AN ACTUARIAL BALANCE MODEL FOR DB PAYG PENSION SYSTEMS WITH DISABILITY AND RETIREMENT CONTINGENCIES

MANUEL VENTURA-MARCO
CARLOS VIDAL-MELIÁ

FUNDACIÓN DE LAS CAJAS DE AHORROS
DOCUMENTO DE TRABAJO
Nº 677/2012
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.
An actuarial balance model for DB PAYG pension systems with disability and retirement contingencies

Manuel Ventura-Marco*
Carlos Vidal-Meliá*

ABSTRACT

In this paper we develop the theoretical basis for drawing up the “Swedish” actuarial balance of a defined benefit pay-as-you-go (DB PAYG) scheme with retirement and disability benefits. Our model enables us to obtain the system's average turnover duration, measure the scheme's solvency and explore the phenomenon identified as “pension reclassification”, an unhealthy practice that masks the system's real status and makes it very difficult to obtain accurate actuarial results by contingency. Additionally, the proposed model has practical implications which could be of interest not only to DB systems but also to notional defined contribution schemes (NDC) and policy-makers.

Keywords: Political risk, Solvency, Sweden, Transparency, United States.

JEL: H55; H83; J26; M49.

Corresponding author: Carlos Vidal-Meliá. Department of Financial Economics and Actuarial Science, University of Valencia, Avenida de los Naranjos, s.n. 46022 Valencia. (Spain). (e-mail: carlos.vidal@uv.es)

Acknowledgements: We would like to thank Ole Settergren for his helpful comments and Peter Hall for his English support. All remaining errors are our own responsibility.

*Department of Financial Economics and Actuarial Science, University of Valencia, Avenida de los Naranjos, s.n. 46022 Valencia. (Spain).
1.- Introduction.

Regularly compiling an official actuarial balance (AB) is standard practice in public Social Security Administrations (SSAs) in countries such as the USA (BOT (2010)), Japan (AAD (2009)), Sweden (Pensionsmyndigheten (2011)), Canada (OSFIC (2008)), the UK (GAD (2010)) and Finland (Elo et al (2010)). The AB is becoming an instrument essential to the efficient running of PAYG pension systems because it tends to minimize the traditional difference between the planning horizons of whichever authority is in charge of the system and the system itself. The core idea behind ABs for PAYG pension systems, in line with Barr & Diamond (2010), is that any analysis that looks only at the future liabilities of PAYG pension systems while ignoring explicit or implicit assets is misleading.

For Vidal-Meliá et al (2010), there are compelling reasons why a society should have an AB: stakeholders will have a good idea of how far promises or commitments made to them regarding their pensions are being kept; public interest in how the system is developing is strengthened, making it easier to introduce automatic balance mechanisms (ABMs)\(^1\); and it should “force” politicians to be much more careful about what they say about the system, thereby reducing populism in pensions and enabling the impact of proposed reforms to be assessed with greater reliability and, where appropriate, accepted with more widespread support.

When it comes to compiling the AB for PAYG systems, there are basically two options to choose from: what are known as the Swedish and US models.

The AB sheet for the NDC pension system\(^2\) has been compiled in Sweden\(^3\) since 2001. It can be described as a financial statement listing the pension system’s obligations to contributors and pensioners at a particular date, with the amounts of the various assets (financial and through contributions) which back up these commitments. For Settergren (2009), Swedish reporting on financial status bears greater resemblance to the standard income statement and balance sheet of an insurance company. As we will see later, this balance sheet

\(^1\) An ABM is a set of predetermined measures established by law to be applied immediately as required according to the solvency indicator. Its purpose, through successive application, is to provide what could be called “automatic financial stability”, which can be defined as “the capacity of a pension system to adapt to financial, economic and demographic turbulence without legislative intervention”. For more details, see the papers by Barr & Diamond (2011), Vidal-Meliá et al (2009), Turner (2008), Börsch-Supan (2007), Penner & Steuerle (2007) and Lindbeck (2006).

\(^2\) A notional defined contribution scheme (NDC) is a pay-as-you-go scheme that deliberately mimics a financial defined contribution (FDC) scheme by paying an income stream whose present value over the person’s expected remaining lifetime equals his or her accumulation at retirement, and in doing so has many features of an FDC scheme. See for example the papers by Lindbeck & Persson (2003), Williamson (2004), Holzmann & Palmer (2006) Vidal-Meliá et al. (2006) and Whitehouse (2010).

structure is perfectly valid for defined benefit pay-as-you-go systems (DB PAYG) in which the contribution rates for different contingencies are clearly separated.

The AB of the OASDI program\(^4\) has been compiled in US since 1941. As Goss (2010) explains, it measures the difference in present value - discounted by the projected yield on trust fund assets - between spending on pensions and income from contributions over the next 75 years as a whole, expressed as a percentage of the present value of the contribution bases for that time horizon, taking into account that the level of financial reserves (trust fund) at the end of the time horizon reaches a magnitude of one year’s expenditure.

The two models have very different characteristics and strengths. In the Swedish model the main accounting entries are developed from the principles of double-entry bookkeeping; and can briefly be summed up as showing the actuarial (im)balance in pension systems in understandable language in the shape of assets and liabilities and without needing to use explicit projections\(^5\). However, it can only be applied to the retirement contingency. The so-called US model, on the other hand, uses explicit projections to highlight future challenges to the financial side deriving basically from ageing, the expected increase in longevity and fluctuations in economic activity.

This paper will deal exclusively with the Swedish-type AB model, and especially the two concepts that make the balance possible: the system’s average turnover duration and the contribution asset. These concepts initially appear in connection with NDCs, the general outline of which can be found in papers by Settergren (2001) and (2003), while in the paper by Settergren & Mikula (2005), both concepts are modeled in continuous time, giving theoretical support. The legal definitions and specific formulas applied in the Swedish system can be found in Pensionsmyndigheten (2011), while detailed explanations regarding the evolution of the system’s solvency as determined from the balance can be found in the paper by Settergren (2012).

The search for valid expressions to apply to DB PAYG systems began with the paper by Boado-Penas et al (2008), continuing with that by Vidal-Meliá et al (2009), which in addition links it to the concept of the ABM. The paper by Vidal-Meliá & Boado-Penas (2013) obtains the analytical properties of the contribution asset and confirms its soundness as a measure of the assets of a PAYG scheme. However, all the papers cited limit themselves to the retirement

\(^4\) The Old-Age, Survivors, and Disability Insurance (OASDI) program in the United States provides a basic level of monthly income when insured workers become eligible for retirement and in cases of death or disability. The OASDI program consists of two separate parts that pay benefits to workers and their families - Old-Age and Survivors Insurance (OASI) and Disability Insurance (DI). Under OASI, monthly benefits are paid to retired workers and their families and to survivors of deceased workers, while under DI, monthly benefits are paid to disabled workers and their families. See the papers by BOT (2010), DeWitt (2010), Hoskins (2010) and Diamond & Orszag (2005).

\(^5\) See the paper by Boado-Penas & Vidal-Meliá (2012) for an in-depth study of the main differences and similarities.
contingency, which may be appropriate for defined contribution (DC) pension systems in which the contributory contingencies are clearly separated, but in DB PAYG systems there tends to be no clear separation between contingencies as far as contribution rates are concerned, and disability pensioners are often reclassified as retirement pensioners once they reach a certain age. Also, spending on disability pensions is hardly inconsiderable.

The aim of this paper is to develop a theoretical basis for applying the Swedish AB to both the retirement and disability contingencies in a DB PAYG system. As mentioned earlier, there is a large gap in the literature which this paper hopes to fill, since so far nobody has looked at the possibility of compiling this type of AB from the integrated perspective of both retirement and disability contingencies, which are closely linked and account for a very high proportion of pension spending in DB systems.

After this brief introduction, in Section 2 we develop a new expression for the system's average turnover duration in which both contingencies are included. In Section 3 the expressions obtained are applied using various reasonable assumptions to a numerical example representative of the system. The results for the system's assets and liabilities per contingency are also shown and special attention is paid to the phenomenon identified as pension reclassification. In Section 4 we list our main conclusions, and the paper ends with two appendixes in which we deduce some of the formulas used earlier.

2.- The contribution asset and the turnover duration in DB PAYG systems with two contingencies.

In this section we develop the concept of the contribution asset (CA) for a case in which the participants' lives last \((w-1-x_e)\) periods, where \((w-1)\) is the highest age to which it is possible to survive and \(x_e\) is the age of entry into the system. In this case, \(A\) generations of contributors, \((w-1-(x_e+A))\) generations of retirement pensioners and \((w-2- x_e)\) generations of disability pensioners coexist at each moment in time.

6 In Spain at 1-1-2012, spending on contributory retirement pensions accounted for 67.95% of total spending on pensions, while disability pensions accounted for 11.39%, together totaling 79.34% of contributory spending. According to information provided by BOT (2011), spending on retirement pensions in the USA accounted for 63.19% of the total, with disability pensions - which are not subject to reclassification like they are in Spain - accounting for 16.40%, together totaling 79.59%.

7 Jackson (2004) proposed a financial statement for US Social Security prepared in accordance with the principles of accrual accounting, and based on the so-called “quasi asset”, an amount equal to the present value of excess revenues to be contributed by system participants over the additional benefits that they will accrue over the balance of their working lives. Valdés-Prieto (2005) also suggests using this “quasi asset” (“hidden asset” in his terminology) as a valid asset for drawing up the AB sheet of a DB PAYG scheme.

8 We adopt the hypothesis that at the earliest age at which one can contribute, \(x_e\) years, there are no disability pensioners. However, people become disabled throughout the period and start to receive a pension one year later, i.e. at age \(x_e+1\) años.
The process for obtaining the system's turnover duration (TD)\(^9\), its CA and a description of some of its characteristic features can be separated into 5 steps for the purposes of clarity:

1.- Description of the system and determination of the year in which it reaches a steady state\(^{10}\) (the contribution rates for both contingencies remaining stable in time and the system's financial equilibrium being maintained).

2.- Obtaining the analytical expressions for the system's liabilities from the actuarial point of view, distinguishing between contributors and pensioners, retirement and disability.

3.- Obtaining the analytical expression for the system's TD in the form of pay-in and pay-out.

4.- Obtaining the expression for the system's TD as the difference in the weighted average ages of pensioners and contributors.

5.- Obtaining the system's TD and CA as weighting for the TDs and CAs for each contingency.

2.1.- Description of the system and determination of the year in which it reaches a “mature” state.

We use the case developed Vidal-Meliá & Boado-Penas (2013) in which the contribution base increases or decreases at an annual real rate of \(g\), i.e. zero inflation is assumed, but with the additional assumptions that the population increases or decreases over time at an annual accumulative rate of \(\gamma\) affecting all groups of contributors equally, which means it must be assumed that real GDP and the wage bill also increase or decrease at rate \(G = (1+g) \cdot (1+\gamma) - 1\) and that pensions in payment increase or decrease at an annual rate of \(\lambda\).

The pension system's parameters are considered to be in a steady state. The contributor collective is open, i.e. the system has guaranteed a perpetual flow of new entrants. Both the age giving entitlement to retirement pension, “\(x_e\)”, and the formula used for calculating retirement pension are constant, leading to a fixed replacement rate of size \(\cdot\). As regards disability pension, it is supposed that initially the ages that give entitlement are to be found in age interval \([x_e, x_e+A-1]\)\(^{11}\) and that for each age within that interval the calculation formula is a percentage (or adjustment factor) of the wage base. The age interval is later widened to \([x_e +1, w-1]\).

\(^9\) Lee (1994) began the formal development of the TD and described a framework to organize, summarize, and interpret data on transfer systems and the life cycle. Other pioneering papers which arrive at similar frameworks are Arthur & McNicoll (1978) and Willis (1988).

\(^{10}\) It is usual to replace the qualifying condition “steady state” with the condition “mature”.

\(^{11}\) Indeed a person of \(x_e\) years may become disabled after having paid contributions, and therefore starts to receive disability pension at age \(x_e+1\) years. Similarly, a person of \(x_e+A-1\) years may become disabled at that age after contributing and will therefore receive benefit for being disabled at age \(x_e+A\) years.
Diagram 1 shows the relationships (transitions) between the various collectives (states) that will be separated in the model:

The difference between this and the model found in Vidal-Melià & Boado-Penas (2013) is that a new state - disability - is introduced, along with the new relationships shown in the diagram by dotted lines.

The demographic-financial structure at any moment “t” from the system's inception is given by:

1.- Age:

We adopt the assumption that the contributor cannot contribute and receive pension in the same year. However, if an individual becomes disabled at contribution age $x_e + k \in [x_e, x_e+A-1]$, the corresponding disability pension payable will be $x_e + k+1 \in [x_e+1, x_e+A]$.

2.- Number of contributors by age at time t:
\[
\{ N(x_0, 0), N(x_0 + 1, 0), \ldots, N(x_0 + A - 1, 0) \} = \\
\{ N(x_0, 0)(1+\gamma), N(x_0 + 1, 0)(1+\gamma), \ldots, N(x_0 + A - 1, 0)(1+\gamma) \}
\]

where \(N(x_0 + k, 0) = N(x_0, 0) \cdot R_{x_k} \), with \(R_{x_k} \) being the stable-in-time ratio between the number of individuals of age \(x_e \) and \(x_e+k \) years, which can be increasing or decreasing and can also be expressed by means of probabilities \(R_{x_k} \). Stable ratios or probabilities include the decrements due to death and disability associated with each age, with the possibility of a return to active life not being considered (practical disability model). It is a different matter when it comes to considering decrements or new entries due to migratory movements, these being included in parameter \(\gamma \).

3.- Average wage (average contribution base) by age at time \(t \):

\[
\{ y(x_0, 0), y(x_0 + 1, 0), \ldots, y(x_0 + A - 1, 0) \} = \\
\{ y(x_0, 0)(1+\gamma), y(x_0 + 1, 0)(1+\gamma), \ldots, y(x_0 + A - 1, 0)(1+\gamma) \}
\]

4.- Number of disabled in age interval \([x_e+1, x_e+A]\) at \(t = 1 \)

\[
I(x_e+1, 1) = N(x_e, 0) \cdot i_{x_e}, \\
I(x_e+2, 1) = N(x_e+1, 0) \cdot i_{x_e+1} = N(x_e, 0) \cdot p_{x_e} \cdot i_{x_e+1}, \\
\ldots. \\
I(x_e+k, 1) = N(x_e+k-1, 0) \cdot i_{x_e+k-1} = N(x_e, 0) \cdot p_{x_e} \cdot i_{x_e+k-1}, \\
\ldots. \\
I(x_e+A, 1) = N(x_e+A-1, 0) \cdot i_{x_e+A-1} = N(x_e, 0) \cdot p_{x_e} \cdot i_{x_e+A-1}
\]

where \(i_{x_e+k-1} \) is the probability that an individual of age \(x_e+k-1 \) will suffer permanent disability without being able to return to active life, \(I(x_e+k, 1) \) is the number of people who become disabled\(^{12} \) in year \(t \) of age \(x_e+k \), and \(p_{x_e+k-1} \) is the probability of survival of a disabled person at age \(x_e+k-1 \), which may be different from that for the active population.

For \(t \geq 2 \) and age interval \([x_e+1, x_e+A]\), we need to consider two types of disabled

\(^{12} \) Become disabled as far as the system is concerned, because their disability really began in the previous period \([0, 1)\).
people: those aged $x_e + k$ years who became disabled in the current year, $I^N_{(x_e + k, 1)}$, and those
whose disability began earlier or survivors aged $x_e + k$ years who continue from previous years,
$I^S_{(x_e + k, t)}$, whose evolution will depend on survival probabilities $P^I_{x_e + k, 1}$. The structure for the
number of people who became disabled during the year in question is always given by:

$$I^N_{(x_e + 1, 1)} = N(x_e + 1, 0) \cdot (1 + \gamma)^{t-1} \cdot i_{x_e + 1} = I^N_{(x_e + 1, 1)} \cdot (1 + \gamma)^{t-1},$$

$$I^N_{(x_e + 2, t)} = N(x_e + 2, 1) \cdot i_{x_e + 1} = N(x_e + 1, 0) \cdot (1 + \gamma)^t \cdot i_{x_e + 1} = N(x_e, 0) \cdot (1 + \gamma)^{t-1} \cdot p_{x_e} \cdot i_{x_e + 1}$$

$$= I^N_{(x_e + 2, 1)} \cdot (1 + \gamma)^{t-1},$$

$$I^N_{(x_e + k, t)} = N(x_e + k - 1, 1) \cdot i_{x_e + k - 1} = N(x_e + k - 1, 1) \cdot (1 + \gamma)^{t-1} \cdot i_{x_e + k - 1} = N(x_e, 0) \cdot (1 + \gamma)^{t-1} \cdot p_{x_e} \cdot i_{x_e + k - 1}$$

$$= N(x_e, 0) \cdot (1 + \gamma)^{t-1} \cdot p_{x_e} \cdot i_{x_e + k - 1},$$

$$I^N_{(x_e + A, t)} = N(x_e + A - 1, 1) \cdot i_{x_e + A - 1} = N(x_e + A - 1, 1) \cdot (1 + \gamma)^{t-1} \cdot i_{x_e + A - 1} = N(x_e + A - 1, 0) \cdot (1 + \gamma)^{t-1} \cdot A \cdot p_{x_e} \cdot i_{x_e + A - 1}$$

$$= I^N_{(x_e + A, 1)} \cdot (1 + \gamma)^{t-1}.$$

[5.]

After $x_e + A + 1$ years all the disabled in the system are by definition considered survivor
disabled because, once the state of activity disappears, nobody can become disabled for the
purposes of the system. Therefore, and always for $t \geq 2$, as far as the continuing disabled are
concerned a distinction has to be made between two age intervals, $[x_e + 2, x_e + A]$ and from
$x_e + A + 1$ years onwards. The structure of the survivor disabled in $[x_e + 2, x_e + A]$ incorporates all
those who became disabled in successive earlier periods and have survived. In general,

$$I^S_{(x_e + k, t)} = I^N_{(x_e + k - 1, 1)} \cdot p^I_{x_e + k - 1} = (N_{(x_e + k - 1, 1)} + I^S_{(x_e + k - 1, t-1)}) \cdot p^I_{x_e + k - 1} =$$

$$I^N_{(x_e + k, 1)} \cdot (1 + \gamma)^{t-2} \cdot P^I_{x_e + k - 1} + I^N_{(x_e + k - 2, t-1)} \cdot p^I_{x_e + k - 2} \cdot P^I_{x_e + k - 1} =$$

$$I^N_{(x_e + k, 1)} \cdot (1 + \gamma)^{t-2} \cdot p^I_{x_e + k - 1} + I^N_{(x_e + k - 2, 1)} \cdot (1 + \gamma)^{t-3} \cdot p^I_{x_e + k - 2} + I^N_{(x_e + k - 3, 1)} \cdot (1 + \gamma)^{t-4} \cdot p^I_{x_e + k - 3} +$$

$$\ldots =$$

$$\sum_{s=Max(1, k-t+1)}^{k-1} (1 + \gamma)^{t-1-k+s} \cdot p^I_{x_e + s}$$

[6.]

The total number of disabled for each age in t can be calculated by:

13 In $k = 1$ the disabled are always newly disabled as they come from age x_e in $t-1$, and therefore $I(x_e + 1, t) = I^I(x_e + 1, 1)$.
This type of structure is maintained until all the disabled people who began in \(t = 1 \) have disappeared, which means that \(t = w-x_e \), and therefore from here onwards in all this disability band we get \(k < t \), and so \(\max \{1, k-t+1\} = 1 \).

From \(x_e+A+1 \) years onwards no more new disabled people are taken into account, and so for age interval \([x_e+A+1, w-1]\), i.e. \(k \in \{1, w-1-(x_e+A)\} \), we get:

\[
I_{(x_e+A+k, t)} = I_{(x_e+A, t-k)} \cdot k \cdot \sum_{s=\max\{t-A+1, 1\}}^{A} I_{(x_e+S, 1)} \cdot (1+\gamma)^{t-k+s} \cdot p^I_{x_e+S} \quad [8.]
\]

The demographic framework above implies that the age-wage structure only undergoes proportional changes. The slope of the age-wage structure is constant.

The annual retirement pension is \(P^R_{(x_e+A, t)} = \beta \cdot Y_{C, 0} \), which is a set percentage, \(\beta \), of the average contribution bases taking into account all the years (A) contributed, and pensions in payment are indexed at an annual rate of \(\lambda \). It will also be assumed that contributions and benefits are payable in advance.

If \(\forall k \in [1, A] \) the initial annual disability pension (in \(t=1 \)) is \(P^I_{(x_e+k, 1)} \), the pension amounts for the newly disabled in \(t \geq 2 \) and \(\forall k \in [1, A] \) are calculated according to the following formula:

\[
P^I_{(x_e+k, t)} = P^I_{(x_e+k, 1)} \cdot (1+g)^{t-1} = b^I_k \cdot y_{(x_e+k, 1)} \cdot (1+g)^{t-1} \quad [9.]
\]

because \(P^I_{(x_e+k, 1)} \) is considered to be a variable percentage, \(b^I_k \), of the contribution base of all the wages that contributions had been paid on, \(k \) years, at the age of becoming disabled.

\[
y_{(x_e+k, 1)} = \frac{\sum_{h=0}^{k-1} y_{(x_e+h, t-k+h+1)}}{k} \text{, therefore: } P^I_{(x_e+k, 1)} = b^I_k \cdot y_{(x_e+k, 1)}
\]

The amounts of the disability pensions for survivors from previous periods, \(P^S_{(x_e+k, t+x_e+s)} \), also in \(t \geq 2 \), \(\forall k \in [1, A] \) and being \(x_e+s \), with \(s \in [\max\{1, k-t+1\}, \cdots, k-1\} \), the age at which the disability first began, would be obtained in accordance with this formula:
\[P^S_{(x_k, t, x_s + s)} = P^I_{(x_k, t, x_s + 1)} \cdot (1 + g)^{t-k-1+s} \cdot (1 + \lambda)^{-s} = b_s \cdot y_{(x_k, t, x_s + 1)} \cdot (1 + g)^{t-k-1+s} \cdot (1 + \lambda)^{-s} \] \[10.\]

It can in fact be seen that for each period \(t \) and for each age \(k \) there is a vector \(1 \times (k-s) \) of old pension amounts, i.e. of as many components as the difference between the age used for calculating the benefit, \(k \), and the age at which it first came into payment, \(s \).

The disability pensions for ages \([x_a+1, w-1-x_a-A) \) are all for survivors as no newly disabled are considered, but by following them back to age \(x_a+1 \) they may come from newly disabled at that age or from survivor disabled from previous ages (a vector of \(1 \times 2 \)), in such a way that:

\[P^I_{(x_a+A, t+k)} = (P^I_{(x_a+A, t-k)}, P^S_{(x_a+A, t-k)}) \cdot (1 + \lambda)^k \] \[11.\]

but because, following \[10.\], \(P^S_{(x_a+A, t-k)} \) is going to depend on the age at which the disability originally began, then we get \(s \in \{ \text{Max}^A, 1 \leq A + 1 - t + k \leq \cdots, A-1 \} \), and once we consider \(P^I_{(x_a+A, t-k)} \), the final formula for \(s \in \{ \text{Max}^A, 1 \leq A + 1 - t + k \leq \cdots, A \} \) will be:

\[P^I_{(x_a+A+k, t, x_s + s)} = P^I_{(x_a+A, t)} \cdot (1 + g)^{t-k-A-1+s} \cdot (1 + \lambda)^{A+k-s} = b_s \cdot y_{(x_k, t, x_s + 1)} \cdot (1 + g)^{t-k-A-1+s} \cdot (1 + \lambda)^{A+k-s} \] \[12.\]

and like what we said for equation \[11.\], \(P^I_{(x_a+A+k, t, x_s + s)} \) is also a row vector, in this case of \(1 \times (A-1-s) \) with \(s \in \{ \text{Max}^A, 1 \leq A + 1 - t + k \leq A \} \).

In this scenario, the stability of the total contribution rate \((\theta^I + \theta^R)\) that ensures equality between contribution revenue and pension expenditure depends on the stability of the dependency ratios of both contingencies. For the retirement contingency, the contribution rate from year “\(w-x_a-A \)”, counting from the system’s inception, can be considered constant from the actuarial point of view because from that moment the dependency ratio (dr) stabilizes.
The same moment "w-x-e-A" can be considered for disability pensioners from retirement age onwards, but for continuing disability pensioners these pensions end up being dependent on pensions from before retirement age, and so in fact the ratio between contributors and disability pensioners does not stabilize until "w-x-e-1". Given that it is clear that w-x-e-1 > w-x-e-A and it is assumed that t >= w-x-e-1, the contributor/pensioner ratio must be stable because all three collectives evolve (growing or shrinking) at a rate exactly the same as γ.

From that year onwards the system is “mature” and, as can be seen in Appendix 1, the expressions for the contribution rates for both contingencies (retirement/R and disability/D), which can be separated, are:

\[
ds_t = \frac{\sum_{k=1}^{A} d_{x+k, t} I + \sum_{k=1}^{A} d_{x+k, A} \cdot (1+y)^{1-k} \cdot \sum_{k=0}^{A-1} N(x+k, 1)}{\sum_{k=0}^{A-1} N(x+k, 1)}
\]

\[
\sum_{k=0}^{A-1} N(x+k, 1) \cdot (1+y)^{k} \cdot \sum_{k=0}^{A-1} N(x+k, 1) = dr_t = \ldots = dr = \frac{D+R}{C} = \frac{D}{C} + \frac{R}{C} = dr_D + dr_R
\]

[14.]

Expenditure on retirement benefits

\[
\theta^R_t = \frac{\beta \cdot Y_{C,0} \cdot \sum_{k=0}^{w-x-e-1} N(x+k, 1) \cdot (1+G)^{k} \cdot (1+\lambda)^{k}}{(1+G) \cdot \sum_{k=0}^{A-1} N(x+k, 1) \cdot N(x+k, 1)} = \phi_{x+k, 1} \cdot \sum_{k=0}^{A-1} N(x+k, 1) \cdot \sum_{k=0}^{A-1} N(x+k, 1)
\]

with $Y_{C,0} = \frac{1}{A}$, the average contribution base taking into account all the years (A) contributed, and consequently $\beta Y_{C,0} = \phi_{x+k, 1}$, and also in the case of disability:
\[P_{(k_{c}+A,1)} = P_{(k_{c}+A,1)} \cdot (1+g)^{-1} = \beta \cdot Y_{c,0} \cdot (1+g)^{-1}; \]

while the contribution rate for the disability contingency is:

\[\theta_{D}^t = \nabla \begin{array}{c} \sum_{k=1}^{A} \sum_{s=1}^{k} P_{(x_{s}+s,1)} \cdot l_{(x_{s}+s,1)} \cdot \left[1 + \frac{\lambda}{1+G} \right]^{k-s} \cdot k_{s} \cdot P_{x_{s}+s} + \sum_{k=1}^{A} \sum_{s=1}^{k} P_{(x_{s}+s,1)} \cdot l_{(x_{s}+s,1)} \cdot \left[1 + \frac{\lambda}{1+G} \right]^{k-s} \cdot A_{k-s} \cdot P_{x_{s}+s} \\ \sum_{k=1}^{A} \sum_{s=1}^{k} (1+\gamma)^{k-s} \cdot k_{s} \cdot P_{x_{s}+s} + \sum_{k=1}^{A} \sum_{s=1}^{k} (1+\gamma)^{k-s} \cdot A_{k-s} \cdot P_{x_{s}+s} \end{array} \]

Aggregation contribution base

\[\ldots = \theta_{D}^t \]

If the system's average disability pension is considered to be:

\[P_{i}^{D} = \nabla \begin{array}{c} \left(1+g \right)^{-t} \cdot \left(\sum_{k=1}^{A} \sum_{s=1}^{k} P_{(x_{s}+s,1)} \cdot l_{(x_{s}+s,1)} \cdot \left[1 + \frac{\lambda}{1+G} \right]^{k-s} \cdot k_{s} \cdot P_{x_{s}+s} + \sum_{k=1}^{A} \sum_{s=1}^{k} P_{(x_{s}+s,1)} \cdot l_{(x_{s}+s,1)} \cdot \left[1 + \frac{\lambda}{1+G} \right]^{k-s} \cdot A_{k-s} \cdot P_{x_{s}+s} \\ \sum_{k=1}^{A} \sum_{s=1}^{k} (1+\gamma)^{k-s} \cdot k_{s} \cdot P_{x_{s}+s} + \sum_{k=1}^{A} \sum_{s=1}^{k} (1+\gamma)^{k-s} \cdot A_{k-s} \cdot P_{x_{s}+s} \end{array} \]

Disability pensions

\[+ \]

\[\left(1+g \right)^{-t} \cdot \left(\sum_{k=1}^{A} \sum_{s=1}^{k} P_{(x_{s}+s,1)} \cdot l_{(x_{s}+s,1)} \cdot \left[1 + \frac{\lambda}{1+G} \right]^{k-s} \cdot k_{s} \cdot P_{x_{s}+s} + \sum_{k=1}^{A} \sum_{s=1}^{k} P_{(x_{s}+s,1)} \cdot l_{(x_{s}+s,1)} \cdot \left[1 + \frac{\lambda}{1+G} \right]^{k-s} \cdot A_{k-s} \cdot P_{x_{s}+s} \\ \sum_{k=1}^{A} \sum_{s=1}^{k} (1+\gamma)^{k-s} \cdot k_{s} \cdot P_{x_{s}+s} + \sum_{k=1}^{A} \sum_{s=1}^{k} (1+\gamma)^{k-s} \cdot A_{k-s} \cdot P_{x_{s}+s} \end{array} \]

Disability pensions

then the system's average retirement pension, taking into account [15.], can be expressed as:

\[P_{i}^{R} = \frac{\beta \cdot Y_{c,0} \cdot \sum_{k=0}^{w-x_{0}} N_{(x_{0}+A+k,1)} \cdot (1+g)^{-k} \cdot (1+\gamma)^{k-s} \cdot (1+\lambda)^{s}} {\sum_{k=0}^{w-x_{0}} N_{(x_{0}+A+k,1)} \cdot (1+\gamma)^{-k}} = \frac{\sum_{k=0}^{w-x_{0}} N_{(x_{0}+A+k,1)} \cdot (1+\lambda)^{s}} {\sum_{k=0}^{w-x_{0}} N_{(x_{0}+A+k,1)} \cdot (1+\gamma)^{-k}} \]

[18.]
with the average contribution base being:

\[
W_t = \frac{\sum_{k=0}^{A-1} y(x_{k+1}) \cdot N(x_{k+1})}{\sum_{k=0}^{A-1} N(x_{k+1})} = \frac{(1+g)^{-1} \cdot \sum_{k=0}^{A-1} y(x_{k+1}) \cdot N(x_{k+1})}{(1+\gamma)^{-1} \cdot \sum_{k=0}^{A-1} N(x_{k+1})}
\]

In the steady state reached, the average pension-average contribution base quotient is already constant for both contingencies due to the fact that the numerator and denominator evolve at the rate of variation in wages:

\[
\frac{P_t^D}{W_t} = \frac{P_{t+1}^D}{W_{t+1}} = \ldots = \frac{P^D}{W} = fr^D, \quad \frac{P_t^R}{W_t} = \frac{P_{t+1}^R}{W_{t+1}} = \ldots = \frac{P^R}{W} = fr^R \quad [20.]
\]

Therefore the contribution rate that ensures equality between revenue and expenditure is the product of the demographic dependency ratio and the financial ratio:

\[
\{\theta^D, \theta^R\} = \{fr^D \cdot dr^D, fr^R \cdot dr^R\} = \left\{\frac{P^D}{W} \cdot \frac{D}{C}, \frac{P^R}{W} \cdot \frac{R}{C}\right\} \quad [21.]
\]

2.2.- Obtaining the analytical expressions for the system's liabilities from the actuarial point of view.

Once the contribution rate has been determined for both contingencies, the time comes to look at how to calculate the system's permanent liabilities with both contributors and pensioners so as to be able to continue the process of obtaining the system's average turnover duration and contribution asset.

The system's liabilities, \(V^T\), have two components: (i) liabilities to current pensioners, \(V^r\), and (ii) liabilities to current contributors, \(V^c\). A distinction has to be made between the liabilities for both contingencies.

If we take into account formula [17.] and carry out some algebraic operations, the first component for the disability contingency is:
\[
I^r \mathbf{V}_t = \sum_{k=1}^{A} \left(\sum_{s=1}^{w-x_k-1} P_{(x_k+s,1)} \cdot l_{(x_k+s,1)} \cdot \left[\frac{1+\lambda}{1+G} \right]^{k-s} \cdot k \cdot p_{x_k+s} \right) \cdot \hat{a}^\lambda_{x_k+k} \\
+ \sum_{k=1}^{w-x_k-A-1} \left(\sum_{s=1}^{A} P_{(x_k+s,1)} \cdot l_{(x_k+s,1)} \cdot \left[\frac{1+\lambda}{1+G} \right]^{A+k-s} \cdot A+k \cdot p_{x_k+s} \right) \cdot \hat{a}^\lambda_{x_k+A+k}
\]

[22.]

with \(\hat{a}^\lambda_{x_k+k} \) and \(\hat{a}^\lambda_{x_k+A+k} \) respectively being the present value of a lifetime annuity for the disabled of 1 monetary unit per year payable in advance and growing at real rate \(\lambda \), valued at age “\(x_k+k \)” years and age “\(x_k+A+k \)” years, with a technical interest rate equal to d=G.

For the retirement contingency, the first component is equal to:

\[
R^c \mathbf{V}_t = P_{(x_k+A,1)} \cdot \sum_{k=0}^{w-x_k-A-1} N_{(x_k+A+k,1)} \cdot \hat{a}^\lambda_{x_k+A+k} \cdot \left[\frac{1+\lambda}{1+G} \right]^k
\]

[23.]

with \(\hat{a}^\lambda_{x_k+A+k} \) being the present value of a lifetime annuity of 1 monetary unit per year payable in advance and growing at real rate \(\lambda \), valued at age “\(x_k+A+k \)” years, with a technical interest rate equal to d=G.

The second component is the liability to current contributors, whose payments have not yet begun but to whom a commitment has been made by virtue of the contributions already paid. As can be seen in Appendix 2, this second component of disability contingency liabilities is calculated using the prospective method and will be the difference between the (actuarial) present value of future pensions and the (actuarial) present value of future contributions:

\[
D^c \mathbf{V}_t = \sum_{k=1}^{A} \sum_{h=1}^{\hat{A}} P_{(x_k+h,1)} \cdot l_{(x_k+h,1)} \cdot \hat{a}^\lambda_{x_k+h} \cdot \left[\frac{(1+G)}{(1+d)} \right]^h - \theta \left(\sum_{k=0}^{A-1} \sum_{h=0}^{k} N_{(x_k+k,1)} \cdot y_{(x_k+k,1)} \cdot \left[\frac{(1+G)}{(1+d)} \right]^h \right)
\]

[24.]

For the retirement contingency, according to Vidal-Meliá & Boado-Penas (2013), the liability to current contributors is equal to:

\[
R^c \mathbf{V}_t = P_{(x_k+A,1)} \cdot N_{(x_k+A,1)} \cdot \hat{a}^\lambda_{x_k+A} \cdot \sum_{h=1}^{\hat{A}} \left[\frac{(1+G)}{(1+d)} \right]^h - \theta \left(\sum_{k=0}^{A-1} \sum_{h=0}^{k} N_{(x_k+k,1)} \cdot y_{(x_k+k,1)} \cdot \left[\frac{(1+G)}{(1+d)} \right]^h \right)
\]

[25.]
2.3.-Obtaining the analytical expression for the system’s TD in the form of pay-out and pay-in.

To obtain the TD in a financially sustainable PAYG system that includes both contingencies, like in the process described by Settergren & Mikula (2005) and Boado-Penas et al (2008) which only considered the retirement contingency, the total liabilities are divided by the annual contribution flow. Also, in line with Samuelson (1958), Aaron (1966) and Gronchi & Nisticò (2008), the interest rate for discounting future pensions and contributions is taken to be the internal rate of return (IRR), i.e. the wage bill. Therefore, for the disability contingency, the TD^D_t is:

$$TD^D_t = \frac{D_{V^T_i}}{C^T_i} = \frac{1}{\theta^D} \left(\sum_{h=1}^{A} \sum_{h=1}^{k} P^l(x_{h}, 1) \cdot [1 + \lambda/1 + G]^{k-h} \cdot \lambda_{h-k}^l \cdot \gamma(x_{h} + k) \right)$$

$$+ \frac{1}{\theta^D} \left(\sum_{k=0}^{A-1} \sum_{h=1}^{A} P^l(x_{h}, 1) \cdot \lambda_{h-k}^l \cdot \gamma(x_{h} + k) \right)$$

$$+ \frac{1}{\theta^D} \left(\sum_{k=0}^{A-1} \sum_{h=1}^{A} P^l(x_{h}, 1) \cdot \lambda_{h-k}^l \cdot \gamma(x_{h} + k) \right)$$

$$+ \frac{1}{\theta^D} \left(\sum_{k=0}^{A-1} \sum_{h=1}^{A} P^l(x_{h}, 1) \cdot \lambda_{h-k}^l \cdot \gamma(x_{h} + k) \right)$$

[26.]

By substituting [16.] into [26.], the TD^D_t can be expressed as:
If we assume that \((1 + g) \cdot (1 + y) - 1 = d = G\), the numerator of the third term of [27.], after some transformations, is equal to:

\[
\sum_{k=1}^{\Lambda} \sum_{h=1}^{A-k} N_{(x+h,k)} \cdot \left(\sum_{l=h}^{\Lambda} \left[1 + \frac{G}{1+d} \right]^l \right) = \sum_{k=1}^{\Lambda} \sum_{h=1}^{A-k} N_{(x+h,k)} \cdot 1 \left[1 + \frac{G}{1+d} \right]^h
\]

and if we consider that the numerator of the first 3 terms of expression [27.], the present value of disability benefits awarded in year \(t\), is equivalent to the year's disability contributions, i.e. expenditure on disability pensions in year \(t\):

\[\text{If we assume that } (1 + g) \cdot (1 + y) - 1 = d = G , \text{ the numerator of the third term of [27.], after some transformations, is equal to:}\]

\[\sum_{k=1}^{\Lambda} \sum_{h=1}^{A-k} N_{(x+h,k)} \cdot \left(\sum_{l=h}^{\Lambda} \left[1 + \frac{G}{1+d} \right]^l \right) = \sum_{k=1}^{\Lambda} \sum_{h=1}^{A-k} N_{(x+h,k)} \cdot 1 \left[1 + \frac{G}{1+d} \right]^h\]
\[
\sum_{k=1}^{A} \left(\sum_{h=1}^{k} P_{(x_{h+1}, h+1)} \cdot I_{(x_{h+1}, h+1)} \left[\frac{(1+\lambda)}{(1+G)} \right]^{h+k} \right) + \sum_{k=1}^{A} \left(\sum_{h=1}^{k} P_{(x_{h+1}, h+1)} \cdot I_{(x_{h+1}, h+1)} \left[\frac{(1+\lambda)}{(1+G)} \right]^{h+k} \right)
\]

\[
= \sum_{k=1}^{A} \frac{\sum_{h=1}^{N} I_{(x_{h+1}, k+1)} \cdot I_{(x_{h+1}, k)} \cdot a_{x_{h+k+1}}^{h}}{\sum_{h=1}^{N} I_{(x_{h+1}, k+1)} \cdot I_{(x_{h+1}, k)} \cdot a_{x_{h+k+1}}^{h}}
\]

\[\text{[29.]}\]

then, after algebraically manipulating the numerator of the fourth term of formula [27.], TD_{i}^{D} works out as:

\[
TD_{i}^{D} =
\]

\[
\frac{\sum_{k=1}^{A} I_{x_{h+k}} \cdot \sum_{h=1}^{N} P_{(x_{h+1}, h+1)} \cdot I_{(x_{h+1}, h+1)} \left[\frac{(1+\lambda)}{(1+G)} \right]^{h+k}}{\sum_{h=1}^{N} P_{(x_{h+1}, h+1)} \cdot I_{(x_{h+1}, h+1)} \left[\frac{(1+\lambda)}{(1+G)} \right]^{h+k}}
\]

\[
\text{Pay out duration } = pt_{i}^{D}
\]

\[
\frac{\sum_{k=1}^{A} I_{x_{h+k}} \cdot \sum_{h=1}^{N} P_{(x_{h+1}, h+1)} \cdot I_{(x_{h+1}, h+1)} \left[\frac{(1+\lambda)}{(1+G)} \right]^{h+k}}{\sum_{h=1}^{N} P_{(x_{h+1}, h+1)} \cdot I_{(x_{h+1}, h+1)} \left[\frac{(1+\lambda)}{(1+G)} \right]^{h+k}}
\]

\[
\text{Pay in duration } = pt_{i}^{D}
\]

\[\text{[30.]}\]

The third addend of the expression is a weighted average of years contributed until entry into the state of disability starting at age \(x_{a} + 1 \) for current contributors, \(k_{i}^{c} \in [1, A] \), and also, as happened in the case of retirement, the average TD is clearly disaggregated into two sub-periods termed pay-in, \(pt_{i}^{c} \), and pay-out, \(pt_{i}^{c} \), which correspond to the time that one monetary unit contributed to the disability contingency forms part of the liabilities to contributors and pensioners respectively. It needs to be pointed out that the pay-out could in turn be broken
down into sub-periods, one part deriving from the disability age band in which there are contributors, \(p_{t_1} \), and the other part deriving from the disability age band in which there are retirement pensioners, \(p_{t_2} \).

According to Vidal-Meliá & Boado-Penas (2013), the \(\text{TD}_{t}^R \) for the retirement contingency is:

\[
\text{TD}_{t}^R = \frac{\sum_{k=0}^{w-x_A} N_{(x_A+k,1)} \cdot a_{x_A+k}^h}{\sum_{k=0}^{w-x_A} N_{(x_A+k,1)} \cdot \left[\frac{1+\lambda}{1+G} \right]^k} \cdot \frac{A}{1+G} + \frac{\sum_{h=1}^{A} N_{(x_A+h,1)} \cdot a_{x_A+h}^k \cdot (1+G)^{h}}{\sum_{k=0}^{w-x_A} N_{(x_A+k,1)} \cdot \left[\frac{1+\lambda}{1+G} \right]^k} \cdot \frac{A}{1+G}
\]

[31.]

After some algebraic manipulations and taking into account that the second term of [31.] is equal to \(A \), the generations of contributors coexisting at each moment in time, the formula can be expressed as:

\[
\text{TD}_{t}^R = \frac{\sum_{k=0}^{w-x_A} N_{(x_A+k,1)} \cdot a_{x_A+k}^h}{\sum_{k=0}^{w-x_A} N_{(x_A+k,1)} \cdot \left[\frac{1+\lambda}{1+G} \right]^k} \cdot \frac{A}{1+G} + \frac{\sum_{k=0}^{w-x_A} N_{(x_A+k,1)} \cdot a_{x_A+k}^h \cdot (1+G)^{k}}{\sum_{k=0}^{w-x_A} N_{(x_A+k,1)} \cdot \left[\frac{1+\lambda}{1+G} \right]^k} \cdot \frac{A}{1+G}
\]

[32.]

2.4.-Obtaining the expression for the TD as the difference in the weighted average ages of the pensioners and contributors.

The expressions obtained so far are the basis for determining the TD according to the ages of the contributor and pensioner collectives, and this will make it possible to calculate representative values for the items forming part of the system’s contribution asset, and, by comparing them with the liabilities, obtain solvency indicators.
The weighted average age at which contributions cease to be made to the disability contingency, x_D^I, would be\(^{15}\):

$$x_D^I = x_e - 1 + R_D^I = \frac{\sum_{k=1}^{\lambda} \sum_{k=1}^{1} \sum_{k=1}^{A} P_{(x_e+k,1)} \cdot I_{(x_e+k,1)} \cdot A_{x_e+k} \cdot (x_e+k-1)}{\sum_{k=1}^{\lambda} \sum_{k=1}^{1} \sum_{k=1}^{A} P_{(x_e+k,1)} \cdot I_{(x_e+k,1)} \cdot A_{x_e+k}} \quad [33.]}$$

It is important to bear in mind that for the retirement contingency in this model, determining the average age of entry into retirement needs no further calculation because it is assumed that there is just a single retirement age, $x_e + A$, and contributions for this contingency cease one year earlier. However, formula [33.] is similar if not identical in structure to the formula used by the Swedish authorities for the NDC system which only includes the retirement contingency\(^{16}\).

If we take the expression for the TD D_1 determined by formula [30.] and add to it and subtract from it the weighted average age at which disability contingency contributions cease, x_D^I, the TD can be expressed as the difference between the weighted average age of the disability pensioners, A_D^R, and the weighted average age of the contributors, $A_c^R = A_c^D$:

\(^{15}\) The weighted average age for receiving the first disability benefit would be one year later given the hypotheses we considered regarding prepayment of contributions and pensions.

\(^{16}\) See Pensionsmyndigheten (2011), Appendix B. Mathematical Description of the Balance Ratio, formula 2.0.
Note that, unlike what happens in the retirement contingency, the pay-in can have a negative value in the disability contingency if the weighted average age at which contributions to the disability contingency cease is lower than the weighted average age of the contributors. In fact it is difficult for this situation to come about, but it could happen if the probabilities of becoming disabled were decreasing with the age of the contributors and the system’s structure had a great many more younger contributors than older ones.

If the first term (the weighted average age at which contributions to the disability contingency cease) is added to the second and third addends (pay-out) and it is considered that total spending on disability pensions for beneficiaries aged \(x_e+k\) years and \(x_e+A+k\) years respectively can be expressed by:

\[
\begin{align*}
\text{TD}_i^D & = x_e + K_i^D - 1 + \frac{\sum_{k=1}^{A-1} a_{x_k+1}^k \left[\sum_{h=1}^{N} P_{(x_h+1)}^{(x_k+1)} \cdot i_{(x_h+1)} \cdot \left[\frac{(1+\lambda)}{(1+G)} \right]^{k-h} \cdot p_{x_h}^i \right]}{\sum_{k=1}^{A-1} \sum_{h=1}^{N} P_{(x_h+1)}^{(x_k+1)} \cdot i_{(x_h+1)} \cdot a_{x_k+1}^k}
\end{align*}
\]

\[
\begin{align*}
& + \frac{\sum_{k=1}^{A-1} a_{x_k+1}^k \cdot \left[\sum_{h=1}^{N} P_{(x_h+1)}^{(x_k+1)} \cdot i_{(x_h+1)} \cdot \left[\frac{(1+\lambda)}{(1+G)} \right]^{A-k-h} \cdot p_{x_h}^i \right]}{\sum_{k=1}^{A-1} \sum_{h=1}^{N} P_{(x_h+1)}^{(x_k+1)} \cdot i_{(x_h+1)} \cdot a_{x_k+1}^k}
\end{align*}
\]

\[
\begin{align*}
& \times \frac{\sum_{k=1}^{A-1} N_{(x_k+1)} \cdot Y_{(x_k+1)} \cdot (k+1)}{\sum_{k=1}^{A-1} N_{(x_k+1)} \cdot Y_{(x_k+1)}}
\end{align*}
\]

[34.]

then after a few (tedious) algebraic manipulations we get:
Once it has been developed as necessary, the numerator of the first addend (1) of expression [37.] can be expressed as:

\[
\sum_{k=1}^{A} (a_{x+k}^1 + x_e + \lambda_i^{k-1}) \cdot (P^1_{x_k+1}) = \sum_{k=1}^{A} P^1_{x_k+1} \cdot (x_e + \lambda_i^k + k-1) + A \cdot \left(\sum_{k=1}^{w-x+k-1} P^1_{x_k+1} \right)
\]

Continuing along similar lines with the numerator of the second summand (2) of expression [37.], we get:

\[
\sum_{k=1}^{w-x+k-1} (a_{x+k}^1 + x_e + \lambda_i^1) \cdot (P^1_{x_k+1}) = \sum_{k=1}^{w-x+k-1} P^1_{x_k+1} \cdot (x_e + \lambda_i^k + k-1)
\]

If the results of [38.] and [39.] are added we get:

\[
\sum_{k=1}^{A} (a_{x+k}^1 + x_e + \lambda_i^{k-1}) \cdot (P^1_{x_k+1}) + \sum_{k=1}^{w-x+k-1} (a_{x+k}^1 + x_e + \lambda_i^1) \cdot (P^1_{x_k+1}) = \sum_{k=1}^{w-x+k-1} P^1_{x_k+1} \cdot (x_e + \lambda_i^k + k-1) + \sum_{k=1}^{w-x+k-1} P^1_{x_k+1} \cdot (x_e + \lambda_i^k + A + k-1)
\]

\[
\sum_{k=1}^{A} P^1_{x_k+1} \cdot (x_e + \lambda_i^k + k-1) = \sum_{k=1}^{w-x+k-1} P^1_{x_k+1} \cdot (x_e + \lambda_i^k + A + k-1)
\]

\[
\sum_{k=1}^{w-x+k-1} (x_e + \lambda_i^k + A + k-1) = \left(\sum_{k=1}^{w-x+k-1} P^1_{x_k+1} \right) \cdot \left(\sum_{h=1}^{k} P^1_{x_k+h-1} \cdot \frac{1+A}{1+G} \cdot \frac{A+k}{A+k+1} \cdot \frac{1+G}{1+G} \right)
\]

\[
\sum_{k=1}^{w-x+k-1} (x_e + \lambda_i^k + A + k-1) = \left(\sum_{k=1}^{w-x+k-1} P^1_{x_k+1} \right) \cdot \left(\sum_{h=1}^{k} P^1_{x_k+h-1} \cdot \frac{1+A}{1+G} \cdot \frac{A+k}{A+k+1} \cdot \frac{1+G}{1+G} \right)
\]
If the values for (1) and (2) in [40.] are substituted in [37.], the expression for the TD for disability can be formulated according to the difference between the average ages of those receiving disability benefits, by aggregating the first two addends, and the average age of the contributors:

$$TD^D = A^D - A^c =$$

$$\frac{\sum_{k=1}^{A} \left(x_e + R^k_e - I + k \right) \left(\sum_{h=1}^{k} P_{(k_e+h),1} \cdot l_{(x_e+h),1} \cdot \left[\frac{(1+\lambda)}{(1+G)} \right]^{k-h} P_{x_e+h}^j \right) + \sum_{k=1}^{w-x_e-A-1} \left(x_e + R^k_e - I + A + k \right) \left(\sum_{h=1}^{A} P_{(k_e+h),1} \cdot l_{(x_e+h),1} \cdot \left[\frac{(1+\lambda)}{(1+G)} \right]^{A+k-h} P_{x_e+h}^j \right)}{\sum_{k=1}^{A-1} P_{(x_e+k),1} \cdot l_{(x_e+k),1} \cdot a^\lambda_{x_e+k}^{1} a^\lambda_{x_e+k}}$$

$$= A^D$$

$$= A^c$$

The alternative formula is:

$$TD^D =$$

$$\frac{\sum_{k=1}^{A} k \cdot \left(\sum_{h=1}^{k} P_{(k_e+h),1} \cdot l_{(x_e+h),1} \cdot \left[\frac{(1+\lambda)}{(1+G)} \right]^{k-h} P_{x_e+h}^j \right) + \sum_{k=1}^{w-x_e-A-1} (A+k) \cdot \left(\sum_{h=1}^{A} P_{(k_e+h),1} \cdot l_{(x_e+h),1} \cdot \left[\frac{(1+\lambda)}{(1+G)} \right]^{A+k-h} P_{x_e+h}^j \right)}{\sum_{k=1}^{A-1} P_{(x_e+k),1} \cdot l_{(x_e+k),1} \cdot a^\lambda_{x_e+k}^{1} a^\lambda_{x_e+k}}$$

$$= A^D$$

$$= A^c$$
The second addend of A^R_i in [42.] is just a weighted average of the years that the disabled people in the age bands $[x_e+1, \ x_e+1]$ and $[x_e+A+1, \ w-1]$ have been receiving disability benefits.

Vidal-Meliá & Boado-Penas (2013) obtained the equivalent expressions to [41.] and [42.] for the retirement contingency:

\[
TD^R_i = \frac{(x_e + A - 1) + pt^R_i}{\text{weighted average age for the retirement pensioners}} - \frac{(x_e + A - 1 - pt^R_i)}{\text{weighted average age for the retirement contributors}}
\]

\[
(x_e + A - 1) + \frac{\sum_{k=0}^{w-x_e-A} N_{(x_e+A-k,1)} \cdot x_k \cdot \frac{1+\lambda}{1+G}^k}{\text{weighted average age for the retirement pensioners}} - \frac{\sum_{k=0}^{w-x_e-A} N_{(x_e+A-k,1)} \cdot (x_e + k) \cdot \frac{1+\lambda}{1+G}^k}{\text{weighted average age for the retirement contributors}} = A^R_i - A^c_i
\]

2.5.- Obtaining the system’s TD and CA as weighting for the TDs and CAs for each contingency. Compiling the AB.

Once the TD for each contingency has been determined, it is time to formulate the TD for the system, TD^S_i, which derives from the weighting of the various contingencies the system contains. The starting point for obtaining the expression is the value of the system’s commitments with contributors and pensioners for the two contingencies:
If we develop the second term of the previous expression, the pay-in for the whole system, \(p_t^S \), we get:

\[
\begin{align*}
\frac{\theta^D}{\theta^D + \theta^R} \cdot \frac{(1 + G)^{t-1} \sum_{k=0}^{A-1} y_{(x_k+k,1)} \cdot N_{(x_k+k,1)}}{\sum_{k=1}^{A} \sum_{h=0}^{k-1} P_{(x_h+h,1)} \cdot N_{(x_h+k,1)} \cdot \frac{1 + G}{1 + d}} \quad (= 1)

\end{align*}
\]

In this expression we can simplify the last two terms that appear, first the system's total future pensions (minuend 1) by substituting \(\theta^D, \theta^R \) by their values in [13] and [16], and also, given that expressions [28] and [29]

\[
P_{(x_h+h,1)} \cdot N_{(x_h+k,1)} \cdot a_{x_h+h}^A \cdot A
\]

can be substituted in the numerator, and given that [29] and
can be substituted in the denominator, the minuend of expression [45.] turns out to be a weighted average of \(\kappa_{\mathrm{D}} \) and of \(\lambda \), with the weightings being the respective present actuarial values of the pensions in payment for each contingency, which is equivalent to pension spending for each contingency. In other words, it is a weighted average of the number of years until entry into the pensioner state beginning from age \(x_e + 1 \) for current contributors, \(\kappa_{\mathrm{S}} \in [1, \Lambda] \):

\[
p_t^\mathrm{S} = \sum_{k=1}^{\Lambda} \left(\frac{P_{(x_e + \Lambda, 1)} \cdot N_{(x_e + \Lambda, 1)} \cdot \mu^{k \Lambda}}{1 + G} \right) \cdot \alpha_{x_e + k}^\Lambda \\
= \sum_{k=1}^{\Lambda} \left(\frac{P_{(x_e + \Lambda, 1)} \cdot N_{(x_e + \Lambda, 1)} \cdot \mu^{k \Lambda}}{1 + G} \right) \cdot \alpha_{x_e + k}^\Lambda
\]

The weighted average age at which contributions cease to be paid for both of the system's contingencies, \(\chi_{\mathrm{S}}^\Lambda \), is a weighted average of \(\chi_{\mathrm{D}}^\Lambda \), the weighted average age at which contributions cease to be paid for the disability contingency, and of “\(x_e + \Lambda - 1 \)” years, the weighted average age at which contributions cease to be paid for the retirement contingency, for the spending on pensions for each contingency. Its expression is:

\[
\chi_{\mathrm{S}}^\Lambda = \frac{\sum_{k=1}^{\Lambda} \left(\frac{P_{(x_e + k, 1)} \cdot I_{(x_e + k, 1)} \cdot \mu^{k \Lambda}}{1 + G} \cdot \left(x_e + k - 1 \right) + P_{(x_e + \Lambda, 1)} \cdot N_{(x_e + \Lambda, 1)} \cdot \mu^{\Lambda \Lambda} \cdot \left(x_e + \Lambda - 1 \right) \right)}{\sum_{k=1}^{\Lambda} \left(\frac{P_{(x_e + k, 1)} \cdot I_{(x_e + k, 1)} \cdot \mu^{k \Lambda}}{1 + G} \cdot \left(x_e + k - 1 \right) + P_{(x_e + \Lambda, 1)} \cdot N_{(x_e + \Lambda, 1)} \cdot \mu^{\Lambda \Lambda} \cdot \left(x_e + \Lambda - 1 \right) \right)}
\]

If we work out the second term, 2, of formula [45.], which expresses total future contributions, then the system’s pay-in total, \(P^\mathrm{C}_t \), is notably simplified:

\[
P^\mathrm{C}_t = \frac{\sum_{k=0}^{n-1} N_{(x_e + k, 1)} \cdot Y_{(x_e + k, 1)} \cdot (k + 1)}{\sum_{k=0}^{n-1} Y_{(x_e + k, 1)} \cdot N_{(x_e + k, 1)}}
\]

Returning to the first term, the system’s total pay-out, \(P^\mathrm{C}_t \), of formula [45.], after substituting \(\left\{ \theta^\Lambda, \theta^R \right\} \) by their values in [13.] and [16.], we get:
If we consider the following expressions for simplifying the weighted formulas:

\[
 PT^D_{(x_k+1)} = \sum_{h=1}^{k} P^D_{(x_k+h)} \cdot a^h \cdot \left[\frac{1+\lambda}{1+G} \right]^{k-h} - k \cdot h P_{x_k+h}
\]

\[
 PT^D_{(x_k+1)} = \sum_{h=1}^{w-x_k+A-1} P^D_{(x_k+h)} \cdot a^h \cdot \left[\frac{1+\lambda}{1+G} \right]^{A+h-k} - A \cdot h P_{x_k+h}
\]

\[
 PT^D = \sum_{k=1}^{A} PT^D_{(x_k+1)} + \sum_{k=1}^{w-x_k+A-1} PT^D_{(x_k+1)}
\]

\[
 PT^R = P^R_{(x_k+1)} \cdot \sum_{k=0}^{w-x_k+A-1} N_{x_k+1} \cdot \left[\frac{1+\lambda}{1+G} \right].
\]

the denominator for the system's TD, its total spending on pensions, can be expressed by:

\[
 PT^S_t = PT^D_t + PT^R_t
\]

If the TDs for the disability and retirement contingencies \{TD^D_t, TD^R_t\} are weighted by their respective total spending on pensions as part of the system's total spending on pensions, and given that the denominators \{TD^D_t, TD^R_t\} are respectively \{PT^D_t, PT^R_t\}, we get:

\[
 TD^S_t = \frac{PT^D_t \cdot TD^D_t + PT^R_t \cdot TD^R_t}{PT^S_t}
\]

\[
 = \frac{PT^D_t \cdot NTD^D_t + PT^R_t \cdot NTD^R_t}{PT^S_t}
\]

[57.]

an expression in which the numerator is the sum of the numerators of the TDs for disability and retirement, the same as in [45.],

\[
 NTD^S_t = NTD^D_t + NTD^R_t
\]

[58.]

and the denominator is the system's total spending on pensions, \(PT^S_t\).
Thus, given that the numerator, NTD\(^S\), and the denominator, PT\(^S\), are the same as in [44.], the expression coincides with the definition of the system’s TD and we can therefore conclude that it can be calculated as a weighted average of the TDs for both contingencies, the weighting being the spending on pensions by contingency as part of total spending.

Just like what happens with the TDs for the contingencies, the system's total TD can also be calculated according to the difference between the average ages of all the beneficiaries for both contingencies and the average age of the contributors.

$$\text{TD}^S = \frac{PT^D \cdot |A^D_r - A^D_c| + PT^R \cdot |A^R_r - A^R_c|}{PT^S}$$

[59.]

To put it a different way, the TD\(^S\) can be obtained as the difference between the weighted average of the average ages of disability and retirement, the weightings being the spending on pensions per contingency as part of total spending, and the average age of the contributors.

The system's contribution asset, CA\(^S\), can therefore be defined as the maximum level of liabilities that can be financed by the contribution rate determined for the system without extraordinary contributions from the sponsor. The value of the CA is the product of the turnover duration TD\(^S\) and the value of the contributions made in that period for the retirement and disability contingencies. The TD\(^S\) is interpreted as the number of years expected to elapse before the committed liabilities with contributors and pensioners for retirement and disability are completely renewed at the current contribution level. As Lee (2006) points out, the TD synthesizes into a single number a great deal of information about the system’s rules, the age distribution of the population, the age patterns of labor supply and earnings, survival and, in our model, disability rates too\(^17\). Analytically the CA\(^S\) can be expressed as:

$$\text{CA}^S = \text{CA}^R + \text{CA}^D = \text{TD}^S \cdot C^S = (A^S_r - A^S_c) \cdot C^S = (pt^S_t + pt^S_c) \cdot C^S = \text{TD}^R \cdot C^R + \text{TD}^D \cdot C^D = (pt^R + pt^D) \cdot C^R + (pt^R + pt^D) \cdot C^D = (A^R_r - A^R_c) \cdot C^R + (A^D_r - A^D_c) \cdot C^D = V^S_t = V^T_t + R_v^T$$

\(^17\) For Goss (2010), it is often desirable to express the outcome of a complex process in a single number. Historically, a single summary number, referred to as the US AB, has been used as a measure of the financial status of the OASDI program.
The AB sheet of a balanced PAYG system can be expressed as shown in Table 1:

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution Asset for disability = CA_D</td>
<td>Liability to pensioners for disability = D V'_t</td>
</tr>
<tr>
<td>Contribution Asset for retirement = CA_R</td>
<td>Liability to pensioners for retirement = R V'^r_t</td>
</tr>
<tr>
<td>Contribution Asset for retirement = CA_R</td>
<td>Liability to contributors for disability = D V'^c_t</td>
</tr>
<tr>
<td>Contribution Asset for retirement = CA_R</td>
<td>Liability to contributors for retirement = R V'^c_t</td>
</tr>
<tr>
<td>Total Assets = CA_S</td>
<td>Total Liabilities = V_S</td>
</tr>
</tbody>
</table>

The solvency index (ratio), \(S_i^t = \frac{CA_S}{V_S} \), is equal to one in the case of a balanced pension system. Consequently, at the date of the balance sheet participants have a realistic expectation of receiving the benefits that have been foreseen, without the system’s sponsor having to make periodic contributions, as long as the system's rules and the economic and demographic conditions prevailing at the time of valuation remain constant. Solvency is clearly never completely assured in the long term as neither the assets nor the liabilities are known in their entirety.

It is worth highlighting, as Lee (2006) indicated for the case of the retirement contingency, that when using this framework for actual, nonsteady state situations, "we have to imagine stopping time at two intervals and using a comparative static comparison between them". This is the approach developed in practice. In the Swedish case, for example, Pensionsmyndigheten (2011), the balance sheet is compiled every year according to verifiable events and transactions, but it tends to provide a true and fair view because successive changes are included as they are registered in consecutive balance sheets, and consequently the solvency indicator remains reasonably reliable\(^{18}\).

However, the real situation of the system would in practice be an AB in which other elements would or could appear, such as: financial assets, resulting from an accumulation of treasury surpluses; financial liabilities, resulting from an accumulation of treasury deficits; actuarial deficits, resulting from an accumulation of actuarial losses; or actuarial surpluses, resulting from an accumulation of actuarial profits. The system's actuarial profit or loss, which should not be confused with the treasury surplus or deficit, \(C^S_i - PT^S_i \), is determined by

\(^{18}\) See the papers by Auerbach & Lee (2009a and 2009b).
comparing the system's assets and liabilities in two consecutive periods, and the real solvency index must consider these elements in order to provide a true and fair view.

Last but not least, the model makes it possible to obtain an actuarial income statement by contingency, thereby enriching the information on the sources from which future financial imbalances in the system may originate and making it easier to set the contribution rates that should be applied for each contingency. The results mainly depend on annual financial variations (treasury surpluses or deficits, return on financial assets and costs of liabilities), on the evolution of the economic factors (contributors, contribution bases, the structure of the economic activity that has an impact on disability rates), on demographic factors (longevity of the various collectives) and on the rules of the pension system.

4.-Numerical example.

Our starting point in this section is the numerical example developed by Vidal-Meliá & Boado-Penas (2013). They work with contributors and pensioners by age and contributions (wages) and a “mature” pension structure, 36 years after the system's inception, assuming that g grows at an annual accumulative rate of 1%, the population grows at an annual accumulative rate of 2%, and the pension payable to pensioners at age 65 is 80% of the previous 40 years' contributions and constant in real terms ($\lambda = 0\%$).

With these conditions, see Table 2, the contribution rate for balance is 16.51% and the TD is 27.59 years (weighted average age of pensioners 73.32 years, weighted average age of contributors 45.72 years) distributed over 9.32 years for the pay-out and 18.28 years for the pay-in. The contributor-pensioner ratio is 4.5 and the financial ratio 0.7427. As a result, according to formula [21.], the product is the system's contribution rate.

If from the start we extend this initial system by adding a disability contingency in which a contributor who becomes disabled receives a pension with a variable replacement rate that depends on age and contributions made in such a way that a contributor who becomes disabled at age 64, the last age at which it is possible to contribute, would receive a pension identical to that which would be payable on retirement at 65, in the new steady state, 75 years after the system's inception. The evolution of the pensioner and contributor collectives is shown in Figure 1.
The table shows the evolution of contributors and pensioners in both systems, that with base retirement only (Cr, Pr) and that with both contingencies separated (Crd, Prd). The two separate contingencies are also shown combined (Crd + Prd) so that the result can be compared with the base retirement model. It can be seen that in the new system there are two types of beneficiary, disability pensioners and retirement pensioners, and that the collective as a whole is smaller than that of the base system because of two effects: disabled people do not live as long, and population growth does not affect the two systems in the same way, since a large proportion of the disabled group is of survivors and not affected by all the increases in population. Differences by age are shown in the graph by ellipses and reach their maximum at age 65, after which they are decreasing. The two collectives, the system with only retirement and the one with both retirement and disability, would only coincide under the additional supposition of equal longevity for both disabled and non-disabled (active or retired), when zero population growth is assumed. If population growth has a positive value, given the way in which disability is determined, the growth rate of the disabled is lower than that of the contributing population. Therefore, if both collectives are compared, there are always fewer for all ages in the collective (Crd + Prd). The greatest difference comes about at age 65. If there is a decrease in the population the opposite occurs.

Figure 2 shows the evolution of average pensions, wages and initial pensions by age, and also average pensions by contingency, the total for the system, the total average wage and the system's average initial pension. The average disability pension (APd) by age is growing, given that a higher pension is awarded when more contributions have been made, while the
average retirement pension (APr) and disability pension (APd) strictly for the retirement period is decreasing because once the pension is awarded it remains constant in real terms.

The main values making up the new system’s equilibrium and their comparison with the previous situation are shown in Table 2.

<table>
<thead>
<tr>
<th>Items</th>
<th>Base*</th>
<th>Retirement + Disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>0.16511</td>
<td>0.12461</td>
</tr>
<tr>
<td>(f_r)</td>
<td>0.743</td>
<td>0.752</td>
</tr>
<tr>
<td>(d_r)</td>
<td>0.222</td>
<td>0.166</td>
</tr>
<tr>
<td>(\lambda_{r}) (years)</td>
<td>73.316</td>
<td>73.316</td>
</tr>
<tr>
<td>(\lambda_{d}) (years)</td>
<td>45.724</td>
<td>44.954</td>
</tr>
<tr>
<td>(T_{D}) (years)</td>
<td>27.592</td>
<td>28.362</td>
</tr>
<tr>
<td>(\bar{\lambda}_{r}) (years)</td>
<td>64.000</td>
<td>64.000</td>
</tr>
<tr>
<td>(p_{r}) (years)</td>
<td>18.276</td>
<td>19.046</td>
</tr>
<tr>
<td>(p_{d}) (years)</td>
<td>9.316</td>
<td>9.316</td>
</tr>
</tbody>
</table>

Our attention is drawn to two aspects in particular:

1.- The slight increase in the contribution rate for the system as a whole when compared to the base system, despite the fact there is a new contingency. This is mainly due to two
reasons. Firstly there is a transfer of beneficiaries who were previously considered retired and who, in the new system, despite being of retirement age, originate in disability. Secondly, as mentioned earlier, disabled people have a lower life expectancy, which lowers the cost of the contingency.

If we were to falsely consider those disabled people who reach retirement age as retirement pensioners, a phenomenon known as “pension reclassification”, the apparent cost of retirement would increase noticeably. Indeed, if it were supposed that those disabled people who reach or pass normal retirement age were reclassified as retirees, the contribution rate assigned to retirement would increase from 0.12461 to 0.15177, while the rate for disability would go down from 0.05297 to 0.02581. The image of the system as a whole would not change from 0.17758, but there would be some not very transparent transfers between contingencies because of the change in the average TD for each contingency.

2.- The slight variation in the base system's TD along with that of the retirement contingency in the integrated system, brought about by the slight change in the average age of the contributors after considering decrements through disability. The system's TD does change more noticeably due to the effect of the disability contingency, which makes the weighted average age at which the last contribution is made almost ten years earlier than for the retirement contingency. It can also be shown that the system's TD is a weighted average of the TDs for the contingencies, the weighting element being the contribution rate per contingency. This is due to the fact that the annual income from contributions coincides with the annual spending on pensions and in turn corresponds to the new pensions awarded during the year.

As regards the liabilities that the system takes on with contributors and pensioners for both contingencies and their relationship with the contribution asset, the profiles by age seen from various perspectives are shown in Figures 3 and 4.

The first part of Figure 3, the system's assets and liabilities by contingency, which corresponds to the retirement contingency, shows a profile in line with the initial assumptions that the system's total commitments increase with the age of the contributor, given that contributions accumulate until the age at which one becomes entitled to receive retirement pension, then from that moment on, due to the fact that pensions are decreasing with age because they were awarded in earlier periods and because the number of pensioners is also decreasing, they gradually become smaller. The liabilities for retirement perfectly match the contribution asset for retirement. The liabilities for retirement is the area beneath the curve for contributors and pensioners, while the contribution asset for retirement is the area represented by the base rectangle, the difference between the weighted average ages of pensioners and contributors, and the height is the amount of the contributions made per contingency\(^{19}\).

\(^{19}\) This is equivalent to the present value of benefits awarded during the period.
The second part of Figure 3, the system's assets and liabilities by contingency, is for the disability contingency. The system's total commitments for this contingency, in which contributors and pensioners are superimposed, is the result of aggregating the commitments with pensioners and contributors which present a different dynamic. As far as contributors are concerned, and unlike in the case of retirement, the profile for the system's commitments follows an outline typical of risk contingencies, an increase up to a maximum at a particular age, and then a decrease until it disappears. The explanation is obvious. The obligation to contribute comes to an end and the system's commitment with the contributor is extinguished because disability can no longer come about.

In the case of disability pensioners, the commitments increase with age until they reach a maximum at age 64, from which time no more disability pensions can be awarded. From here on, due to the fact that pensions are decreasing with age, the commitments gradually become smaller because the pensions were awarded in earlier periods and because the number of pensioners is also decreasing.

The total liabilities for disability match perfectly with the contribution asset for disability. The total liability for disability is the area below the total curve. The contribution asset for disability is the area represented by the base rectangle, the difference between the weighted average ages of the disability pensioners and contributors, while the height is the amount of contributions paid for the contingency²⁰.

²⁰ Like in the case of the retirement contingency, this is equivalent to the present value of the disability benefits awarded during the period.
Figure 4, the system's (total) assets and liabilities by contingency, shows the perspective from the system's point of view. The system's liabilities is the aggregation of the liabilities by contingency or collective, and the contribution asset derives from the system's turnover duration which is a weighted average of the TDs of each contingency multiplied by the spending on pensions of each contingency. The profile for the system's total liabilities mainly follows the outline for the main contingency.

![Figure 4: The system's assets and liabilities by collective](image)

Everything shown in Figures 3 and 4 is quantified and included in the AB sheet presented in Table 3, which shows the values for each of the items that make up the balance, and in which it is possible to have a numerical view of the “matching” of the system's different capital amounts that go to determine a solvency indicator equal to the unit.

<table>
<thead>
<tr>
<th>Table 3: AB sheet of a balanced PAYG system. Numerical example.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSETS</td>
</tr>
<tr>
<td>CA^D_t</td>
</tr>
<tr>
<td>CA^R_t</td>
</tr>
<tr>
<td>CA^S_t</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Base scenario with G=(1.01)(1.02)-1=0.0302

The picture that the same system would provide with pension reclassification, Table 4, would have noticeable effects on the structure of the balance by contingency, although the final
outcome as regards assets and liabilities is identical to the system without reclassification. The so-called true and fair view of the system would be distorted.

It can be said that the reclassification of pensions, which is normal practice in some public SSAs, leads to distortions when assigning both assets and liabilities, which, although it has no consequences in overall terms when the system is balanced, may indeed have consequences and very serious ones when a real unbalanced system is studied.

| Table 4: AB sheet of a balanced PAYG system. Numerical example with “pension reclassification” |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | | | |
| **ASSETS** | | **LIABILITIES** | |
| Items | Amount | Items | Amount |
| CA_t^D | 250,580.11 | 6.557 | D V_t^f | 43,013.95 | 1.126 |
| | | | D V_t^c | 207,566.16 | 5.431 |
| CA_t^R | 3,571,119.46 | 93.443 | R V_t^f | 1,164,380.68 | 30.468 |
| | | | R V_t^c | 2,406,738.77 | 62.976 |
| CA_t^S | 3,821,699.57 | 100.000 | V_t^S | 3,821,699.57 | 100.000 |

Base scenario with G=(1.01)(1.02)-1=0.0302

4.- Concluding remarks and future research.

Concern about the financial health of public pension systems in all its various designations (solvency, sustainability, viability, equilibrium) brought about by the ageing of the population, the fall in the rate of economic growth and bad practices in system management, occupies a very prominent place on the agenda of many governments and international organizations such as the World Bank, the OECD and the ILO, and can therefore be said to be a matter of world importance. It is no exaggeration to say that the problems of pension systems are a recurring theme in economic policy and are of permanent topical interest for many citizens in various countries.

A basic element for improving pension system management and bringing the planning horizons of the authority in charge of the system and the contributors and pensioners closer together is full information. As Regúlez-Castillo & Vidal-Meliá (2012) point out, the aim is to show the situation of the pension system by providing an indicator of financial solvency, sustainability or solidity, the most vital goal being to convey to contributors and pensioners the message that their pensions depend on two things: the individual effort deriving from their actions - amounts contributed, contribution history, retirement age - and the collective situation, i.e. the system's ability to fulfil all its acquired obligations.

The instrument from which the overall indicators are derived is the one known as the “AB”, the main examples of which are the “Swedish” and “US” models. The biggest drawback of
the Swedish model, from the perspective of applying it to defined benefit systems, is that its theoretical base was only developed for the purpose of using it for the retirement contingency.

In this paper we have developed the theoretical base for applying the Swedish-type AB to both retirement and disability contingencies in a DB PAYG system, thereby laying the first stone towards filling the large gap that exists in the literature in this field. Also, this model starts to make it possible to assess the degree of solvency from the integrated perspective of both retirement and disability contingencies, which are linked together and represent a very high proportion of spending on pensions in DB systems.

The basic element that enables the AB to be compiled is what is known as the system's "contribution asset", which, in the model developed and in line with what the authors already believed intuitively, is a weighted average of the contribution assets of the two contingencies which make up the system and which depend on the economic-demographic structures of the system's collectives, contributors and pensioners, in the so-called "mature" state.

The model makes it possible to obtain an actuarial income statement by contingency, thereby providing richer information about the sources from which future financial imbalances could appear and making it easy to set the contribution rates that should be applied for each contingency.

On the practical side, the numerical example developed enables a debate to be opened regarding the appropriateness of a generalized practice carried out by many public SSAs: pension reclassification. This (bad) practice involves considering as disability pensions those pensions being paid to disabled people who reach the usual age of retirement. This is an unhealthy phenomenon because it masks the system's real solvency situation and makes it very difficult to obtain accurate actuarial results by contingency, and therefore may act as a way of camouflaging early retirements or decrements from the labor market as false disabilities. It also makes it more difficult to make projections of the pensioner collective by "mixing" two collectives (retirement pensioners and disability pensioners of retirement age) with different mortality rates. It should be pointed out that private capitalization pension systems that cover retirement and disability contingencies do not reclassify pensions once they are in payment as this would prevent them from correctly determining the actuarial result by contingency.

The model developed has many other practical implications which could be of interest not only to DB systems but also to notional defined contribution schemes (NDC), social security actuaries, public finance economists and policy-makers. For example, as regards the current pension system in Sweden, the NDC model, which only covers the retirement contingency, this could be extended to cover disability now that the relationship between both contingencies is clear. The AB could be compiled for both contingencies, which would thus notably increase its representativeness as it would include a higher proportion of total spending on pensions, and the legitimacy of applying an ABM would also be strengthened as the action
would be based on a more reliable solvency indicator. This would be one of the points where this research could most naturally be extended, by having to integrate one of the peculiarities of the Swedish NDC model: the so-called survivor dividend.

Further work could be carried out on the model developed here, with future research extending into at least four additional areas:

1.-By considering different degrees of disability and/or the possibility of a return to active life. In practice there are usually various degrees of disability recognized and these have a direct effect on the amount of benefit paid and the likelihood or not of returning to active life. The most natural way to do this would be to extend the states in Diagram 1, which would obviously involve a considerable increase in the complexity of the formulas to be obtained.

2.-By extending the model (the AB) with the incorporation of widows’ and/or survivor contingencies, which would enable virtually all spending on pensions in DB systems to be included.

3.-By extending the model (the AB) with the incorporation of long-term care as a contributory contingency, as has been offered in the German contributory pension system since the mid-1990s. Given the accelerated ageing process taking place in developed countries, long-term care is an area of considerable interest that needs to be specifically taken into account as a cost with fundamental links to retirement and certain degrees of disability.

4.-By considering a stochastic rather than a determinist actuarial valuation model, either by using an analytical approximation, Iyer (2008), or simulation models, as proposed by Bufflin (2007) and OACT (2009) for the US-type AB, and by Melis & Trudda (2012) for Italy. Instead of the traditional determinist actuarial valuation, in other areas of finance and private insurance there is already widespread use of stochastic models, but they have yet to become normal practice when analyzing social security systems, where it is only in the last decade that the beginnings of such work has been seen.
5.- References.

Samuelson, P. 1958. An exact consumption loan model of interest with or without the social contrivance of money, *Journal of Political Economy*, 68, 467–82

Vidal-Meliá, C. and M.C. Boado-Penas 2013. Compiling the actuarial balance for pay-as-you-go pension systems. Is it better to use the hidden asset or the contribution asset?, *Applied Economics*, 45:10, 1303-1320.

Appendix 1.- The system’s contribution rate in a “mature” state.

To obtain the evolution of contribution rates $\{\theta^1, \theta^R\}$ over time, the following accounting rule needs to be applied: “income from the system’s contributions should be equal to the expenditure on pensions”.

Year 1:

\[
\begin{align*}
\text{Expenditure on disability benefits} & = \sum_{k=1}^{A} P^I_{(s_x+k,1)} \cdot I_{(s_x+k,1)} \\
\text{Expenditure on retirement benefits} & = \beta \cdot Y_{C,0} \cdot N_{(s_x+A,1)} \\
\text{incomes from contributions} & = (\theta^1 + \theta^R) \cdot \sum_{k=0}^{A-1} Y_{(s_x+k,1)} \cdot N_{(s_x+k,1)}
\end{align*}
\]

[61.]

The contribution rates that exactly achieve financial equilibrium are aggregate benefit expenditure divided by the aggregate contribution base:

\[
(\theta^D_1 + \theta^R_1) = \frac{\sum_{k=0}^{A-1} b^I_{(s_x+k,1)} \cdot Y_{(s_x+k,1)} \cdot i_{(s_x+k)} + \beta \cdot Y_{C,0} \cdot N_{(s_x+A,1)}}{\sum_{k=0}^{A-1} Y_{(s_x+k,1)} \cdot N_{(s_x+k,1)}}
\]

[62.]

...

Year t:
Then, the contribution rates for year “t” are calculated as:
Year “w-xe-A” counted from the system’s inception

The highest age for any member of the group, at which point there are no longer any survivors, is defined as “w”. Therefore, from date “w-xe-A” counted from the system’s inception, the probability that an individual of age “xe+A” will reach age “w” is zero. In addition, all survival probabilities from that year onwards are also zero for that cohort.

\[w-xe-A \cdot P_{xe+A} \] probability that an individual of age “xe+A” will reach age limit w, verifies

\[0 = w-xe-A \cdot P_{xe+A} = w-xe-A+1 \cdot P_{xe+A} = w-xe-A+2 \cdot P_{xe+A} = ... \]

Thus when \(t \geq w-(xe+A) \) we get:

\[
\left(\theta_i^D + \theta_i^R \right) = \sum_{k=1}^{A} \left(\sum_{s=\text{Max}[1,k-t+1]}^{k} P_{(xe+s,1)} \cdot I_{(xe+s,1)} \cdot (1+G)^{t-k+s} \cdot (1+\lambda)^{k-s} \cdot k \cdot P_{xe+s} \right) \]

\[
(1+G)^{t-k} \cdot \sum_{k=0}^{A-1} y_{(xe+k,1)} \cdot N_{(xe+k,1)}
\]

\[
\sum_{k=1}^{A} \left(\sum_{s=\text{Max}[1,A+t-k+1]}^{k} P_{(xe+s,1)} \cdot I_{(xe+s,1)} \cdot (1+G)^{t-k-A+1+s} \cdot (1+\lambda)^{A+k-s} \cdot A \cdot P_{xe+s} \right)
\]

\[
(1+G)^{t-k} \cdot \sum_{k=0}^{A-1} y_{(xe+k,1)} \cdot N_{(xe+k,1)}
\]

\[
\beta \cdot Y_{C,0} \cdot \sum_{k=0}^{w-(xe+A)-1} N_{(xe+A+k,1)} \cdot (1+G)^{-k} \cdot (1+\lambda)^{t-k}
\]

\[
(1+G)^{t-k} \cdot \sum_{k=0}^{A-1} y_{(xe+k,1)} \cdot N_{(xe+k,1)}
\]
The third term of equation [65.] does not depend on period “t” and can be simplified. Hence the contribution rate for the retirement contingency is:

\[
\theta^R_t = \frac{\beta \cdot Y_{C,O} \cdot \left(\sum_{k=0}^{w-(x_s+A)-1} N_{(x_s+A+k,1)} \left(\frac{1 + \lambda}{(1 + G)} \right)^k \right)}{\sum_{k=0}^{A-1} y_{(x_s+k,1)} \cdot N_{(x_s+k,1)}} = \theta \quad [66.]
\]

However, the first two terms of equation [65.], the contribution rate for the disability contingency, still depend on period “t” considered from the system’s inception.

Year “w-x_e-1” counted from the system's inception

For the disability contingency, from date “w-x_e-1” counted from the system's inception, the probability that a disabled person of age “x_e+k” with \(k \in \{1, \ldots, A\} \) will reach age “w” is zero, and all survival probabilities from that year onwards are also zero for that cohort:

\[
0 = w-(x_s+k)p^I_{x_s+k} = w-(x_s+k+1)p^I_{x_s+k+1} = \cdots = w-(x_s+A)p^I_{x_s+A}
\]

In addition, when \(t \geq w-x_e-1 \), it is obvious that \(\forall k \in \{1, \ldots, A\} \) verifies \(k+1 \leq t \), so then \(\text{Max} \{1, k - t + 1\} = 1 \). Likewise \(\forall k \in \{1, \ldots, w-(x_s+A)\} \) also verifies that \(A+k+1 \leq t \), so then \(\text{Max} \{1, A + k - t + 1\} = 1 \). As a result, the system’s contribution rate can be expressed as:

\[
\left(\theta^D + \theta^R\right) = \frac{\sum_{k=1}^{A} \left(\sum_{s=1}^{k} p^I_{(x_s+s,1)} \cdot (1+\lambda) \cdot (1+G)^{k-s} \cdot \sum_{s=1}^{k} p^I_{(x_s+s,1)} \right) + \sum_{k=0}^{A-1} y_{(x_s+k,1)} \cdot N_{(x_s+k,1)} \cdot \theta^D \cdot Y_{C,D} \cdot \left(\sum_{k=0}^{w-(x_s+A)-1} N_{(x_s+A+k,1)} \left(\frac{1 + A}{(1 + G)} \right)^k \right)}{\sum_{k=0}^{A-1} y_{(x_s+k,1)} \cdot N_{(x_s+k,1)}} \quad [67.]
\]
Appendix 2.-Liabilities to current contributors by disability in year \(t = w-x_e-1 \) counted from the system’s inception.

Current contributors may not reach retirement age in the labour market for two reasons - death or permanent disability - and therefore both probabilities need to be taken into account.

The present actuarial value of future disability benefits in \(t = w-x_e-1 \) years is:

- Contributors aged “\(x_e + A-1 \)” years:

\[
P^I_{(x_e + A-1)} \cdot l^N_{(x_e + A-1, t)} \cdot \frac{1}{a_{x_e + A}} \cdot (1 + d)^{-1} = \]

\[
P^I_{(x_e + A-1)} \cdot l^N_{(x_e + A-1, t)} \cdot (1 + G)^{t} \cdot \frac{1}{a_{x_e + A}} \cdot (1 + d)^{-1} \]

[68.]

- Contributors aged “\(x_e \)” years:

\[
P^I_{(x_e + 1, t)} \cdot l^N_{(x_e + 1, t)} \cdot \frac{1}{a_{x_e +1}} \cdot (1 + d)^{-1} + P^I_{(x_e + 2, t)} \cdot l^N_{(x_e + 2, t)} \cdot \frac{1}{a_{x_e +2}} \cdot (1 + d)^{-2} + \ldots + P^I_{(x_e + A-1, t)} \cdot l^N_{(x_e + A-1, t)} \cdot \frac{1}{a_{x_e + A-1}} \cdot (1 + d)^{-(A-1)}
\]

\[
= P^I_{(x_e + 1, t)} \cdot l^N_{(x_e + 1, t)} \cdot \frac{1}{a_{x_e +1}} \cdot (1 + G)^{t} \cdot \frac{1}{a_{x_e +1}} \cdot (1 + d)^{-1} + P^I_{(x_e + 2, t)} \cdot l^N_{(x_e + 2, t)} \cdot \frac{1}{a_{x_e +2}} \cdot (1 + G)^{t+1} \cdot \frac{1}{a_{x_e +2}} \cdot (1 + d)^{-2} + \ldots + P^I_{(x_e + A-1, t)} \cdot l^N_{(x_e + A-1, t)} \cdot (1 + G)^{t+(A-2)} \cdot \frac{1}{a_{x_e + A-1}} \cdot (1 + d)^{-(A-1)}
\]

\[
= \sum_{h=1}^{A} P^I_{(x_e + h, t)} \cdot l^N_{(x_e + h, t)} \cdot \frac{1}{a_{x_e + h}} \cdot (1 + G)^{t+1+h-2} \cdot (1 + d)^{-h}
\]

[69.]

Consequently, if we add from \(x_e +1 \) to \(x_e +A \) we get:

\[
\sum_{h=1}^{A} \sum_{k=1}^{A} P^I_{(x_e + h, t)} \cdot l^N_{(x_e + h, t)} \cdot \frac{1}{a_{x_e + h}} \cdot (1 + G)^{t+1+h-2} \cdot (1 + d)^{-h} = \]

[70.]

\[
(1 + G)^{t-1} \sum_{h=1}^{A} \sum_{k=1}^{A} P^I_{(x_e + h, t)} \cdot l^N_{(x_e + h, t)} \cdot \frac{1}{a_{x_e + h}} \cdot (1 + G)^{h} \cdot (1 + d)^{-h}
\]

but we can add diagonally to obtain the equivalent expression to [70.]:

46
The present value of future contributions is:

- **Contributors aged “x + A-1” years:**

 \[(\theta^0) \cdot \sum_{k=1}^{A} P_{(x_k + A-1)}^l \cdot \sum_{h=1}^k (1 + G)^{k-h} \cdot (1 + d)^{-h} \]

- **Contributors aged “x” years:**

 \[(\theta^0) \cdot \sum_{k=1}^{A} P_{(x_k + A)}^l \cdot \sum_{h=1}^k (1 + G)^{k-h} \cdot (1 + d)^{-h} \]

Therefore:
\[
\left(\theta^0\right) \cdot \begin{bmatrix}
N_{(x_A + A - 1, 1)} \cdot y_{(x_A + A - 1, 1)} \cdot \sum_{h=0}^{A-1} (1 + G)^{v_h} \cdot (1 + d)^{-h} + \\
N_{(x_A + A - 2, 1)} \cdot y_{(x_A + A - 2, 1)} \cdot \sum_{h=0}^{A-2} (1 + G)^{v_{h+1}} \cdot (1 + d)^{-h} + \\
\vdots + N_{(x_A, 1)} \cdot y_{(x_A, 1)} \cdot (1 + G)^{v_{A-1}} (1 + d)^{-1}
\end{bmatrix}
\]

\[
= \left(\theta^0\right) \cdot \left(\sum_{k=0}^{A-1} \sum_{h=0}^{k} N_{(x_A + k, 1)} \cdot y_{(x_A + k, 1)} \cdot (1 + G)^{v_h} (1 + d)^{-h}\right)
\]

[74.]
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td>159/2000</td>
<td>Participación privada en la construcción y explotación de carreteras de peaje</td>
<td>Ginés de Rus, Manuel Romero y Lourdes Trujillo</td>
</tr>
<tr>
<td>160/2000</td>
<td>Errores y posibles soluciones en la aplicación del Value at Risk</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>161/2000</td>
<td>Tax neutrality on saving assets. The spahish case before and after the tax reform</td>
<td>Cristina Ruza y de Paz-Curbera</td>
</tr>
<tr>
<td>163/2000</td>
<td>El control interno del riesgo. Una propuesta de sistema de límites riesgo neutral</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>164/2001</td>
<td>La evolución de las políticas de gasto de las Administraciones Públicas en los años 90</td>
<td>Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells</td>
</tr>
<tr>
<td>165/2001</td>
<td>Bank cost efficiency and output specification</td>
<td>Emili Tortosa-Ausina</td>
</tr>
<tr>
<td>166/2001</td>
<td>Recent trends in Spanish income distribution: A robust picture of falling income inequality</td>
<td>Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara</td>
</tr>
<tr>
<td>167/2001</td>
<td>Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF</td>
<td>Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández</td>
</tr>
<tr>
<td>168/2001</td>
<td>The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some European Countries</td>
<td>Mónica Melle-Hernández</td>
</tr>
<tr>
<td>169/2001</td>
<td>La política de cohesión de la UE ampliada: la perspectiva de España</td>
<td>Ismael Sanz Labrador</td>
</tr>
<tr>
<td>170/2002</td>
<td>Riesgo de liquidez de Mercado</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>171/2002</td>
<td>Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas de capitalización individual: medida y comparación internacional.</td>
<td>José Enrique Devesa Carpio, Rosa Rodríguez Barrera, Carlos Vidal Meliá</td>
</tr>
<tr>
<td>172/2002</td>
<td>La encuesta continua de presupuestos familiares (1985-1996): descripción, representatividad y propuestas de metodología para la explotación de la información de los ingresos y el gasto.</td>
<td>Llorence Pou, Joaquín Alegre</td>
</tr>
<tr>
<td>173/2002</td>
<td>Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de crédito.</td>
<td>Rosa Puertas, María Bonilla, Ignacio Olmeda</td>
</tr>
</tbody>
</table>
174/2002 Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas. José Vicente Blanes Cristóbal

175/2003 La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos. Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González

177/2003 Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case. Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

178/2003 Factors explaining the interest margin in the banking sectors of the European Union. Joaquín Maudos y Juan Fernández Guevara

179/2003 Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España. Mónica Melle Hernández

181/2003 The Euro effect on the integration of the European stock markets. Mónica Melle Hernández

182/2004 In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition. Bruno Cassiman, Reinhilde Veugelers

183/2004 Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua. Mª Ángeles García Valiñas

184/2004 Estimación de la economía sumergida en España: un modelo estructural de variables latentes. Ángel Alañón Pardo, Miguel Gómez de Antonio

185/2004 Causas políticas y consecuencias sociales de la corrupción. Joan Oriol Prats Cabrera

186/2004 Loan bankers’ decisions and sensitivity to the audit report using the belief revision model. Andrés Guiral Contreras and José A. Gonzalo Angulo

187/2004 El modelo de Black, Derman y Toy en la práctica. Aplicación al mercado español. Marta Tolentino García-Abadillo y Antonio Díaz Pérez

188/2004 Does market competition make banks perform well?. Mónica Melle

189/2004 Efficiency differences among banks: external, technical, internal, and managerial. Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en España: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodríguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do ’Insertion Contracts’ Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodríguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodríguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Miguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Díaz
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Tendencia post-anuncio de resultados contables: evidencia para el mercado español</td>
<td>Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García</td>
</tr>
<tr>
<td>2005</td>
<td>Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing</td>
<td>Waymond Rodgers and Andrés Guiral</td>
</tr>
<tr>
<td>2005</td>
<td>The effects of ownership structure and board composition on the audit committee activity: Spanish evidence</td>
<td>Carlos Fernández Méndez and Rubén Arrondo García</td>
</tr>
<tr>
<td>2005</td>
<td>Cross-country determinants of bank income smoothing by managing loan loss provisions</td>
<td>Ana Rosa Fonseca and Francisco González</td>
</tr>
<tr>
<td>2005</td>
<td>Region versus Industry effects: volatility transmission</td>
<td>Pilar Soriano Felipe and Francisco J. Climent Diranizo</td>
</tr>
<tr>
<td>2005</td>
<td>On zero lower bound traps: a framework for the analysis of monetary policy in the ‘age’ of central banks</td>
<td>Alfonso Palacio-Vera</td>
</tr>
<tr>
<td>2005</td>
<td>Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal</td>
<td>M. Carmen Almansa Sáez and Javier Calatrava Requena</td>
</tr>
<tr>
<td>2005</td>
<td>Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?</td>
<td>Santiago Carbó Valverde and Rafael López del Paso</td>
</tr>
<tr>
<td>2005</td>
<td>Inheritance Taxes In The Eu Fiscal Systems: The Present Situation And Future Perspectives.</td>
<td>Miguel Angel Barberán Lahuerta</td>
</tr>
<tr>
<td>2006</td>
<td>Bank Ownership And Informativeness Of Earnings.</td>
<td>Víctor M. González</td>
</tr>
</tbody>
</table>

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes. Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo. Inés P. Murillo.

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries?. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano

245/2006 Intergenerational Health Mobility: An Empirical Approach Based On The Echp. Marta Pascual and David Cantarero

246/2006 Measurement and analysis of the Spanish Stock Exchange using the Lyapunov exponent with digital technology. Salvador Rojí Ferrari and Ana Gonzalez Marcos

247/2006 Testing For Structural Breaks In Variance Withadditive Outliers And Measurement Errors. Paulo M.M. Rodrigues and Antonio Rubia

249/2006 Elasticidades de largo plazo de la demanda de vivienda: evidencia para España (1885-2000). Desiderio Romero Jordán, José Félix Sanz Sanz y César Pérez López

251/2006 Funciones abreviadas de bienestar social: Una forma sencilla de simultanear la medición de la eficiencia y la equidad de las políticas de gasto público. Nuria Badenes Plá y Daniel Santín González

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”. Luis Muga and Rafael Santamaria

253/2006 Dinámica de precios en el mercado español de gasolina: un equilibrio de colusión tácita. Jordi Perdiguero García
José M. Pastor, Empar Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana Maria Aldanondo-Ochoa y Carmen Almansa-Sáez

José Felix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-Garcia

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

Maria Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguero.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich
A. García-Lorenzo y Jesús López-Rodriguez

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luís Muga y Rafael Santamaría

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales
Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general
Robert Meneu Gaya

278/2006 El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006 Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006 Three measures of returns to education: An illustration for the case of Spain
Maria Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006 La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

283/2006 Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

Alberte Martínez López

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Globalisation and the Composition of Government Spending: An analysis for OECD countries</td>
<td>Norman Gemmell, Richard Kneller and Ismael Sanz</td>
</tr>
<tr>
<td>2006</td>
<td>La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico</td>
<td>Fernando Hernández Martínez</td>
</tr>
<tr>
<td>2006</td>
<td>Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain</td>
<td>Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso</td>
</tr>
<tr>
<td>2006</td>
<td>Una teoría sobre la contribución de la función de compras al rendimiento empresarial</td>
<td>Javier González Benito</td>
</tr>
<tr>
<td>2006</td>
<td>Testing the parametric vs the semiparametric generalized mixed effects models</td>
<td>María José Lombardía and Stefan Sperlich</td>
</tr>
<tr>
<td>2006</td>
<td>Nonlinear dynamics in energy futures</td>
<td>Mariano Matilla-García</td>
</tr>
<tr>
<td>2006</td>
<td>Estimating Spatial Models By Generalized Maximum Entropy Or How To Get Rid Of W</td>
<td>Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez</td>
</tr>
<tr>
<td>2006</td>
<td>Optimización fiscal en las transmisiones lucrativas: análisis metodológico</td>
<td>Félix Domínguez Barrero</td>
</tr>
<tr>
<td>2006</td>
<td>La situación actual de la banca online en España</td>
<td>Francisco José Climent Diranzo y Alexandre Momparler Pechuán</td>
</tr>
<tr>
<td>2006</td>
<td>Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas</td>
<td>Javier González Benito y Isabel Suárez González</td>
</tr>
<tr>
<td>2006</td>
<td>A Parametric Model to Estimate Risk in a Fixed Income Portfolio</td>
<td>Pilar Abad and Sonia Benito</td>
</tr>
<tr>
<td>2007</td>
<td>Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros</td>
<td>Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé</td>
</tr>
<tr>
<td>2007</td>
<td>Assessing the enlargement and deepening of regional trading blocs: The European Union case</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano</td>
</tr>
<tr>
<td>2007</td>
<td>¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español</td>
<td>Vanesa Solís Rodríguez y Manuel González Díaz</td>
</tr>
<tr>
<td>2007</td>
<td>Spain is Different: Relative Wages 1989-98</td>
<td>José Antonio Carrasco Gallego</td>
</tr>
</tbody>
</table>
Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor

Agricultural Productivity in the European Regions: Trends and Explanatory Factors
Roberto Ezcurra, Belen Iráizoz, Pedro Pascual and Manuel Rapún

Long-run Regional Population Divergence and Modern Economic Growth in Europe: a Case Study of Spain
María Isabel Ayuda, Fernando Collantes and Vicente Pinilla

Financial Information effects on the measurement of Commercial Banks’ Efficiency
Borja Amor, María T. Tascón and José L. Fanjul

Neutralidad e incentivos de las inversiones financieras en el nuevo IRPF
Félix Domínguez Barrero

The Effects of Corporate Social Responsibility Perceptions on The Valuation of Common Stock
Waymond Rodgers, Helen Choy and Andres Guiral-Contreras

Country Creditor Rights, Information Sharing and Commercial Banks’ Profitability Persistence across the world
Borja Amor, María T. Tascón and José L. Fanjul

¿Es Relevante el Déficit Corriente en una Unión Monetaria? El Caso Español
Javier Blanco González y Ignacio del Rosal Fernández

The Impact of Credit Rating Announcements on Spanish Corporate Fixed Income Performance: Returns, Yields and Liquidity
Pilar Abad, Antonio Díaz and M. Dolores Robles

Indicadores de Lealtad al Establecimiento y Formato Comercial Basados en la Distribución del Presupuesto
César Augusto Bustos Reyes y Óscar González Benito

Migrants and Market Potential in Spain over The XXth Century: A Test Of The New Economic Geography
Daniel A. Tirado, Jordi Pons, Elisenda Paluzie and Javier Silvestre

El Impacto del Coste de Oportunidad de la Actividad Emprendedora en la Intención de los Ciudadanos Europeos de Crear Empresas
Luis Miguel Zapico Aldeano

Los belgas y los ferrocarriles de via estrecha en España, 1887-1936
Alberte Martínez López

Competición política bipartidista. Estudio geométrico del equilibrio en un caso ponderado
Isabel Lillo, Mª Dolores López y Javier Rodrigo

Human resource management and environment management systems: an empirical study
Mª Concepción López Fernández, Ana Mª Serrano Bedía and Gema García Piqueres
Wood and industrialization. Evidence and hypotheses from the case of Spain, 1860-1935.
Iñaki Iriarte-Goñi and María Isabel Ayuda Bosque

New evidence on long-run monetary neutrality.
J. Cunado, L.A. Gil-Alana and F. Perez de Gracia

Monetary policy and structural changes in the volatility of US interest rates.
Juncal Cuñado, Javier Gomez Biscarri and Fernando Perez de Gracia

The productivity effects of intrafirm diffusion.
Lucio Fuentelsaz, Jaime Gómez and Sergio Palomas

Unemployment duration, layoffs and competing risks.
J.M. Arranz, C. García-Serrano and L. Toharia

El grado de cobertura del gasto público en España respecto a la UE-15
Nuria Rueda, Begoña Barruso, Carmen Calderón y Mª del Mar Herrador

The Impact of Direct Subsidies in Spain before and after the CAP'92 Reform
Carmen Murillo, Carlos San Juan and Stefan Sperlich

Determinants of post-privatisation performance of Spanish divested firms
Laura Cabeza García and Silvia Gómez Ansón

¿Por qué deciden diversificar las empresas españolas? Razones oportunistas versus razones económicas
Almudena Martínez Campillo

Dynamical Hierarchical Tree in Currency Markets
Juan Gabriel Brida, David Matesanz Gómez and Wiston Adrián Risso

Los determinantes sociodemográficos del gasto sanitario. Análisis con microdatos individuales
Ana María Angulo, Ramón Barberán, Pilar Egea y Jesús Mur

Why do companies go private? The Spanish case
Inés Pérez-Soba Aguilar

The use of GIS to study transport for disabled people
Verónica Cañal Fernández

The long run consequences of M&A: An empirical application
Cristina Bernad, Lucio Fuentelsaz and Jaime Gómez

Las clasificaciones de materias en economía: principios para el desarrollo de una nueva clasificación
Valentín Edo Hernández

Reforming Taxes and Improving Health: A Revenue-Neutral Tax Reform to Eliminate Medical and Pharmaceutical VAT
Santiago Álvarez-García, Carlos Pestana Barros y Juan Prieto-Rodriguez

Impacts of an iron and steel plant on residential property values
Celia Bilbao-Terol

Firm size and capital structure: Evidence using dynamic panel data
Víctor M. González and Francisco González
¿Cómo organizar una cadena hotelera? La elección de la forma de gobierno
Marta Fernández Barcala y Manuel González Díaz

Análisis de los efectos de la decisión de diversificar: un contraste del marco teórico “Agencia-Stewardship”
Almudena Martínez Campillo y Roberto Fernández Gago

Selecting portfolios given multiple eurostoxx-based uncertainty scenarios: a stochastic goal programming approach from fuzzy betas
Enrique Ballestero, Blanca Pérez-Gladish, Mar Arenas-Parra and Amelia Bilbao-Terol

“El bienestar de los inmigrantes y los factores implicados en la decisión de emigrar”
Anastasia Hernández Alemán y Carmelo J. León

Andrea Martínez-Noya and Esteban García-Canal

Diferencias salariales entre empresas públicas y privadas. El caso español
Begoña Cueto y Nuria Sánchez- Sánchez

Effects of Fiscal Treatments of Second Home Ownership on Renting Supply
Celia Bilbao Terol and Juan Prieto Rodriguez

Auditors’ ethical dilemmas in the going concern evaluation
Andres Guiral, Waymond Rodgers, Emiliano Ruiz and Jose A. Gonzalo

Convergencia en capital humano en España. Un análisis regional para el periodo 1970-2004
Susana Morales Sequera y Carmen Pérez Esparrells

Socially responsible investment: mutual funds portfolio selection using fuzzy multiobjective programming
Blanca Mª Pérez-Gladish, Mar Arenas-Parra , Amelia Bilbao-Terol and Mª Victoria Rodríguez-Uría

Persistencia del resultado contable y sus componentes: implicaciones de la medida de ajustes por devengo
Raúl Iñiguez Sánchez y Francisco Poveda Fuentes

Wage Inequality and Globalisation: What can we Learn from the Past? A General Equilibrium Approach
Concha Betrán, Javier Ferri and Maria A. Pons

Eficacia de los incentivos fiscales a la inversión en I+D en España en los años noventa
Desiderio Romero Jordán y José Félix Sanz Sanz

Convergencia regional en renta y bienestar en España
Robert Meneu Gaya

Tributación ambiental: Estado de la Cuestión y Experiencia en España
Ana Carrera Poncela

Salient features of dependence in daily us stock market indices
Luis A. Gil-Alana, Juncal Cuñado and Fernando Pérez de Gracia

La educación superior: ¿un gasto o una inversión rentable para el sector público?
Inés P. Murillo y Francisco Pedraja
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Effects of a reduction of working hours on a model with job creation and job destruction</td>
<td>Emilio Domínguez, Miren Ullibarri y Idoya Zabaleta</td>
</tr>
<tr>
<td>2007</td>
<td>Stock split size, signaling and earnings management: Evidence from the Spanish market</td>
<td>José Yagüe, J. Carlos Gómez-Sala and Francisco Poveda-Fuentes</td>
</tr>
<tr>
<td>2007</td>
<td>Modelización de las expectativas y estrategias de inversión en mercados de derivados</td>
<td>Begoña Font-Belaire</td>
</tr>
<tr>
<td>2008</td>
<td>Trade in capital goods during the golden age, 1953-1973</td>
<td>Mª Teresa Sanchis and Antonio Cubel</td>
</tr>
<tr>
<td>2008</td>
<td>El capital económico por riesgo operacional: una aplicación del modelo de distribución de pérdidas</td>
<td>Enrique José Jiménez Rodríguez y José Manuel Feria Domínguez</td>
</tr>
<tr>
<td>2008</td>
<td>The drivers of effectiveness in competition policy</td>
<td>Joan-Ramon Borrell and Juan-Luis Jiménez</td>
</tr>
<tr>
<td>2008</td>
<td>Corporate governance structure and board of directors remuneration policies: evidence from Spain</td>
<td>Carlos Fernández Méndez, Rubén Arrondo García and Enrique Fernández Rodríguez</td>
</tr>
<tr>
<td>2008</td>
<td>Beyond the disciplinary role of governance: how boards and donors add value to Spanish foundations</td>
<td>Pablo De Andrés Alonso, Valentin Azofra Palenzuela y M. Elena Romero Merino</td>
</tr>
<tr>
<td>2008</td>
<td>Complejidad y perfeccionamiento contractual para la contención del oportunismo en los acuerdos de franquicia</td>
<td>Vanesa Solís Rodríguez y Manuel González Díaz</td>
</tr>
<tr>
<td>2008</td>
<td>Inestabilidad y convergencia entre las regiones europeas</td>
<td>Jesús Mur, Fernando López y Ana Angulo</td>
</tr>
<tr>
<td>2008</td>
<td>Análisis espacial del cierre de explotaciones agrarias</td>
<td>Ana Aldanondo Ochoa, Carmen Almansa Sáez y Valero Casanovas Oliva</td>
</tr>
<tr>
<td>2008</td>
<td>Cross-Country Efficiency Comparison between Italian and Spanish Public Universities in the period 2000-2005</td>
<td>Tommaso Agasisti and Carmen Pérez Esparrells</td>
</tr>
<tr>
<td>2008</td>
<td>El desarrollo de la sociedad de la información en España: un análisis por comunidades autónomas</td>
<td>María Concepción García Jiménez y José Luis Gómez Barroso</td>
</tr>
<tr>
<td>2008</td>
<td>El medioambiente y los objetivos de fabricación: un análisis de los modelos estratégicos para su consecución</td>
<td>Lucía Avella Camarero, Esteban Fernández Sánchez y Daniel Vázquez-Bustelo</td>
</tr>
<tr>
<td>2008</td>
<td>Influence of bank concentration and institutions on capital structure: New international evidence</td>
<td>Víctor M. González and Francisco González</td>
</tr>
<tr>
<td>2008</td>
<td>Generalización del concepto de equilibrio en juegos de competición política</td>
<td>Mª Dolores López González y Javier Rodrigo Hitos</td>
</tr>
<tr>
<td>2008</td>
<td>Smooth Transition from Fixed Effects to Mixed Effects Models in Multi-level regression Models</td>
<td>Maria José Lombardía and Stefan Sperlich</td>
</tr>
</tbody>
</table>
375/2008 A Revenue-Neutral Tax Reform to Increase Demand for Public Transport Services
Carlos Pestana Barros and Juan Prieto-Rodriguez

376/2008 Measurement of intra-distribution dynamics: An application of different approaches to the European regions
Adolfo Maza, María Hierro and José Villaverde

377/2008 Migración interna de extranjeros y ¿nueva fase en la convergencia?
María Hierro y Adolfo Maza

378/2008 Efectos de la Reforma del Sector Eléctrico: Modelización Teórica y Experiencia Internacional
Ciro Eduardo Bazán Navarro

379/2008 A Non-Parametric Independence Test Using Permutation Entropy
Mariano Matilla-García and Manuel Ruiz Marín

380/2008 Testing for the General Fractional Unit Root Hypothesis in the Time Domain
Uwe Hassler, Paulo M.M. Rodrigues and Antonio Rubia

381/2008 Multivariate gram-charlier densities
Esther B. Del Brio, Trino-Manuel Ñíguez and Javier Perote

382/2008 Analyzing Semiparametrically the Trends in the Gender Pay Gap - The Example of Spain
Ignacio Moral-Arce, Stefan Sperlich, Ana I. Fernández-Sainz and Maria J. Roca

383/2008 A Cost-Benefit Analysis of a Two-Sided Card Market
Santiago Carbó Valverde, David B. Humphrey, José Manuel Liñares Zegarra and Francisco Rodríguez Fernández

384/2008 A Fuzzy Bicriteria Approach for Journal Deselection in a Hospital Library
M. L. López-Avello, M. V. Rodríguez-Uría, B. Pérez-Gladish, A. Bilbao-Terol, M. Arenas-Parra

385/2008 Valoración de las grandes corporaciones farmaceúticas, a través del análisis de sus principales intangibles, con el método de opciones reales
Gracia Rubio Martín y Prosper Lamothe Fernández

386/2008 El marketing interno como impulsor de las habilidades comerciales de las pyme españolas: efectos en los resultados empresariales
Mª Leticia Santos Vijande, Mª José Sanzo Pérez, Nuria García Rodríguez y Juan A. Trespalacios Gutiérrez

387/2008 Understanding Warrants Pricing: A case study of the financial market in Spain
David Abad y Belén Nieto

388/2008 Aglomeración espacial, Potencial de Mercado y Geografía Económica: Una revisión de la literatura
Jesús López-Rodríguez y J. Andrés Faiña

389/2008 An empirical assessment of the impact of switching costs and first mover advantages on firm performance
Jaime Gómez, Juan Pablo Maícas

390/2008 Tender offers in Spain: testing the wave
Ana R. Martínez-Cañete y Inés Pérez-Soba Aguilar
391/2008 La integración del mercado español a finales del siglo XIX: los precios del trigo entre 1891 y 1905
Mariano Matilla García, Pedro Pérez Pascual y Basilio Sanz Carnero

392/2008 Cuando el tamaño importa: estudio sobre la influencia de los sujetos políticos en la balanza de bienes y servicios
Alfonso Echazarra de Gregorio

393/2008 Una visión cooperativa de las medidas ante el posible daño ambiental de la desalación
Borja Montaño Sanz

394/2008 Efectos externos del endeudamiento sobre la calificación crediticia de las Comunidades Autónomas
Andrés Leal Marcos y Julio López Laborda

395/2008 Technical efficiency and productivity changes in Spanish airports: A parametric distance functions approach
Beatriz Tovar & Roberto Rendeiro Martín-Cejas

396/2008 Network analysis of exchange data: Interdependence drives crisis contagion
David Matesanz Gómez & Guillermo J. Ortega

397/2008 Explaining the performance of Spanish privatised firms: a panel data approach
Laura Cabeza García and Silvia Gomez Anson

398/2008 Technological capabilities and the decision to outsource R&D services
Andrea Martínez-Noya and Esteban García-Canal

399/2008 Hybrid Risk Adjustment for Pharmaceutical Benefits
Manuel García-Goñi, Pere Ibern & José María Inoriza

400/2008 The Team Consensus–Performance Relationship and the Moderating Role of Team Diversity
José Henrique Dieguez, Javier González-Benito and Jesús Galende

401/2008 The institutional determinants of CO2 emissions: A computational modelling approach using Artificial Neural Networks and Genetic Programming
Marcos Álvarez-Díaz, Gonzalo Caballero Miguez and Mario Soliño

402/2008 Alternative Approaches to Include Exogenous Variables in DEA Measures: A Comparison Using Monte Carlo
José Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro and Daniel Santín-González

403/2008 Efecto diferencial del capital humano en el crecimiento económico andaluz entre 1985 y 2004: comparación con el resto de España
Mª del Pópulo Pablo-Romero Gil-Delgado y Mª de la Palma Gómez-Calero Valdés

404/2008 Análisis de fusiones, variaciones conjeturales y la falacia del estimador en diferencias
Juan Luis Jiménez y Jordi Perdigueró

405/2008 Política fiscal en la uem: ¿basta con los estabilizadores automáticos?
Jorge Uxó González y Mª Jesús Arroyo Fernández

406/2008 Papel de la orientación emprendedora y la orientación al mercado en el éxito de las empresas
Óscar González-Benito, Javier González-Benito y Pablo A. Muñoz-Gallego

407/2008 La presión fiscal por impuesto sobre sociedades en la unión europea
Elena Fernández Rodríguez, Antonio Martínez Arias y Santiago Álvarez García
408/2008 The environment as a determinant factor of the purchasing and supply strategy: an empirical analysis
Dr. Javier González-Benito y MS Duilio Reis da Rocha

409/2008 Cooperation for innovation: the impact on innovatory effort
Gloria Sánchez González and Liliana Herrera

410/2008 Spanish post-earnings announcement drift and behavioral finance models
Carlos Forner and Sonia Sanabria

411/2008 Decision taking with external pressure: evidence on football manager dismissals in argentina and their consequences
Ramón Flores, David Forrest and Juan de Dios Tena

Raúl Serrano y Vicente Pinilla

413/2008 Voter heuristics in Spain: a descriptive approach elector decision
José Luis Sáez Lozano and Antonio M. Jaime Castillo

414/2008 Análisis del efecto área de salud de residencia sobre la utilización y acceso a los servicios sanitarios en la Comunidad Autónoma Canaria
Ignacio Abásolo Alessón, Lidia García Pérez, Raquel Aguiai Ibáñez y Asier Amador Robayna

415/2008 Impact on competitive balance from allowing foreign players in a sports league: an analytical model and an empirical test
Ramón Flores, David Forrest & Juan de Dios Tena

416/2008 Organizational innovation and productivity growth: Assessing the impact of outsourcing on firm performance
Alberto López

417/2008 Value Efficiency Analysis of Health Systems
Eduardo González, Ana Cárcaba & Juan Ventura

418/2008 Equidad en la utilización de servicios sanitarios públicos por comunidades autónomas en España: un análisis multinivel
Ignacio Abásolo, Jaime Pinilla, Miguel Negrín, Raquel Aguiai y Lidia García

419/2008 Piedras en el camino hacia Bolonia: efectos de la implantación del EEES sobre los resultados académicos
Carmen Florido, Juan Luis Jiménez e Isabel Santana

420/2008 The welfare effects of the allocation of airlines to different terminals
M. Pilar Socorro and Ofelia Betancor

421/2008 How bank capital buffers vary across countries. The influence of cost of deposits, market power and bank regulation
Ana Rosa Fonseca and Francisco González

422/2008 Analysing health limitations in spain: an empirical approach based on the european community household panel
Marta Pascual and David Cantarero
Regional productivity variation and the impact of public capital stock: an analysis with spatial interaction, with reference to Spain
Miguel Gómez-Antonio and Bernard Fingleton

Average effect of training programs on the time needed to find a job. The case of the training schools program in the south of Spain (Seville, 1997-1999).
José Manuel Cansino Muñoz-Repiso and Antonio Sánchez Braza

Medición de la eficiencia y cambio en la productividad de las empresas distribuidoras de electricidad en Perú después de las reformas
Raúl Pérez-Reyes y Beatriz Tovar

Acerando posturas sobre el descuento ambiental: sondeo Delphi a expertos en el ámbito internacional
Carmen Almansa Sáez y José Miguel Martínez Paz

Determinants of abnormal liquidity after rating actions in the Corporate Debt Market
Pilar Abad, Antonio Díaz and M. Dolores Robles

Export led-growth and balance of payments constrained. New formalization applied to Cuban commercial regimes since 1960
David Matesanz Gómez, Guadalupe Fugarolas Álvarez-Ude and Isis Mañalich Gálvez

La deuda implícita y el desequilibrio financiero-actuarial de un sistema de pensiones. El caso del régimen general de la seguridad social en España
José Enrique Devesa Carpio y Mar Devesa Carpio

Efectos de la descentralización fiscal sobre el precio de los carburantes en España
Desiderio Romero Jordán, Marta Jorge García-Inés y Santiago Álvarez García

Euro, firm size and export behavior
Silviano Esteve-Pérez, Salvador Gil-Pareja, Rafael Llorca-Vivero and José Antonio Martinez-Serrano

Does social spending increase support for free trade in advanced democracies?
Ismael Sanz, Ferran Martinez i Coma and Federico Steinberg

Potencial de Mercado y Estructura Espacial de Salarios: El Caso de Colombia
Jesús López-Rodríguez y Maria Cecilia Acevedo

Persistence in Some Energy Futures Markets
Juncal Cunado, Luis A. Gil-Alana and Fernando Pérez de Gracia

La inserción financiera externa de la economía francesa: inversores institucionales y nueva gestión empresarial
Ignacio Álvarez Peralta

¿Flexibilidad o rigidez salarial en España?: un análisis a escala regional
Ignacio Moral Arce y Adolfo Maza Fernández

Intangible relationship-specific investments and the performance of r&d outsourcing agreements
Andrea Martínez-Noya, Esteban García-Canal & Mauro F. Guillén

Friendly or Controlling Boards?
Pablo de Andrés Alonso & Juan Antonio Rodríguez Sanz
<table>
<thead>
<tr>
<th>Volumen</th>
<th>Título</th>
<th>Autor(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td>439/2009</td>
<td>La sociedad Trenor y Cia. (1838-1926): un modelo de negocio industrial en la España del siglo XIX</td>
<td>Amparo Ruiz Llopis</td>
</tr>
<tr>
<td>440/2009</td>
<td>Continental bias in trade</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero & José Antonio Martínez Serrano</td>
</tr>
<tr>
<td>441/2009</td>
<td>Determining operational capital at risk: an empirical application to the retail banking</td>
<td>Enrique José Jiménez-Rodríguez, José Manuel Feria-Dominguez & José Luis Martín-Marín</td>
</tr>
<tr>
<td>442/2009</td>
<td>Costes de mitigación y escenarios post-kyoto en España: un análisis de equilibrio general para España</td>
<td>Mikel González Ruiz de Eguino</td>
</tr>
<tr>
<td>443/2009</td>
<td>Las revistas españolas de economía en las bibliotecas universitarias: ranking, valoración del indicador y del sistema</td>
<td>Valentín Edo Hernández</td>
</tr>
<tr>
<td>444/2009</td>
<td>Convergencia económica en España y coordinación de políticas económicas. un estudio basado en la estructura productiva de las CC.AA.</td>
<td>Ana Cristina Mingorance Arnáiz</td>
</tr>
<tr>
<td>445/2009</td>
<td>Instrumentos de mercado para reducir emisiones de co2: un análisis de equilibrio general para España</td>
<td>Mikel González Ruiz de Eguino</td>
</tr>
<tr>
<td>446/2009</td>
<td>El comercio intra e inter-regional del sector Turismo en España</td>
<td>Carlos Llano y Tamara de la Mata</td>
</tr>
<tr>
<td>447/2009</td>
<td>Efectos del incremento del precio del petróleo en la economía española: Análisis de cointegración y de la política monetaria mediante reglas de Taylor</td>
<td>Fernando Hernández Martínez</td>
</tr>
<tr>
<td>449/2009</td>
<td>Global Economy Dynamics? Panel Data Approach to Spillover Effects</td>
<td>Gregory Daco, Fernando Hernández Martínez & Li-Wu Hsu</td>
</tr>
<tr>
<td>450/2009</td>
<td>Pricing levered warrants with dilution using observable variables</td>
<td>Isabel Abínzano & Javier F. Navas</td>
</tr>
<tr>
<td>452/2009</td>
<td>A Detailed Comparison of Value at Risk in International Stock Exchanges</td>
<td>Pilar Abad & Sonia Benito</td>
</tr>
<tr>
<td>453/2009</td>
<td>Understanding offshoring: has Spain been an offshoring location in the nineties?</td>
<td>Belén González-Díaz & Rosario Gandoy</td>
</tr>
<tr>
<td>454/2009</td>
<td>Outsourcing decision, product innovation and the spatial dimension: Evidence from the Spanish footwear industry</td>
<td>José Antonio Belso-Martínez</td>
</tr>
</tbody>
</table>
472/2009 On measuring the effect of demand uncertainty on costs: an application to port terminals
Ana Rodríguez-Álvarez, Beatriz Tovar & Alan Wall

473/2009 Order of market entry, market and technological evolution and firm competitive performance
Jaime Gómez, Gianvito Lanzolla & Juan Pablo Maicas

474/2009 La Unión Económica y Monetaria Europea en el proceso exportador de Castilla y León (1993-2007): un análisis de datos de panel
Almudena Martínez Campillo y Mª del Pilar Sierra Fernández

475/2009 Do process innovations boost SMEs productivity growth?
Juan A. Mañez, María E. Rochina Barrachina, Amparo Sanchis Llopis & Juan A. Sanchis Llopis

476/2009 Incertidumbre externa y elección del modo de entrada en el marco de la inversión directa en el exterior
Cristina López Duarte y Marta Mª Vidal Suárez

477/2009 Testing for structural breaks in factor loadings: an application to international business cycle
José Luis Cendejas Bueno, Sonia de Lucas Santos, Inmaculada Álvarez Ayuso & Mª Jesús Delgado Rodríguez

478/2009 ¿Esconde la rigidez de precios la existencia de colusión? El caso del mercado de carburantes en las Islas Canarias
Juan Luis Jiménez y Jordi Perdiguero

479/2009 The poni test with structural breaks
Antonio Aznar & María-Isabel Ayuda

480/2009 Accurucy and reliability of Spanish regional accounts (CRE-95)
Verónica Cañal Fernández

481/2009 Estimating regional variations of R&D effects on productivity growth by entropy econometrics
Esteban Fernández-Vázquez y Fernando Rubiera-Morollón

482/2009 Why do local governments privatize the provision of water services? Empirical evidence from Spain
Francisco González-Gómez, Andrés J. Picazo-Tadeo & Jorge Guardiola

483/2009 Assessing the regional digital divide across the European Union-27
María Rosalía Vicente & Ana Jesús López

484/2009 Measuring educational efficiency and its determinants in Spain with parametric distance functions
José Manuel Cordero Ferrera, Eva Crespo Cebada & Daniel Santín González

485/2009 Spatial analysis of public employment services in the Spanish provinces
Patricia Suárez Cano & Matías Mayor Fernández

486/2009 Trade effects of continental and intercontinental preferential trade agreements
Salvador Gil-Pareja, Rafael Llorca-Vivero & José Antonio Martinez-Serrano

487/2009 Testing the accuracy of DEA for measuring efficiency in education under endogeneity
Salvador Gil-Pareja, Rafael Llorca-Vivero & José Antonio Martinez-Serrano

488/2009 Measuring efficiency in primary health care: the effect of exogenous variables on results
José Manuel Cordero Ferrera, Eva Crespo Cebada & Luis R. Murillo Zamorano
Capital structure determinants in growth firms accessing venture funding
Marina Balboa, José Martí & Álvaro Tresierra

Determinants of debt maturity structure across firm size
Víctor M. González

Análisis del efecto de la aplicación de las NIIF en la valoración de las salidas a bolsa
Susana Álvarez Otero y Eduardo Rodríguez Enríquez

An analysis of urban size and territorial location effects on employment probabilities: the spanish case
Ana Viñuela-Jiménez, Fernando Rubiera-Morollón & Begoña Cueto

Determinantes de la estructura de los consejos de administración en España
Isabel Acero Fraile y Nuria Alcalde Fradejas

Performance and completeness in repeated inter-firm relationships: the case of franchising
Vanesa Solis-Rodriguez & Manuel Gonzalez-Diaz

A Revenue-Based Frontier Measure of Banking Competition
Santiago Carbó, David Humphrey & Francisco Rodríguez

Categorical segregation in social networks
Antoni Rubí-Barceló

Beneficios ambientales no comerciales de la directiva marco del agua en condiciones de escasez: análisis económico para el Guadalquivir
Julia Martin-Ortega, Giacomo Giannoccaro y Julio Berbel Vecino

Monetary integration and risk diversification in eu-15 sovereign debt markets
Juncal Cuñado & Marta Gómez-Puig

The Marshall Plan and the Spanish autarky: A welfare loss analysis
José Antonio Carrasco Gallego

The role of learning in firm R&D persistence
Juan A. Mañez, María E. Rochina-Barrachina, Amparo Sanchis-Llopis & Juan A. Sanchis-Llopis

Is venture capital more than just money?
Marina Balboa, José Martí & Nina Zieling

On the effects of supply strategy on business performance: do the relationships among generic competitive objectives matter?
Javier González-Benito

Corporate cash holding and firm value
Cristina Martínez-Sola, Pedro J. Garcia-Teruel & Pedro Martínez-Solano

El impuesto de flujos de caja de sociedades: una propuesta de base imponible y su aproximación contable en España
Lourdes Jerez Barroso y Joaquin Texeira Quirós

The effect of technological, commercial and human resources on the use of new technology
Jaime Gómez & Pilar Vargas
¿Cómo ha afectado la fiscalidad a la rentabilidad de la inversión en vivienda en España?
Un análisis para el periodo 1996 y 2007
Jorge Onrubia Fernández y María del Carmen Rodado Ruiz

Modelización de flujos en el análisis input-output a partir de la teoría de redes
Ana Salomé García Muñiz

Export-led-growth hypothesis revisited. a balance of payments approach for Argentina, Brazil, Chile and Mexico
David Matesanz Gómez & Guadalupe Fugarolas Álvarez-Ude

Realised hedge ratio properties, performance and implications for risk management: evidence from the spanish ibex 35 spot and futures markets
David G McMillan & Raquel Quiroga García

Do we sack the manager... or is it better not to? Evidence from Spanish professional football
Francisco González-Gómez, Andrés J. Picazo-Tadeo & Miguel Á. García-Rubio

Have Spanish port sector reforms during the last two decades been successful? A cost frontier approach
Ana Rodríguez-Álvarez & Beatriz Tovar

Size & Regional Distribution of Financial Behavior Patterns in Spain
Juan Antonio Maroto Acín, Pablo García Estévez & Salvador Roji Ferrari

The impact of public reforms on the productivity of the Spanish ports: a parametric distance function approach
Ramón Núñez-Sánchez & Pablo Coto-Millán

Trade policy versus institutional trade barriers: an application using “good old” ols
Laura Márquez-Ramos, Inmaculada Martinez-Zarzoso & Celestino Suárez-Burguet

The “Double Market” approach in venture capital and private equity activity: the case of Europe
Marina Balboa & José Martí

International accounting differences and earnings smoothing in the banking industry
Marina Balboa, Germán López-Espinosa & Antonio Rubia

Convergence in car prices among European countries
Simón Sosvilla-Rivero & Salvador Gil-Pareja

Effects of process and product-oriented innovations on employee downsizing
José David Vicente-Lorente & José Ángel Zúñiga-Vicente

Inequality, the politics of redistribution and the tax-mix
Jenny De Freitas

Efectos del desajuste educativo sobre el rendimiento privado de la educación: un análisis para el caso español (1995-2006)
Inés P. Murillo, Marta Rahona y Mª del Mar Salinas

Structural breaks and real convergence in opec countries
Juncal Cuñado

Human Capital, Geographical location and Policy Implications: The case of Romania
Jesús López-Rodríguez, Andres Faiña y Bolea Cosmin-Gabriel
Organizational unlearning context fostering learning for customer capital through time: lessons from SMEs in the telecommunications industry
Anthony K. P. Wensley, Antonio Leal-Millán, Gabriel Cepeda-Carrión & Juan Gabriel Cegarra-Navarro

The governance threshold in international trade flows
Marta Felis-Rota

The intensive and extensive margins of trade decomposing exports growth differences across Spanish regions
Asier Minondo Uribe-Etxeberria & Francisco Requena Silvente

Why do firms locate R&D outsourcing agreements offshore? the role of ownership, location, and externalization advantages
Andrea Martínez-Noya, Esteban García-Canal & Mauro f. Guillén

Corporate Taxation and the Productivity and Investment Performance of Heterogeneous Firms: Evidence from OECD Firm-Level Data
Norman Gemmell, Richard Kneller, Ismael Sanz & José Félix Sanz-Sanz

Modelling Personal Income Taxation in Spain: Revenue Elasticities and Regional Comparisons
John Creedy & José Félix Sanz-Sanz

Mind the Remoteness!. Income disparities across Japanese Prefectures
Jesús López-Rodríguez, Daisuke Nakamura

El nuevo sistema de financiación autonómica: descripción, estimación empírica y evaluación
Antoni Zabalza y Julio López Laborda

Markups, bargaining power and offshoring: an empirical assessment
Lourdes Moreno & Diego Rodríguez

The snp-dcc model: a new methodology for risk management and forecasting
Esther B. Del Brio, Trino-Manuel Ñiguez & Javier Perote

El uso del cuadro de mando integral y del presupuesto en la gestión estratégica de los hospitales públicos
David Naranjo Gil

Análisis de la efectividad de las prácticas de trabajo de alta implicación en las fábricas españolas
Daniel Vázquez-Bustelo y Lucía Avella Camarero

Energía, innovación y transporte: la electrificación de los tranvías en España, 1896-1935
Alberte Martínez López

La ciudad como negocio: gas y empresa en una región española, Galicia 1850-1936
Alberte Martínez López y Jesús Mirás Araujo

To anticipate or not to anticipate? A comparative analysis of opportunistic early elections and incumbents' economic performance
Pedro Riera Sagrera

The impact of oil shocks on the Spanish economy
Ana Gómez-Loscos, Antonio Montañés & María Dolores Gadea
The efficiency of public and publicly-subsidized high schools in Spain: evidence from PISA-2006
Maria Jesús Mancebón, Jorge Calero, Álvaro Choi & Domingo P. Ximénez-de-Embún

Regulation as a way to force innovation: the biodiesel case
Jordi Perdiguero & Juan Luis Jiménez

Pricing strategies of Spanish network carrier
Xavier Fageda, Juan Luis Jiménez & Jordi Perdiguero

Papel del posicionamiento del distribuidor en la relación entre la marca de distribuidor y lealtad al establecimiento comercial
Oscar González-Benito y Mercedes Martos-Partal

How Bank Market Concentration, Regulation, and Institutions Shape the Real Effects of Banking Crises
Ana I. Fernández, Francisco González & Nuria Suárez

Una estimación del comercio interregional trimestral de bienes en España mediante técnicas de interpolación temporal
Nuria Gallego López, Carlos Llano Verduras y Julián Pérez García

Puerto, empresas y ciudad: una aproximación histórica al caso de Las Palmas de Gran Canaria
Miguel Suárez, Juan Luis Jiménez y Daniel Castillo

Multinationals in the motor vehicles industry: a general equilibrium analysis for a transition economy
Concepción Latorre & Antonio G. Gómez-Plana

Core/periphery scientific collaboration networks among very similar researchers
Antoni Rubí-Barceló

Basic R&D in vertical markets
Miguel González-Maestre & Luis M. Granero

Factores condicionantes de la presión fiscal de las entidades de crédito españolas, ¿existen diferencias entre bancos y cajas de ahorros?
Ana Rosa Fonseca Díaz, Elena Fernández Rodríguez y Antonio Martínez Arias

Analyzing an absorptive capacity: Unlearning context and Information System Capabilities as catalysts for innovativeness
Gabriel Cepeda-Carrión, Juan Gabriel Cegarra-Navarro & Daniel Jimenez-Jimenez

The resolution of banking crises and market discipline: international evidence
Elena Cubillas, Ana Rosa Fonseca & Francisco González

A strategic approach to network value in information markets
Lucio Fuentelsaz, Elisabet Garrido & Juan Pablo Maicas

Accounting for the time pattern of remittances in the Spanish context
Alfonso Echazarra

How to design franchise contracts: the role of contractual hazards and experience
Vanesa Solis-Rodriguez & Manuel Gonzalez-Díaz
555/2010 Una teoría integradora de la función de producción al rendimiento empresarial
Javier González Benito

556/2010 Height and economic development in Spain, 1850-1958
Ramón Maria-Dolores & José Miguel Martínez-Carrión

557/2010 Why do entrepreneurs use franchising as a financial tool? An agency explanation
Manuel González-Díaz & Vanesa Solís-Rodríguez

558/2010 Explanatory Factors of Urban Water Leakage Rates in Southern Spain
Francisco González-Gómez, Roberto Martínez-Espiñeira, Maria A. García-Valiñas & Miguel Á. García Rubio

559/2010 Los rankings internacionales de las instituciones de educación superior y las clasificaciones universitarias en España: visión panorámica y prospectiva de futuro.
Carmen Pérez-Esparrells y José Mª Gómez-Sancho.

560/2010 Análisis de los determinantes de la transparencia fiscal: Evidencia empírica para los municipios catalanes
Alejandro Esteller Moré y José Polo Otero

561/2010 Diversidad lingüística e inversión exterior: el papel de las barreras lingüísticas en los procesos de adquisición internacional
Cristina López Duarte y Marta Mª Vidal Suárez

562/2010 Costes y beneficios de la competencia fiscal en la Unión Europea y en la España de las autonomías
José Mª Cantos, Agustín García Rico, Mª Gabriela Lagos Rodríguez y Raquel Álamo Cerrillo

563/2010 Customer base management and profitability in information technology industries
Juan Pablo Maicas y Francisco Javier Sese

564/2010 Expansión internacional y distancia cultural: distintas aproximaciones —hofstede, schwartz, globe
Cristina López Duarte y Marta Mª Vidal Suárez

565/2010 Economies of scale and scope in service firms with demand uncertainty: An application to a Spanish port
Beatriz Tovar & Alan Wall

566/2010 Fiscalidad y elección entre renta vitalicia y capital único por los inversores en planes de pensiones: el caso de España
Félix Domínguez Barrero y Julio López Laborda

567/2010 Did the cooperative start life as a joint-stock company? Business law and cooperatives in Spain, 1869–1931
Timothy W. Guinnan & Susana Martínez-Rodríguez

Félix J. López-Iturriaga, Óscar López-de-Foronda & Iván Pastor Sanz

569/2010 Financiación de los cuidados de larga duración en España
Raúl del Pozo Rubio y Francisco Escribano Sotos
570/2010 Is the Border Effect an Artefact of Geographic Aggregation? Carlos Llano-Verduras, Asier Minondo-Uribe & Francisco Requena-Silvente

571/2010 Notes on using the hidden asset or the contribution asset to compile the actuarial balance for pay-as-you-go pension systems Carlos Vidal-Meliá & María del Carmen Boado-Penas

573/2010 Endogenous mergers of complements with mixed bundling Ricardo Flores-Fillol & Rafael Moner-Colonques

574/2010 Redistributive Conflicts and Preferences for Tax Schemes in Europe Antonio M. Jaime-Castillo & Jose L. Saez-Lozano

575/2010 Spanish emigration and the setting-up of a great company in Mexico: bimbo, 1903-2008 Javier Moreno Lázaro

576/2010 Mantenimiento temporal de la equidad horizontal en el sistema de financiación autonómica Julio López Laborda y Antoni Zabalza

577/2010 Sobreeeducación, Educación no formal y Salarios: Evidencia para España Sandra Nieto y Raúl Ramos

578/2010 Dependencia y empleo: un análisis empírico con la encuesta de discapacidades y atención a la dependencia (edad) 2008. David Cantarero-Prieto y Patricia Moreno-Mencia

579/2011 Environment and happiness: new evidence for Spain Juncal Cuñado & Fernando Pérez de Gracia

580/2011 Analysis of emerging barriers for e-learning models. A case of study Nuria Calvo & Paolo Rungo

581/2011 Unemployment, cycle and gender Amado Peiró, Jorge Belaire-Franch, & Maria Teresa Gonzalo

583/2011 The Efficiency of Performance-based-fee Funds Ana C. Díaz-Mendoza, Germán López-Espinosa & Miguel A. Martínez-Sedano

584/2011 Green and good?. The investment performance of US environmental mutual funds Francisco J. Climent-Diranzo & Pilar Soriano-Felipe

585/2011 El fracaso de Copenhague desde la teoría de juegos. Yolanda Fernández Fernández, Mª Angeles Fernández López y Blanca Olmedillas Blanco

586/2011 Tie me up, tie me down! the interplay of the unemployment compensation system, fixed-term contracts and rehirings José M. Arranz & Carlos García-Serrano
587/2011 Corporate social performance, innovation intensity and their impacts on financial performance: evidence from lending decisions
Andrés Guiral

588/2011 Assessment of the programme of measures for coastal lagoon environmental restoration using cost-benefit analysis.
José Miguel Martínez Paz & Ángel Perni Llorente

589/2011 Illicit drug use and labour force participation: a simultaneous equations approach
Berta Rivera, Bruno Casal, Luis Currais & Paolo Rungo

590/2011 Influencia de la propiedad y el control en la puesta en práctica de la rsc en las grandes empresas españolas
José-Luis Godos-Diez, Roberto Fernández-Gago y Laura Cabeza-García

591/2011 Ownership, incentives and hospitals
Xavier Fageda & Eva Fiz

592/2011 La liberalización del ferrocarril de mercancías en europa: ¿éxito o fracaso?
Daniel Albalate del Sol, Maria Lluïsa Sort García y Universitat de Barcelona

593/2011 Do nonreciprocal preference regimes increase exports?
Salvador Gil-Pareja, Rafael Llorca-Vivero & José Antonio Martinez-Serrano

594/2011 Towards a dynamic analysis of multiple-store shopping: evidence from Spanish panel data
Noemí Martínez-Caraballo, Manuel Salvador, Carmen Berné & Pilar Gargallo

595/2011 Base imponible y neutralidad del impuesto de sociedades: alternativas y experiencias
Lourdes Jerez Barroso

596/2011 Cambio técnico y modelo de negocio: las compañías de transporte urbano en España, 1871-1989
Alberte Martínez López

597/2011 A modified dickey-fuller procedure to test for stationarity
Antonio Aznar, María-Isabel Ayuda

598/2011 Entorno institucional, estructura de propiedad e inversión en I+D: Un análisis internacional
Félix J. López Iturriaga y Emilio J. López Millán

599/2011 Factores competitivos y oferta potencial del sector lechero en Navarra
Valero L. Casasnovas Oliva y Ana M. Aldanondo Ochoa

600/2011 Política aeroportuaria y su impacto sobre la calidad percibida de los aeropuertos
Juan Luis Jiménez y Ancor Suárez

601/2011 Regímenes de tipo de cambio y crecimiento económico en países en desarrollo
Elena Lasarte Navamuel y José Luis Pérez Rivero

602/2011 La supervivencia en las empresas de alta tecnología españolas: análisis del sector investigación y desarrollo
Evangelina Baltar Salgado, Sara Fernández López, Isabel Neira Gómez y Milagros Vivel Búa

603/2011 Análisis económico y de rentabilidad del sistema financiero español, por tipo de entidades y tamaño, después de cuatro años de crisis y ante los retos de la reestructuración financiera
Salvador Climent Serrano
Does competition affect the price of water services? Evidence from Spain
Germà Bel, Francisco González-Gómez & Andrés J Picazo-Tadeo

The Effects of Remoteness in Japanese Educational Levels
Jesús López-Rodríguez & Daisuke Nakamura

The money market under information asymmetries and imperfectly competitive loan and deposit markets
Aday Hernández

The effects of airline and high speed train integration
M. Pilar Socorro & M. Fernanda Viecens

Consecuencias de la imbricación de los clientes en la dirección medioambiental: un análisis empírico
Jesús Ángel del Brío González, Esteban Fernández Sánchez y Beatriz Junquera Cimadevilla

Revenue autonomy and regional growth: an analysis for the 25 year-process of fiscal decentralisation in Spain
Ramiro Gil-Serrate, Julio López-Laborda & Jesús Mur

The accessibility to employment offices in the Spanish labor market: Implications in terms of registered unemployment
Patricia Suárez, Matías Mayor & Begoña Cueto

Time-varying integration in European government bond markets
Pilar Abad, Helena Chuliá & Marta Gómez-Puig

Production networks and EU enlargement: is there room for everyone in the automotive industry?
Leticia Blázquez, Carmen Diaz-Mora & Rosario Gandoy

Los factores pronóstico económico, estructura productiva y capacidad de innovar en la valoración de activos españoles
Mª Begoña Font Belaire y Alfredo Juan Grau Grau

Capital structure adjustment process in firms accessing venture funding
Marina Balboa, José Martí & Álvaro Tresierra

Flexibilidad Contable en la Valoración de Instrumentos Financieros Híbridos
Jacinto Marabel-Romo, Andrés Guiral-Contreras & José Luis Crespo-Espert

Why are (or were) Spanish banks so profitable?
Antonio Trujillo-Ponce

Extreme value theory versus traditional garch approaches applied to financial data: a comparative evaluation
Dolores Furió & Francisco J. Climent

La restricción de balanza de pagos en la España del euro. Un enfoque comparativo.
David Matésanz Gómez, Guadalupe Fugarolas Álvarez-Ude y Roberto Bande Ramudo

Is inefficiency under control in the justice administration?
Marta Espasa & Alejandro Esteller-Morè

The evolving patterns of competition after deregulation
Jaime Gómez Villascuerna, Raquel Orcos Sánchez & Sergio Palomas Doña
621/2011 Análisis pre y post-fusiones del sector compuesto por las cajas de ahorros españolas: el tamaño importa
Antonio A. Golpe, Jesús Iglesias y Juan Manuel Martín

622/2011 Evaluating three proposals for testing independence in non linear spatial processes

623/2011 Valoración del Mercado de los Activos Éticos en España: una Aplicación del Método de los Precios Hedónicos
Celia Bilbao-Terol y Verónica Cañal-Fernández

624/2011 Happiness beyond Material Needs: The Case of the Mayan People
Jorge Guardiola, Francisco González-Gómez & Miguel A. García-Rubio

625/2011 Stock characteristics, investor type and market myopia
Cristina Del Rio-Solano & Rafael Santamaria-Aquilué

626/2011 Is mistrust under control in the justice administration?
Alejandro Esteller-Moré

627/2011 Working capital management, corporate performance, and financial constraints
Sonia Baños-Caballero, Pedro J. García-Teruel & Pedro Martínez-Solano

628/2011 On the optimal distribution of traffic of network airlines
Xavier Fageda & Ricardo Flores-Fillol

629/2011 Environmental tax and productivity in a subcentral context: new findings on the porter hypothesis
Jaime Vallés- Giménez & Anabel Zárate-Marco

630/2011 The impact of scale effects on the prevailing internet-based banking model in the US
Alexandre Momparlera, Francisco J. Climentb & José M. Ballesterb

631/2011 Student achievement in a cross-country perspective: a multilevel analysis of pisa2006 data for Italy and Spain
Tommaso Agasisti & Jose Manuel Cordero-Ferrera

632/2011 Banking liberalization and firms’ debt structure: International evidence
Víctor M. González & Francisco González

633/2011 Public sector contingent liabilities in Spanish toll roads
Carlos Contreras

634/2011 Fiscal Sustainability and Immigration in the Madrid Region
Luis Miguel Doncel, Pedro Durá, Pilar Grau-Carles & Jorge Sainz

Valentín Edo Hernández

636/2011 A network approach to services internationalization
Stefano Visintin

637/2011 Factors behind the presence of agricultural credit cooperatives in Spain, 1900-1935: an econometric model
Ángel Pascual Martínez-Soto, Ildefonso Méndez- Martínez & Susana Martínez-Rodriguez.
La eficiencia técnica en la industria de agua latinoamericana medida a través de la función de distancia
Angel Higuerey Gómez, Lourdes Trujillo Castellano y María Manuela González Serrano

Urban Patterns, Population Density and the Cost of Providing Basic Infrastructure: A Frontier Approach
Inmaculada C. Álvarez, Ángel M. Prieto & José L. Zofío

A comparison of national vs. multinational firms’ performance using a general equilibrium perspective
Maria C. Latorre

A computable general equilibrium evaluation of market performance after the entry of multinationals
Maria C. Latorre

Competition for procurement shares
José Alcalde & Matthias Dahm

Air services on thin routes: regional versus low-cost airlines
Xavier Fageda & Ricardo Flores-Fillol

Efficiency and Stability in a Strategic Model of Hedonic Coalitions
Antoni Rubi-Barceló

An analysis of the cost of disability across Europe using the standard of living approach
José-Ignacio Antón, Francisco-Javier Braña & Rafael Muñoz de Bustillo

Estimating the gravity equation with the actual number of exporting firms
Asier Minondo & Francisco Requena

New public management-delivery forms, quality levels and political factors on solid management waste costs in Spanish local governments
José Luis Zafra-Gómez, Diego Prior Jiménez, Ana María Plata Díaz & Antonio M López Hernández

El sector financiero como factor desestabilizador para la economía a partir del análisis de Hyman Minsky
Isabel Gimenez Zuriaga

Determinantes de la prima de riesgo en las emisiones de bonos de titulización hipotecaria en España (1993-2011)
Miguel Ángel Peña Cerezo, Arturo Rodriguez Castellanos y Francisco Jaime Ibáñez Hernández

Does complexity explain the structure of trade?
Asier Minondo & Francisco Requena

Supplementary pensions and saving: evidence from Spain
José-Ignacio Antón, Rafael Muñoz de Bustillo & Enrique Fernández-Macías

The role of destination spatial spillovers and technological intensity in the location of manufacturing and services firms
Andrés Artal-Tur, José Miguel Navarro-Azorin & María Luisa Alamá-Sabater
653/2011 El papel de los márgenes extensivo e intensivo en el crecimiento de las exportaciones manufactureras españolas por sectores tecnológico
Juan A. Máñez, Francisco Requena-Silvente, María E. Rochina-Barrachina y Juan A. Sanchis-Llopis

654/2011 Incumbents and institutions: how the value of resources varies across markets
Lucio Fuentelsaz, Elisabet Garrido & Juan Pablo Maícas

655/2011 Price differences between domestic and international air markets: an empirical application to routes from Gran Canaria
Xavier Fageda, Juan Luis Jiménez & Carlos Díaz Santamaría

656/2012 The role of accruals quality in the access to bank debt
Pedro J. García-Teruel, Pedro Martínez-Solano and Juan P. Sánchez-Ballesta

657/2012 Trade Under Uncertainty: Legal Institutions Matter
Lisa Kolovich & Isabel Rodríguez-Tejedo

658/2012 La relación bidireccional entre la rsc y el resultado empresarial: conclusiones de un estudio empírico el sector de las cajas de ahorros
Almudena Martínez Campillo, Laura Cabeza García y Federico Marbella Sánchez

659/2012 Consejos de administración y performance de la empresa: efecto de la pertenencia a múltiples consejos
Félix J. López Iturriaga y Ignacio Morrós Rodríguez

660/2012 Análisis comparado de los sistemas eléctricos en España y Argentina, 1890-1950. Estrategias globales y experiencias divergentes de la electrificación en dos países de industrialización tardía
Isabel Bartolomé y Norma Silvana Lanciotti

661/2012 Leverage and corporate performance: International evidence
Víctor M. González

662/2012 Procesos de prociclicidad crediticia e impacto de la provisión estadistica en España
Francisco Jaime Ibáñez Hernández, Miguel Ángel Peña Cerezo y Andrés Araujo de la Mata

663/2012 Policy success or economic slowdown?: Effects of the 80 km•h-1 speed limit on air pollution in the Barcelona metropolitan area
Germà Bel i Queralt & Jordi Rosell i Segura

664/2012 Modelos regulatorios en las telecomunicaciones fijas de banda ancha: competencia en redes frente a competencia en servicios. la evidencia empírica en la OCDE y España
Juan Rubio Martín y César Sánchez Pérez

665/2012 Regional export promotion offices and trade margins
Salvador Gil-Pareja, Rafael Llorca-Vivero, José Antonio Martínez-Serrano & Francisco Requena-Silvente

666/2012 An Experimental Study of Gender Differences in Distributive Justice
Ismael Rodríguez-Lara

667/2012 Spanish savings banks in the credit crunch: could distress have been predicted before the crisis? A multivariate statistical analysis
Martí Sagarra, Cecilio Mar-Molinero & Miguel García-Cestona