. The fat-tail is very volatile while the 

skewness and peakness parameters are smoother. These results indicate 
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that the shape of the density function changes over time. This has significant 

implications in risk management, in particular in forecasting VaR.  

In view of these results it does not seem appropriate to assume that 

the future will be the same as the past, as for instance, the Historical 

Simulation method implies when forecasting VaR. However, we can use past 

information in order to learn how and in which direction the density function 

will change when the volatility of the return increases again. 

In this line, having obtained evidence that high-order moment 

parameters are time- varying, their possible dependence on the sign and size 

of unexpected returns was questioned. The Engel and Ng. (1993) test was 

used to test this hypothesis. These tests provide some evidence that the 

value of these parameters depend on the sign and size of unexpected 

returns. Consequently, in order to model the dynamic behavior of the high 

moment parameters we should consider asymmetric GARCH specifications. 

Moreover, it has also been detected that in the case of a volatile period, 

when the size of unexpected returns is bigger, the tails of empirical 

distributions becomes fatter, and the peakness of distribution is reduced. 

With regards to skewness if the empirical distribution is skewed to the left, 

skewness will increase, otherwise it will go down. This explains the fact that 

in the case of a stable period, the parametric approach under normal 

distributions proves rather efficient when estimating VaR. However, in volatile 

periods this approach clearly underestimates risk.   
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Table 1. Descriptive Statistics 

 

 
 

Mean 

 
 

Median 
 

 
Std. Dev 

 

 
Skewness 

 
 

Kurtosis 
 

Nikkei -0.008 
 

0.015 
 

1.581 
 

-0.419** 
(0.042) 

9.245** 
(0.084) 

Hang 
Seng 

0.008 
 

0.019 
 

1.587 
 

-0.068 
(0.042) 

10.752** 

(0.083) 

S&P 500 0.005 
 

0.057 
 

1.321 
 

-0.173** 
(0.042) 

10.621** 
(0.083) 

Dow 
Jones 

0.015 
 

0.052 
 

1.235 
 

-0.217** 
(0.041) 

9.723** 

(0.082) 

Ftse100 0.000 
 

0.039 
 

1.268 
 

-0.124** 
(0.041) 

8.891** 
(0.082) 

CAC40 -0.009 
 

0.022 
 

1.541 
 

0.028 
(0.041) 

7.632** 
(0.082) 

 
Note: This table presents the descriptive statistics of the daily percentage returns of the Nikkei, Hang 
Seng, S&P 500, Dow Jones, Ftse 100, and CAC-40 indexes. The sample period is from January 3, 

2000 to October 31, 2013. Standard errors of skewness and excess kurtosis are calculated as n/6    

and n24  respectively. An * (**) denotes significance at the 5% (1%) level.  

 
 

Tabla 2. Maximum likelihood estimates of alternative distribution functions 
 

 

 
 ߤ

 
σ 
 

 
λ. 
 

η 
 
݇ 
 

 
Log-L 

 

 
LRNORMAL 

 

Nikkei 0,000** 
(0.000) 

0.015** 
(0.000) 

-0.044**

(0.020) 
4.893** 
(0.291)

1.887** 
(0.075)

9502.6 
 

463.2** 
 

Hang Seng 0.000** 
(0.000) 

0.015** 
(0.000) 

-0.021 
(0.015) 

8.048** 
(0.880)

1.189** 
(0.036)

9792.1 
 

469.6** 
 

S&P 500 0.000** 
(0.000) 

0.013** 
(0.000) 

-0.067**

(0.013) 
5.097** 
(0.314)

1.296** 
(0.038)

10567.3 
 

756.8** 
 

Dow Jones 0.000** 
(0.000) 

0.012** 
(0.000) 

-0.058**

(0.015) 
4.341** 
(0.211)

1.539** 
(0.049)

10753.8 
 

902.6** 
 

Ftse100 0.000** 
(0.000) 

0.012** 
(0.000) 

-0.058**

(0.016) 
4.240** 
(0.200)

1.619 
(0.053)

10665.4 
 

763.8** 
 

CAC40 0.000** 
(0.000) 

0.015** 
(0.006) 

-0.058**

(0.017) 
4.694** 
(0.026)

1.625** 
(0.054)

10049.0 
 

576.4** 
 

 

Note: μ, σ, λ and η are the estimated mean, standard deviation, skewness parameter, and tail-tickness 
parameter; к  represents the peakness parameter. Log-L is the maximum likelihood value. LRNormal is 
the LR statistic from testing the null hypothesis that the daily returns are distributed as Normal against 
they are distributed as SGT. An * (**) denotes significance at the 5% (1%) level.  
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Table 3. Descriptive Statistics for the skewness and fat-tail parameter 

 

 
 

Mean 

 
 

Median 
 

 
 

Max 
 

 
Min 

 
 

Std Dev.  
 

Nikkei 
 
Skewness 

Fat-tail 
Peakness 
 

-0.020 
8.642 
1.807 

 

-0.035 
7.303 
1.799 

 

0.090 
24.194 
2.264 

 

-0.059 
4.509 
1.456 

 

0.038 
4.572 
0.189 

 
Hang 
Seng 
 
Skewness 

Fat-tail 
Peakness 
 

-0.011 
11.061 
1.335 

 

-0.022 
8.057 
1.211 

 

0.046 
47.788 
2.226 

 

-0.043 
5.663 
1.096 

 

0.021 
5.826 
0.262 

 
S&P 500 
 
Skewness 

Fat-tail 
Peakness 
 

-0.039 
9.088 
1.422 

 

-0.056 
8.672 
1.333 

 

0.057 
38.174 
2.030 

 

-0.083 
4.110 
1.089 

 

0.038 
5.112 
0.202 

 
DJA 
 
Skewness 

Fat-tail 
Peakness 
 

-0.042 
4.876 
7.792 

 

-0.056 
5.077 
1.774 

 

0.011 
6.901 
2.753 

 

-0.077 
3.374 
1.502 

 

0.024 
0.788 
0.251 

 
Ftse 
 
Skewness 

Fat-tail 
Peakness 
 

-0.048 
6.375 
1.547 

 

-0.056 
5.447 
1.577 

 

0.011 
28.182 
1.695 

 

-0.072 
0.000 
1.340 

 

0.019 
3.540 
0.090 

 
CAC40 
 
Skewness 

Fat-tail 
Peakness 
 

-0.057 
5.030 
1.791 

 

-0.064 
4.997 
1.683 

 

0.019 
7.334 
3.141 

 

-0.089 
3.623 
1.577 

 

0.020 
0.776 
0.289 

 
 
Note: This table presents the descriptive statistics of the skewness, fat-tail and peakness 
parameters in the case of the Nikkei, Hang Seng, S&P 500, Dow Jones, Ftse 100, and CAC-
40 indexes. These estimates have been obtained by re-estimating the SGT distribution 
based on the sample that goes from 02/01/2002 to 31/10/2013 on a daily basis. This has 
allowed for a sample of proxy 3.000 data of the skewness and kurtosis (peakness and fat-
tail) parameters. The exact size of these samples depends on the index.  
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Table 4. Sign and Size-Bias Tests 
     

 

 
Sign Bias 

Test 
 

Negative Size 
Bias Test 

Positive Size 
Bias Test 

Joint Test 

Panel (a) Skewness parameter (λ) 
NIKKEI 0.0005 0.066 -0.056 0.76  

 (0.0014) 0.070 0.079 p-value: 0.52 
HANG SENG 0.0003 0.276** -0.236** 40.45  

 (0.0008) 0.039 0.040 p-value: 0.00 
S&P500 0.0019 0.171* -0.150* 4.15  

 (0.0014) 0.083 0.089 p-value: 0.01 
DJI 0.0002 0.288** -0.234** 21.63  

 (0.0009) 0.054 0.058 p-value: 0.00 
FTSE  0.0000 0.141** -0.069 6.00  

 (0.0007) 0.043 0.045 p-value: 0.00 
CAC 40 -0.0005 0.124** -0.011 4.32  

 (0.0007) 0.038 0.039 p-value: 0.00 
Panel (b) Fat-tail parameter (η) 

NIKKEI 0.2225 -3.297 -25.364** 3.27  
 0.1696 8.367 9.411 p-value: 0.02 

HANG SENG -0.2799 -15.718 -0.084 1.37  
 0.2139 11.039 11.344 p-value: 0.25 

S&P500 0.1412 -17.296 -3.303 1.01  
 0.1877 11.020 11.844 p-value: 0.39 

DJI -0.0012 5.518** -8.655** 13.96  
 0.0288 1.810 1.927 p-value: 0.00 

FTSE  0.0656 -13.819* 3.866 1.38  
 0.1279 7.954 8.347 p-value: 0.25 

CAC 40 -0.0073 3.592** -4.381** 7.06  
 0.0282 1.465 1.502 p-value: 0.00 

Panel (c) Peaknesss parameter (к) 

NIKKEI 
-0.0058 0.467 0.512 1.13 

p-value: 0.33 0.0070 0.347 0.391 

HANG SENG 
0.0134 1.580** -1.817** 11.75 

p-value: 0.00 0.0096 0.497 0.510 

S&P500 
0.0123* -0.209 -0.011 0.99 

p-value: 0.40 0.0074 0.436 0.468 

DJI 
0.0155* -2.020** 1.191* 8.00 

p-value: 0.00 0.0092 0.578 0.617 

FTSE  
0.0024 -0.766** 0.865** 14.57 

p-value: 0.00 0.0033 0.204 0.216 

CAC 40 
0.0176* -2.735** 1.575** 16.03 

p-value: 0.00 0.0105 0.545 0.560 
 

The Sign-Bias Test is defined as the t-ratio for coefficient b1 in the regression equation: zt = 
a +b1*S

-
t-1+ et. The Negative-Size-Bias Test is defined as the t-ratio of the coefficient b2 in 

the OLS regression: z = a +b2* S
-
t-1 et-1+et.  Positive-Size-Bias Test statistic is defined as the 

t-ratio of the coefficient b3 in the same regression equation with S+
t-1 =1- S-

t-1. In all these 
regressions  et  represents the innovations returns; z  represents λ (panel a), η (panel b) and 
k (panel c) ; St-1

-   is a dummy variable that takes a value of 1 if et-1 is  negative and zero 
otherwise.  In the first, second and third column the coefficient for b1 , b2 and b3 are 
presented. The t-ratio for these coefficients are in parenthesis. *, ** denote the case in which 
the coefficient b  is statistically significant at 5% and 1% confidence level respectively. The 
joint test is the F statistics from the OLS regression: z2= a + b1*S

-
t-1 +( b2*S

-
t-1 *et-1 )+(b3* S

+
t-

1 * et-1)+et which is presented along with its p-value.   
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Table 5. Matrix of Correlations 

 

 

 
 

Nikkei 
 

 
Hang 
Seng 

 

 
 

S&P500 
 
 

 
DJA 

 

 
Ftse 

 

 
CAC40 

 

 
Skewness 

Fat-tail 
Peakness 

 

-0.06(*) 
-0.11 
-0.01 

 

 
-0.36 
-0.02 
-0.19 

 

-0.12 
-0.01 
-0.01 

 

-0.26 
-0.25 
0.11 

 

-0.11 
0.06 
0.25 

 

-0.09 
-0.20 
0.19 

 
 

(*) Coefficient of correlation between the skewness parameter estimates and conditional 
standard deviation. Both calculated in the case of the Nikkei index. 
 
Note: To estimate the conditional standard deviation a GARCH model has been used under 
a student-t distribution. Re-estimating the SGT distribution along the sample that goes from 
02/01/2002 to 31/10/2013 on a daily basis enabled to produce estimates of the high-order 
moment parameters. This allowed for a sample of proxy 3.000 data of the skewness and 
kurtosis (peakness and fat-tail) parameters. The exact size of these samples depends on the 
index.  
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Figure 1. Stock index returns 

This figure illustrates the daily evolution of returns of 6 indexes (the French 

CAC40, UK FTSE100, US Dow Jones Composite Average, S&P 500, the 

Japanese Nikkei and Hong Kong Hang Seng) from January 3, 2000 to 

October 31, 2013. 

Source: Yahoo Finance. 
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Figure 2. Skewness Parameters 

This figure illustrates the skewness parameters (λ) estimates obtained to fit 

the SGT distribution to the returns of 6 indexes (the French CAC40, UK 

FTSE100, US Dow Jones Composite Average, S&P 500, the Japanese 

Nikkei and Hong Kong Hang Seng). These estimates were obtained to fit an 

SGT distribution in a recursive manner rolling the sample forward one day at a 

time so as to re-estimate model parameters. 

 

Source: Yahoo Finance. 
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Figure 3. Peakness Parameter 

This figure illustrates the peakness parameters (к) estimates obtained to fit 

the SGT distribution to the returns of 6 indexes (the French CAC40, UK 

FTSE100, US Dow Jones Composite Average, S&P 500, the Japanese 

Nikkei and Hong Kong Hang Seng). These estimates were obtained to fit an 

SGT distribution in a recursive manner rolling the sample forward one day at a 

time so as to re-estimate model parameters. 

Source: Yahoo Finance. 
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Figure 4. Fat-tails Parameters 

This figure illustrates the fat-tail parameters (η) estimates obtained to fit the 

SGT distribution to the returns of 6 indexes (the French CAC40, UK 

FTSE100, US Dow Jones Composite Average, S&P 500, the Japanese 

Nikkei and Hong Kong Hang Seng). These estimations were obtained to fit a 

SGT distribution in a recursive way roller the sample forward one day at a time, 

each time re-estimating the model parameters. 

 

Source: Yahoo Finance. 
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Figures 4 

 
 Figure 5  

 
 Figure 6  
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