NOTES ON USING THE HIDDEN ASSET OR THE CONTRIBUTION ASSET TO COMPILE THE ACTUARIAL BALANCE FOR PAY-AS-YOU-GO PENSION SYSTEMS

CARLOS VIDAL-MELIÁ
MARÍA DEL CARMEN BOADO-PENAS

FUNDACIÓN DE LAS CAJAS DE AHORROS
DOCUMENTO DE TRABAJO
N° 571/2010
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros.

Las opiniones son responsabilidad de los autores.
NOTES ON USING THE HIDDEN ASSET OR THE CONTRIBUTION ASSET TO COMPILE THE ACTUARIAL BALANCE FOR PAY-AS-YOU-GO PENSION SYSTEMS

Carlos Vidal-Meliá
María del Carmen Boado-Penas

ABSTRACT

The aim of this paper is twofold: to determine the connection between the “contribution asset” and the “hidden asset” and to discover whether using either of them to compile the actuarial balance in Swedish-type pay-as-you-go pension systems will provide a reliable solvency indicator. We develop an overlapping generations model and apply it to the defined benefit pay-as-you-go system, although it would be just as valid for defined contribution systems. On the theoretical side the main conclusion is that, despite their very different natures, in a simplified scenario the hidden asset and the contribution asset may nearly coincide under the assumption that, at the limit, r (the interest rate of the financial market) tends upwards towards G (the growth of the covered wage bill). On the applied side there are three main reasons why it would be better to use the contribution asset to calculate the Swedish-type actuarial balance as a solvency indicator: it has a financial-actuarial basics in the pay-as-you-go pension system as there is no need to use the real rate of interest; it is simple to calculate as there is no need for projections to be made; and it is clear in diagnosing solvency, whereas the hidden asset supplies a solvency indicator which is not always consistent with the system's financial health.

Keywords: Actuarial Balance, Public Pensions, Retirement, Sustainability, Transparency.

JEL classification: H55, H83, J26, M49
Introduction

The growing social demand for transparency in the financial management of public mandatory systems, the advantages of immunizing the pay-as-you-go (PAYG) system against some of the political risk it faces, and the desire to gain credibility among participants (contributors and pensioners) by reconciling their expectations to the economic realities of the pension plan all call for new management tools to be applied to the PAYG pension system.

The actuarial balance (AB), notional defined-contribution accounts (NDCs)\(^1\) and automatic balance mechanisms (ABMs)\(^2\) provide a suitable answer to all these three issues and also supply a positive incentive to improve financial management by eliminating or at least minimizing the traditional mismatch between the planning horizons of electors, politicians and the system.

Following Boado-Penas et al. (2009), there are basically two methodologies that can be used to compile an actuarial balance for the PAYG system: the “US” and the “Swedish” models. The “US” AB, published by the US Social Security Administration (SSA), belongs to the aggregate or growth accounting models and measures the difference in present value - discounted by the projected yield on trust fund assets – between spending on pensions and income from contributions, expressed as a percentage of the present value of the contribution bases for a period of 75 years, taking into account that the level of financial reserves (trust fund) at the end of the time horizon reaches a magnitude of one year’s expenditure. The “US” AB, Plamondon et al. (2002), similar to those published by the authorities in Japan every five years and in Canada every three years, is not a balance sheet in the traditional accounting sense of the term, with a list of assets and liabilities which exist at the valuation point.

The AB for the PAYG pension system as compiled in Sweden does not fit into any of the classical methods such as aggregate or growth accounting, micro-simulation, general equilibrium or indirect models. It can be described as a financial statement listing the pension system's obligations towards contributors and pensioners at a particular date, with the amounts of the various assets (financial and through contributions) which back up those commitments. It has the traditional structure of an accounting balance sheet, with a list of assets and liabilities\(^3\).

Particular reference is made in this paper to the “Swedish” model and, unless otherwise stated, the term 'actuarial balance' will refer to that model.

The entry on the PAYG balance sheet known as the “contribution asset” by Settergren (2001, 2003), Settergren and Mikula (2005), Boado-Penas et al. (2008) and in the literature spawned by the Swedish Social Insurance Agency is called the “hidden asset” by Valdés-Prieto (2002, 2005), who is alone in suggesting its possible theoretical application to the actuarial

\(^1\) See the papers by Palmer (2002), Sunden (2006) or Holzmann and Palmer (2006) amongst many others.

\(^2\) See the papers by Vidal-Meliá et al. (2009, 2010) on this aspect.

\(^3\) See the paper by Boado-Penas et al (2009) for the main differences and similarities between both types of AB with regard to objectives, information provided, structure, projections, valuation of assets/revenues, discount rate, effects on contributors/pensioners, solvency/sustainability indicators, transparency and applicability.
balance. This concept coincides with what has been called the “hidden tax”, the “implicit tax on pensions” and the “PAYG asset” by other researchers. It seems clear that the contribution asset (CA) and the hidden asset (HA) cannot appear on the actuarial balance sheet of the PAYG system at the same time. They occupy the same place on the balance sheet and are both based on an assessment of the expected contribution flow. However, as will be seen later, for its calculation the CA uses only factors that have an impact on the cash flows of the PAYGO system and therefore needs no recourse to the interest rate of the financial market, whereas the HA, despite being applied to the PAYG system, must use the discount rate observed in the financial markets, so it can only be determined in dynamically efficient economies.

The aim of this paper is twofold: to determine the connection between the contribution asset and the hidden asset and to discover whether using either of them to compile the actuarial balance in PAYG pension systems will provide a reliable solvency indicator. As far as we are aware, there is a large gap in the literature which we are attempting fill with this paper because, until now, this area of study has not been looked at from the perspective of the hidden asset as an entry to be included in the actuarial balance sheet.

Following this brief introduction, in Section 2 we analytically develop both the contribution asset and the hidden asset and obtain the connection between the two. In Section 3 the concepts developed in Section 2 are applied to a complex example representative of the PAYG pension system using a number of reasonable hypotheses. This enables us to assess the reliability of the solvency indicator that appears when the actuarial balance is compiled. Section 4 lists the main conclusions reached. The paper ends with three appendices in which we develop the turnover duration in defined benefit PAYG pension systems, with the assumption that the population increases or decreases over time, we determine the internal rate of return (IRR) of the PAYG system for those generations fully affected by the stationary state. We also present a sensitivity analysis of the numerical results shown in appendix 3.

2.- The contribution asset and the hidden asset.

2.1.- The contribution asset in DB PAYG systems.

The contribution asset (CA) can be interpreted intuitively as the maximum level of liabilities that can be financed by the existing contribution rate (stable income from contributions, increasing or decreasing over time depending on assumptions regarding population growth and earnings growth), without periodic supplements from the sponsor, if the conditions prevailing at the time of valuation remain constant. The value of the CA is the product of the turnover duration (TD) and the value of the contributions made in that period. The TD is the time expected to elapse from when a monetary unit enters the system as a contribution until it leaves in the form

5 An economy will suffer from dynamic inefficiency when the growth rate of GDP is equal to or greater than the risk-adjusted, long-term real rate of interest in the financial markets.
of a pension, assuming economic, demographic and legal conditions to be constant. This concept is based on population data obtained from a cross-section, not a projection.

To obtain the TD6, the total expected liabilities are divided by the annual contribution flow, and the interest rate for discounting future pensions and contributions in the financially sustainable PAYG system is taken to be the IRR, i.e. the real growth in wages plus the real growth in the contributing population. Therefore, the TD can be expressed as:

\[
TD_t = \frac{\sum_{k=0}^{w-x_e-A-1} N(x_e+A+k,1) \hat{a}_{x_e+A+k}^{\lambda} \left[\frac{1+\lambda}{1+G} \right]^k}{N(x_e+A,1) \hat{a}_{x_e+A}^{\lambda}} + A - \frac{\sum_{k=0}^{A-1} N(x_e+k,1) y_{x_e+k,1} (k+1)}{\sum_{k=0}^{A-1} y_{x_e+k,1} N(x_e+k,1)}
\]

[1.]

Being:

\[N_{x_e+1}: \text{Number of contributors by age at time 1, } N_{x_e+A+k,1} : \text{Number of pensioners by age at time 1, } y_{x_e+1}: \text{Average contribution base by age at time 1, } A: \text{Years of contribution, } x_e: \text{Age of entering at the labor market, } x_e+A: \text{Age of retirement, } \lambda: \text{Growth rate of pensions in payment, } G: \text{growth of the covered wage bill and } \hat{a}_{x_e+A+k}^{\lambda} \text{ being the present value of a lifetime annuity of 1 per year payable in advance growing at real rate } \lambda \text{, valued at age } "x_e+A+k" \text{ years, with a technical interest rate equal to } d = G.\]

where the TD\textsubscript{e} can also be calculated as7:

\[
TD_t = \frac{\sum_{k=0}^{w-x_e-A-1} N(x_e+A+k,1) (x_e+A+k-A+1)) \hat{a}_{x_e+A+A-k}^{\lambda} \left[\frac{1+\lambda}{1+G} \right]^k}{\sum_{k=0}^{w-x_e-A-1} N(x_e+A+k,1) \hat{a}_{x_e+A+k}^{\lambda}} + \frac{\sum_{k=0}^{A-1} y_{x_e+k,1} N(x_e+k,1) (A-(k+1))}{\sum_{k=0}^{A-1} y_{x_e+k,1} N(x_e+k,1)}
\]

[2.]

where the pay-in duration (see Figure 1) - or on the analogy of Ortin and Prior's (1992) ideas, the average length of stay in the entry flow - is the average time in years that the monetary unit is expected to form part of the liability to contributors before it becomes part of the liability to

6 See Appendix 1.

7 This is similar to the formula used in the report by the Swedish authorities to calculate the real balance. See the Orange Annual Report 2008.
pensioners. The pay-out duration or average length of stay in the exit flow is the number of years that the monetary unit is expected to form part of the liability to pensioners before leaving in the form of benefit payments.

Figure 1: Assets and liabilities of the system and the flows of contributions and benefits.

Figure 1 clearly shows the size of the fund (the system's assets and liabilities) and the size of the flow (the continuous payment of contributions and the corresponding pensions). The assets and liabilities (fund magnitude) are measured on the first vertical axis while the flow of contributions and pensions by age are measured on the second, which for reasons of clarity does not have the same scale as the first. The value of the year's contributions are shown by the height of the rectangle with a base equal to TD_t, which coincides with the maximum value of the system's liabilities, i.e. the sum of all those individuals who reach retirement age x_{e+1}. In the steady state the amount of liabilities of the system (area below the liabilities function in figure 1) is equal to the product of the turnover duration (TD) and the value of the contributions made in that period (the rectangle in figure 1).

The TD is the time expected to elapse between a monetary unit entering the system as a contribution and leaving in the form of a pension, assuming economic, demographic and legal conditions to be constant, i.e. the time in years that is expected to elapse before all the system's liabilities are renewed or rotated.

$$\frac{V_t}{C_t} \equiv TD_t = pt^t_t + pt^t_c$$ \[3.\]

If "x_{e+1}" years are added to and subtracted from the above expression, the TD is the difference in expected weighted average ages of pensioners and contributors:
It must be stressed that the TD in this theoretical model, irrespective of the IRR used to discount the pensions and contributions, is always equal to the difference in expected weighted average ages of contributors A^t_c and pensioners A^t_r, which, in the case of a real pension system with its specific contributor-pensioner structure configuration, involves the additional difficulty of having to determine what IRR to apply.

As deduced from the process, the TD is interpreted as the number of years expected to elapse for the committed liabilities with contributors and pensioners to be completely renewed at the current level of contributions, since it is established that the system is in a stationary state and every year pension spending is paid for with the income from contributions.

As shown in Formula 2 and Figure 1, not all contributions are paid to pensioners aged $x_e + A$ years because pensioners whose ages range from $x_e + A$ years to $w - 1$ years coexist within the system. The contributions are also paid by a set of contributors ranging in age from x_e to $x_e + A - 1$ years. Indeed the expression of the TD in Formula 4 attempts to include this fact. Each monetary unit enters the system as if it were paid by a contributor of A_c years and remains within the contribution liability until retirement age is reached (pay-in), and is received by the pensioner of A_r years after remaining within the liability to pensioners during the pay-out.
So as to avoid inexact interpretations\(^8\) which distort the concept, the TD\(_t\) can also be expressed as:

\[
TD_t = (x_e + A) - \frac{(A^t - pt^t + 1)}{A^t} \tag{5.}
\]

Hence the CA is the product of the system’s TD for yearly contributions:

\[
CA_t = C_t \cdot \frac{(A^t - A^t_i)}{TD_t} = \frac{V_t}{TD_t} = C_t \cdot (p^t_i + p^t) \tag{6.}
\]

In a theoretical model such as the one suggested, actuarially balanced and in an initial stationary state, the value of the TD, under variations of the system’s parameters, has the following properties in a new steady state:

1.-For a value of \(\gamma\) (growth rate of population) constant, the TD remains constant as long as it is considered that \(g\) (growth rate of contribution base) is equal to \(\lambda\) (growth rate of pensions in payment), as can be seen in the first term (pay-out) of Expression 2, whereas the second term (pay-in) remains constant even though there are changes in the value of these parameters. It is important to stress that although the TD and the dependency rate do not change, there are changes in the amount of the pensions awarded by the system, in the contribution rate and, obviously, in the system’s assets and liabilities in a balanced state.

2.-The TD, for a value of \(\gamma\) constant, depends on the difference \(g - \lambda\) (decreasing as this difference grows), as can be deduced from the first term (pay-out) of Expression 2. In fact the TD increases or decreases because the expected weighted average age of the pensioners changes. The expected age of the contributors remains the same (second term of Expression 4).

3.-The TD for a value of \(\lambda\) and \(g\) without changes decreases as \(\gamma\) increases and vice versa and the expected weighted average age of the pensioners is reduced (or increased), although there are changes in the amount of the pensions awarded by the system, in the contribution rate and in the system’s assets and liabilities in a balanced state.

4.-For a value of \(\lambda = \text{constant}\), the TD remains constant as long as \(\gamma + g = \text{constant}\), as can be deduced from the first term (pay-out) of Expression 2. In this assumption the contribution rate in a balanced state will also remain constant, although there will be variations in the

\(^8\) See the paper by Andrews (2008), page 70.
dependency rate (Expression 21) and in the system’s average contribution-average pension ratio (Expressions 23 and 25).

5.- The TD decreases (increases) with increases (decreases) in the slope of the age-wage structure, as can be deduced from the second term (pay-in) of Expression 2. In fact the TD increases or decreases because the expected weighted average age of the contributors changes, while that of the pensioners remains the same (first term of Expression 2). In this assumption the dependency rate in a balanced state remains constant, although there will be variations in the contribution rate (Formula 20) and in the system’s average contribution-average pension ratio.

6.- The TD increases (decreases) when there are increases (decreases) in longevity - as can be seen in Expression 2 - as there is an increase (decrease) in the pay-out. Clearly the increase (decrease) in longevity increases (decreases) the contribution rate for a balanced state and the system’s assets and liabilities.

7.- Variations in retirement age. An increase (decrease) in retirement age would be expected to increase (decrease) the expected weighted average age of pensioners and contributors (Expression 4). The combined effect on the TD would also depend on all the other parameters that affect the pension system, such as the salary profile and the mortality pattern.

8.- Variations in the number of generations of contributors for a particular retirement age. An increase (decrease) in the number of generations of contributors would be expected to increase (decrease) the TD because the weighted average age of the contributors would decrease (increase), although clearly both the contribution rate for a balanced state and the contributor-pensioner ratio would have to decrease (increase).

9.- Variations in the number of generations of pensioners for a particular retirement age. An increase (decrease) in the number of generations of pensioners would be expected to increase (decrease) the TD because the weighted average age of the pensioners would increase (decrease), although clearly both the contribution rate for a balanced state and the contributor-pensioner ratio would have to increase (decrease). Naturally this is similar to the variations in longevity.

2.2.- The hidden asset in DB PAYG systems.

According to Valdés-Prieto (2002), the hidden asset (HA) is the present expected value of the hidden taxes that the system will apply to its participants in the future, either in the form of excess contributions in relation to the pensions to be provided or in the form of insufficient

9 This explains Robalino and Bodor's (2009) objections regarding the TD: “the TD can increase as a result of an increase in life expectancy and that would be perceived as an increase in contribution assets when in fact that increase can reduce the pay-as-you-go asset as individuals receive pensions for longer”. The truth is that the TD is not an isolated element within the pension system. It is related to the other parameters too.
pensions in relation to the contributions paid. Hidden taxes are defined as contributions in excess of those that would be needed by a capitalized system to pay the same benefits. Their existence stems from the theoretical assumption that contributions should yield the interest rate of the financial market and that the economy suffers no dynamic inefficiency. Theoretical macroeconomic equilibrium stipulates that \(r > G \), both in the specific cases of certainty as shown by Tirole (1985), and uncertainty, following Demange (2002) and Krueger & Kubler (2006).

An economy will suffer from dynamic inefficiency when the growth rate of GDP is equal to or greater than the risk-adjusted, long-term real rate of interest in the financial markets. It does not imply that the funded system is always preferable to the PAYG system. As Barr and Diamond (2009) point out: “Since long-run rates of return exceed growth rates, the higher stock market return is sometimes presented as a pure gain. This argument is flawed because it does not compare like with like. A fuller analysis considers (a) the costs of the transition from PAYG to funding, (b) the relative risks of the two systems, and (c) their respective administrative costs”. Furthermore, for Matsen and Thogersen, (2004), a low-yielding PAYG system can benefit individuals if it contributes to hedging other risks to their lifetime resources. Likewise, De Menil et al. (2006), the really important thing is that the PAYG system (NDC or DB) can enhance welfare, even in dynamically efficient economies, because of the insurance it provides against otherwise uninsurable macroeconomic risk. Knell (2008) shows analytically that in an overlapping generations (OLG) model the optimal share of funding decreases with the strength of individuals’ concern for relative standing.

If the concept of the HA is developed, when “\(w-x-A=t \)” years have passed since the inception of the system, the concept can be generalized and it can also be shown that the HA and the CA can coincide under certain circumstances.

It is assumed that the covered wage bill of the pension system grows at the real annual rate of \(G \), where \(G = (1 + g)(1 + \gamma) - 1 \), according to the notation used in the previous section.

This would give:

\(^{10}\) According to Cigno (2008), the difference between the present value of the contributions and the present value of the benefits for an individual constitutes an implicit tax. If this difference is negative, it constitutes an implicit subsidy.

\(^{11}\) According to Robalino and Bodor (2009), the “PAYG Asset” is defined as “the present value of future contributions minus the present value of pensions ensuing from these contributions”.

9
\[\text{HA}_t = \sum_{k=0}^{A-1} \left(\sum_{k=0}^{A-1} \theta' \cdot y_{(x_k+k,t)} \cdot N_{(x_k+k,t)} \cdot \left[\frac{1+G}{1+r} \right] \right) = \theta \sum_{k=0}^{A-1} y_{(x_k+k,t)} \cdot N_{(x_k+k,t)} \cdot \left[\frac{1+r}{r-G} \right] \] \[7.\]

where \(\theta' = (\theta - \theta_f) \) is the excess contribution rate that the system has to apply in perpetuity to its contributors in order to remain financially solvent. In this formula it seems clear that the biggest difficulty is in setting the value of \(\theta_f \) depending on the \(r \) considered.

Given that in a system in a stationary state, as shown earlier, the contribution asset is equal to the liability, the hidden asset must in the same way be equal to the system’s total liability valued with discount rate \(r \). The actuarially fair rate that makes \(\text{HA}_t = V_t^{T(r-G)} \) is:

\[\theta_f = \left(\theta - \frac{V_t^{T(r-G)} \left[\frac{r-G}{1+r} \right]}{\sum_{k=0}^{A-1} y_{(x_k+k,t)} \cdot N_{(x_k+k,t)}} \right) \] \[8.\]

It can immediately be seen that the excess contribution that has to be paid every year in perpetuity by all contributors is to cover that part of the liability\(^{12}\) deriving from those affiliates who received payments without having made any contributions or without having paid them in full but who benefited from a higher IRR than other generations\(^{13}\) (in the first year the system started there were already beneficiaries who had not paid contributions, and in the second year those who received a pension had only contributed for one year and received a full pension. Only when \(A \) years had passed would all beneficiaries have a full contribution record):

\[\theta' \sum_{k=0}^{A-1} y_{(x_k+k,t)} \cdot N_{(x_k+k,t)} = V_t^{T(r-G)} \left[\frac{r-G}{1+r} \right] \] \[9.\]

\(\text{Perpetual interest cost accrued by actuarial liabilities} \)

It is therefore consistent that the excess contribution should be discounted from the contribution rate needed to balance the system in order to obtain the actuarially fair contribution rate in line with the performance of the financial market.

In the stationary state described, if it is considered that \(r > G \), it can be stated that:

\[(\text{CA}_t = V_t^{T(r-G)}) \geq (\text{HA}_t = V_t^{T(r-G)}) \] \[10.\]

\(^{12}\) Note that this part of the liability can be minimized if it is considered that during the first \(A \) years the affiliates who start to receive a pension receive only a fraction of the replacement rate \(\beta \cdot y(c, k-1) \cdot (k/A) \) depending on the years contributed by their generation \(k \). Only those who contribute over their whole working life will receive the full amount.

\(^{13}\) See this demonstrated in Appendix 2.
and it is also clear that as the difference $r-G$ is reduced, the value of the HA will move closer
towards the value of the CA; and at the limit where r tends upwards towards G\(^{14}\), the difference
between those values tends to zero given that the value of their liabilities becomes nearly equal:

\[
\lim_{(r-G)\to 0^+} (CA_t - HA_t) = (V^T_{1(r-G)} - V^T_{1((r-G)-0^+)}) \geq 0
\]

[11.]

and, in this case, $\theta_{eq} = \theta = \theta_1$.

2.3.-The contribution asset and the hidden asset as items to be integrated into the
“Swedish” actuarial balance.

This subsection summarizes the two previous ones by comparing the main elements
that characterize the CA and the HA as items to be integrated into the “Swedish” actuarial
balance. The main economic implications will then be discussed.

The CA is the maximum liability that can be financed in the long term by the present
contribution rate (income from contributions that is stable, increasing or decreasing over time
depending on assumptions regarding population growth) without requiring additional funding
from the promoter, assuming a stationary state. The HA is defined as the present value of the
hidden taxes or subsidies\(^{15}\) that the system will have to apply to its contributors in the future,
within legislated parameters and with trends known. These hidden taxes in turn are defined as
the contributions in excess of those that would be needed by a capitalized system to pay the
same benefits.

The basics of each concept is different. The CA is based on the turnover duration (TD)
and is the product of the annual contributions multiplied by the difference between the expected
weighted average age of pensioners, A^R_t, and contributors, A^C_t. The TD is the expected number
of years needed for the complete rotation of the committed liabilities with contributors and
pensioners under present legislation, including contribution levels, age-distributed income
profiles and mortality rates. In practice, Boado-Penas et al (2009), if the population declines
(increases), there is a risk that the accounts will (slightly) overstate (understate) the system’s
assets in relation to its liabilities, since in such a case the turnover duration is (slightly)
overestimated (underestimated). However, as the balance sheet must be compiled every year
according to verifiable events and transactions, it tends to provide a true and fair view. The
stationary demographic and economic state is certainly not ex-post facto true, but because
successive changes are included as they are registered in successive balance sheets, the
solvency indicator remains reliable\(^{16}\). Another requirement for calculating the TD is that the only

\[^{14}\] It should be remembered that the function of the “hidden asset” is discontinuous and indeterminate for
$r=G$, and its value tends towards less than infinite when r tends towards G on the left.

\[^{15}\] The subsidies could originate in the form of insufficient contributions in relation to the pensions to be
received.

\[^{16}\] See the papers by Auerbach and Lee (2009a and 2009b).
contingency assessed is retirement. Other contingencies such as invalidity or survivor benefit make it more difficult to define the TD in both theoretical and practical terms.

The HA is based on the theoretical assumption that contributions should yield a return at the interest rate of the financial market (relating the PAYG system to the capitalization system), that the economy does not suffer from dynamic inefficiency ($G \geq r$), and that the excess contribution to be paid every year in perpetuity by all contributors is allocated to cover that part of the liability deriving from those affiliates who received pensions without having made any contributions or without having paid them in full but who benefited from a greater IRR than all the other generations.

The relation that both these assets have with the system's liabilities is also different. In order for it to be consistent with the CA, the system's actuarial liability has to be calculated with the rate of return of the PAYG system, which is assumed to be $G = (1+g)(1+\gamma^{-1}$). The actuarial liability will be greater than that of the capitalization system if the hypothesis of dynamic efficiency is fulfilled. And on the practical side, Boado-Penas et al (2009), both the assets and the liabilities are valued on the basis of verifiable cross-section facts, i.e. no projections are made. For example, current longevity is used even though it is expected to increase. If and when that expectation materializes in new mortality tables, this will be incorporated into the information on the balance sheet on a year-to-year basis.

In the case of the HA, for consistency the system's actuarial liability has to be calculated using the rate of return of the financial market, r. Unlike in the previous case, the actuarial liability would coincide with the liability there would be if the pension system were funded by capitalization. It seems clear that the liability calculated with either G or r answers two different questions: 'What is the value of the commitment to contributors and pensioners taken on by the system?', for the liability calculated with G, and 'How much would the system have to pay a third party if it decided to contract out or transfer its commitments to contributors and pensioners?', if the liability was calculated with r.

There are also differences in the practical application of both concepts. The CA, Försäkringskassan (2010), is applied in order to compile the actuarial balance for Swedish Social Security, which has a DC PAYG pension system (NDC), and is fairly straightforward to calculate as it needs no projections of economic, demographic or financial variables.

The HA, however, has only a theoretical application so far. Apart from the difficulty in setting the value of r, it needs projections of economic, demographic and financial variables in order to be calculated. Most authors that have used the concept have not suggested that it be used to compile actuarial balances. Disney (2004), for example, constructs indicators of the tax

17 It would be necessary to make projections for the DB PAYG pension system as liabilities to contributors have to be calculated using the prospective method. See appendix 1
component of pension programmes, both between and within generations, across a range of OECD countries and time periods, and Fenge and Werding (2004) use the concept of the ‘implicit tax rate’ to measure intergenerational imbalances in unfunded public pension schemes.

A concept that brings to mind what Valdés-Prieto (2002) defined as the “hidden asset” is used in the extremely detailed report from which the “US” actuarial balance is compiled, BOT (2010). The US administration defines it as the system’s “unfunded obligation” with a perpetual horizon. It is calculated by the “present value of future benefits less future contributions for current and future participants, considering that the reserve fund runs dry and legislation is constant”18. It is also assumed in the calculations that there is dynamic efficiency in the economy (r>G), which makes convergence and financial sense feasible.

The “hidden asset” and the “unfunded obligation” are clearly two different concepts because, although projections for a perpetual horizon are made and the interest rate of the financial market is used, the hidden asset is based on the concept of excess contributions in relation to the pensions to be received, while the “unfunded” liability considers the present value of all the system’s contributions and benefits in the future. And in order to analyse the PAYG system's sustainability/viability, the value of the hidden asset would have to be related to the liabilities, and the value of the “unfunded liability” would in itself already be an indicator of the system's sustainability.

The positive amount of the “unfunded obligation” shows that the PAYG system in the USA is unsustainable because the participants should not have a realistic expectation of receiving the benefits that have been promised without the system’s sponsor (the State) having to make periodic additional contributions. In other words, at some point in the future, unless the sponsor allocates extraordinary funds to cover the extra liability, the promises made to some participants will be partially broken.

However, although their analytical expressions appear to be somewhat different, their structures are based on the taxable wage bill, a financial and multiplying effect19, and various contribution rates. For the CA:

18 It should be pointed out that Table IV.B7 on page 66 of this report shows an "unfunded obligation for all participants through the infinite horizon" of $US 16.1 trillion at 1.1.10, which represents an annual 1.2% of the value of future GDPs or approximately 109% of the projected GDP for 2010. In other words if the projections for a perpetual horizon are accurate, the promoter will have to inject financial resources at a present value of $US 16.1 trillion into the system in order to fund all the scheduled benefits.

19 According to Settergren (2003), the TD can be interpreted as the value supplied by discounting a perpetual flow of contributions, where the discount factor is the inverse of the TD. For example, if the value of the TD is 33 years, the CA is calculated by discounting a perpetual (yearly) contribution with an interest rate of 3.03%.
\[
CA_t = \begin{bmatrix}
\theta \\
\text{Rate of contribution}
\end{bmatrix}
\begin{bmatrix}
\theta \\
\text{Rate of contribution (excess)}
\end{bmatrix}
\begin{bmatrix}
\sum_{k=0}^{A-1} y(x_k+k, t) N(x_k+k, t) \\
\text{Aggregate contribution base}
\end{bmatrix}
\begin{bmatrix}
A^i - A^f \\
\text{Aggregate contribution base}
\end{bmatrix}
\]

while for the HA it is:

\[
HA_t = \begin{bmatrix}
\theta \\
\text{Rate of contribution (excess)}
\end{bmatrix}
\begin{bmatrix}
\theta \\
\text{Rate of contribution (excess)}
\end{bmatrix}
\begin{bmatrix}
\sum_{k=0}^{A-1} y(x_k+k, t) N(x_k+k, t) \\
\text{Aggregate contribution base}
\end{bmatrix}
\begin{bmatrix}
1+r \\
\text{r - G}
\end{bmatrix}
\begin{bmatrix}
A^i \\
\text{Aggregate contribution base}
\end{bmatrix}
\]

and as we saw in the previous subsection, since the difference \(r - G \) is reduced, the value of the HA moves closer to the value of the CA, and at the limit when \(r \) tends towards \(G \) and upwards, the values of both coincide, and \(\theta_{eq} = \theta = \theta_f \).

Finally, the AB of a balanced PAYG system with the CA will be:

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution Asset, (CA_t)</td>
<td>Liability to current pensioners, (V_i^r) (Formula 28, with (d = G))</td>
</tr>
<tr>
<td>(Formula 6 or 12, flow of contributions based on current contributors and the turnover duration if the conditions prevailing at the time of valuation remain constant.)</td>
<td>Liability to current contributors (V_i^c) (Formula 29, with (d = G))</td>
</tr>
<tr>
<td>Total Assets</td>
<td>Total Liabilities</td>
</tr>
</tbody>
</table>

Whereas with the HA it will be:

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidden Asset, (HA_t)</td>
<td>Liability to current pensioners, (V_i^r) (Formula 28, with (d = r))</td>
</tr>
<tr>
<td>(Formula 7 or 13, flow of contributions based on the excess contribution rate that the system has to apply in perpetuity to its future contributors in order to remain financially solvent.)</td>
<td>Liability to current contributors (V_i^c) (Formula 29, with (d = r))</td>
</tr>
<tr>
<td>Total Assets</td>
<td>Total Liabilities</td>
</tr>
</tbody>
</table>
And in both cases the solvency ratio, \(\text{SR}_t = \frac{\text{Assets}}{\text{Liabilities}} \), is equal to one in the case of a balanced pension system, but more items may appear when compiling an actuarial balance for an already-functioning defined-benefit pension system. These could be financial assets or liabilities that may have accumulated, and the system's deficit or surplus. As a result Tables 1 and 2 could become Tables 3 and 4 and the solvency indicator could be different to one. In the latter case, promises of pension payments would mean that the contribution rate would have to be either reduced or increased in order to re-establish balance to the system.

The accumulation of losses in each period determines the value of the accumulated deficit, and the “losses in each period” represents the difference between the increase in the value of actuarial liabilities and assets for the period. If the increase in assets were greater than the increase in liabilities, there would be “actuarial profits” in the period, and likewise, the accumulation of profits in each period determines the value of the accumulated deficit.

<table>
<thead>
<tr>
<th>Table 3: Actuarial Balance Sheet of an already DB PAYG System with CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSETS</td>
</tr>
<tr>
<td>Financial Assets</td>
</tr>
<tr>
<td>Contribution Asset</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
</tr>
<tr>
<td>Total Assets</td>
</tr>
<tr>
<td>Total Liabilities</td>
</tr>
</tbody>
</table>

The accumulated deficit in DB pension systems is due not only to demographic and economic factors but also to the phenomenon known as populism in pensions, which occurs more often in countries which do not periodically draw up an actuarial balance. For Vidal-Meliá et al (2009), *populism in pensions* can be defined as a form of competition between politicians in which voters are offered subsidies and benefits without the voters appreciating that it is they themselves who will pay through higher taxes, higher contributions, higher inflation or reduced economic growth. Populism manifests itself in higher spending on the pension system generated by unjustified increases in minimum pensions, the increase or extension of payments without the contributions to cover them, the awarding of disability pensions without rigour, and contribution subsidies. Populism in pensions is aggravated if a country suffers from a weak democratic structure.

In the case of the hidden asset, if the contribution rate really was lower than the actuarially fair rate \(\theta < \theta_f \), a negative asset (extra-liability) would be obtained. Boado-Penas et al. (2008) have described theoretical situations in which the HA would be negative, but when it comes to compiling the balance sheet for the pension system it would be difficult to apply.
Robalino and Bodor (2009) also justify a pension plan operating with a negative PAYG asset if the system is very generous, meaning it pays an IRR above market rates, but not forever.

Table 4: Actuarial Balance Sheet of an already DB PAYG System with HA

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Assets</td>
<td>Financial Liabilities</td>
</tr>
<tr>
<td></td>
<td>Liability to current pensioners</td>
</tr>
<tr>
<td>Hidden Asset, positive if $\theta > \theta_T$</td>
<td>Liability to current contributors</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
<td>Extra-liability = Negative Hidden Asset (^{20}) if $\theta < \theta_T$</td>
</tr>
<tr>
<td>Total Assets</td>
<td>Accumulated Surplus</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td></td>
</tr>
</tbody>
</table>

3.-Using the contribution asset and the hidden asset as solvency indicators: some numerical results.

In this section we show the results obtained for the actuarial balance when different contribution rates are applied, looking especially at the solvency ratio obtained when using the contribution asset and the hidden asset. Basically it is a question of analysing what would happen in a situation of insolvency. What values would the actuarial balance supply?

![Figure 2: Contributors, pensioners, wages and pensions of the system.](image)

Figure 2 shows contributors and pensioners by age and contribution (wage) and pension structure in a stationary state, 36 years after the inception of the system, assuming that g grows.

\(^{20}\) In practice, Robalino and Bogomolova (2006), the HA (or PAYG asset, in their terminology) tends to be negative in most DB PAYG systems.
at an annual accumulative rate of 1% and the population grows at an annual accumulative rate of 2%, and that the pension payable to pensioners at age 65 is 80% of the previous 40 years’ contributions and constant in real terms ($\lambda = 0\%$).

Under these conditions the contribution rate for balance is 16.51%, the TD is 27.59 years (weighted average age of pensioners 73.32 years, weighted average age of contributors 45.72 years), which is distributed over 9.32 years for the pay-out and 18.28 years for the pay-in, and the contributor-pensioner ratio is 4.5.

BALANCED PENSION SYSTEM

In this case both the CA and the HA supply a 100% solvency ratio as the system is balanced in the stationary state. The value of its assets will therefore be the same as the value of its liabilities, although the composition of the liabilities may change. Tables 5a, 5b and 5c show the actuarial balance for the CA as well as the HA.

Table 5a: Balanced Pension System (estimated with CA).

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Monetary units</td>
</tr>
<tr>
<td>Contribution Asset</td>
<td>1,283,135.10</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
<td>0</td>
</tr>
<tr>
<td>Total Assets</td>
<td>1,283,135.10</td>
</tr>
</tbody>
</table>

$G=(1.01)(1.02)-1=0.0302$

Table 5b: Balanced Pension System (estimated with HA).

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Monetary units</td>
</tr>
<tr>
<td>Hidden Asset</td>
<td>938,329.77</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
<td>0</td>
</tr>
<tr>
<td>Total Assets</td>
<td>938,329.77</td>
</tr>
</tbody>
</table>

$G=0.0302; r=0.04$

Table 5c: Balanced Pension System (estimated with HA).

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Monetary units</td>
</tr>
<tr>
<td>Hidden Asset</td>
<td>693,241.55</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
<td>0</td>
</tr>
<tr>
<td>Total Assets</td>
<td>693,241.55</td>
</tr>
</tbody>
</table>

$G=0.0302; r=0.05$
Naturally in the case where \(r \approx G \), as shown earlier, the actuarial balance calculating with the contribution asset and the hidden asset will be similar.

UNBALANCED PENSION SYSTEM

Instead of being balanced, the contribution rate (CR) is considered to be 14.94% \((\theta_{dq})\), which is still greater than the fair contribution rate when \(r > G \). The debt would also change because of this since the liability for future contributions would increase as these would be made at a lower rate (14.94%<16.51%) for benefit entitlement.

In this specific case the actuarial balance with the CA would supply a solvency indicator of 84.18%. The value of the accumulated deficit would therefore be the extra contribution the promoter would have to make in order to fulfil its commitments to all contributors and pensioners. This extra contribution could be offset if there had been an accumulated surplus in previous periods.

Table 6a: Unbalanced Pension System (estimated with CA).

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>Monetary units</th>
<th>%</th>
<th>LIABILITIES</th>
<th>Monetary units</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution Asset</td>
<td>1,161,026.73</td>
<td>84.18</td>
<td>63.41</td>
<td>Liability to Pensioners</td>
<td>433,225.80</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
<td>218,250.33</td>
<td>15.82</td>
<td>68.59</td>
<td>Liability to Contributors</td>
<td>946,051.27</td>
</tr>
<tr>
<td>Total Assets</td>
<td>1,379,277.06</td>
<td>100</td>
<td>100</td>
<td>Total Liabilities</td>
<td>1,379,277.06</td>
</tr>
</tbody>
</table>

\(G = 0.0302; \ \theta = 16.51\%; \ \theta_{dq} = 14.94\% \)

The actuarial balance compiled using the HA will supply a very different solvency indicator. Before the imbalance the excess contribution was \(\theta - \theta_f = \theta^* \), where \(\theta_f \) is what contributors really pay in a balanced system and \(\theta_f \) is what they should pay (depending on the market interest rate). With a situation of imbalance the excess contribution is \(\theta_{dq} - \theta_f = \theta_{dq}^* \).

The difference between the two HAs for both situations, before and after imbalance, is:

\[
(\theta^* - \theta_{dq}^*) \sum_{k=0}^{A-1} y_{(x_{n+k}, t)} N_{(x_{n+k}, t)} \left[\frac{1+r}{r-G} \right] = HA_i - HA_{i}^* \tag{14.}
\]

21 For simplicity, the numerical results in the tables are shown for the unbalanced contribution rates that follow the formulae \(\theta_{eq}(\theta_{eq}-\theta_f)/2 \) and \(\theta_{eq}^*(\theta_{eq}-\theta_f)/2 \) respectively, where \(\theta_f \), in this case, corresponds to the lower \(r \) considered in each example.

22 A problem appears in the unbalanced system when it comes to valuing the liability with contributors because it will not coincide using the prospective or retrospective methods. The liability to contributors will be greater (real) if it is valued with the prospective method rather than the retrospective. The system is unbalanced in favour of the contributors and this is reflected in the calculation.
where H_{At} is the HA in a balanced situation (equal to the liability) and H_{At}^* is the HA in an unbalanced situation. If we calculate:

$$H_{At} - (\theta^* - \theta_{dq}^-) \sum_{k=0}^{A-1} y_{x+k, t} \cdot N_{x+k, t} \left[\frac{1+r}{r-G} \right] = H_{At}^*$$ \[15.\]

or as:

$$\sum_{k=0}^{A-1} y_{x+k, t} \cdot N_{x+k, t} \left[\frac{1+r}{r-G} \right] = \frac{H_{At}^*}{\theta^*}$$ \[16.\]

substituting in the previous formula:

$$H_{At}^* \left(\frac{\theta_{dq}^-}{\theta} \right) = H_{At} = H_{At}^* \left(\frac{\theta_{dq}^- - \theta_t^-}{\theta - \theta_t^*} \right)$$ \[17.\]

the results for assets, liabilities and solvency ratio are:

<table>
<thead>
<tr>
<th>Table 6b: Unbalanced Pension System (estimated with HA).</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSETS</td>
</tr>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Hidden Asset</td>
</tr>
<tr>
<td>(Equation 17)</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
</tr>
<tr>
<td>Total Assets</td>
</tr>
<tr>
<td>Table 6c: Unbalanced Pension System (estimated with HA).</td>
</tr>
<tr>
<td>ASSETS</td>
</tr>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Hidden Asset</td>
</tr>
<tr>
<td>Accumulated Deficit</td>
</tr>
<tr>
<td>Total Assets</td>
</tr>
<tr>
<td>G=0.0302; r=0.04; (\theta = 16.51%); (\theta_{dq}^- = 14.94%); (\theta_t^- = 13.37%)</td>
</tr>
</tbody>
</table>

If the imbalance were due to a real contribution rate, θ_{dq}^-, of 18.08%, table 7a, the actuarial balance with the CA supplies a solvency ratio of 118.35% (contribution asset/(liability to pensioners + liability to contributors)):
Table 7a: Unbalanced Pension System (estimated with CA).

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Monetary units</td>
</tr>
<tr>
<td>Contribution Asset</td>
<td>1,405,044.39</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Assets</td>
<td>1,405,044.39</td>
</tr>
</tbody>
</table>

G=0.0302; θ = 16.51%; θ_{dq} = 18.08%; SR= 118.35%

Table 7b: Unbalanced Pension System (estimated with HA).

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Monetary units</td>
</tr>
<tr>
<td>Hidden Asset</td>
<td>1,407,216.41</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Assets</td>
<td>1,407,216.41</td>
</tr>
</tbody>
</table>

G=0.0302; r=0.04; θ = 16.51%; θ_{dq} = 18.08%; θ_{f} = 13.37%; SR= 164.95%

Table 7c: Unbalanced Pension System (estimated with HA).

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Monetary units</td>
</tr>
<tr>
<td>Hidden Asset</td>
<td>927,548.25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Assets</td>
<td>927,548.25</td>
</tr>
</tbody>
</table>

G=0.0302; r=0.05; θ = 16.51%; θ_{dq} = 18.08%; θ_{f} = 11.87% SR= 150.30%

It can be seen how the solvency ratio in the case of the HA is highly volatile when there is a change in the market interest rate (which has no effect on the PAYG pension system). The results that appear are clearly inconsistent from the point of view of the system's solvency. For example, as shown in the tables above, for a contribution rate of 14.94 (18.08) % and a market interest rate of 4.5% (5%) the system would be declared insolvent. It can be seen how the solvency ratio in the case of the HA is highly volatile when there is a change in the market interest rate (which has no effect on the PAYG pension system).

23 Using historical data from 1981 to 2006, D’Abbio et al. (2009) attempt to measure the degree of uncertainty in investment returns. The results show a median real return of 7.3% a year on a portfolio equally weighted between equities and bonds (averaged across the countries studied). The degree of uncertainty, even with the relatively long investment horizons of pensions, is found to be large. In 10% of cases, an annual return of less than 5.5% would be expected, while in 10% of cases this would exceed 9.0%.
interest rate of 4%, the solvency ratio (SR) would barely reach 45.78 (164.95) % as opposed to 84.18 (118.35) % if the CA were used. The fact that the system's solvency ratio is affected by an assumption on a variable that has no impact on either the flow of contributions or the flow of benefits is, if not proof, a strong indicator of the theoretical weakness of the “hidden asset” as a measure of solvency in a PAYG pension system.

The results for the accumulated deficit or surplus for various contribution rates and a market interest rate of 5% are shown in Figure 3. It can be seen that for $\theta_{\text{eq}} = 16.51\%$, the assets and liabilities coincide and the accumulated deficit is zero. For lower (higher) contribution rates the assets are lower (higher) than the liabilities, therefore the accumulated deficit (surplus) is positive and the solvency ratio worsens (improves).

Figure 4 shows solvency levels using the CA and the HA for different contribution rates and market interest rates.
It can be seen how the situation of solvency is overvalued compared to that calculated under the contribution asset in those cases where contribution rates are above the balanced rates, and this overvaluation is greater the smaller the difference between G and r. Similarly there appears an overvaluation of the situation of insolvency in those cases where the contribution rates are lower than those for a balanced state, and this overvaluation is greater the smaller the difference between G and r.

The results (consistency and inconsistency) are robust to changes in population growth rate, mortality tables, the age-wage structure, the growth rate of pensions in payment, etc. See Appendix 3.

4.-Concluding comments

When compiling the official actuarial balance for the PAYG system, public social security administrations basically use two approaches: the so-called “Swedish” and “US” models. The “Swedish” model is a very recent one as it has only been carried out officially since 2001 and is innovative in that it adopts the typical structure of accounting balance sheets by having a list of assets and liabilities. The main methodological innovation enabling the actuarial balance to be compiled is what is known as the contribution asset, although its theoretical basis needs to be further analysed in the literature. Only the papers by Settergren & Mikula (2005) and Boado-Penas et al (2008) have looked at it in any detail. At the same time some authors have questioned the validity of the concept, Andrews (2008), or have expressed doubts about it, Robalino & Bodor (2009), suggesting that the contribution asset should be replaced by the “PAYG asset”, which is another name for what other authors mentioned in this paper call the “hidden asset”, the “hidden tax” or the “implicit tax on pensions”.

In order to shed some light on the basic theory behind the contribution asset and its connection with the possible alternative known as the hidden asset, this paper has developed an
overlapping generations model and applied it to the defined-benefit PAYG system, though it
would be equally valid for NDC systems. We deduced both assets from this model and derived
the basic properties of the turnover duration, which is a necessary element for enabling the
contribution asset to be calculated. The main theoretical conclusion is that despite their very
different natures, in a simplified scenario the hidden asset and the contribution asset may nearly
coincide under the assumption that, at the limit, \(r \) (the interest rate of the financial market) tends
upwards towards \(G \) (the growth of the covered wage bill).

In the applied section, in order to compile the actuarial balance as a solvency indicator
for the “Swedish” model, there are three main reasons as to why it is better to use the
contribution asset:

(1) its financial-actuarial basics in the PAYG system, which makes it unnecessary to use the
interest rate of the financial market to answer the questions: “What is the value of the
commitment to contributors and pensioners taken on by the system?” and “What are the assets
that back up this commitment?”;

(2) it is easy to calculate as there is no need to make projections; and
(3) it is clear in diagnosing insolvency because, as shown in the previous section, the use of the
hidden asset supplies a solvency indicator which is not always consistent with the financial
health of the system - the solvency indicator supplied by the HA is highly volatile when there is a
change in the market interest rate (which has no effect on the PAYG pension system).

The fact that the solvency ratio of the system is affected by an assumption on a variable
that has no impact on either the flow of contributions or the flow of benefits is, if not proof, a
strong indicator of the theoretical weakness of the “hidden asset” as a measure of solvency in a
PAYG pension system. However, there is an important limitation regarding the use of the CA to
compile the actuarial balance insofar as, in order to calculate the TD, the only contingency taken
into account is retirement. Other contingencies such as disability or survivor benefits make it
more difficult to define the TD in both theoretical and practical terms.

Another important question deriving directly from the model developed is that the TD,
regardless of the IRR (G) used to discount pensions and contributions, is always equal to the
difference in the expected weighted average age of contributors and pensioners. In the case of a
real pension system which has its contributor-pensioner structure set up in a particular way, this
brings the added difficulty of determining the IRR (G) to be applied. Therefore, when compiling an
actuarial balance for an already-functioning defined-benefit pension system, two options can be
considered:

1.- Assume that the pensioners-pensions and contributors-contributions structure
remains constant in real terms in the future as in the case of Sweden, or use an estimated value
for G based on the most recently observed data (the previous 3 or 5 years). Clearly the position
of solvency that the balance shows will vary depending on which choice is made. On the
practical side, too, as a sensitivity analysis, it could be suggested what the level of contribution should be with the TD and the committed liability in order for the system to be solvent.

2.- Assume that the pensioners-pensions and contributors-contributions structure remains constant in real terms in the future, and look for the G that would make the assets and liabilities equal. This would show how much the system would need to grow in the future in order for it to remain solvent, should the initial calculation show that this was not the case.

Finally, the use of the philosophy described in the hidden asset makes more sense when a “US” type actuarial balance is compiled, although the meaning could refer to assets or liabilities given that the SSA calculates it in such a way that it is known as the “unfunded liability” and is equivalent to the amount that would need to be contributed at the time of valuation, with legislation constant, in order to cover all the projected financial obligations of the system with a perpetual time horizon. However, this liability makes no actuarial sense as it represents the value of the treasury deficit. If, following the way the SSA calculates it, the result were negative, what this would really be indicating would be the amount represented at the present moment by the treasury surplus with a perpetual time horizon and no changes in legislation.

5.- References.

Appendix 1.-The Turnover duration in DB PAYG pension system.

In this appendix we develop the concept of the CA for the case where participants’ lives last \((w-1-x_e)\) periods, where \((w-1)\) is the highest age to which it is possible to survive and \(x_e\) is the age of entry into the system. In this case, \(A\) generations of contributors and \((w-1-(x_e+A))\) generations of pensioners coexist at each moment in time.

We build on the case developed by Boado-Penas et al. (2008), where the contribution base (coinciding with earnings) grows at an annual rate of \(g\), i.e. there are wage gains in real terms if \(g > 0\) and losses if \(g < 0\), but with the additional assumptions that the population increases or decreases over time\(^{24}\) at an annual accumulative rate of \(\gamma\), affecting all groups of contributors equally, which means it must be assumed that real GDP and the system’s income from contributions (the wage bill) also grows (decreases) at rate \(G = (1+g)(1+\gamma)-1\), and pensions in payment increase or decrease at an annual rate of \(\lambda\).

The parameters of the pension system are considered to be in a stationary state (fixed over time), and as it is PAYG, the collective is open. Both the age giving entitlement to a retirement pension, “\(x_e+A\)”, and the formula used for calculating the pension are constant, leading to a fixed replacement rate of size \(\beta\).

The demographic-financial structure at any moment “\(t\)” from the start of the system is given by:

\[\begin{align*}
&1.-\text{Age:} \\
&\text{Contributors’ ages: } x_e, x_e + 1, x_e + 2, \ldots \ldots \ldots x_e + A - 1, x_e + A, x_e + A + 1, \ldots \ldots \ldots w - 1 \text{ [18.]} \\
&\text{Pensioners’ ages: } x_e, x_e + 1, x_e + 2, \ldots \ldots \ldots x_e + A - 1, x_e + A, x_e + A + 1, \ldots \ldots \ldots w - 1
\end{align*}\]

2.-Number of contributors by age at time \(t\):

\[\begin{align*}
N_{(x_e,0)} &= N_{(x_e,1)}(1+\gamma)^t, \\
N_{(x_e+1,1)} &= N_{(x_e+1,1)}(1+\gamma)^{t-1}, \ldots \ldots , \\
N_{(x_e+A-1,1)} &= N_{(x_e+A-1,1)}(1+\gamma)^{t-1} \text{ [19.]} \\
\end{align*}\]

where \(N_{(x_e+k,1)} = N_{(x_e,1)}kR_{x_e}^k\), with \(kR_{x_e}\) being the stable-in-time ratio between the number of individuals of age \(x_e\) y \(x_e+k\) years, which can be increasing or decreasing and can also be expressed by means of probabilities \(kP_{x_e}\).

3.-Average wage (average contribution base) by age at time \(t\):

\(^{24}\) The Swedish legislation implicitly assumes that population growth is 0 (\(\gamma = 0\)). Boado-Penas et al. (2008) use the same hypothesis. Here, as well as in Settergren and Mikula (2005), both positive and negative population growth are allowed in the model.
The demographic structure above means that the age-wage structure (contribution bases) only undergoes proportional changes. The slope of the age-wage structure is constant.

The annual retirement pension is \(\beta \cdot Y_{C,0} \), which is calculated as a set percentage \(\hat{a} \) of average wages taking into account all the years (A) contributed, \(Y_{C,0} = \frac{\sum_{k=0}^{A-1} y_{(x_k+A-k+1)}}{A} \), and pensions in payment increase (decrease) at an accumulative annual rate of \(\hat{c} \). It will also be assumed that payment of both contributions and benefits is distributed uniformly over time.

In this scenario, the contribution rate \(\hat{c} \) in a stationary state depends on the stability of the dependency ratio (dr). The contribution rate from year “w-x-A=t” counting from the start of the system can be considered constant from the actuarial point of view because from that moment the ratio between the number of pensioners and the number of contributors - (dr) - stabilizes:

\[
dr_t = \frac{\sum_{k=0}^{w-x_A-A-1} N_{(x_k+A-k+1)}(1+y)^k}{\sum_{k=0}^{w-x_A-A-1} N_{(x_k+A-k+1)}} = \frac{\sum_{k=0}^{w-x_A-A-1} N_{(x_k+A-k+1)}(1+y)^k}{\sum_{k=0}^{A-1} N_{(x_k+1)}} = \frac{R_t}{C_t} = \frac{R}{C} \tag{21}
\]

because both groups evolve (increase or decrease) exactly equal to rate \(y \). From this year the system is in a stationary state and the contribution rate will be:

\[
\theta_t = \frac{\beta Y_{C,0} \sum_{k=0}^{w-x_A-A-1} N_{(x_k+A-k+1)}(1+G)^{1-k}(1+\lambda)^k}{(1+G)^{-1} \sum_{k=0}^{w-x_A-A-1} y_{(x_k+A-k+1)}N_{(x_k+1)}} = \frac{P_{(x_k+A,1)} \sum_{k=0}^{w-x_A-A-1} N_{(x_k+A-k+1)}(1+G)^k}{\sum_{k=0}^{A-1} y_{(x_k+1)}N_{(x_k+1)}} = \theta_{t+1} = \ldots = \theta \tag{22}
\]

If the system’s average pension is considered to be:
Expenditure on pensions
\[\bar{P}_t = \frac{\beta Y_{C,0} \sum_{k=0}^{w-x_a-A-1} N(x_a + A + k, t) \left(1 + g\right)^{1-k} \left(1 + \gamma\right)^{1-k} (1+\lambda)^t}{\sum_{k=0}^{w-x_a-A-1} N(x_a + A + k, t) (1 + \gamma)^{1-k}} = \frac{P_{(x_a + A, t)} \sum_{k=0}^{w-x_a-A-1} N(x_a + A + k, t) \left[1 + \lambda\right]^{1-k}}{\sum_{k=0}^{w-x_a-A-1} N(x_a + A + k, t) (1 + \gamma)^k} \]

[23.]

with:
\[P_{(x_a + A, t)} = \beta Y_{C,0} (1+g)^{t-1} \]

[24.]

and the average contribution base being:
\[\bar{W}_t = \frac{(1+G)^{1-1} \sum_{k=0}^{A-1} y_{(x_a + k, t)} N_{(x_a + k, t)}}{(1+\gamma)^{1-1} \sum_{k=0}^{A-1} N_{(x_a + k, t)}} = \frac{\sum_{k=0}^{A-1} y_{(x_a + k, t)} N_{(x_a + k, t)}}{\sum_{k=0}^{A-1} N_{(x_a + k, t)}} \]

[25.]

in the stationary state reached, the average pension-average contribution base quotient is already constant due to the fact that the numerator and denominator evolve equally (at the rate of variation in wages):
\[\frac{\bar{P}}{\bar{W}} = \frac{\bar{P}_{t+1}}{\bar{W}_{t+1}} = \ldots = \frac{\bar{P}}{\bar{W}} \]

[26.]

Therefore the contribution rate is the product of the demographic dependency ratio and the financial ratio (average replacement rate of the system):
\[\theta = \frac{\bar{P}}{\bar{W}} dr = \frac{\bar{P}}{\bar{W}} \frac{R}{C} \]

[27.]

The system's liabilities, \(V^T\), have two components: (i) liabilities to current pensioners \(V^r\), and (ii) liabilities to current contributors \(V^c\). Actuaries use the terms “technical provisions for pensions in payment” and “technical provisions for rights being acquired” for (i) and (ii) respectively.

The first component - liabilities to current pensioners - in the stationary state is equal to:
\[V_t' = \beta Y_{C,0} \sum_{k=0}^{w-x_0-A-1} N(x_0 + A + k, t) \tilde{a}^\lambda_{x_0 + A + k} (1 + G)^{t-k} (1 + \lambda)^k \]

\[= \sum_{k=0}^{w-x_0-A-1} N(x_0 + A + k, t) \tilde{a}^\lambda_{x_0 + A + k} \left[\frac{1 + \lambda}{1 + G} \right]^{t-k} \]

with \(\tilde{a}^\lambda_{x_0 + A + k} \) being the present value of a lifetime annuity due of 1 per year payable in advance growing at real rate \(\lambda \), valued at age “\(x_0 + A + k \)” years, with a technical interest rate equal to \(d=G \).

The second component is the liability to current contributors, payments to whom have still not begun but for which a commitment has been made by virtue of the contributions already paid. This second component of the liabilities is calculated by the prospective method\(^{25}\) and will be the \textit{difference} between the present value of future pensions and the present value of future contributions. The definition of these liabilities is that of the “closed group”.

Liabilities to contributors will be constant and equal to:

\[V_t^c = \beta Y_{C,0} N(x_0 + A + 1, t) \tilde{a}^\lambda_{x_0 + A} \sum_{h=1}^{w} (1 + G)^{h-1} (1 + d)^{-h} - \theta \sum_{h=0}^{w-1} N(x_0 + k + 1, t) y(x_0 + k, t) (1 + G)^{h-1} (1 + d)^{-h} \]

\[= \sum_{h=1}^{w} \tilde{a}^\lambda_{x_0 + A} \left[\frac{1 + \lambda}{1 + G} \right]^{h-1} (1 + d)^{-h} \]

\[\sum_{h=0}^{w-1} N(x_0 + k + 1, t) y(x_0 + k, t) \left[\frac{1 + \lambda}{1 + G} \right]^{h-1} (1 + d)^{-h} \]

To obtain the TD, the total liabilities are divided by the annual contribution flow, and the interest rate for discounting future pensions and contributions in the financially sustainable PAYG system is taken to be the IRR, i.e. the real growth in wages plus the real growth in the contributing population - which is actually \(G=(1+g)(1+y)-1 \)\(^{26}\) - and therefore:

\(^{25}\) The calculation is much more simple in the notional accounts system and the logical thing is to use the retrospective system, the value of which coincides with the sum of the notional capital accumulated by the contributors as a whole.

\(^{26}\) See Appendix 2. Gronchi and Nisticò (2008) present a reformulation of the Samuelson–Aaron theorem that recognized the wage bill growth rate as the IRR on contributions and the ‘sustainable return’ of PAYG defined-benefit schemes in a steady growing economy. Knell’s papers (2005a, 2005b) are also very useful.
Appendix 2.-The internal rate of return of the PAYG pension system.

The IRR is defined as the value of parameter "irr" of the law of compound interest, which sets equal to zero the present value of the cash-flows constituted by the aggregate yearly contributions paid by a cohort and the aggregate yearly pension benefits received by the same cohort.

In order to determine the IRR of any generation once the stationary state has been reached, the contributions made by all members of that generation will need to be determined:

\[
\theta \sum_{k=0}^{A-1} y(x_k+t+k) N(x_k+t+k) = (1+G)^{-1} \theta \sum_{k=0}^{A-1} y(x_k+k,1) N(x_k+k,1) (1+G)^{k-1} \]

along with the benefits received by all the members of a generation:

\[
\sum_{k=A}^{w-x_k} P(x_k+t+k) N(x_k+t+k) = (1+G)^{-1} \beta Y_{C,0} \sum_{k=A}^{w-x_k} N(x_k+k,1) (1+G)^{k} \]

and their discounted values will have to be made equal:

\[
\left[\theta \sum_{k=0}^{A-1} y(x_k+k,1) N(x_k+k,1) (1+G)^{v} - \beta Y_{C,0} \sum_{k=A}^{w-x_k-1} N(x_k+k,1) (1+G)^{v} \right] (1+\text{irr})^{k} = 0 \]

if we prefer to make the main relations which are the basis of the system's financial balance clear:

\[
\left[P \sum_{k=0}^{A-1} y(x_k+k,1) N(x_k+k,1) (1+G)^{v} - \beta Y_{C,0} \sum_{k=0}^{A-1} N(x_k+A+k,1) (1+G)^{v} \right] (1+\text{irr})^{k} = 0 \]
It is easy to test that \(IRR = G \) for a generation. In fact, if \(IRR = G \) is substituted in either of the two expressions above, it is verified - given the stable structure of the population for the cross-section and the previously defined relations - that:

\[
\theta \sum_{k=0}^{A-1} y_{(x_k + A, k)} N_{(x_k + A, k)} - \beta Y_{C, 0} \sum_{k=0}^{w - x_k - A - 1} N_{(x_k + A, k)} = 0 \quad [35.]
\]

Based on a development carried out by Devesa-Carpio et al. (2002), an approximate expression can be obtained for the IRR for a particular generation which comes from satisfying the restriction of the life-cycle and equalling the contributions and the pensions projected, as shown in the following integral equation:

\[
\theta \int_{x = x^*}^{x + A} N_{(x, x+t-x^*)} \frac{-ix}{\text{Discount factor}} \, dx = \int_{x = x^* + A}^{w} N_{(x, x+t-x^*)} P_{(x, x+t-x^*)} \frac{e^{-ix}}{\text{Discount factor}} \, dx \quad [36.]
\]

Because the functions involved in Expression 36 are exponential and therefore continuous and smooth, without an excessive margin of error, the integral can be taken as close to the value of the function, integrating for the weighted average age, separately, for length of working life and length of retirement;

\[
\text{if } \bar{x} \in [a, b] \rightarrow \int_{a}^{b} f(x) \, dx \approx f(\bar{x}) [b - a] \quad [37.]
\]

that is, \(A_c \) for the integral of the first member of Equation 36 and \(A_s \) for the second.

Expression 36 can be expressed as:

\[
\theta \frac{\text{Contribution}}{\text{Pay-in}} \left[\frac{\text{Benefit}}{\text{Pay-out}} \right] = \frac{1}{A - A_c} \left[\ln \frac{\text{Benefit}}{\text{Pay-out}} + \ln \frac{\text{Pensioners}}{\text{Pay-in}} + \ln \frac{\text{Contributors}}{\text{Contributors}} \right] \quad [38.]
\]

giving us a very enlightening approximate expression which is based on the average turnover duration in the stationary state described:
where:

1 is the neper of the ratio between the pension and the contribution associated with the weighted average ages related with the turnover duration.

2 is the neper of the dependency ratio associated with the weighted average ages related with the average period of contribution.

3 is the neper of the ratio between the time one monetary unit is in period of payment (pay-out) and contribution (pay-in).

Clearly Expression 39 could be developed as many times as needed in order for it to show other elements that may be of interest. If it is considered that:

\[
\frac{\gamma}{(1 + \gamma)^{A_{x}} - x_{u}} = y(A_{x}, 1)(1 + g)^{A_{x} - x_{u}}
\]

\[
P_{(A_{x}, A_{x} + t_{x_{u}})} = \beta Y_{C, 0} (1 + g)^{A_{x} - x_{u}}
\]

and

\[
N_{(A_{x}, A_{x} + t_{x_{u}})} = N_{(A_{x}, 1)} (1 + g)^{A_{x} - x_{u}}
\]

then,

\[
i \approx \frac{1}{A_{r} - A_{c}} \left[\ln \frac{\beta Y_{C, 0} (1 + g)^{A_{r} - A_{c}}}{y(A_{c}, 1)} + \ln \frac{N_{(A_{c}, 1)} (1 + g)^{A_{c} - A_{c}}}{N_{(A_{c}, 1)}} + \ln \frac{(A_{x} + 1) - (x_{u} + A_{x})}{(x_{u} + A_{x} - (A_{x} + 1))} \right]
\]

[40.]

Substituting \(\theta \) leaves an extremely interesting expression:

\[
i \approx \frac{1}{A_{r} - A_{c}} \left[\ln \frac{\beta Y_{C, 0} (1 + g)^{A_{r} - A_{c}}}{y(A_{c}, 1)} + \ln \frac{N_{(A_{c}, 1)} (1 + g)^{A_{c} - A_{c}}}{N_{(A_{c}, 1)}} + \ln \frac{(A_{x} + 1) - (x_{u} + A_{x})}{(x_{u} + A_{x} - (A_{x} + 1))} \right] - \ln \frac{R}{d} + \ln \frac{\pi}{e}
\]

[41.]

in which there is an explicit appearance of the system’s dependency ratio (d), the ratio between the system’s pension and average wage (e), in which the revaluation of the pension in payment is included within the formula for the average pension, the effect of the increase or decrease in wages on pensions in payment (a), the effect of the increase or decrease in population on the generation of pensioners (b), and finally the ratio between the pay-out and the pay-in, which is affected by all the previous parameters (c).

Expressions 39, 40, 41 or any other equivalent can be used to obtain the IRR, with:

\[
\text{IRR} \approx e^{i} - 1
\]

It should be stressed that the IRR for the generations of affiliates that received payment having paid no contributions or without having paid them in full is considerably higher than that
for the generations once the stationary state is reached. The generation of affiliates who received a pension without having contributed anything has an IRR \(\infty \), and the following generations have a decreasing IRR which tends towards \(G \) as the system matures and the stationary state is reached.

For the generation that has only contributed one year, the IRR would be determined by:

\[
\theta \sum_{k=A}^{A-1} y_{x+k,1} N(x_{x+k,1}) (1+G)^{-1} - \beta Y_{C,0} \sum_{k=A}^{w-x_{k-1}} N(x_{x+k,1}) (1+G)^{-1} \]
\[(1+\text{IRR})^{-(k-1)} = 0 \tag{42.}\]

while for the generation that has contributed \(A-1 \) years:

\[
\theta \sum_{k=1}^{A-1} y_{x+k,1} N(x_{x+k,1}) (1+G)^{-1} - \beta Y_{C,0} \sum_{k=A}^{w-x_{k-1}} N(x_{x+k,1}) (1+G)^{-1} \]
\[(1+\text{IRR})^{-(k-1)} = 0 \tag{43.}\]

Clearly in these cases \(\text{IRR} > G \), given that the growth of the covered wage bill during these years was also higher than \(G \). In addition, the generation that joined the system the first year as pensioners without having contributed anything would benefit from an IRR= \(\infty \).
Appendix 3.- Sensitivity analysis of the numerical results showed in section 3.

Figure 5 and Table 8 show the main results for the system under different assumptions of population growth, pension growth, different salary profile and a different mortality table respectively.

![Figure 5: The system's contributors, pensioners, wages and pensions under different assumptions](image)

Table 8: Unbalanced pension system depending on different assumptions. Solvency ratios (%)

<table>
<thead>
<tr>
<th></th>
<th>CA</th>
<th>HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{dq}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g=1%; Y=-2%; λ=0%</td>
<td>82.90</td>
<td>45.54</td>
</tr>
<tr>
<td>g=1%; Y=2%; λ=0%; different salary profile</td>
<td>84.14</td>
<td>45.82</td>
</tr>
<tr>
<td>g=1%; Y=2%; λ=0%; different mortality table</td>
<td>88.12</td>
<td>45.84</td>
</tr>
<tr>
<td>g=1%; Y=2%; λ=2%;</td>
<td>83.96</td>
<td>45.78</td>
</tr>
<tr>
<td>g=1%; Y=-2%; λ=2%</td>
<td>86.96</td>
<td>45.82</td>
</tr>
<tr>
<td>g=1%; Y=-2%; λ=2%; different salary profile</td>
<td>87.96</td>
<td>45.82</td>
</tr>
<tr>
<td>g=1%; Y=2%; λ=2%; different salary profile</td>
<td>87.96</td>
<td>45.82</td>
</tr>
<tr>
<td>g=1%; Y=-2%; λ=2%; different mortality table</td>
<td>87.96</td>
<td>45.82</td>
</tr>
</tbody>
</table>

For simplicity, the r’s are considered to be one and two points above the G for each example. The unbalanced contribution rates shown in the tables follow the formulae described in the text.

In this case, the life expectancy of a person of 65 is 19.63, higher than the result obtained without changing the mortality table (15.61).
Últimos números publicados

159/2000 Participación privada en la construcción y explotación de carreteras de peaje
 Ginés de Rus, Manuel Romero y Lourdes Trujillo

160/2000 Errores y posibles soluciones en la aplicación del *Value at Risk*
 Mariano González Sánchez

161/2000 Tax neutrality on saving assets. The spahish case before and after the tax reform
 Cristina Ruza y de Paz-Curbera

162/2000 Private rates of return to human capital in Spain: new evidence
 F. Barceinas, J. Oliver-Alonso, J.L. Raymond y J.L. Roig-Sabaté

163/2000 El control interno del riesgo. Una propuesta de sistema de límites
 riesgo neutral
 Mariano González Sánchez

164/2001 La evolución de las políticas de gasto de las Administraciones Públicas en los años 90
 Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells

165/2001 Bank cost efficiency and output specification
 Emili Tortosa-Ausina

166/2001 Recent trends in Spanish income distribution: A robust picture of falling income inequality
 Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara

167/2001 Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en
 el nuevo IRPF
 Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández

168/2001 The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some Euro-
 pean Countries
 Mónica Melle-Hernández

169/2001 La política de cohesión de la UE ampliada: la perspectiva de España
 Ismael Sanz Labrador

170/2002 Riesgo de liquidez de Mercado
 Mariano González Sánchez

171/2002 Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas
 de capitalización individual: medida y comparación internacional.
 José Enrique Devesa Carpio, Rosa Rodriguez Barrera, Carlos Vidal Meliá

 y propuestas de metodología para la explotación de la información de los ingresos y el gasto.
 Llorenç Pou, Joaquín Alegre

173/2002 Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de credito.
 Rosa Puertas, María Bonilla, Ignacio Olmeda
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>174/2002</td>
<td>Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.</td>
<td>José Vicente Blanes Cristóbal</td>
</tr>
<tr>
<td>175/2003</td>
<td>La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos.</td>
<td>Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González</td>
</tr>
<tr>
<td>176/2003</td>
<td>The Falling Share of Cash Payments in Spain.</td>
<td>Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey</td>
</tr>
<tr>
<td>177/2003</td>
<td>Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.</td>
<td>Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey</td>
</tr>
<tr>
<td>178/2003</td>
<td>Factors explaining the interest margin in the banking sectors of the European Union.</td>
<td>Joaquín Maudos y Juan Fernández Guevara</td>
</tr>
<tr>
<td>179/2003</td>
<td>Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España.</td>
<td>Mónica Melle Hernández</td>
</tr>
<tr>
<td>181/2003</td>
<td>The Euro effect on the integration of the European stock markets.</td>
<td>Mónica Melle Hernández</td>
</tr>
<tr>
<td>182/2004</td>
<td>In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition.</td>
<td>Bruno Cassiman, Reinhilde Veugelers</td>
</tr>
<tr>
<td>183/2004</td>
<td>Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua.</td>
<td>Mª Ángeles García Valiñas</td>
</tr>
<tr>
<td>184/2004</td>
<td>Estimación de la economía sumergida en España: un modelo estructural de variables latentes.</td>
<td>Ángel Alañón Pardo, Miguel Gómez de Antonio</td>
</tr>
<tr>
<td>185/2004</td>
<td>Causas políticas y consecuencias sociales de la corrupción.</td>
<td>Joan Oriol Prats Cabrera</td>
</tr>
<tr>
<td>186/2004</td>
<td>Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.</td>
<td>Andrés Guiral Contreras y José A. Gonzalo Angulo</td>
</tr>
<tr>
<td>187/2004</td>
<td>El modelo de Black, Derman y Toy en la práctica. Aplicación al mercado español.</td>
<td>Marta Tolentino García-Abadillo y Antonio Díaz Pérez</td>
</tr>
<tr>
<td>188/2004</td>
<td>Does market competition make banks perform well?</td>
<td>Mónica Melle</td>
</tr>
<tr>
<td>189/2004</td>
<td>Efficiency differences among banks: external, technical, internal, and managerial</td>
<td>Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso</td>
</tr>
</tbody>
</table>
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en España: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benítez

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodriguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do ‘Insertion Contracts’ Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodríguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodríguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Miguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Díaz
221/2005 Tendencia post-anuncio de resultados contables: evidencia para el mercado español
Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García

222/2005 Human capital accumulation and geography: empirical evidence in the European Union
Jesús López-Rodríguez, J. Andrés Faíña y Jose Lopez Rodriguez

223/2005 Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing
Waymond Rodgers and Andrés Guiral

José Ramón Cancelo de la Torre, J. Andrés Faíña and Jesús López-Rodriguez

225/2005 The effects of ownership structure and board composition on the audit committee activity: Spanish evidence
Carlos Fernández Méndez and Rubén Arrondo García

226/2005 Cross-country determinants of bank income smoothing by managing loan loss provisions
Ana Rosa Fonseca and Francisco González

Alejandro Estellér Moré

228/2005 Region versus Industry effects: volatility transmission
Pilar Soriano Felipe and Francisco J. Climent Diranzo

Daniel Vázquez-Bustelo and Sandra Valle

Alfonso Palacio-Vera

231/2005 Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal
M. Carmen Almansa Sáez and Javier Calatrava Requena

232/2005 Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?
Santiago Carbó Valverde and Rafael López del Paso

Miguel Angel Barberán Lahuerta

Victor M. González

Waymond Rodgers, Paul Pavlou and Andres Guiral.

Francisco J. André, M. Alejandro Cardenete y Carlos Romero.
Santiago Carbó-Valverde, Francisco Rodríguez-Fernández y Gregory F. Udell.

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

Marcos Álvarez-Díaz y Gonzalo Caballero Miguez.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como deter-
minantes de la decisión de exportación en las Pymes.
Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el
tiempo.
Inés P. Murillo.

Manuel A. Gómez.

243/2006 Measuring efficiency in education: an analysis of different approaches for incorporating
non-discretionary inputs.
Jose Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro y Javier Salinas-Jiménez

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral
Countries?.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano

Marta Pascual and David Cantarero

246/2006 Measurement and analysis of the Spanish Stock Exchange using the Lyapunov exponent with
digital technology.
Salvador Rojí Ferrari and Ana Gonzalez Marcos

247/2006 Testing For Structural Breaks In Variance Withadditive Outliers And Measurement Errors.
Paulo M.M. Rodrigues and Antonio Rubia

Joaquín Maudos and Juan Fernández de Guevara

Desiderio Romero Jordán, José Félix Sanz Sanz y César Pérez López

250/2006 Regional Income Disparities in Europe: What role for location?.
Jesús López-Rodriguez and J. Andrés Faíña

251/2006 Funciones abreviadas de bienestar social: Una forma sencilla de simultanear la medición de la
eficacia y la equidad de las políticas de gasto público.
Nuria Badenes Plá y Daniel Santín González

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”.
Luis Muga and Rafael Santamaria

253/2006 Dinámica de precios en el mercado español de gasolina: un equilibrio de colusión tácita.
Jordi Perdiguero García
José M. Pastor, Emper Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana María Aldanondo-Ochoa y Carmen Almansa-Sáez

José Félix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José María Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdigueru.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara.

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich.
A. García-Lorenzo y Jesús López-Rodríguez

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luis Muga y Rafael Santamaría

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales
Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general
Robert Meneu Gaya

278/2006 El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006 Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006 Three measures of returns to education: An illustration for the case of Spain
Maria Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006 La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

283/2006 Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

Alberte Martínez López

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
<table>
<thead>
<tr>
<th>Volume/Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>290/2006</td>
<td>La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico</td>
<td>Fernando Hernández Martínez</td>
</tr>
<tr>
<td>291/2006</td>
<td>Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain</td>
<td>Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso</td>
</tr>
<tr>
<td>292/2006</td>
<td>Una teoría sobre la contribución de la función de compras al rendimiento empresarial</td>
<td>Javier González Benito</td>
</tr>
<tr>
<td>294/2006</td>
<td>Testing the parametric vs the semiparametric generalized mixed effects models</td>
<td>María José Lombardía and Stefan Sperlich</td>
</tr>
<tr>
<td>295/2006</td>
<td>Nonlinear dynamics in energy futures</td>
<td>Mariano Matilla-García</td>
</tr>
<tr>
<td>296/2006</td>
<td>Estimating Spatial Models By Generalized Maximum Entropy Or How To Get Rid Of W</td>
<td>Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez</td>
</tr>
<tr>
<td>297/2006</td>
<td>Optimización fiscal en las transmisiones lucrativas: análisis metodológico</td>
<td>Félix Domínguez Barrero</td>
</tr>
<tr>
<td>298/2006</td>
<td>La situación actual de la banca online en España</td>
<td>Francisco José Climent Diranzo y Alexandre Momparler Pechuán</td>
</tr>
<tr>
<td>299/2006</td>
<td>Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas</td>
<td>Javier González Benito y Isabel Suárez González</td>
</tr>
<tr>
<td>300/2006</td>
<td>A Parametric Model to Estimate Risk in a Fixed Income Portfolio</td>
<td>Pilar Abad and Sonia Benito</td>
</tr>
<tr>
<td>301/2007</td>
<td>Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros</td>
<td>Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé</td>
</tr>
<tr>
<td>302/2007</td>
<td>Assessing the enlargement and deepening of regional trading blocs: The European Union case</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano</td>
</tr>
<tr>
<td>303/2007</td>
<td>¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español</td>
<td>Vanesa Solís Rodríguez y Manuel González Díaz</td>
</tr>
<tr>
<td>305/2007</td>
<td>Spain is Different: Relative Wages 1989-98</td>
<td>José Antonio Carrasco Gallego</td>
</tr>
</tbody>
</table>
Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor

Agricultural Productivity in the European Regions: Trends and Explanatory Factors
Roberto Ezcurra, Belen Iráizoz, Pedro Pascual and Manuel Rapún

Long-run Regional Population Divergence and Modern Economic Growth in Europe: a Case Study of Spain
María Isabel Ayuda, Fernando Collantes and Vicente Pinilla

Financial Information effects on the measurement of Commercial Banks' Efficiency
Borja Amor, María T. Tascón and José L. Fanjul

Neutralidad e incentivos de las inversiones financieras en el nuevo IRPF
Félix Domínguez Barrero

The Effects of Corporate Social Responsibility Perceptions on The Valuation of Common Stock
Waymond Rodgers, Helen Choy and Andres Guiral-Contreras

Country Creditor Rights, Information Sharing and Commercial Banks’ Profitability Persistence across the world
Borja Amor, María T. Tascón and José L. Fanjul

¿Es Relevante el Déficit Corriente en una Unión Monetaria? El Caso Español
Javier Blanco González y Ignacio del Rosal Fernández

The Impact of Credit Rating Announcements on Spanish Corporate Fixed Income Performance: Returns, Yields and Liquidity
Pilar Abad, Antonio Díaz and M. Dolores Robles

Indicadores de Lealtad al Establecimiento y Formato Comercial Basados en la Distribución del Presupuesto
Cesar Augusto Bustos Reyes and Óscar González Benito

Migrants and Market Potential in Spain over The XXth Century: A Test Of The New Economic Geography
Daniel A. Tirado, Jordi Pons, Elisenda Paluzie and Javier Silvestre

El Impacto del Coste de Oportunidad de la Actividad Emprendedora en la Intención de los Ciudadanos Europeos de Crear Empresas
Luis Miguel Zapico Aldeano

Los belgas y los ferrocarriles de vía estrecha en España, 1887-1936
Alberte Martínez López

Competición política bipartidista. Estudio geométrico del equilibrio en un caso ponderado
Isabel Lillo, Mª Dolores López y Javier Rodrigo

Human resource management and environment management systems: an empirical study
Mª Concepción López Fernández, Ana Mª Serrano Bedia and Gema García Piqueres
Wood and industrialization. evidence and hypotheses from the case of Spain, 1860-1935. Iñaki Iriarte-Goñi and María Isabel Ayuda Bosque

New evidence on long-run monetary neutrality. J. Cunado, L.A. Gil-Alana and F. Perez de Gracia

Monetary policy and structural changes in the volatility of US interest rates. Juncal Cuñado, Javier Gomez Biscarri and Fernando Perez de Gracia

The productivity effects of intrafirm diffusion. Lucio Fuentelsaz, Jaime Gómez and Sergio Palomas

Unemployment duration, layoffs and competing risks. J.M. Arranz, C. García-Serrano and L. Toharia

El grado de cobertura del gasto público en España respecto a la UE-15 Nuria Rueda, Begoña Barruso, Carmen Calderón y Mª del Mar Herrador

The Impact of Direct Subsidies in Spain before and after the CAP'92 Reform Carmen Murillo, Carlos San Juan and Stefan Sperlich

Determinants of post-privatisation performance of Spanish divested firms Laura Cabeza García and Silvia Gómez Ansón

¿Por qué deciden diversificar las empresas españolas? Razones oportunistas versus razones económicas Almudena Martínez Campillo

Dynamical Hierarchical Tree in Currency Markets Juan Gabriel Brida, David Matesanz Gómez and Wiston Adrián Risso

Los determinantes sociodemográficos del gasto sanitario. Análisis con microdatos individuales Ana María Angulo, Ramón Barberán, Pilar Egea y Jesús Mur

Why do companies go private? The Spanish case Inés Pérez-Soba Aguilar

The use of gis to study transport for disabled people Verónica Cañal Fernández

The long run consequences of M&A: An empirical application Cristina Bernad, Lucio Fuentelsaz and Jaime Gómez

Las clasificaciones de materias en economía: principios para el desarrollo de una nueva clasificación Valentín Edo Hernández

Reforming Taxes and Improving Health: A Revenue-Neutral Tax Reform to Eliminate Medical and Pharmaceutical VAT Santiago Álvarez-García, Carlos Pestana Barros y Juan Prieto-Rodriguez

Impacts of an iron and steel plant on residential property values Celia Bilbao-Terol

Firm size and capital structure: Evidence using dynamic panel data Víctor M. González and Francisco González
¿Cómo organizar una cadena hotelera? La elección de la forma de gobierno
Marta Fernández Barcala y Manuel González Díaz

Análisis de los efectos de la decisión de diversificar: un contraste del marco teórico “Agencia-Stewardship”
Almudena Martínez Campillo y Roberto Fernández Gago

Selecting portfolios given multiple eurostoxx-based uncertainty scenarios: a stochastic goal programming approach from fuzzy betas
Enrique Ballesteros, Blanca Pérez-Gladish, Mar Arenas-Parra and Amelia Bilbao-Terol

“El bienestar de los inmigrantes y los factores implicados en la decisión de emigrar”
Anastasia Hernández Alemán y Carmelo J. León

Andrea Martínez-Noya and Esteban García-Canal

Diferencias salariales entre empresas públicas y privadas. El caso español
Begoña Cueto y Nuria Sánchez- Sánchez

Effects of Fiscal Treatments of Second Home Ownership on Renting Supply
Celia Bilbao Terol and Juan Prieto Rodríguez

Auditors’ ethical dilemmas in the going concern evaluation
Andres Guiral, Waymond Rodgers, Emiliano Ruiz and Jose A. Gonzalo

Convergencia en capital humano en España. Un análisis regional para el periodo 1970-2004
Susana Morales Sequera y Carmen Pérez Esparrells

Socially responsible investment: mutual funds portfolio selection using fuzzy multiobjective programming
Blanca Mª Pérez-Gladish, Mar Arenas-Parra , Amelia Bilbao-Terol and Mª Victoria Rodriguez-Uria

Persistencia del resultado contable y sus componentes: implicaciones de la medida de ajustes por devengo
Raúl Iñiguez Sánchez y Francisco Poveda Fuentes

Wage Inequality and Globalisation: What can we Learn from the Past? A General Equilibrium Approach
Concha Betrán, Javier Ferri and Maria A. Pons

Eficacia de los incentivos fiscales a la inversión en I+D en España en los años noventa
Desiderio Romero Jordán y José Félix Sanz Sanz

Convergencia regional en renta y bienestar en España
Robert Meneu Gaya

Tributación ambiental: Estado de la Cuestión y Experiencia en España
Ana Carrera Poncela

Salient features of dependence in daily us stock market indices
Luis A. Gil-Alana, Juncal Cuñado and Fernando Pérez de Gracia

La educación superior: ¿un gasto o una inversión rentable para el sector público?
Inés P. Murillo y Francisco Pedraja
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Effects of a reduction of working hours on a model with job creation and job destruction</td>
<td>Emilio Domínguez, Miren Ullibarri y Idoya Zabaleta</td>
</tr>
<tr>
<td>2007</td>
<td>Stock split size, signaling and earnings management: Evidence from the Spanish market</td>
<td>José Yagüe, J. Carlos Gómez-Sala and Francisco Poveda-Fuentes</td>
</tr>
<tr>
<td>2007</td>
<td>Modelización de las expectativas y estrategias de inversión en mercados de derivados</td>
<td>Begoña Font-Belaire</td>
</tr>
<tr>
<td>2008</td>
<td>Trade in capital goods during the golden age, 1953-1973</td>
<td>Mª Teresa Sanchis and Antonio Cubel</td>
</tr>
<tr>
<td>2008</td>
<td>El capital económico por riesgo operacional: una aplicación del modelo de distribución de pérdidas</td>
<td>Enrique José Jiménez Rodríguez y José Manuel Feria Domínguez</td>
</tr>
<tr>
<td>2008</td>
<td>The drivers of effectiveness in competition policy</td>
<td>Joan-Ramon Borrell and Juan-Luis Jiménez</td>
</tr>
<tr>
<td>2008</td>
<td>Corporate governance structure and board of directors remuneration policies: evidence from Spain</td>
<td>Carlos Fernández Méndez, Rubén Arrondo García and Enrique Fernández Rodríguez</td>
</tr>
<tr>
<td>2008</td>
<td>Beyond the disciplinary role of governance: how boards and donors add value to Spanish foundations</td>
<td>Pablo De Andrés Alonso, Valentín Azofra Palenzuela y M. Elena Romero Merino</td>
</tr>
<tr>
<td>2008</td>
<td>Complejidad y perfeccionamiento contractual para la contención del oportunismo en los acuerdos de franquicia</td>
<td>Vanesa Solís Rodríguez y Manuel González Díaz</td>
</tr>
<tr>
<td>2008</td>
<td>Inestabilidad y convergencia entre las regiones europeas</td>
<td>Jesús Mur, Fernando López y Ana Angulo</td>
</tr>
<tr>
<td>2008</td>
<td>Análisis espacial del cierre de explotaciones agrarias</td>
<td>Ana Aldanondo Ochoa, Carmen Almansa Sáez y Valero Casanovas Oliva</td>
</tr>
<tr>
<td>2008</td>
<td>Cross-Country Efficiency Comparison between Italian and Spanish Public Universities in the period 2000-2005</td>
<td>Tommaso Agasisti and Carmen Pérez Esparrells</td>
</tr>
<tr>
<td>2008</td>
<td>El desarrollo de la sociedad de la información en España: un análisis por comunidades autónomas</td>
<td>María Concepción García Jiménez y José Luis Gómez Barroso</td>
</tr>
<tr>
<td>2008</td>
<td>El medioambiente y los objetivos de fabricación: un análisis de los modelos estratégicos para su consecución</td>
<td>Lucía Avella Camarero, Esteban Fernández Sánchez y Daniel Vázquez-Bustelo</td>
</tr>
<tr>
<td>2008</td>
<td>Influence of bank concentration and institutions on capital structure: New international evidence</td>
<td>Víctor M. González and Francisco González</td>
</tr>
<tr>
<td>2008</td>
<td>Generalización del concepto de equilibrio en juegos de competición política</td>
<td>Mª Dolores López González y Javier Rodrigo Hitos</td>
</tr>
<tr>
<td>2008</td>
<td>Smooth Transition from Fixed Effects to Mixed Effects Models in Multi-level regression Models</td>
<td>María José Lombardía and Stefan Sperlich</td>
</tr>
</tbody>
</table>
375/2008 A Revenue-Neutral Tax Reform to Increase Demand for Public Transport Services
Carlos Pestana Barros and Juan Prieto-Rodriguez

376/2008 Measurement of intra-distribution dynamics: An application of different approaches to the European regions
Adolfo Maza, María Hierro and José Villaverde

377/2008 Migración interna de extranjeros y ¿nueva fase en la convergencia?
María Hierro y Adolfo Maza

378/2008 Efektos de la Reforma del Sector Eléctrico: Modelización Teórica y Experiencia Internacional
Ciro Eduardo Bazán Navarro

379/2008 A Non-Parametric Independence Test Using Permutation Entropy
Mariano Matilla-García and Manuel Ruiz Marín

380/2008 Testing for the General Fractional Unit Root Hypothesis in the Time Domain
Uwe Hassler, Paulo M.M. Rodrigues and Antonio Rubia

381/2008 Multivariate gram-charlier densities
Esther B. Del Brio, Trino-Manuel Ñíguez and Javier Perote

382/2008 Analyzing Semiparametrically the Trends in the Gender Pay Gap - The Example of Spain
Ignacio Moral-Arce, Stefan Sperlich, Ana I. Fernández-Sainz and Maria J. Roca

383/2008 A Cost-Benefit Analysis of a Two-Sided Card Market
Santiago Carbó Valverde, David B. Humphrey, José Manuel Liñares Zegarra and Francisco Rodríguez Fernández

384/2008 A Fuzzy Bicriteria Approach for Journal Deselection in a Hospital Library
M. L. López-Avello, M. V. Rodríguez-Uría, B. Pérez-Gladish, A. Bilbao-Terol, M. Arenas-Parra

385/2008 Valoración de las grandes corporaciones farmacéuticas, a través del análisis de sus principales intangibles, con el método de opciones reales
Gracia Rubio Martín y Prosper Lamothe Fernández

386/2008 El marketing interno como impulsor de las habilidades comerciales de las pymes españolas: efectos en los resultados empresariales
Mª Leticia Santos Vijande, Mª José Sanzo Pérez, Nuria García Rodríguez y Juan A. Trespalacios Gutiérrez

387/2008 Understanding Warrants Pricing: A case study of the financial market in Spain
David Abad y Belén Nieto

388/2008 Aglomeración espacial, Potencial de Mercado y Geografía Económica: Una revisión de la literatura
Jesús López-Rodríguez y J. Andrés Faiña

389/2008 An empirical assessment of the impact of switching costs and first mover advantages on firm performance
Jaime Gómez, Juan Pablo Maícas

390/2008 Tender offers in Spain: testing the wave
Ana R. Martínez-Cañete y Inés Pérez-Soba Aguilar
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>La integración del mercado español a finales del siglo XIX: los precios del trigo entre 1891 y 1905</td>
<td>Mariano Matilla García, Pedro Pérez Pascual y Basilio Sanz Carnero</td>
</tr>
<tr>
<td>2008</td>
<td>Cuando el tamaño importa: estudio sobre la influencia de los sujetos políticos en la balanza de bienes y servicios</td>
<td>Alfonso Echazarra de Gregorio</td>
</tr>
<tr>
<td>2008</td>
<td>Una visión cooperativa de las medidas ante el posible daño ambiental de la desalación</td>
<td>Borja Montaño Sanz</td>
</tr>
<tr>
<td>2008</td>
<td>Efectos externos del endeudamiento sobre la calificación crediticia de las Comunidades Autónomas</td>
<td>Andrés Leal Marcos y Julio López Laborda</td>
</tr>
<tr>
<td>2008</td>
<td>Technical efficiency and productivity changes in Spanish airports: A parametric distance functions approach</td>
<td>Beatriz Tovar & Roberto Rendeiro Martín-Cejas</td>
</tr>
<tr>
<td>2008</td>
<td>Network analysis of exchange data: Interdependence drives crisis contagion</td>
<td>David Matesanz Gómez & Guillermo J. Ortega</td>
</tr>
<tr>
<td>2008</td>
<td>Explaining the performance of Spanish privatised firms: a panel data approach</td>
<td>Laura Cabeza Garcia and Silvia Gomez Anson</td>
</tr>
<tr>
<td>2008</td>
<td>Technological capabilities and the decision to outsource R&D services</td>
<td>Andrea Martínez-Noya and Esteban García-Canal</td>
</tr>
<tr>
<td>2008</td>
<td>Hybrid Risk Adjustment for Pharmaceutical Benefits</td>
<td>Manuel García-Goñi, Pere Ibern & José María Inoriza</td>
</tr>
<tr>
<td>2008</td>
<td>The Team Consensus–Performance Relationship and the Moderating Role of Team Diversity</td>
<td>José Henrique Dieguez, Javier González-Benito and Jesús Galende</td>
</tr>
<tr>
<td>2008</td>
<td>The institutional determinants of CO₂ emissions: A computational modelling approach using Artificial Neural Networks and Genetic Programming</td>
<td>Marcos Álvarez-Díaz , Gonzalo Caballero Miguez and Mario Soliño</td>
</tr>
<tr>
<td>2008</td>
<td>Alternative Approaches to Include Exogenous Variables in DEA Measures: A Comparison Using Monte Carlo</td>
<td>José Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro and Daniel Santín-González</td>
</tr>
<tr>
<td>2008</td>
<td>Efecto diferencial del capital humano en el crecimiento económico andaluz entre 1985 y 2004: comparación con el resto de España</td>
<td>Mª del Pópulo Pablo-Romero Gil-Delgado y Mª de la Palma Gómez-Calero Valdés</td>
</tr>
<tr>
<td>2008</td>
<td>Análisis de fusiones, variaciones conjeturales y la falacia del estimador en diferencias</td>
<td>Juan Luis Jiménez y Jordi Perdiguerro</td>
</tr>
<tr>
<td>2008</td>
<td>Política fiscal en la uem: ¿basta con los estabilizadores automáticos?</td>
<td>Jorge Uxó González y Mª Jesús Arroyo Fernández</td>
</tr>
<tr>
<td>2008</td>
<td>Papel de la orientación emprendedora y la orientación al mercado en el éxito de las empresas</td>
<td>Óscar González-Benito, Javier González-Benito y Pablo A. Muñoz-Gallego</td>
</tr>
<tr>
<td>2008</td>
<td>La presión fiscal por impuesto sobre sociedades en la unión europea</td>
<td>Elena Fernández Rodríguez, Antonio Martínez Arias y Santiago Álvarez García</td>
</tr>
</tbody>
</table>
408/2008 The environment as a determinant factor of the purchasing and supply strategy: an empirical analysis
Dr. Javier González-Benito y MS Duilio Reis da Rocha

409/2008 Cooperation for innovation: the impact on innovatory effort
Gloria Sánchez González and Liliana Herrera

410/2008 Spanish post-earnings announcement drift and behavioral finance models
Carlos Forner and Sonia Sanabria

411/2008 Decision taking with external pressure: evidence on football manager dismissals in argentina and their consequences
Ramón Flores, David Forrest and Juan de Dios Tena

Raúl Serrano y Vicente Pinilla

413/2008 Voter heuristics in Spain: a descriptive approach elector decision
José Luis Sáez Lozano and Antonio M. Jaime Castillo

414/2008 Análisis del efecto área de salud de residencia sobre la utilización y acceso a los servicios sanitarios en la Comunidad Autónoma Canaria
Ignacio Abásolo Alessón, Lidia García Pérez, Raquel Aguiar Ibáñez y Asier Amador Robayna

415/2008 Impact on competitive balance from allowing foreign players in a sports league: an analytical model and an empirical test
Ramón Flores, David Forrest & Juan de Dios Tena

416/2008 Organizational innovation and productivity growth: Assessing the impact of outsourcing on firm performance
Alberto López

417/2008 Value Efficiency Analysis of Health Systems
Eduardo González, Ana Cárcaba & Juan Ventura

418/2008 Equidad en la utilización de servicios sanitarios públicos por comunidades autónomas en España: un análisis multinivel
Ignacio Abásolo, Jaime Pinilla, Miguel Negrín, Raquel Aguiar y Lidia García

419/2008 Piedras en el camino hacia Bolonia: efectos de la implantación del EEES sobre los resultados académicos
Carmen Florido, Juan Luis Jiménez e Isabel Santana

420/2008 The welfare effects of the allocation of airlines to different terminals
M. Pilar Socorro and Ofelia Betancor

421/2008 How bank capital buffers vary across countries. The influence of cost of deposits, market power and bank regulation
Ana Rosa Fonseca and Francisco González

422/2008 Analysing health limitations in spain: an empirical approach based on the european community household panel
Marta Pascual and David Cantarero
Regional productivity variation and the impact of public capital stock: an analysis with spatial interaction, with reference to Spain
Miguel Gómez-Antonio and Bernard Fingleton

Average effect of training programs on the time needed to find a job. The case of the training schools program in the south of Spain (Seville, 1997-1999).
José Manuel Cansino Muñoz-Repiso and Antonio Sánchez Braza

Medición de la eficiencia y cambio en la productividad de las empresas distribuidoras de electricidad en Perú después de las reformas
Raúl Pérez-Reyes y Beatriz Tovar

Acercando posturas sobre el descuento ambiental: sondeo Delphi a expertos en el ámbito internacional
Carmen Almansa Sáez y José Miguel Martínez Paz

Determinants of abnormal liquidity after rating actions in the Corporate Debt Market
Pilar Abad, Antonio Díaz and M. Dolores Robles

Export led-growth and balance of payments constrained. New formalization applied to Cuban commercial regimes since 1960
David Matesanz Gómez, Guadalupe Fugarolas Álvarez-Ude and Isis Mañalich Gálvez

La deuda implícita y el desequilibrio financiero-actuarial de un sistema de pensiones. El caso del régimen general de la seguridad social en España
José Enrique Devesa Carpio y Mar Devesa Carpio

Efectos de la descentralización fiscal sobre el precio de los carburantes en España
Desiderio Romero Jordán, Marta Jorge García-Inés y Santiago Álvarez García

Euro, firm size and export behavior
Silviano Esteve-Pérez, Salvador Gil-Pareja, Rafael Llorca-Vivero and José Antonio Martinez-Serrano

Does social spending increase support for free trade in advanced democracies?
Ismael Sanz, Ferran Martínez i Coma and Federico Steinberg

Potencial de Mercado y Estructura Espacial de Salarios: El Caso de Colombia
Jesús López-Rodríguez y María Cecilia Acevedo

Persistence in Some Energy Futures Markets
Juncal Cunado, Luis A. Gil-Alana and Fernando Pérez de Gracia

La inserción financiera externa de la economía francesa: inversores institucionales y nueva gestión empresarial
Ignacio Álvarez Peralta

¿Flexibilidad o rigidez salarial en España?: un análisis a escala regional
Ignacio Moral Arce y Adolfo Maza Fernández

Intangible relationship-specific investments and the performance of r&d outsourcing agreements
Andrea Martínez-Noya, Esteban García-Canal & Mauro F. Guillén

Friendly or Controlling Boards?
Pablo de Andrés Alonso & Juan Antonio Rodríguez Sanz
La sociedad Trenor y Cía. (1838-1926): un modelo de negocio industrial en la España del siglo XIX
Amparo Ruiz Llopis

Continental bias in trade
Salvador Gil-Pareja, Rafael Llorca-Vivero & José Antonio Martínez Serrano

Determining operational capital at risk: an empirical application to the retail banking
Enrique José Jiménez-Rodriguez, José Manuel Feria-Dominguez & José Luis Martín-Marín

Costes de mitigación y escenarios post-kyoto en España: un análisis de equilibrio general para España
Mikel González Ruiz de Eguino

Las revistas españolas de economía en las bibliotecas universitarias: ranking, valoración del indicador y del sistema
Valentín Edo Hernández

Convergencia económica en España y coordinación de políticas económicas. un estudio basado en la estructura productiva de las CC.AA.
Ana Cristina Mingorance Arnáiz

Instrumentos de mercado para reducir emisiones de co2: un análisis de equilibrio general para España
Mikel González Ruiz de Eguino

El comercio intra e inter-regional del sector Turismo en España
Carlos Llano y Tamara de la Mata

Efectos del incremento del precio del petróleo en la economía española: Análisis de cointegración y de la política monetaria mediante reglas de Taylor
Fernando Hernández Martínez

Bologna Process and Expenditure on Higher Education: A Convergence Analysis of the EU-15
T. Agasisti, C. Pérez Esparrells, G. Catalano & S. Morales

Global Economy Dynamics? Panel Data Approach to Spillover Effects
Gregory Daco, Fernando Hernández Martínez & Li-Wu Hsu

Pricing levered warrants with dilution using observable variables
Isabel Abinzano & Javier F. Navas

Information technologies and financial performance: The effect of technology diffusion among competitors
Lucio Fuentelsaz, Jaime Gómez & Sergio Palomas

A Detailed Comparison of Value at Risk in International Stock Exchanges
Pilar Abad & Sonia Benito

Understanding offshoring: has Spain been an offshoring location in the nineties?
Belén González-Díaz & Rosario Gandoy

Outsourcing decision, product innovation and the spatial dimension: Evidence from the Spanish footwear industry
José Antonio Belso-Martinez
455/2009 Does playing several competitions influence a team’s league performance? Evidence from Spanish professional football
Andrés J. Picazo-Tadeo & Francisco González-Gómez

456/2009 Does accessibility affect retail prices and competition? An empirical application
Juan Luis Jiménez and Jordi Perdiguero

457/2009 Cash conversion cycle in smes
Sonia Baños-Caballero, Pedro J. García-Teruel and Pedro Martínez-Solano

458/2009 Un estudio sobre el perfil de hogares endeudados y sobreendeudados: el caso de los hogares vascos
Alazne Mujika Alberdi, Iñaki García Arrizabalaga y Juan José Gibaja Martins

459/2009 Imposing monotonicity on outputs in parametric distance function estimations: with an application to the spanish educational production
Sergio Perelman and Daniel Santín

460/2009 Key issues when using tax data for concentration analysis: an application to the Spanish wealth tax
José Mª Durán-Cabré and Alejandro Esteller-Moré

461/2009 ¿Se está rompiendo el mercado español? Una aplicación del enfoque de feldstein–horioka
Saúl De Vicente Queijeiro, José Luis Pérez Rivero y María Rosalia Vicente Cuervo

462/2009 Financial condition, cost efficiency and the quality of local public services
Manuel A. Muñiz & José L. Zafra

463/2009 Including non-cognitive outputs in a multidimensional evaluation of education production: an international comparison
Marián García Valiñas & Manuel Antonio Muñiz Pérez

464/2009 A political look into budget deficits. The role of minority governments and oppositions
Albert Falcó-Gimeno & Ignacio Jurado

465/2009 La simulación del cuadro de mando integral. Una herramienta de aprendizaje en la materia de contabilidad de gestión
Elena Urquía Grande, Clara Isabel Muñoz Colomina y Elisa Isabel Cano Montero

466/2009 Análisis histórico de la importancia de la industria de la desalinización en España
Borja Montaño Sanz

467/2009 The dynamics of trade and innovation: a joint approach
Silviano Esteve-Pérez & Diego Rodríguez

468/2009 Measuring international reference-cycles
Sonia de Lucas Santos, Inmaculada Álvarez Ayuso & Mª Jesús Delgado Rodríguez

469/2009 Measuring quality of life in Spanish municipalities
Eduardo González Fidalgo, Ana Cárcaba García, Juan Ventura Victoria & Jesús García García

470/2009 ¿Cómo se valoran las acciones españolas: en el mercado de capitales doméstico o en el europeo?
Begoña Font Belaire y Alfredo Juan Grau Grau

471/2009 Patterns of e-commerce adoption and intensity. evidence for the european union-27
María Rosalia Vicente & Ana Jesús López
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Capital structure determinants in growth firms accessing venture funding</td>
<td>Marina Balboa, José Martí & Álvaro Tresierra</td>
</tr>
<tr>
<td>2009</td>
<td>Determinants of debt maturity structure across firm size</td>
<td>Victor M. González</td>
</tr>
<tr>
<td>2009</td>
<td>Análisis del efecto de la aplicación de las NIIF en la valoración de las salidas a bolsa</td>
<td>Susana Álvarez Otero y Eduardo Rodríguez Enríquez</td>
</tr>
<tr>
<td>2009</td>
<td>An analysis of urban size and territorial location effects on employment probabilities: the spanish case</td>
<td>Ana Viñuela-Jiménez, Fernando Rubiera-Morollón & Begoña Cueto</td>
</tr>
<tr>
<td>2010</td>
<td>Determinantes de la estructura de los consejos de administración en España</td>
<td>Isabel Acero Fraile y Nuria Alcalde Fradejas</td>
</tr>
<tr>
<td>2010</td>
<td>Performance and completeness in repeated inter-firm relationships: the case of franchising</td>
<td>Vanesa Solis-Rodriguez & Manuel Gonzalez-Diaz</td>
</tr>
<tr>
<td>2010</td>
<td>A Revenue-Based Frontier Measure of Banking Competition</td>
<td>Santiago Carbó, David Humphrey & Francisco Rodriguez</td>
</tr>
<tr>
<td>2010</td>
<td>Categorical segregation in social networks</td>
<td>Antoni Rubí-Barceló</td>
</tr>
<tr>
<td>2010</td>
<td>Beneficios ambientales no comerciales de la directiva marco del agua en condiciones de escasez: análisis económico para el Guadalquivir</td>
<td>Julia Martín-Ortega, Giacomo Giannoccaro y Julio Berbel Vecino</td>
</tr>
<tr>
<td>2010</td>
<td>Monetary integration and risk diversification in eu-15 sovereign debt markets</td>
<td>Juncal Cuñado & Marta Gómez-Puig</td>
</tr>
<tr>
<td>2010</td>
<td>The Marshall Plan and the Spanish autarky: A welfare loss analysis</td>
<td>José Antonio Carrasco Gallego</td>
</tr>
<tr>
<td>2010</td>
<td>The role of learning in firm R&D persistence</td>
<td>Juan A. Mañez, María E. Rochina-Barrachina, Amparo Sanchis-Llopis & Juan A. Sanchis-Llopis</td>
</tr>
<tr>
<td>2010</td>
<td>Is venture capital more than just money?</td>
<td>Marina Balboa, José Martí & Nina Zieling</td>
</tr>
<tr>
<td>2010</td>
<td>On the effects of supply strategy on business performance: do the relationships among generic competitive objectives matter?</td>
<td>Javier González-Beníto</td>
</tr>
<tr>
<td>2010</td>
<td>Corporate cash holding and firm value</td>
<td>Cristina Martínez-Sola, Pedro J. García-Teruel & Pedro Martínez-Solano</td>
</tr>
<tr>
<td>2010</td>
<td>El impuesto de flujos de caja de sociedades: una propuesta de base imponible y su aproximación contable en España</td>
<td>Lourdes Jerez Barroso y Joaquín Texeira Quirós</td>
</tr>
<tr>
<td>2010</td>
<td>The effect of technological, commercial and human resources on the use of new technology</td>
<td>Jaime Gómez & Pilar Vargas</td>
</tr>
<tr>
<td>Número</td>
<td>Título</td>
<td>Autor(es)</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>506/2010</td>
<td>¿Cómo ha afectado la fiscalidad a la rentabilidad de la inversión en vivienda en España? Un análisis para el periodo 1996 y 2007</td>
<td>Jorge Onrubia Fernández y María del Carmen Rodado Ruiz</td>
</tr>
<tr>
<td>507/2010</td>
<td>Modelización de flujos en el análisis input-output a partir de la teoría de redes</td>
<td>Ana Salomé García Muñiz</td>
</tr>
<tr>
<td>508/2010</td>
<td>Export-led-growth hypothesis revisited. a balance of payments approach for Argentina, Brazil, Chile and Mexico</td>
<td>David Matesanz Gómez & Guadalupe Fugarolas Álvarez-Ude</td>
</tr>
<tr>
<td>509/2010</td>
<td>Realised hedge ratio properties, performance and implications for risk management: evidence from the spanish ibex 35 spot and futures markets</td>
<td>David G McMillan & Raquel Quiroga García</td>
</tr>
<tr>
<td>510/2010</td>
<td>Do we sack the manager... or is it better not to? Evidence from Spanish professional football</td>
<td>Francisco González-Gómez, Andrés J. Picazo-Tadeo & Miguel Á. García-Rubio</td>
</tr>
<tr>
<td>511/2010</td>
<td>Have Spanish port sector reforms during the last two decades been successful? A cost frontier approach</td>
<td>Ana Rodríguez-Álvarez & Beatriz Tovar</td>
</tr>
<tr>
<td>512/2010</td>
<td>Size & Regional Distribution of Financial Behavior Patterns in Spain</td>
<td>Juan Antonio Maroto Acín, Pablo García Estévez & Salvador Roji Ferrari</td>
</tr>
<tr>
<td>513/2010</td>
<td>The impact of public reforms on the productivity of the Spanish ports: a parametric distance function approach</td>
<td>Ramón Núñez-Sánchez & Pablo Coto-Millán</td>
</tr>
<tr>
<td>514/2010</td>
<td>Trade policy versus institutional trade barriers: an application using “good old” ols</td>
<td>Laura Márquez-Ramos, Inmaculada Martínez-Zarzoso & Celestino Suárez-Burguet</td>
</tr>
<tr>
<td>515/2010</td>
<td>The “Double Market” approach in venture capital and private equity activity: the case of Europe</td>
<td>Marina Balboa & José Martí</td>
</tr>
<tr>
<td>516/2010</td>
<td>International accounting differences and earnings smoothing in the banking industry</td>
<td>Marina Balboa, Germán López-Espinosa & Antonio Rubia</td>
</tr>
<tr>
<td>517/2010</td>
<td>Convergence in car prices among European countries</td>
<td>Simón Sosvilla-Rivero & Salvador Gil-Pareja</td>
</tr>
<tr>
<td>518/2010</td>
<td>Effects of process and product-oriented innovations on employee downsizing</td>
<td>José David Vicente-Lorente & José Ángel Zúñiga-Vicente</td>
</tr>
<tr>
<td>519/2010</td>
<td>Inequality, the politics of redistribution and the tax-mix</td>
<td>Jenny De Freitas</td>
</tr>
<tr>
<td>521/2010</td>
<td>Structural breaks and real convergence in opec countries</td>
<td>Juncal Cuñado</td>
</tr>
<tr>
<td>522/2010</td>
<td>Human Capital, Geographical location and Policy Implications: The case of Romania</td>
<td>Jesús López-Rodríguez, Andres Faiña y Bolea Cosmin-Gabriel</td>
</tr>
</tbody>
</table>
Organizational unlearning context fostering learning for customer capital through time: lessons from SMEs in the telecommunications industry
Anthony K. P. Wensley, Antonio Leal-Millán, Gabriel Cepeda-Carrión & Juan Gabriel Cegarra-Navarro

The governance threshold in international trade flows
Marta Felis-Rota

The intensive and extensive margins of trade decomposing exports growth differences across Spanish regions
Asier Minondo Uribe-Etxeberria & Francisco Requena Silvente

Why do firms locate R&D outsourcing agreements offshore? the role of ownership, location, and externalization advantages
Andrea Martínez-Noya, Esteban Gárcia-Canal & Mauro f. Guillén

Corporate Taxation and the Productivity and Investment Performance of Heterogeneous Firms: Evidence from OECD Firm-Level Data
Norman Gemmell, Richard Kneller, Ismael Sanz & José Félix Sanz-Sanz

Modelling Personal Income Taxation in Spain: Revenue Elasticities and Regional Comparisons
John Creedy & José Félix Sanz-Sanz

Mind the Remoteness!. Income disparities across Japanese Prefectures
Jesús López-Rodríguez, Daisuke Nakamura

El nuevo sistema de financiación autonómica: descripción, estimación empírica y evaluación
Antoni Zabalza y Julio López Laborda

Markups, bargaining power and offshoring: an empirical assessment
Lourdes Moreno & Diego Rodríguez

The snp-dcc model: a new methodology for risk management and forecasting
Esther B. Del Brio, Trino-Manuel Ñíguez & Javier Perote

El uso del cuadro de mando integral y del presupuesto en la gestión estratégica de los hospitales públicos
David Naranjo Gil

Análisis de la efectividad de las prácticas de trabajo de alta implicación en las fábricas españolas
Daniel Vázquez-Bustelo y Lucía Avella Camarero

Energía, innovación y transporte: la electrificación de los tranvías en España, 1896-1935
Alberte Martínez López

La ciudad como negocio: gas y empresa en una región española, Galicia 1850-1936
Alberte Martínez López y Jesús Mirás Araujo

To anticipate or not to anticipate? A comparative analysis of opportunistic early elections and incumbents’ economic performance
Pedro Riera Sagrera

The impact of oil shocks on the Spanish economy
Ana Gómez-Loscos, Antonio Montañés & María Dolores Gadea
539/2010 The efficiency of public and publicly-subsidized high schools in Spain: evidence from PISA-2006
Maria Jesús Mancebón, Jorge Calero, Álvaro Choi & Domingo P. Ximénez-de-Embún

540/2010 Regulation as a way to force innovation: the biodiesel case
Jordi Perdiguero & Juan Luis Jiménez

541/2010 Pricing strategies of Spanish network carrier
Xavier Fageda, Juan Luis Jiménez & Jordi Perdiguero

542/2010 Papel del posicionamiento del distribuidor en la relación entre la marca de distribuidor y lealtad al establecimiento comercial
Oscar González-Benito y Mercedes Martos-Partal

543/2010 How Bank Market Concentration, Regulation, and Institutions Shape the Real Effects of Banking Crises
Ana I. Fernández, Francisco González & Nuria Suárez

544/2010 Una estimación del comercio interregional trimestral de bienes en España mediante técnicas de interpolación temporal
Nuria Gallego López, Carlos Llano Verduras y Julián Pérez García

545/2010 Puerto, empresas y ciudad: una aproximación histórica al caso de Las Palmas de Gran Canaria
Miguel Suárez, Juan Luis Jiménez y Daniel Castillo

546/2010 Multinationals in the motor vehicles industry: a general equilibrium analysis for a transition economy
Concepción Latorre & Antonio G. Gómez-Plana

547/2010 Core/periphery scientific collaboration networks among very similar researchers
Antoni Rubi-Barceló

548/2010 Basic R&D in vertical markets
Miguel González-Maestre & Luis M. Granero

549/2010 Factores condicionantes de la presión fiscal de las entidades de crédito españolas, ¿existen diferencias entre bancos y cajas de ahorros?
Ana Rosa Fonseca Díaz, Elena Fernández Rodríguez y Antonio Martínez Arias

550/2010 Analyzing an absorptive capacity: Unlearning context and Information System Capabilities as catalysts for innovativeness
Gabriel Cepeda-Carrión, Juan Gabriel Cegarra-Navarro & Daniel Jimenez-Jimenez

551/2010 The resolution of banking crises and market discipline: international evidence
Elena Cubillas, Ana Rosa Fonseca & Francisco González

552/2010 A strategic approach to network value in information markets
Lucio Fuentelsaz, Elisabet Garrido & Juan Pablo Maicas

553/2010 Accounting for the time pattern of remittances in the Spanish context
Alfonso Echazarra

554/2010 How to design franchise contracts: the role of contractual hazards and experience
Vanessa Solis-Rodriguez & Manuel Gonzalez-Diaz
Una teoría integradora de la función de producción al rendimiento empresarial
Javier González Benito

Height and economic development in Spain, 1850-1958
Ramón María-Dolores & José Miguel Martínez-Carrión

Why do entrepreneurs use franchising as a financial tool? An agency explanation
Manuel González-Díaz & Vanesa Solís-Rodríguez

Explanatory Factors of Urban Water Leakage Rates in Southern Spain
Francisco González-Gómez, Roberto Martínez-Espiñeira, Maria A. García-Valiñas & Miguel Á. García Rubio

Los rankings internacionales de las instituciones de educación superior y las clasificaciones universitarias en España: visión panorámica y prospectiva de futuro.
Carmen Pérez-Esparrells y José Mª Gómez-Sancho.

Análisis de los determinantes de la transparencia fiscal: Evidencia empírica para los municipios catalanes
Alejandro Esteller Moré y José Polo Otero

Diversidad lingüística e inversión exterior: el papel de las barreras lingüísticas en los procesos de adquisición internacional
Cristina López Duarte y Marta Mª Vidal Suárez

Costes y beneficios de la competencia fiscal en la Unión Europea y en la España de las autonomías
José Mª Cantos, Agustín García Rico, Mª Gabriela Lagos Rodríguez y Raquel Álamo Cerrillo

Customer base management and profitability in information technology industries
Juan Pablo Maicas y Francisco Javier Sese

Expansión internacional y distancia cultural: distintas aproximaciones —hofstede, schwartz, globe
Cristina López Duarte y Marta Mª Vidal Suárez

Economies of scale and scope in service firms with demand uncertainty: An application to a Spanish port
Beatriz Tovar & Alan Wall

Fiscalidad y elección entre renta vitalicia y capital único por los inversores en planes de pensiones: el caso de España
Félix Domínguez Barrero y Julio López Laborda

Did the cooperative start life as a joint-stock company? Business law and cooperatives in Spain, 1869–1931
Timothy W. Guinnan & Susana Martínez-Rodriguez

Predicting bankruptcy using neural networks in the current financial crisis: a study for US commercial banks
Félix J. López-Iturriaga, Óscar López-de-Foronda & Iván Pastor Sanz

Financiación de los cuidados de larga duración en España
Raúl del Pozo Rubio y Francisco Escribano Sotos
570/2010 Is the Border Effect an Artefact of Geographic Aggregation?
Carlos Llano-Verduras, Asier Minondo-Uribé & Francisco Requena-Silvente

571/2010 Notes on using the hidden asset or the contribution asset to compile the actuarial balance for pay-as-you-go pension systems
Carlos Vidal-Meliá & María del Carmen Boado-Penas