THE ROLE OF LEARNING IN FIRM R&D PERSISTENCE

JUAN A. MAÑEZ
MARÍA E. ROCHINA-BARRACHINA
AMPARO SANCHIS-LLOPIS
JUAN A. SANCHIS-LLOPIS
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros.
Las opiniones son responsabilidad de los autores.
THE ROLE OF LEARNING IN FIRM R&D PERSISTENCE

Juan A. Mañez*
María E. Rochina-Barrachina*
Amparo Sanchis-Llopis*
Juan A. Sanchis-Llopis*

Abstract
This paper analyses the role of learning in the persistence of the firms' decision to perform R&D activities using firm level panel data. We estimate discrete time proportional hazard models accounting both for firm observed and unobserved heterogeneity. The data used is a panel of Spanish manufacturing firms drawn from the Encuesta sobre Estrategias Empresariales, for the period 1990-2000. After controlling for other firm and industry characteristics that might have an effect on firm persistence in R&D activities, we find that learning from R&D performance affects persistence in R&D activities.

Key words: R&D activities; persistence; learning, discrete time survival models.

JEL classification: C41, L60, O31.

Corresponding author: Juan A. Mañez-Castillejo, Universitat de València and ERI-CES, Departamento de Economía Aplicada II, Avda. dels Tarongers s/n, 46022 Valencia, Spain. Telephone: 00 34 963828356; fax: 00 34 963828354. E-mail address: jamc@uv.es

* Universitat de València and ERI-CES

Acknowledgements: Financial support from the Ministry of Science and Technology in Spain, Projects numbers SEJ2005-05966, SEJ2005-08783-C04-01, ECO2008-04576 and ECO2008-06395-C05-03, and from the Generalitat Valenciana, Project number GV2007/041 is gratefully acknowledged. We are also grateful to participants in the 32nd EARIE Conference (Porto), the XXI Jornadas de Economía Industrial (Bilbao) an the VIII Encuentro de Economía Aplicada (Murcia). We would also like to thank Fundación SEPI for providing the data. Usual disclaimers apply.
1. INTRODUCTION.

There is a growing literature on the analysis of innovation persistence at the firm level. However, most of these studies focus on the output side of innovation, that is, on the persistence in the achievement of innovation results, such as patents or product innovations (see, among others, Geroski et al., 1997; Crepón and Duguet, 1997; Malerba and Orsenigo, 1999; Cefis and Orsenigo, 2001; Raymond et al., 2006; or Roper and Hewitt-Dundas, 2008). The analysis of innovation persistence from an input point of view is still scarce. To the best of our knowledge, only Mañez et al. (2009), for Spanish manufacturing, and Peters (2009) for German firms, analyse persistence in the realization of R&D activities. However, they do not explicitly analyse how learning from R&D performance may affect firms R&D persistence.

Therefore, in this paper we attempt to fill this gap by testing the role of learning in explaining the persistence of firms in the performance of R&D activities. For this purpose, we use duration model techniques to analyze the determinants of the length of a period of uninterrupted realization of R&D activities (which we will call R&D spell, henceforth), focusing on the role of learning. We use a representative sample of Spanish manufacturing firms for the period 1990 to 2000. The dataset is drawn from the Encuesta sobre Estrategias Empresariales (ESEE, henceforth), a survey carried out annually since 1990 that provides detailed information at the firm level.

In our empirical analysis we implement discrete time proportional hazard models that aim at capturing the particular nature of the dataset. The estimation method allows for a fully non-parametric specification of the baseline hazard function, permitting a full identification of the effect of survival time (number of years of R&D performance) on the duration of R&D spells. In addition, the estimation method allows controlling for R&D spell heterogeneity (both parametrically and non-parametrically), which contributes to a robust test for the presence of unobserved individual heterogeneity.

The contribution of this paper to the literature on innovation persistence is that this is the first attempt to disentangle how learning from R&D performance may affect firms R&D persistence using survival methods. To the best of our knowledge, both Geroski et al. (1997), and Le Bas et al. (2003) use survival analysis to investigate innovation persistence, but their focus is on the persistence in obtaining patents and/or major innovations. By contrast, our paper investigates innovation persistence from an input point of view using survival methods, and in particular, the role of learning in the firms’ persistence to invest in R&D activities. Both Mañez et al. (2009) and Peters (2009) use dynamic discrete choice models to analyse persistence in the performance of R&D activities, but they are not focused on the effects of learning in firm R&D persistence.
To anticipate our results, our findings give support to the existence of a learning effect in the performance of R&D activities. In particular, we obtain that firms with high R&D capital enjoy longer R&D spells (periods of uninterrupted performance of R&D activities), which may be considered as a learning effect, and also that this learning effect only emerges beyond a threshold level of R&D capital accumulation. Further, we also find evidence that the probability that the R&D spell comes to an end decreases with the duration of the spell, that is, our data exhibit negative duration dependence. These results could be capturing dynamic effects (a sort of learning innovation curve) within the R&D spell, and they could also be considered as providing evidence of learning-by-doing and learning-to-learn effects in R&D activities (Rosenberg, 1976, Nelson and Winter, 1982). They may also be considered as giving support to industry dynamic models where the main source of dynamics arises from firm active learning (e.g. Ericson and Pakes, 1995). Finally, we obtain that unobserved heterogeneity is important, probably indicating that persistence is also linked to firm unobserved heterogeneity. This result is consistent with industry dynamic models of passive learning (Jovanovic, 1982), in which dynamics is driven by inherent and fairly constant characteristics of the firm (natural endowments, managerial abilities, etc.).

Our findings also contribute to the understanding of the nature and determinants of firms' persistence in the performance on innovative activities. By identifying those factors that increase the propensity of firms to perform R&D activities over a long period of time, we may suggest policy measures to strengthen firm incentives to undertake innovation activities in a continuous way. From a policy point of view, if persistence in R&D activities is desirable given that it renders higher innovation returns (see, for instance, Beneito et al., 2007), policy makers should devote resources to those firms with a higher probability to continue performing R&D, rather than to merely reduce entry costs in these activities indiscriminately. Making public policy more effective is at least in part a matter of targeting activities that may display "dynamic economies of scale", such as R&D activities. To initiate R&D activities is costly and a portion of the investment is irrecoverable in the event of exit. Given that resources are scarce, it is important to make sure that resources are efficiently allocated to "survival-winners". These are relevant considerations to inform R&D-led policies. Thus, non-selective policies aimed at either fostering firms' efforts to start investing in R&D or reducing entry barriers into this activity may be a waste of resources, as some entrants could turn out to be ill-suited to survive in the performance of these activities.

The rest of the paper is organised as follows. Section 2 briefly describes the theoretical framework to explain persistence in innovation activities and establishes our
working hypothesis. Section 3 presents the data and section 4 is devoted to the description of the methodology used. Section 5 reports the results, and finally, section 6 concludes.

2. THEORETICAL FRAMEWORK AND WORKING HYPOTHESIS.

From a theoretical point of view, there are three approaches suggesting why firm R&D behaviour should exhibit persistence. In what follows we describe these approaches and discuss those factors related to firm and industry characteristics which are likely to affect firms R&D persistence, that is, the duration of firms R&D spells, and establish a number of hypotheses about their expected effects.

a) Learning effects.

The first approach to innovation persistence considers that the cumulative nature of the learning process (Rosenberg, 1976; Nelson and Winter, 1982) may cause persistence: the generation of knowledge is based on previous knowledge and affects future research. Learning-by-doing and learning-to-learn effects may derive from the accumulation of innovation effort and knowledge, so that research today generates new opportunities to research tomorrow. The importance of knowledge accumulation in explaining innovation has been developed by the evolutionary theory approach (Nelson and Winter, 1982). This stream of literature considers that innovations are the result of a process of accumulation of firms’ specific competencies (Rosenberg, 1976). In particular, by investing in R&D, firms develop abilities in the form of knowledge, both scientific and informal know how, that may be used to develop further innovations at consecutive times. According to this view, firms benefit from dynamic increasing returns in the form of learning-by-doing, learning-to-learn or scope economies in the production of innovations (Cohen and Levinthal, 1989). The existence of dynamic economies of scale is also consistent with industry dynamic models of active learning (Ericson and Pakes, 1995; Pakes and Ericson, 1998). According to these models, firms learn from their experience and knowledge accumulation and so their abilities to survive in a market (in our case, to perform R&D activities) improve as both time and investments go by.

In order to account for the existence of a learning effect in the performance of R&D activities we follow two approaches. First, the cumulative process of R&D knowledge is usually measured by the effect of the R&D capital stock, which captures technical skills and learning-by-doing accumulated through past R&D investments. The usual approach followed in the literature has been the “knowledge capital” model of Griliches (1979). According to this model, we may expect that firms with high R&D capital will experience longer periods of uninterrupted performance of R&D activities. Thus, we can use the effect
of R&D capital on the R&D spell length as a way to test for the existence of a learning effect in the performance of R&D activities.

Secondly, we may also consider the existence of a learning effect by analysing the relationship between the duration of the R&D spell and the probability that the R&D spell will end at time j, that is, by measuring the pattern of “duration dependence” in the performance of R&D activities. Since firms perform R&D activities during the spell, “negative duration dependence” captures dynamic effects generated within the R&D spell (a sort of innovation learning curve). Thus, we expect that the probability that the R&D spell will end at some given time falls as the length of the spell raises. In order to control for this effect, we use survival methods allowing for the estimation of the patterns of duration dependence.

In light of the above discussion, we test for the presence of a learning effect in the performance of R&D activities using the following two hypotheses:

Hypothesis 1: Firms with high R&D capital endure longer R&D spells, that is, longer periods of uninterrupted performance of R&D activities.\(^1\)

Hypothesis 2: R&D spells exhibit “negative duration dependence”, that is, the probability that the R&D spell ends decreases with the duration of the spell.

b) Success-breeds-success.

The second approach to innovation persistence argues that R&D persistence is the result of a “success-breeds-success” process: innovative success generates profits that may be reinvested in future R&D activities (Mansfield, 1968, Stoneman, 1983). According to this theory, firm innovation success raises firms’ internal funds that can be used to finance further innovations, enhancing firms’ incentives to invest in R&D activities. Alternatively, innovation success may be considered as broadening firm technological opportunities of innovations and so inducing more innovation activities in the future (Flaig and Stadler, 1994, 1998). In order to capture firm innovation success we use firm innovation results. Thus, we hypothesize that

Hypothesis 3: Previous innovation success enhances the duration of R&D spells.

Furthermore, the ability of firms to convert innovation results into new funds depends on the extent to which the results from R&D activities can be appropriated by the firm or easily diffused within or across industries. Thus, we will control for firm appropriability conditions in our empirical specification. The higher the degree of appropriability of the innovation output, the higher will be the incentives to invest in R&D (Levin et al., 1987; and Levin, 1988). Therefore, we formulate our next hypothesis as

\(^1\) We calculate R&D capital from firms R&D investments following the historical or perpetual inventory method (Griliches, 1979). See Table A1 in the Appendix for a definition of the variables used in our empirical analysis.
Hypothesis 4: The better the appropriability conditions of the innovation results, the longer the expected duration of the R&D spell.

c) Sunk R&D costs.
Thirdly, R&D persistence may also result from the existence of sunk costs associated with the performance of R&D activities (Sutton, 1991, Máñez et al., 2009). When firms decide to perform R&D activities, they have to incur set up costs related to the establishment of an R&D department, the purchasing of specific assets, and/or the hiring and training of specialized workforce. These fixed costs may be considered sunk since they are usually not recoverable, and represent a barrier to both entry into and exit from R&D activities, causing persistence. On the one hand, sunk costs may prevent some firms from starting to perform R&D activities since, unlike firms already performing R&D activities, they have to consider these costs when determining their prices. On the other hand, sunk costs are a barrier to exit from R&D activities because they are not recovered should the firm decide to end the performance of these activities.

In order to control for the role of sunk costs in R&D persistence we use a number of variables relating to the technological regime of the industry where the firm operates, firm size, number of R&D employees, and nature of the R&D activities undertaken by the firm. Sunk R&D costs are expected to be industry dependent. On the one hand, they are determined by the complexity of the production processes, product characteristics, and the nature of the underlying technology (Sutton, 1991; Åstebro, 2002, 2004). On the other hand, they are also expected to be higher in high-tech industries, as in these industries the evolution of market structure depends, to a greater extent, on the pattern of technological change (Sutton, 1991). To account for the technological regime of the industry in which the firm operates we classify industries as Low-tech, Med-tech and High-tech.² This industry classification may also capture differences in technological opportunities for converting research resources into new products or better production techniques.

Furthermore, in industries where there is competition through escalation in R&D investments, small firms need to sustain high R&D intensity ratios (R&D expenditures over sales) to cope with high levels of R&D expenditures by large competitors. When this escalation mechanism is intense, small firms might be unable to maintain high enough R&D investments due to eroded profits. Accordingly, sunk R&D costs within a given industry might be higher for large firms as these firms incur high R&D expenditures.

Máñez et al. (2009) find that large firms and/or firms operating in high-tech industries have significantly higher sunk R&D costs as compared to small firms and/or firms in low and med-tech industries.

² The technological intensity classification is presented in Table A2 in the Appendix.
Both the previous considerations and the empirical results in Máñez et al. (2009) lead us to the next two hypotheses:

Hypothesis 5: To the extent that R&D sunk costs are higher in high-tech industries, we expect firms operating in these industries to exhibit longer R&D spells.

Hypothesis 6: As large firms incur larger sunk R&D costs, as compared to small ones, they should show higher persistence in R&D activities.

Finally, we also consider two other factors that may be capturing the extent of sunk costs incurred by firms when undertaking R&D (Cohen and Klepper, 1996). The first captures the way in which the firm organizes its R&D activities. Firms may perform R&D activities internally within the firm, or they may contract these activities externally. Since internal R&D activities involve both higher set up costs and effort than contracting them externally, we expect internal R&D activities (as compared to external R&D) to affect positively to the duration of the R&D spell. The second factor accounts for the number of R&D employees in the firm, which is also expected to be positively related to R&D sunk costs. Thus, we hypothesize that

Hypothesis 7: Those firms performing internal R&D activities endure longer R&D spells.

Hypothesis 8: Those firms with high R&D employment show higher persistence in R&D activities.

d) Other controls.
Finally, we include some controls that could have an impact on the duration of R&D spells. They relate to market competition, business cycle and firm unobservable characteristics.

Market competition.
Regarding market competition conditions, the literature on industrial organization remains controversial on whether market power encourages or inhibits firms from undertaking R&D activities. According to Schumpeter (1942), ex ante market power generates financial means to innovate and reduces risk levels. However, following Arrow (1962), the incentives to innovate are higher in competitive markets because the expected incremental rents from innovating are higher as compared to monopoly conditions.

There is empirical evidence on the existence of an inverted U-shaped relationship between competition and innovation, so that the incentives to innovate are higher when market competition is neither too low nor too high (see, e.g. Scherer, 1967; or more recently, Aghion et al., 2004, and references therein). In order to capture the degree of product market competition, we use two variables, namely, a variable capturing whether the firm enjoys a significant market share, and a variable indicating whether the firm
exports. We consider that exporting firms may need to innovate to face a higher competitive pressure in international markets (Kleinschmidt and Cooper, 1990; Kotable, 1990). In addition, according to Cohen and Levinthall (1989), foreign markets may facilitate the transfer of technology and so stimulate firms R&D activities.

Business cycle.
We include time-specific effects in order to capture macro-level changes in R&D conditions and institutional factors that are common across firms, such as R&D policy variations, the business cycle, credit-market conditions, etc.

Firm individual unobserved heterogeneity.
The decision to persistently undertake R&D activities is also associated with unobservable firm internal capabilities. To account for unobservable characteristics, in our estimation model we control for unobserved heterogeneity, which is expected to be caused by factors such as firm organisational capabilities or managerial ability.

3. **THE DATA.**
The data have been drawn from the ESEE, an annual survey of Spanish manufacturing firms sponsored by the Ministry of Industry and carried out since 1990. The ESEE is a representative sample of the population of Spanish manufacturing firms classified by industry and size that provides information at the firm level.3

The unit of observation in this study is the R&D spell. We define an R&D spell as the uninterrupted realization of R&D activities for a given number of consecutive years. A spell is considered as starting in year \(j \) if the firm did not undertake any R&D activity in year \(j-1 \) but it undertakes R&D activities in year \(j \). Analogously, a spell is computed to end in year \(T \) when this is the first year in which the firm declares not carrying out R&D activities after one or more consecutive years of R&D activities performance. Thus, in this paper, persistence in innovative behaviour is measured by the extent firms are continuously engaged in R&D activities, so that the length of the R&D spell captures the persistence in R&D activities.

Some features of this dataset make it suitable to examine the factors driving firms’ persistence in the performance of R&D activities using survival methods. First, it is comprised by a representative sample of the population of Spanish manufacturing firms classified by industry and size categories. Some of the firms in the sample declare to undertake R&D activities the first year they are sampled, so that we do not know whether this year is the starting year of their R&D spell, or whether this spell started some previous

year. Should we have included these spells in the analysis we would incur a problem of left-censoring that would lead us to underestimate the duration of the R&D spells. To avoid this problem of left-censoring, we only include in the analysis those R&D spells for which we have information on the starting year of the spell. Therefore, as we do not consider spells already going on in 1990, the first R&D spells in our sample begin in 1991.

Secondly, the ESEE provides broad information on characteristics at the firm level on a yearly basis, which may help to unravel the factors driving the length of R&D spells. Thirdly, this survey also allows identifying firms that perform R&D activities in a continuous way, abandon these activities or stop answering the survey during the observation window (1990-2000). We exclude from the analysis those R&D spells corresponding to firms that exit the survey during the observation window. Given that the end of these spells could be due to firm failure, their consideration could bias the results of our analysis.

Our final sample is composed of 1296 observations corresponding to 481 R&D spells. These 481 R&D spells correspond to 383 firms. Out of these firms, 295 firms (77%) experience only one R&D spell, 78 firms (20%) undergo two R&D spells and 10 firms (3%) show three R&D spells. Mean durations of R&D spells decrease with the number of spells by firm, given that the period of analysis is ten years. Thus, whereas mean spell duration for firms with one R&D spell is four years, for firms with two or three R&D spells it is two years. In our sample, 48% of the R&D spells ended during the sample period. The mean and median duration of these spells are 4.57 and 3 years, respectively. Moreover, the non-parametric estimate of the survival function, using the Kaplan-Meier estimator, shows that 50% of the R&D spells last more than 3 years, and that at least 27% of them persist more than 10 years (see Figure 1 below).
Descriptive statistics of our sample are reported in Table 1. As one of our main interest lies on the effects of R&D capital on the length of R&D spells, we classify R&D spells according to the level of R&D capital of the firm (Low, Med-low, Med-high, High). Table 1 reports the average value of the continuous variables and the percentage of ones for the dummy variables used in our analysis as determinants of the duration of R&D spells, both for the overall sample and for each of the four categories in which we classify R&D spells according to the level of R&D capital. Tests on the comparison across different categories of spells using one-way analysis of variance are also provided (see the last two columns of Table 1). Firms with High R&D capital spells are significantly larger and hire more R&D workers than firms with lower levels of R&D capital. Further, the proportion of firms that obtain innovations (either process or product innovations, or patents) and perform internal R&D significantly increases with the level of R&D capital. As for the exporting status, the probability of exporting increases with the level of R&D capital. Further, the proportion of firms that have a significant market share in its main market also increases with the level of R&D capital.

4 See Table A1 in the Appendix for the definition of the four categories of R&D capital.
Table 1: Descriptive statistics by R&D capital levels.

<table>
<thead>
<tr>
<th>Continuous variables</th>
<th>Total Sample</th>
<th>Low R&D capital</th>
<th>Med-Low R&D capital</th>
<th>Med-High R&D capital</th>
<th>High R&D capital</th>
<th>Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriability</td>
<td>0.63</td>
<td>0.59</td>
<td>0.64</td>
<td>0.65</td>
<td>0.62</td>
<td>0.61</td>
<td>0.608</td>
</tr>
<tr>
<td>Size</td>
<td>226.58</td>
<td>70.52</td>
<td>119.54</td>
<td>190.27</td>
<td>538.52</td>
<td>41.38</td>
<td>0.000</td>
</tr>
<tr>
<td>R&D employment</td>
<td>2.93</td>
<td>0.81</td>
<td>1.43</td>
<td>2.94</td>
<td>6.68</td>
<td>50.10</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dummy variables</th>
<th>Total Sample</th>
<th>Low R&D capital</th>
<th>Med-Low R&D capital</th>
<th>Med-High R&D capital</th>
<th>High R&D capital</th>
<th>Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal R&D</td>
<td>0.768</td>
<td>0.671</td>
<td>0.768</td>
<td>0.818</td>
<td>0.823</td>
<td>9.55</td>
<td>0.000</td>
</tr>
<tr>
<td>Innovation results</td>
<td>0.674</td>
<td>0.597</td>
<td>0.647</td>
<td>0.713</td>
<td>0.743</td>
<td>6.58</td>
<td>0.000</td>
</tr>
<tr>
<td>Low tech. Intensity industry</td>
<td>0.509</td>
<td>0.582</td>
<td>0.511</td>
<td>0.538</td>
<td>0.399</td>
<td>8.07</td>
<td>0.000</td>
</tr>
<tr>
<td>Medium tech. Intensity industry</td>
<td>0.325</td>
<td>0.303</td>
<td>0.289</td>
<td>0.329</td>
<td>0.379</td>
<td>2.33</td>
<td>0.073</td>
</tr>
<tr>
<td>High tech. Intensity industry</td>
<td>0.166</td>
<td>0.115</td>
<td>0.200</td>
<td>0.132</td>
<td>0.221</td>
<td>6.34</td>
<td>0.000</td>
</tr>
<tr>
<td>Market share</td>
<td>0.602</td>
<td>0.413</td>
<td>0.618</td>
<td>0.664</td>
<td>0.726</td>
<td>26.90</td>
<td>0.000</td>
</tr>
<tr>
<td>Exporter</td>
<td>0.736</td>
<td>0.526</td>
<td>0.695</td>
<td>0.830</td>
<td>0.905</td>
<td>52.60</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes:
1. Total sample, R&D capital categories: average for continuous variables and percentages for dummy variables.
2. In the last column we test the null hypothesis of equality of the mean values for the four R&D capital categories.
Regardless their level of R&D capital, most firms operate in Low-tech intensity industries. However, it should be noted that the percentage of Med-high and High R&D capital firms operating in High-tech industries is higher than that corresponding to the other two R&D capital categories. This suggests that the firm level of R&D capital and the technological intensity of the industry in which the firm operates might be positively correlated.

4. EMPIRICAL APPROACH.
Our empirical analysis is carried out using survival methods, which are appropriate to analyse the determinants of the duration of R&D spells (which we will refer to as spell survival, following the terminology of these methods). First, these methods take into account the evolution of the exit risk (in our case, the probability that the R&D spell ends) and its determinants over time since they control both for the occurrence and the timing of exit. Secondly, survival methods are appropriate in the presence of right censoring, that is, when we only know that the R&D spell has survived at least up to a given period j (some R&D spells have not finished by the end of the observation window, i.e. they are still in operation). Thirdly, these methods can easily accommodate time-varying covariates, which is a desirable feature given that the probability of survival of R&D spells may vary over time as the firm environment changes.

In order to examine the determinants of the duration of R&D spells we use two different methodologies. First, we examine the influence of explanatory variables individually by carrying out non-parametric log-rank tests of the null hypothesis of equality of survival functions across the r-groups in which R&D spells are classified according to the r-values of each covariate. These tests are extensions of non-parametric rank tests used to compare two or more distributions for censored data. Under the null hypothesis there is no difference in the survival rates for each of the r-groups at any failure times (spell endings), and this statistic distributes as a χ^2 with $r-1$ degrees of freedom. At any failure time, the contribution to the t-statistic is obtained as a weighted standardized sum of the difference between the actual and expected number of exits (spell endings) for each of the r-groups. Given that one of our focuses is to disentangle the effects of R&D capital, we perform the above tests for different categories of spells according to their level of R&D capital.

Secondly, we undertake a multivariate analysis in order to evaluate the effect of each explanatory variable on the hazard rate (risk of R&D spell ending) controlling for the effect of other covariates. In particular, we implement discrete time proportional hazard models in which the duration of R&D spells is treated as a discrete variable, not because it is intrinsically discrete but because data are available on a yearly basis (interval-censored
data). Although the underlying transition process between performing and not performing R&D activities may happen in a continuous way, we only observe these transitions on a yearly basis. The estimation methods allow for a fully non parametric specification of the baseline hazard and to control for R&D spells unobserved heterogeneity (both parametrically and non-parametrically), which helps to fully identify the effects of survival time on R&D duration (duration dependence).^5

Time intervals in our dataset are of one year. Thus, the interval boundaries are the positive integers \(j=1, 2, 3, 4, \ldots\), and the interval \(j\) is \([j-1, j]\). An R&D spell \(i\) can either be complete (\(c_i = 1\)) or right censored (\(c_i = 0\)). A censored R&D spell \(i\) with length \(j\) intervals contributes to the likelihood function with the discrete time survivor function (the probability of survival up to the end of interval \(j\)):

\[
S_i(j) = \Pr(T_i > j) = \prod_{k=1}^{j}(1 - h_k);
\]

where \(T_i = \min\{T_i^*, C_i^*\}\), and \(T_i^*\) is some latent failure time and \(C_i^*\) some latent censoring time for spell \(i\); and, \(h_k = \Pr(k-1 < T_i \leq k \mid T_i > k-1)\) is the discrete hazard (the probability that spell \(i\) ends in interval \(k\) conditional on the probability of surviving up to the beginning of this interval). A complete spell \(i\) in the \(j\)-interval contributes to the likelihood with the discrete time density function (the probability of ending the spell within the \(j\) interval):

\[
f_i(j) = \Pr(j-1 < T_i \leq j) = S(j-1) - S(j) = \frac{h_j}{1 - h_j} \prod_{k=1}^{j}(1 - h_k).
\]

Using expressions (1) and (2), the log likelihood function for the sample of spells is:

\[
\log L = \sum_{i=1}^{n} c_i \log \left(\frac{h_j}{1 - h_j} \prod_{k=1}^{j}(1 - h_k)\right) + \sum_{i=1}^{n} \sum_{k=1}^{j} \log (1 - h_k).\]

(3)

Allison (1987) and Jenkins (1995, 2004) show that (3) can be rewritten as the log likelihood function of a binary dependent variable, \(y_{ik}\), with value one if spell \(i\) ends in year \(k\), and zero otherwise:

\[
\log L = \sum_{i=1}^{n} \sum_{k=1}^{j} \left[y_{ik} \log h_k + (1 - y_{ik}) \log (1 - h_k)\right].
\]

(4)

This allows to estimate discrete time hazard models by binary dependent variable methods and to incorporate time-varying covariates.

^5 See Kiefer (1988) for a survey on the application of these methods to economic studies.
Following Prentice and Gloeckler (1978), we assume that \(h_{ik} \) is distributed as a complementary log-log (cloglog) distribution to obtain the discrete time representation of an underlying continuous time proportional hazard:

\[
\text{cloglog}\left[1 - h_j(x_j)\right] \equiv \log\left(\log\left[1 - h_j(x_j)\right]\right) = \beta_0 + x_j \beta + \gamma_j
\]

\[
\Rightarrow h_j(x_j) = 1 - \exp\left[-\exp\left(\beta_0 + x_j \beta + \gamma_j\right)\right],
\]

where \(\gamma_j \) is the interval baseline hazard (a non-parametric specification that allows to test for a flexible type of duration dependence), and \(x_j \) are covariates which may be time-varying (although constant within intervals).

Incorporating unobserved heterogeneity, the cloglog model in (5) becomes

\[
h_j(x_j) = 1 - \exp\left[-\exp\left(\beta_0 + x_j \beta + \gamma_j + u_i\right)\right],
\]

where \(u_i \equiv \ln(v_i) \), and \(v_i \) originally enters the underlying continuous hazard function multiplicatively, \(h(t,x) = h_0(t) \exp^{\beta_0 + x \beta} \cdot v_i \). Usually \(v \) is assumed to be Gamma distributed with unit mean, and variance \(\sigma^2 \) to be estimated from the data (Meyer, 1990).

Alternatively, unobserved heterogeneity can be treated non-parametrically by assuming that there are several different types of individuals (or “mass-points” in the distribution of individual heterogeneity) so that each individual has associated probabilities to the different “mass-points” (Heckman and Singer, 1984). This implies different intercepts for the hazard function, each one for a different type. For instance, if a model with two types is assumed (type=1, 2), then the hazard becomes

\[
h_{j,\text{type}}(x_j) = 1 - \exp\left[-\exp\left(m_{\text{type}} + \beta_0 + x_j \beta + \gamma_j\right)\right].
\]

The intercept for type-1 individuals is \(\beta_0 \) and for type-2 individuals it is equal to \(m_{\text{type}2} + \beta_0 \) (the “mass-point” for type-1 is normalized to zero).

5. RESULTS.

In this section we present the main results. We first discuss the influence of the level of R&D capital on the duration of the R&D spell using a univariate test (i.e. log-rank test)

\[^6\] An up-to-date Stata program drawn up by S. Jenkins that implements the cloglog with gamma-distributed unobserved heterogeneity is available, using Stata, by typing ssc install pgmhz8. An initial version of the program was presented in Jenkins (2001). Similarly, a Stata program elaborated by S. Jenkins that implements the cloglog model with non parametric unobserved heterogeneity is available by typing ssc install hshaz inside Stata.
introduced in the previous section. This descriptive evidence is completed with graphical evidence obtained through the non-parametric estimation (using the Kaplan-Meier estimator) of the survival functions corresponding to the different categories of spells classified by their level of R&D capital. Secondly, we present the log-rank tests of equality of survival functions across groups of firms classified by explanatory variables for each category of R&D capital. Finally, we discuss the results obtained in a multivariate duration analysis that accounts for the potential influence of various explanatory variables. Although we carried out the estimation three multivariate duration specifications (a specification that does not account for unobserved heterogeneity, a specification that accounts for unobserved heterogeneity assuming a gamma distribution and a specification that accounts for the unobserved component through mass points), our preferred specification is the model accounting for unobserved heterogeneity using mass points, since this model does not impose any parametric distribution to the unobserved heterogeneity.

We start the presentation of our results, analysing through a log-rank test the influence of the level of R&D capital. The value obtained for this log-rank test (62.93 with p-value 0.000) suggests that the probability of the R&D spell survival (duration of the R&D spell) increases with the level of R&D capital. To this evidence we add a graphical study. Thus, Figure 2 shows the non-parametric estimation (using the Kaplan-Meier estimator) of the survival functions corresponding to the different categories of spells classified by their level of R&D capital. By inspection, the Kaplan-Meier survival functions are ordered according to R&D capital levels: the highest survival probabilities correspond to the \textit{High R&D} capital spells, the lowest to the \textit{Low R&D} capital group, and the corresponding to \textit{Med-Low} and \textit{Med-High} R&D capital spells show intermediate survival prospects. Therefore, the conclusion we can draw is that the length of R&D spells increases with the level of R&D capital. Although this result has been obtained without taking into account the effect of other variables that could affect the duration of R&D spells (that we will take into account if the multivariate duration analysis that we present below), it may be interpreted as a first piece of evidence in favour of a learning effect in the performance of R&D activities.
The second piece of evidence we present are the results of the log-rank test of equality of survival functions across groups of firms classified by explanatory variables (these tests are performed for each category of R&D capital). This evidence is presented in Table 2. We obtain that among the low R&D capital spells the highest probability of survival corresponds to firms performing internal R&D. In the case of spells with Med-Low R&D capital, the best survival prospects correspond to firms that enjoy high appropriability conditions and declare to account for a significant market share in its main market. As for spells with Med-High R&D capital, those corresponding to firms with a large number of R&D employees and with a labour force between 200 and 500 employees enjoy the best survival prospects. Finally, those spells with high R&D capital corresponding to large firms (more than 500 workers), with a large number of R&D employees, performing internal R&D and serving both local and foreign markets enjoy the longest duration. In summary, the results of these tests suggest that the influence of most variables on the length of R&D spells is highly dependent on the level of R&D capital. Therefore, these results provide additional evidence on the role played by the firm R&D capital in explaining the duration of R&D spells.

7 In order to perform the non-parametric tests we split the continuous variables according to the criteria established in Table A1 in the Appendix. In order to rank each group by their survival probabilities we use the incidence rate defined as the ratio between the number of events (spell failures) and the total time at risk.
Table 2: Non-parametric tests of equality of survival functions by explanatory variables, controlling for R&D capital group.

<table>
<thead>
<tr>
<th>Continuous variables</th>
<th>Low R&D capital</th>
<th>Med-Low R&D capital</th>
<th>Med-High R&D capital</th>
<th>High R&D capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriability</td>
<td>3.06 0.216 --</td>
<td>4.93 0.085 High appr.</td>
<td>2.17 0.338 --</td>
<td>0.73 0.693 --</td>
</tr>
<tr>
<td>Size</td>
<td>1.76 0.881 --</td>
<td>4.97 0.419 --</td>
<td>9.25 0.099 200-500</td>
<td>12.76 0.026 +500</td>
</tr>
<tr>
<td>R&D employment</td>
<td>0.87 0.648 --</td>
<td>0.99 0.611 --</td>
<td>4.70 0.095 Third</td>
<td>5.61 0.060 Third</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dummy variables</th>
<th>Low R&D capital</th>
<th>Med-Low R&D capital</th>
<th>Med-High R&D capital</th>
<th>High R&D capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal R&D</td>
<td>3.11 0.077 Int. R&D=1</td>
<td>0.28 0.593 --</td>
<td>0.72 0.397 --</td>
<td>6.73 0.009 Int. R&D=1</td>
</tr>
<tr>
<td>Innovation results</td>
<td>0.88 0.348 --</td>
<td>0.83 0.363 --</td>
<td>1.28 0.257 --</td>
<td>1.61 0.204 --</td>
</tr>
<tr>
<td>Industry. tech. int.</td>
<td>0.11 0.945 --</td>
<td>2.46 0.293 --</td>
<td>1.14 0.566 --</td>
<td>3.19 0.203 --</td>
</tr>
<tr>
<td>Market share</td>
<td>0.03 0.858 --</td>
<td>2.82 0.093 M. Share=1</td>
<td>0.26 0.610 --</td>
<td>0.73 0.393 --</td>
</tr>
<tr>
<td>Exporter</td>
<td>0.12 0.732 --</td>
<td>0.79 0.373 --</td>
<td>2.24 0.134 --</td>
<td>8.83 0.03 Exporter=1</td>
</tr>
</tbody>
</table>
Finally, we have carried out a multivariate duration analysis that accounts for the potential effect of various explanatory variables. We now proceed to discuss the results obtained in the multivariate duration analysis. Table 3 reports the results of estimating several specifications of the discrete time proportional hazard model (complementary log-log model, $cloglog$) in order to investigate the determinants of R&D persistence and, in particular, the effect of the variables capturing learning. In all the estimations we treat the shape of the baseline hazard function non-parametrically. As in any proportional hazard specification, a unit change in a covariate leads to a proportional shift on the hazard rate. The assumption of proportionality has been tested using the tests proposed by Grambsch and Therneau (1994). The null hypothesis that the hazard rates are proportional cannot be rejected.

In Column 1.1 of Table 3 we present the estimates of the coefficients for the baseline function (that proxies the effect of the passage of survival time on the hazard of failure, that is, on the probability that the spell ends), without controlling for any R&D spell characteristic that may also affect survival. The estimates suggest a pattern of negative duration dependence, that is, the risk of ending an R&D spell decreases with survival time.

The Column 1.2 in Table 3 displays the unconditional effect of the level of R&D capital on the probability of ending an R&D spell i.e., the effect of R&D capital on R&D persistence without controlling for other firm/spell characteristics, which may also affect survival. In order to capture possible non-linear effects of R&D capital on duration, we introduce this variable as a set of four dummy variables, being the omitted category in our regression the one corresponding to Low-R&D capital. The other three dummies correspond to Med-Low, Med-High and High R&D capital (second, third and upper quartile of the R&D capital distribution, respectively). Our estimates show that the level of R&D capital has a strong and significant effect on the probability of the R&D spell survival. Further, the highest the R&D capital, the lower the risk of ending the R&D spell (all the estimates corresponding to the different levels of R&D capital are significant and significantly different among them). This finding gives support to our hypothesis 1 about firms with high R&D capital being more likely to endure longer R&D spells.

8 It should be noted that given that we do not have transitions in survival years 8 and 10 (these are duration lengths with no spell completions), and given that a fully non-parametric specification of the baseline hazard function is used, the coefficients for the dummy variables corresponding to survival years 8 and 10 (d_8 and d_{10}) cannot be separately estimated. Therefore, in estimation there is a unique dummy for survival years d_7-d_8, or for survival years d_9-d_{10}.

9 In addition, the introduction of the variables accounting for R&D capital leads to a reduction of the coefficients of the baseline function, suggesting a smoother pattern of negative duration dependence.
Table 3. Maximum likelihood estimates for the discrete time proportional hazards models.

<table>
<thead>
<tr>
<th>Learning effects</th>
<th>Column 1. Cloglog model without unobserved heterogeneity</th>
<th>Column 2. Gamma unobserved heterogeneity</th>
<th>Column 3. Two-mass points estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 1.1. Baseline</td>
<td>Column 1.2. Baseline and R&D capital</td>
<td>Column 1.3. Full specification</td>
</tr>
<tr>
<td></td>
<td>Coeff.</td>
<td>p-value</td>
<td>Coeff.</td>
</tr>
<tr>
<td>Learning effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td>-0.744</td>
<td>0.000</td>
<td>-0.243</td>
</tr>
<tr>
<td>d2</td>
<td>-1.233</td>
<td>0.000</td>
<td>-0.756</td>
</tr>
<tr>
<td>d3</td>
<td>-1.591</td>
<td>0.000</td>
<td>-1.103</td>
</tr>
<tr>
<td>d4</td>
<td>-1.693</td>
<td>0.000</td>
<td>-1.209</td>
</tr>
<tr>
<td>d5</td>
<td>-1.821</td>
<td>0.000</td>
<td>-1.354</td>
</tr>
<tr>
<td>d6</td>
<td>-2.406</td>
<td>0.000</td>
<td>-1.918</td>
</tr>
<tr>
<td>d7-d8</td>
<td>-3.569</td>
<td>0.000</td>
<td>-3.104</td>
</tr>
<tr>
<td>d9-d10</td>
<td>-2.708</td>
<td>0.000</td>
<td>-2.215</td>
</tr>
<tr>
<td>Med-low R&D cap.</td>
<td>-0.254</td>
<td>0.064</td>
<td>-0.089</td>
</tr>
<tr>
<td>Med-high R&D cap.</td>
<td>-0.827</td>
<td>0.000</td>
<td>-0.520</td>
</tr>
<tr>
<td>High R&D cap.</td>
<td>-1.210</td>
<td>0.000</td>
<td>-0.722</td>
</tr>
<tr>
<td>Success-breeds-success</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriability results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriability results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med-tech. Ind.</td>
<td>-0.205</td>
<td>0.092</td>
<td>-0.256</td>
</tr>
<tr>
<td>High-tech. Ind.</td>
<td>0.067</td>
<td>0.649</td>
<td>0.045</td>
</tr>
<tr>
<td>Sunk R&D costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med-tech. Ind.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size2</td>
<td>-0.130</td>
<td>0.340</td>
<td>-0.289</td>
</tr>
<tr>
<td>Size3</td>
<td>-0.316</td>
<td>0.104</td>
<td>-0.576</td>
</tr>
<tr>
<td>Size4</td>
<td>-0.137</td>
<td>0.411</td>
<td>-0.231</td>
</tr>
<tr>
<td>Size5</td>
<td>-0.101</td>
<td>0.649</td>
<td>-0.192</td>
</tr>
<tr>
<td>Size6</td>
<td>-0.213</td>
<td>0.331</td>
<td>-0.435</td>
</tr>
<tr>
<td>Internal R&D</td>
<td>-0.555</td>
<td>0.102</td>
<td>-0.971</td>
</tr>
<tr>
<td>R&D employment2</td>
<td>-0.277</td>
<td>0.049</td>
<td>-0.294</td>
</tr>
<tr>
<td>R&D employment3</td>
<td>-0.044</td>
<td>0.779</td>
<td>-0.122</td>
</tr>
<tr>
<td>Other controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market share</td>
<td>-0.076</td>
<td>0.540</td>
<td>-0.136</td>
</tr>
<tr>
<td>Exporter</td>
<td>-0.123</td>
<td>0.367</td>
<td>-0.194</td>
</tr>
<tr>
<td>Year dummies</td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>N. of observations</td>
<td>1296</td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>N. of spells</td>
<td>481</td>
<td></td>
<td>481</td>
</tr>
</tbody>
</table>
In Column 1.3, Column 2 and Column 3 of Table 3, we report the estimates when controlling for other sources of R&D spell heterogeneity different from R&D capital. We include variables accounting for the “success-breeds-success” hypothesis, sunk costs and other controls which account for other characteristics that may be relevant for the risk of the R&D spell ending, as discussed in section 2. The only difference of the estimates in Column 1.3 with respect to Columns 2 and 3 is the inclusion in the latter two of an unobserved heterogeneity term. Whereas in Column 2 we assume a gamma distribution for the unobserved heterogeneity component, in Column 3 we treat the unobserved heterogeneity component non-parametrically. For both models accounting for individual heterogeneity, we reject the null hypothesis that individual unobserved heterogeneity is not relevant. For the model assuming a parametric specification for the unobserved heterogeneity using a Gamma distribution we reject the null hypothesis that the unobserved heterogeneity variance component (σ^2) is equal to zero (the p-value for the likelihood ratio test is 0.014), indicating that unobserved heterogeneity is statistically significant.\footnote{See Gutiérrez \textit{et al.} (2001) and Jenkins (2004) for details about this test.} For the specification treating unobserved heterogeneity non-parametrically through “two mass-points”, we reject the null that the coefficient of the mass-point for type 2 firm spells is statistically not different to the one of the mass-point for type 1 firm spells (the coefficient of the mass-point for type 2 is -2.062 with a p-value of 0.000),\footnote{In estimation, the coefficient for the mass point for type 1 firm spells is normalized to zero, and we estimate the coefficient for the second mass point.} indicating that there is unobserved individual heterogeneity.

The above results suggest that we should rely on the specifications accounting for unobserved heterogeneity. However, our preferred specification is the model accounting for unobserved heterogeneity using mass points, since this model does not impose any parametric distribution to the unobserved heterogeneity. Thus, in what follows we interpret the results of this specification (Column 3 in Table 3).

\textit{Learning effects}

Our results provide evidence supporting the two hypotheses we use to test for the existence of a learning effect in the performance of R&D activities (\textit{hypothesis 1 and 2}). First, we find that firms with a high R&D capital enjoy longer R&D spells. Further, our results suggest that the impact of R&D capital on spell duration is not linear and we observe the existence of a minimum degree (threshold) of R&D capital in order to a learning effect start working for a firm. In particular, we find that firms belonging either to Medium-High or High R&D capital groups enjoy significantly longer R&D spells than firms
with a Low or Medium-Low R&D capital. Therefore, R&D capital accumulation only brings learning beyond a minimum level of R&D accumulation. This result gives support to hypothesis 1, that is, that the duration of the R&D spell raises with R&D capital.

Secondly, the estimates of the coefficients for the duration interval dummies \((d_1, \ldots, d_{9-10})\) inform us about the pattern of duration dependence. Once we have controlled for firm, industry, market and business cycle characteristics, we interpret the observed pattern of duration dependence in the light of the effects of the passage of time on the probability of survival. The estimates corresponding to survival years 1 to 5 are significant and positive (and not significantly different among them). The estimates corresponding to survival years 6, 7-8 and 9-10 are not significantly different from zero (although they are significantly different from the constant hazard rate for the period 1 to 5 survival years). This means that the risk of ending of an R&D spell is positive but constant during the initial 5 years of the spell and, suddenly, from the year 5 onwards the risk of ending goes to zero. Therefore, our results indicate that there exists a pattern of negative duration dependence acting through a threshold corresponding to a period of 5 years of continuous performance of R&D activities. This result suggests that learning to survive in the performance of R&D activities takes on average 5 years, and once this length has been exceeded the passage of time does not affect firm R&D persistence, either in a positive or in a negative way.

These results support our hypothesis 1 and 2 and may be considered as providing evidence of learning-by-doing and learning-to-learn effects in R&D activities (Rosenberg, 1976; Nelson and Winter, 1982). They may also be interpreted as consistent with industry dynamic models where the main source of dynamics arises from firm active learning (Ericson and Pakes, 1995; Pakes and Ericson, 1998).

Success-breeds-success

According to the “success-breeds-success” approach (Mansfield, 1968, Stoneman, 1983), previous innovation success should enhance survival prospects of firms R&D spells. From our results we observe that firms that obtain innovation results (either in the form of patents and utility models, or in the form of product and process innovations) seem to endure longer R&D spells (giving support to our hypothesis 3), although the variable INNOVATION RESULTS is only significant at 11.3% level.

Regarding the innovative APPROPRIABILITY conditions faced by firms, our results suggest that firms operating in an environment with high appropriability conditions enjoy longer R&D spells as compared to industries with medium and low appropriability conditions (the reference category). This result is in line with Levin et al. (1987) and Levin (1988), who predict that the higher the degree of appropriability of the firm innovation
output, the higher will be the incentives to invest in R&D. Thus, this result supports our hypothesis 4.

Sunk R&D costs

Our results indicate that R&D spells of firms operating in high-tech industries enjoy better survival prospects with respect to firms operating in either low or medium-tech industries. This result gives support to hypothesis 5 (stating that sunk R&D costs are expected to be larger in high-tech industries) and is in line with Sutton (1991), Åstebro (2002, 2004) and Mañez et al. (2009).

In relation to firm size and after controlling for all other variables, our results show that the R&D spells of larger firms have lower chances of ending. We obtain that the coefficients corresponding to firms with more than 100 employees are negative and significant (SIZE4, SIZE5 and SIZE6). Moreover, in absolute value, the negative coefficient for SIZE4 is significantly smaller than the coefficients of SIZE5 and SIZE6, and the coefficients of SIZE5 and SIZE6 are not significantly different between them. Thus, the better survival prospects are for R&D spells of firms with more than 200 employees (SIZE5 and SIZE6 groups). This result is consistent with our hypothesis 6 and is in line with existing studies of innovation persistence, which have also found that large firms show higher persistence in innovative behaviour (Geroski et al., 1997; Cefis and Orsenigo, 2001; Cefis, 2003; and Mañez et al., 2009).

As regards the R&D activities undertaken by firms we find, interestingly, that the internal/external nature of R&D activities has an important impact on the length prospects of the R&D spell. Our results suggest that firms undertaking R&D activities internally enjoy better R&D survival prospects than firms contracting externally these activities (the coefficient of the variable INTERNAL R&D is negative and significant at 7.4 % level of significance). This evidence supports our hypothesis 7. However, once controlling for the internal nature of the firm R&D activities, we do not find that the number of R&D employees has an impact on R&D spell duration (the coefficients of the R&D EMPLOYMENT variables are not significant), and therefore, we cannot provide support to our hypothesis 8.

Other controls influencing R&D spell length

A number of other factors may also influence the R&D spell length. In relation to market competition factors, we find that either firm MARKET SHARE or firm EXPORT participation do not seem to affect the firm expected R&D spell length, as neither of these variables is significant.

12 However, the coefficient for SIZE4 (firms between 100-200 employees) is significant at a 10.1% level.
Finally, regarding the year dummies introduced to capture the effects of the business cycle on R&D spells duration, we do not find any significant effect for any of them.13

\section*{6. CONCLUDING REMARKS.}
This paper has investigated the determinants of the persistence of firms in performing R&D activities. Unless previous studies, that have focused on firm innovation persistence by analysing the number of innovation results obtained by firms (either patents and/or major innovations), we have examined persistence from an input point of view, and in particular, persistence in the firm decision to invest in R&D activities. Our main focus has been testing for the role of learning, and in particular, whether learning from R&D performance affects firms' persistence in R&D activities.

In order to do so, we have used survival methods, including non-parametric tests and the estimation of discrete time proportional hazard models. The advantages of our estimation methods, as compared to previous analysis of innovation persistence, is that they have allowed for a fully non-parametric estimation of the baseline hazard function, permitting a full identification of the effect of survival time on the length of the R&D spell. In addition, the estimation of both parametric and non-parametric unobserved heterogeneity survival models has allowed a robust test for the presence of unobserved individual heterogeneity. We have used for estimation a representative sample of the population of Spanish manufacturing for the period 1990 to 2000. The dataset has been drawn from the \textit{ESEE}, a survey carried out annually since 1990 that provides broad information at the firm level.

Our findings may be considered as providing evidence of learning-by-doing and learning-to learn effects in R&D activities (Rosenberg, 1976, Nelson and Winter, 1982). In particular, we have obtained that R&D capital is an important driver of persistence in R&D activities, and that firms R&D spells exhibit “negative duration dependence”, indicating that the probability that the R&D spell comes to an end decreases as the performance of R&D goes on, that is, with the duration of the spell. These results may also be considered as giving support to industry dynamic models where the main source of dynamics arises from firm \textit{active learning} (e.g. Ericson and Pakes, 1995). We have also obtained that unobserved heterogeneity is important, indicating that persistence is also linked to individual unobserved heterogeneity. This result is consistent with the industry dynamic models of \textit{passive learning} (Jovanovic, 1982), in which dynamics is driven by inherent and fairly constant characteristics of the firm (natural endowments, managerial abilities, etc.).

13 The coefficients for the time dummies are not reported in Table 3 due to space limitations, but they are available from the authors upon request.
We have also found support for the approach of *success-breeds-success* and the role of sunk R&D costs in explaining persistence in the performance of R&D activities by firms.

Our findings make an important contribution to the understanding of the determinants of firm persistence in R&D activities, and in particular, of the role of learning in firms R&D persistence. If the achievement of innovation results (both product and process innovations and patents) depends crucially on the persistence in the realization of R&D activities, our results may have important implications both for public policy and firm managers. As for public policies, if persistence in R&D activities is desirable, given that it renders higher returns, policy makers should devote resources to those firms with a higher probability to perform R&D in a continuous way. As for managers, our results suggest that firms should invest in R&D in a continuous way to take advantage of learning effects associated with the performance of these activities. Thus, although undertaking internal R&D (versus externally contracting R&D) and creating their own R&D department may increase the sunk costs associated to the performance of R&D activities, these costs are also factors that increase the propensity to perform R&D in a continuous way, fostering the achievement of innovation results that are the final aim of R&D activities.
REFERENCES.

Appendix

Table A1. Variable definitions.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning effect</td>
<td>R&D capital Stock of R&D capital, measured by the perpetual inventory method: $K_{it} = (1-\delta) K_{it-1} + R_{it-1}$, where δ is the rate of depreciation, K is the R&D-capital stock and R are real R&D expenditures (current R&D has been deflated using industrial prices for the whole manufacturing industry). To calculate the R&D capital according to the equation above we consider the initial value of R as firm R&D expenditure at the beginning of the spell and a depreciation rate of 15% percent.</td>
</tr>
<tr>
<td>Low R&D capital</td>
<td>Variable taking value 1 if the R&D capital of spell i in duration year j is in the lowest quartile of the distribution of the R&D capital of all spells in duration year j, and 0 elsewhere.</td>
</tr>
<tr>
<td>Medium-low R&D capital</td>
<td>Variable taking value 1 if the R&D capital of spell i in duration year j is in the second quartile of the distribution of the R&D capital of all spells in duration year j, and 0 elsewhere.</td>
</tr>
<tr>
<td>Medium-high R&D capital</td>
<td>Variable taking value 1 if the R&D capital of spell i in duration year j is in the third quartile of the distribution of the R&D capital of all spells in duration year j, and 0 elsewhere.</td>
</tr>
<tr>
<td>High R&D capital</td>
<td>Variable taking value 1 if the R&D capital of spell i in duration year j is in the highest quartile of the distribution of the R&D capital of all spells in duration year j, and 0 elsewhere.</td>
</tr>
<tr>
<td>Success-breeds-success</td>
<td>Innovation results Dummy variable taking value 1 if the firm obtains at least an innovation result (a patent, a utility model, a product innovation or a process innovation), and 0 otherwise.</td>
</tr>
<tr>
<td>Appropriability</td>
<td>Variable taking value 1 if the firm total number of patents and utility models over the total number of firms that assert to have achieved innovations in the firm industrial sector (20 sectors of the two-digit NACE-93 classification) belongs to the first tercile of the distribution, value 2 if belongs to the second tercile of the distribution, and value 3 if belongs to the last tercile of the distribution.</td>
</tr>
<tr>
<td>Appropriability1</td>
<td>Dummy variable taking value 1 if the firm total number of patents and utility models over the total number of firms that assert to have achieved innovations in the firm industrial sector belongs to the first tercile of the distribution, and 0 otherwise.</td>
</tr>
<tr>
<td>Appropriability2</td>
<td>Dummy variable taking value 1 if the firm total number of patents and utility models over the total number of firms that assert to have achieved innovations in the firm industrial sector belongs to the second tercile of the distribution.</td>
</tr>
<tr>
<td>Appropriability3</td>
<td>Dummy variable taking value 1 if the firm total number of patents and utility models over the total number of firms that assert to have achieved innovations in the firm industrial sector belongs to the third tercile of the distribution.</td>
</tr>
<tr>
<td>Sunk R&D costs</td>
<td>Industrial technological intensity Variable taking value 1 if the firm belongs to a low-technological intensity industry, value 2 if the firm belongs to a medium-technological intensity industry, and value 3 if the firm belongs to a high-technological intensity industry. See Table A2 for industry classification.</td>
</tr>
<tr>
<td>Low technological industry</td>
<td>Dummy variable taking value 1 if the firm belongs to a low-technological intensity industry, and 0 otherwise.</td>
</tr>
<tr>
<td>Medium technological</td>
<td>Dummy variable taking value 1 if the firm belongs to a medium-technological intensity industry, and 0 otherwise.</td>
</tr>
</tbody>
</table>
Table A2. Industrial technological intensity (NACE-93 two digits industrial classification).

<table>
<thead>
<tr>
<th>Industry</th>
<th>Industrial technological intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat industry</td>
<td>Low</td>
</tr>
<tr>
<td>Food and tobacco</td>
<td>Medium</td>
</tr>
<tr>
<td>Beverages</td>
<td>Low</td>
</tr>
<tr>
<td>Textiles and clothing</td>
<td>Low</td>
</tr>
<tr>
<td>Leather and shoes</td>
<td>Low</td>
</tr>
<tr>
<td>Wood</td>
<td>Low</td>
</tr>
<tr>
<td>Paper industry</td>
<td>Low</td>
</tr>
<tr>
<td>Printing and printing products</td>
<td>Low</td>
</tr>
</tbody>
</table>

Other controls

- **Market share**: Dummy variable taking value 1 if the firm claims to account for a significant market share in its main market, and 0 otherwise.
- **Exporter**: Dummy variable taking value 1 if the firm declares to export a positive amount and 0 otherwise.
- **Year dummies**: Dummy variables taking value 1 for the corresponding year and 0 otherwise.

Definitions

- **High technological industry**: Dummy variable taking value 1 if the firm belongs to a high-technological intensity industry and, 0 otherwise.
- **Size**: Variable taking value 1 if the number of employees of the firm is lower than 21, value 2 if the number of employees is greater than 20 and lower than 51, value of 3 if the number of employees is greater than 50 and lower than 101, value of 4 if the number of employees is greater than 100 and lower than 201, value of 5 if the number of employees is greater than 200 and lower than 501, and value of 6 if the number of employees is greater than 500. To calculate the number of employees we do not account for R&D employment.
- **Size1**: Dummy variable taking value 1 if the number of employees of the firm is lower than 21 and 0 otherwise. We do not account for R&D employment.
- **Size2**: Dummy variable taking value 1 if the number of employees of the firm is greater than 20 and lower than 51 and 0 otherwise. We do not account for R&D employment.
- **Size3**: Dummy variable taking value 1 if the number of employees of the firm is greater than 50, and lower than 101 and 0 otherwise. We do not account for R&D employment.
- **Size4**: Dummy variable taking value 1 if the number of employees of the firm is greater than 100 and lower than 201 and 0 otherwise. We do not account for R&D employment.
- **Size5**: Dummy variable taking value 1 if the number of employees of the firm is greater than 200 and lower than 501 and 0 otherwise. We do not account for R&D employment.
- **Size6**: Dummy variable taking value 1 if the number of employees of the firm is greater than 500 and 0 otherwise. We do not account for R&D employment.
- **Internal R&D**: Dummy variable taking value 1 if the firm performs R&D activities internally.
- **External R&D**: Dummy variable taking value 1 if the firm performs R&D activities externally.
- **R&D employment**: Variable taking value 1 if the number of R&D employees of the firm is 0, value 2 if the number of R&D employees is greater than 0 and lower than 11, and value 3 if the number of R&D employees is greater than 10.
- **R&D employment1**: Dummy variable taking value 1 if the number of R&D employees of the firm is 0, and 0 otherwise.
- **R&D employment2**: Dummy variable taking value 1 if the number of R&D employees of the firm is greater than 0 and lower than 11, and 0 otherwise.
- **R&D employment3**: Dummy variable taking value 1 if the number of R&D employees of the firm is greater than 10 and 0 otherwise.
<table>
<thead>
<tr>
<th>Product Category</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical products</td>
<td>High</td>
</tr>
<tr>
<td>Rubber and plastic</td>
<td>Medium</td>
</tr>
<tr>
<td>Non metallic mineral products</td>
<td>Low</td>
</tr>
<tr>
<td>Ferrous and non-ferrous metals</td>
<td>Medium</td>
</tr>
<tr>
<td>Metallic products</td>
<td>Low</td>
</tr>
<tr>
<td>Industrial and agricultural machinery</td>
<td>Medium</td>
</tr>
<tr>
<td>Office machines</td>
<td>High</td>
</tr>
<tr>
<td>Electric and electronic machinery and material</td>
<td>High</td>
</tr>
<tr>
<td>Vehicles, cars and motors</td>
<td>Medium</td>
</tr>
<tr>
<td>Other transport equipment</td>
<td>High</td>
</tr>
<tr>
<td>Furniture</td>
<td>Low</td>
</tr>
<tr>
<td>Other manufacturing goods</td>
<td>Low</td>
</tr>
<tr>
<td>Número</td>
<td>Título</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>159/2000</td>
<td>Participación privada en la construcción y explotación de carreteras de peaje</td>
</tr>
<tr>
<td>160/2000</td>
<td>Errores y posibles soluciones en la aplicación del Value at Risk</td>
</tr>
<tr>
<td>161/2000</td>
<td>Tax neutrality on saving assets. The spahish case before and after the tax reform</td>
</tr>
<tr>
<td>163/2000</td>
<td>El control interno del riesgo. Una propuesta de sistema de límites</td>
</tr>
<tr>
<td>164/2001</td>
<td>La evolución de las políticas de gasto de las Administraciones Públicas en los años 90</td>
</tr>
<tr>
<td>165/2001</td>
<td>Bank cost efficiency and output specification</td>
</tr>
<tr>
<td>166/2001</td>
<td>Recent trends in Spanish income distribution: A robust picture of falling income inequality</td>
</tr>
<tr>
<td>167/2001</td>
<td>Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF</td>
</tr>
<tr>
<td>168/2001</td>
<td>The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some European Countries</td>
</tr>
<tr>
<td>169/2001</td>
<td>La política de cohesión de la UE ampliada: la perspectiva de España</td>
</tr>
<tr>
<td>170/2002</td>
<td>Riesgo de liquidez de Mercado</td>
</tr>
<tr>
<td>171/2002</td>
<td>Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas de capitalización individual: medida y comparación internacional.</td>
</tr>
<tr>
<td>172/2002</td>
<td>La encuesta continua de presupuestos familiares (1985-1996): descripción, representatividad y propuestas de metodología para la explotación de la información de los ingresos y el gasto.</td>
</tr>
<tr>
<td>173/2002</td>
<td>Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de crédito.</td>
</tr>
<tr>
<td></td>
<td>Título</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>174/2002</td>
<td>Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.</td>
</tr>
<tr>
<td>175/2003</td>
<td>La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos.</td>
</tr>
<tr>
<td>176/2003</td>
<td>The Falling Share of Cash Payments in Spain.</td>
</tr>
<tr>
<td>177/2003</td>
<td>Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.</td>
</tr>
<tr>
<td>178/2003</td>
<td>Factors explaining the interest margin in the banking sectors of the European Union.</td>
</tr>
<tr>
<td>179/2003</td>
<td>Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España.</td>
</tr>
<tr>
<td>181/2003</td>
<td>The Euro effect on the integration of the European stock markets.</td>
</tr>
<tr>
<td>182/2004</td>
<td>In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition.</td>
</tr>
<tr>
<td>183/2004</td>
<td>Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua.</td>
</tr>
<tr>
<td>184/2004</td>
<td>Estimación de la economía sumergida en España: un modelo estructural de variables latentes.</td>
</tr>
<tr>
<td>185/2004</td>
<td>Causas políticas y consecuencias sociales de la corrupción.</td>
</tr>
<tr>
<td>186/2004</td>
<td>Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.</td>
</tr>
<tr>
<td>187/2004</td>
<td>El modelo de Black, Derman y Toy en la práctica. Aplicación al mercado español.</td>
</tr>
<tr>
<td>188/2004</td>
<td>Does market competition make banks perform well?.</td>
</tr>
<tr>
<td>189/2004</td>
<td>Efficiency differences among banks: external, technical, internal, and managerial</td>
</tr>
</tbody>
</table>
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en España: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional:
Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodriguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
<table>
<thead>
<tr>
<th>N°</th>
<th>Ano</th>
<th>Título</th>
<th>Autor(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>2005</td>
<td>Precio de la tierra con presión urbana: un modelo para España</td>
<td>Esther Decimavilla, Carlos San Juan y Stefan Sperlich</td>
</tr>
<tr>
<td>206</td>
<td>2005</td>
<td>Interregional migration in Spain: a semiparametric analysis</td>
<td>Adolfo Maza y José Villaverde</td>
</tr>
<tr>
<td>207</td>
<td>2005</td>
<td>Productivity growth in European banking</td>
<td>Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina</td>
</tr>
<tr>
<td>208</td>
<td>2005</td>
<td>Explaining Bank Cost Efficiency in Europe: Environmental and Productivity Influences.</td>
<td>Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso</td>
</tr>
<tr>
<td>209</td>
<td>2005</td>
<td>La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.</td>
<td>Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar</td>
</tr>
<tr>
<td>210</td>
<td>2005</td>
<td>Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.</td>
<td>Begoña Font-Belaire y Alfredo Juan Grau-Grau</td>
</tr>
<tr>
<td>211</td>
<td>2005</td>
<td>Permanent income, convergence and inequality among countries</td>
<td>José M. Pastor and Lorenzo Serrano</td>
</tr>
<tr>
<td>212</td>
<td>2005</td>
<td>The Latin Model of Welfare: Do 'Insertion Contracts' Reduce Long-Term Dependence?</td>
<td>Luis Ayala and Magdalena Rodríguez</td>
</tr>
<tr>
<td>213</td>
<td>2005</td>
<td>The effect of geographic expansion on the productivity of Spanish savings banks</td>
<td>Manuel Illueca, José M. Pastor y Emili Tortosa-Ausina</td>
</tr>
<tr>
<td>214</td>
<td>2005</td>
<td>Dynamic network interconnection under consumer switching costs</td>
<td>Ángel Luis López Rodríguez</td>
</tr>
<tr>
<td>215</td>
<td>2005</td>
<td>La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa</td>
<td>Marta Rahona López</td>
</tr>
<tr>
<td>216</td>
<td>2005</td>
<td>The valuation of spanish ipos: efficiency analysis</td>
<td>Susana Álvarez Otero</td>
</tr>
<tr>
<td>217</td>
<td>2005</td>
<td>On the generation of a regular multi-input multi-output technology using parametric output distance functions</td>
<td>Sergio Perelman and Daniel Santín</td>
</tr>
<tr>
<td>218</td>
<td>2005</td>
<td>La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España</td>
<td>Gonzalo Caballero Miguez</td>
</tr>
<tr>
<td>219</td>
<td>2005</td>
<td>Determinants of bank market structure: Efficiency and political economy variables</td>
<td>Francisco González</td>
</tr>
<tr>
<td>220</td>
<td>2005</td>
<td>Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance</td>
<td>David Abad Diaz</td>
</tr>
</tbody>
</table>
221/2005 Tendencia post-anuncio de resultados contables: evidencia para el mercado español
Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García

222/2005 Human capital accumulation and geography: empirical evidence in the European Union
Jesús López-Rodríguez, J. Andrés Faíña y Jose Lopez Rodriguez

223/2005 Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing
Waymond Rodgers and Andrés Guiral

José Ramón Cancelo de la Torre, J. Andrés Faíña and Jesús López-Rodríguez

225/2005 The effects of ownership structure and board composition on the audit committee activity: Spanish evidence
Carlos Fernández Méndez and Rubén Arrondo García

226/2005 Cross-country determinants of bank income smoothing by managing loan loss provisions
Ana Rosa Fonseca and Francisco González

Alejandro Estellér Moré

228/2005 Region versus Industry effects: volatility transmission
Pilar Soriano Felipe and Francisco J. Climent Diranzo

Daniel Vázquez-Bustelo and Sandra Valle

Alfonso Palacio-Vera

231/2005 Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal
M. Carmen Almansa Sáez and Javier Calatrava Requena

232/2005 Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?
Santiago Carbó Valverde and Rafael López del Paso

Miguel Angel Barberán Lahuerta

Víctor M. González

Waymond Rodgers, Paul Pavlou and Andres Guiral.

Francisco J. André, M. Alejandro Cardenete y Carlos Romero.

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes. Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo. Inés P. Murillo.

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries? Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”. Luis Muga and Rafael Santamaria.

José M. Pastor, Empar Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana Maria Aldanondo-Ochoa y Carmen Almansa-Sáez

José Felix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguer.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich
A. García-Lorenzo y Jesús López-Rodríguez

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luís Muga y Rafael Santamaria

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales
Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general
Robert Meneu Gaya

278/2006 El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006 Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006 Three measures of returns to education: An illustration for the case of Spain
Maria Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006 La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

283/2006 Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

Alberte Martínez López

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodriguez
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>290/2006</td>
<td>La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico</td>
<td>Fernando Hernández Martínez</td>
</tr>
<tr>
<td>291/2006</td>
<td>Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain</td>
<td>Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso</td>
</tr>
<tr>
<td>292/2006</td>
<td>Una teoría sobre la contribución de la función de compras al rendimiento empresarial</td>
<td>Javier González Benito</td>
</tr>
<tr>
<td>294/2006</td>
<td>Testing the parametric vs the semiparametric generalized mixed effects models</td>
<td>María José Lombardía and Stefan Sperlich</td>
</tr>
<tr>
<td>295/2006</td>
<td>Nonlinear dynamics in energy futures</td>
<td>Mariano Matilla-García</td>
</tr>
<tr>
<td>296/2006</td>
<td>Estimating Spatial Models By Generalized Maximum Entropy Or How To Get Rid Of W</td>
<td>Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez</td>
</tr>
<tr>
<td>297/2006</td>
<td>Optimización fiscal en las transmisiones lucrativas: análisis metodológico</td>
<td>Félix Domínguez Barrero</td>
</tr>
<tr>
<td>298/2006</td>
<td>La situación actual de la banca online en España</td>
<td>Francisco José Climent Diranzo y Alexandre Momparler Pechuán</td>
</tr>
<tr>
<td>299/2006</td>
<td>Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas</td>
<td>Javier González Benito y Isabel Suárez González</td>
</tr>
<tr>
<td>300/2006</td>
<td>A Parametric Model to Estimate Risk in a Fixed Income Portfolio</td>
<td>Pilar Abad and Sonia Benito</td>
</tr>
<tr>
<td>301/2007</td>
<td>Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros</td>
<td>Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé</td>
</tr>
<tr>
<td>302/2007</td>
<td>Assessing the enlargement and deepening of regional trading blocs: The European Union case</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano</td>
</tr>
<tr>
<td>303/2007</td>
<td>¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español</td>
<td>Vanesa Solís Rodríguez y Manuel González Díaz</td>
</tr>
<tr>
<td>305/2007</td>
<td>Spain is Different: Relative Wages 1989-98</td>
<td>José Antonio Carrasco Gallego</td>
</tr>
</tbody>
</table>
306/2007 Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

307/2007 La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

308/2007 Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor

Roberto Ezcurra, Belen Iráizoz, Pedro Pascual and Manuel Rapún

310/2007 Long-run Regional Population Divergence and Modern Economic Growth in Europe: a Case Study of Spain
María Isabel Ayuda, Fernando Collantes and Vicente Pinilla

311/2007 Financial Information effects on the measurement of Commercial Banks’ Efficiency
Borja Amor, María T. Tascón and José L. Fanjul

312/2007 Neutralidad e incentivos de las inversiones financieras en el nuevo IRPF
Félix Domínguez Barrero

313/2007 The Effects of Corporate Social Responsibility Perceptions on The Valuation of Common Stock
Waymond Rodgers, Helen Choy and Andres Guiral-Contreras

314/2007 Country Creditor Rights, Information Sharing and Commercial Banks’ Profitability Persistence across the world
Borja Amor, María T. Tascón and José L. Fanjul

315/2007 ¿Es Relevante el Déficit Corriente en una Unión Monetaria? El Caso Español
Javier Blanco González y Ignacio del Rosal Fernández

316/2007 The Impact of Credit Rating Announcements on Spanish Corporate Fixed Income Performance: Returns, Yields and Liquidity
Pilar Abad, Antonio Díaz and M. Dolores Robles

317/2007 Indicadores de Lealtad al Establecimiento y Formato Comercial Basados en la Distribución del Presupuesto
César Augusto Bustos Reyes y Óscar González Benito

318/2007 Migrants and Market Potential in Spain over The XXth Century: A Test Of The New Economic Geography
Daniel A. Tirado, Jordi Pons, Elisenda Paluzie and Javier Silvestre

319/2007 El Impacto del Coste de Oportunidad de la Actividad Emprendedora en la Intención de los Ciudadanos Europeos de Crear Empresas
Luis Miguel Zapico Aldeano

320/2007 Los belgas y los ferrocarriles de vía estrecha en España, 1887-1936
Alberte Martínez López

321/2007 Competición política bipartidista. Estudio geométrico del equilibrio en un caso ponderado
Isabel Lillo, Mª Dolores López y Javier Rodrigo

322/2007 Human resource management and environment management systems: an empirical study
Mª Concepción López Fernández, Ana Mª Serrano Bedía and Gema García Piñeres
Wood and industrialization: evidence and hypotheses from the case of Spain, 1860-1935. Iñaki Iriarte-Goñi and María Isabel Ayuda Bosque

New evidence on long-run monetary neutrality. J. Cunado, L.A. Gil-Alana and F. Perez de Gracia

Monetary policy and structural changes in the volatility of US interest rates. Juncal Cuñado, Javier Gomez Biscarri and Fernando Perez de Gracia

The productivity effects of intrafirm diffusion. Lucio Fuentelsaz, Jaime Gómez and Sergio Palomas

Unemployment duration, layoffs and competing risks. J.M. Arranz, C. García-Serrano and L. Toharia

El grado de cobertura del gasto público en España respecto a la UE-15. Nuria Rueda, Begoña Barruso, Carmen Calderón y Mª del Mar Herrador

The Impact of Direct Subsidies in Spain before and after the CAP'92 Reform. Carmen Murillo, Carlos San Juan and Stefan Sperlich

Determinants of post-privatisation performance of Spanish divested firms. Laura Cabeza García and Silvia Gómez Ansón

¿Por qué deciden diversificar las empresas españolas? Razones oportunistas versus razones económicas. Almudena Martínez Campillo

Dynamical Hierarchical Tree in Currency Markets. Juan Gabriel Brida, David Matesanz Gómez and Wiston Adrián Risso

Los determinantes sociodemográficos del gasto sanitario. Análisis con microdatos individuales. Ana María Angulo, Ramón Barberán, Pilar Egea y Jesús Mur

Why do companies go private? The Spanish case. Inés Pérez-Soba Aguilar

The use of GIS to study transport for disabled people. Verónica Cañal Fernández

The long run consequences of M&A: An empirical application. Cristina Bernad, Lucio Fuentelsaz and Jaime Gómez

Las clasificaciones de materias en economía: principios para el desarrollo de una nueva clasificación. Valentín Edo Hernández

Reforming Taxes and Improving Health: A Revenue-Neutral Tax Reform to Eliminate Medical and Pharmaceutical VAT. Santiago Álvarez-García, Carlos Pestana Barros y Juan Prieto-Rodriguez

Impacts of an iron and steel plant on residential property values. Celia Bilbao-Terol

Firm size and capital structure: Evidence using dynamic panel data. Víctor M. González and Francisco González
¿Cómo organizar una cadena hotelera? La elección de la forma de gobierno
Marta Fernández Barcala y Manuel González Díaz

Análisis de los efectos de la decisión de diversificar: un contraste del marco teórico “Agencia-Stewardship”
Almudena Martínez Campillo y Roberto Fernández Gago

Selecting portfolios given multiple eurostoxxx-based uncertainty scenarios: a stochastic goal programming approach from fuzzy betas
Enrique Ballestero, Blanca Pérez-Gladish, Mar Arenas-Parra and Amelia Bilbao-Terol

“El bienestar de los inmigrantes y los factores implicados en la decisión de emigrar”
Anastasia Hernández Alemán y Carmelo J. León

Andrea Martínez-Noya y Esteban García-Canal

Diferencias salariales entre empresas públicas y privadas. El caso español
Begoña Cueto y Nuria Sánchez- Sánchez

Effects of Fiscal Treatments of Second Home Ownership on Renting Supply
Celia Bilbao Terol and Juan Prieto Rodríguez

Auditors’ ethical dilemmas in the going concern evaluation
Andres Guiral, Waymond Rodgers, Emiliano Ruiz and Jose A. Gonzalo

Convergencia en capital humano en España. Un análisis regional para el periodo 1970-2004
Susana Morales Sequera y Carmen Pérez Esparrells

Socially responsible investment: mutual funds portfolio selection using fuzzy multiobjective programming
Blanca Mª Pérez-Gladish, Mar Arenas-Parra, Amelia Bilbao-Terol and Mª Victoria Rodríguez-Uría

Persistencia del resultado contable y sus componentes: implicaciones de la medida de ajustes por devengo
Raúl Iñiguez Sánchez y Francisco Poveda Fuentes

Wage Inequality and Globalisation: What can we Learn from the Past? A General Equilibrium Approach
Concha Betrán, Javier Ferri and Maria A. Pons

Eficacia de los incentivos fiscales a la inversión en I+D en España en los años noventa
Desiderio Romero Jordán y José Félix Sanz Sanz

Convergencia regional en renta y bienestar en España
Robert Meneu Gaya

Tributación ambiental: Estado de la Cuestión y Experiencia en España
Ana Carrera Poncela

Salient features of dependence in daily us stock market indices
Luis A. Gil-Alana, Juncal Cuñado and Fernando Pérez de Gracia

La educación superior: ¿un gasto o una inversión rentable para el sector público?
Inés P. Murillo y Francisco Pedraja
358/2007 Effects of a reduction of working hours on a model with job creation and job destruction
Emilio Domínguez, Miren Ullibarri y Idoya Zabaleta

359/2007 Stock split size, signaling and earnings management: Evidence from the Spanish market
José Yagüe, J. Carlos Gómez-Sala and Francisco Poveda-Fuentes

360/2007 Modelización de las expectativas y estrategias de inversión en mercados de derivados
Begoña Font-Belaire

361/2008 Trade in capital goods during the golden age, 1953-1973
Mª Teresa Sanchis and Antonio Cubel

362/2008 El capital económico por riesgo operacional: una aplicación del modelo de distribución de pérdidas
Enrique José Jiménez Rodríguez y José Manuel Feria Domínguez

363/2008 The drivers of effectiveness in competition policy
Joan-Ramon Borrell and Juan-Luis Jiménez

364/2008 Corporate governance structure and board of directors remuneration policies: evidence from Spain
Carlos Fernández Méndez, Rubén Arrondo García and Enrique Fernández Rodríguez

365/2008 Beyond the disciplinary role of governance: how boards and donors add value to Spanish foundations
Pablo De Andrés Alonso, Valentín Azofra Palenzuela y M. Elena Romero Merino

366/2008 Complejidad y perfeccionamiento contractual para la contención del oportunismo en los acuerdos de franquicia
Vanessa Solís Rodríguez y Manuel González Díaz

367/2008 Inestabilidad y convergencia entre las regiones europeas
Jesús Mur, Fernando López y Ana Angulo

368/2008 Análisis espacial del cierre de explotaciones agrarias
Ana Aldanondo Ochoa, Carmen Almansa Sáez y Valero Casanovas Oliva

369/2008 Cross-Country Efficiency Comparison between Italian and Spanish Public Universities in the period 2000-2005
Tommaso Agasisti and Carmen Pérez Esparrells

370/2008 El desarrollo de la sociedad de la información en España: un análisis por comunidades autónomas
María Concepción García Jiménez y José Luis Gómez Barroso

371/2008 El medioambiente y los objetivos de fabricación: un análisis de los modelos estratégicos para su consecución
Lucía Avella Camarero, Esteban Fernández Sánchez y Daniel Vázquez-Bustelo

372/2008 Influence of bank concentration and institutions on capital structure: New international evidence
Víctor M. González and Francisco González

373/2008 Generalización del concepto de equilibrio en juegos de competición política
Mª Dolores López González y Javier Rodrigo Hitos

374/2008 Smooth Transition from Fixed Effects to Mixed Effects Models in Multi-level regression Models
Maria José Lombardía and Stefan Sperlich
375/2008 A Revenue-Neutral Tax Reform to Increase Demand for Public Transport Services
Carlos Pestana Barros and Juan Prieto-Rodriguez

376/2008 Measurement of intra-distribution dynamics: An application of different approaches to the European regions
Adolfo Maza, María Hierro and José Villaverde

377/2008 Migración interna de extranjeros y ¿nueva fase en la convergencia?
María Hierro y Adolfo Maza

378/2008 Ef ectos de la Reforma del Sector Eléctrico: Modelización Teórica y Experiencia Internacional
Ciro Eduardo Bazán Navarro

379/2008 A Non-Parametric Independence Test Using Permutation Entropy
Mariano Matilla-García and Manuel Ruiz Marín

380/2008 Testing for the General Fractional Unit Root Hypothesis in the Time Domain
Uwe Hassler, Paulo M.M. Rodrigues and Antonio Rubia

381/2008 Multivariate gram-charlier densities
Esther B. Del Brio, Trino-Manuel Ñíguez and Javier Perote

382/2008 Analyzing Semiparametrically the Trends in the Gender Pay Gap - The Example of Spain
Ignacio Moral-Arce, Stefan Sperlich, Ana I. Fernández-Sainz and Maria J. Roca

383/2008 A Cost-Benefit Analysis of a Two-Sided Card Market
Santiago Carbó Valverde, David B. Humphrey, José Manuel Liñares Zegarra and Francisco Rodríguez Fernández

384/2008 A Fuzzy Bicriteria Approach for Journal Deselection in a Hospital Library
M. L. López-Avello, M. V. Rodriguez-Uría, B. Pérez-Gladish, A. Bilbao-Terol, M. Arenas-Parra

385/2008 Valoración de las grandes corporaciones farmaceúticas, a través del análisis de sus principales intangibles, con el método de opciones reales
Gracia Rubio Martín y Prosper Lamothe Fernández

386/2008 El marketing interno como impulsor de las habilidades comerciales de las pyme españolas: efectos en los resultados empresariales
Mª Leticia Santos Vijande, Mª José Sanzo Pérez, Nuria García Rodríguez y Juan A. Trespalacios Gutiérrez

387/2008 Understanding Warrants Pricing: A case study of the financial market in Spain
David Abad y Belén Nieto

388/2008 Aglomeración espacial, Potencial de Mercado y Geografía Económica: Una revisión de la literatura
Jesús López-Rodríguez y J. Andrés Faiña

389/2008 An empirical assessment of the impact of switching costs and first mover advantages on firm performance
Jaime Gómez, Juan Pablo Maícas

390/2008 Tender offers in Spain: testing the wave
Ana R. Martínez-Cañete y Inés Pérez-Soba Aguilar
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>391/2008</td>
<td>La integración del mercado español a finales del siglo XIX: los precios del trigo entre 1891 y 1905</td>
<td>Mariano Matilla García, Pedro Pérez Pascual y Basilio Sanz Carnero</td>
</tr>
<tr>
<td>392/2008</td>
<td>Cuando el tamaño importa: estudio sobre la influencia de los sujetos políticos en la balanza de bienes y servicios</td>
<td>Alfonso Echazarra de Gregorio</td>
</tr>
<tr>
<td>393/2008</td>
<td>Una visión cooperativa de las medidas ante el posible daño ambiental de la desalación</td>
<td>Borja Montaño Sanz</td>
</tr>
<tr>
<td>394/2008</td>
<td>Efectos externos del endeudamiento sobre la calificación crediticia de las Comunidades Autónomas</td>
<td>Andrés Leal Marcos y Julio López Laborda</td>
</tr>
<tr>
<td>395/2008</td>
<td>Technical efficiency and productivity changes in Spanish airports: A parametric distance functions approach</td>
<td>Beatriz Tovar & Roberto Rendeiro Martín-Cejas</td>
</tr>
<tr>
<td>396/2008</td>
<td>Network analysis of exchange data: Interdependence drives crisis contagion</td>
<td>David Matesanz Gómez & Guillermo J. Ortega</td>
</tr>
<tr>
<td>397/2008</td>
<td>Explaining the performance of Spanish privatised firms: a panel data approach</td>
<td>Laura Cabeza García and Silvia Gomez Anson</td>
</tr>
<tr>
<td>398/2008</td>
<td>Technological capabilities and the decision to outsource R&D services</td>
<td>Andrea Martínez-Noya and Esteban García-Canal</td>
</tr>
<tr>
<td>399/2008</td>
<td>Hybrid Risk Adjustment for Pharmaceutical Benefits</td>
<td>Manuel García-Goñi, Pere Ibern & José María Inoriza</td>
</tr>
<tr>
<td>400/2008</td>
<td>The Team Consensus–Performance Relationship and the Moderating Role of Team Diversity</td>
<td>José Henrique Dieguez, Javier González-Benito and Jesús Galende</td>
</tr>
<tr>
<td>401/2008</td>
<td>The institutional determinants of CO₂ emissions: A computational modelling approach using Artificial Neural Networks and Genetic Programming</td>
<td>Marcos Álvarez-Díaz, Gonzalo Caballero Miguez and Mario Soliño</td>
</tr>
<tr>
<td>402/2008</td>
<td>Alternative Approaches to Include Exogenous Variables in DEA Measures: A Comparison Using Monte Carlo</td>
<td>José Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro and Daniel Santín-González</td>
</tr>
<tr>
<td>403/2008</td>
<td>Efecto diferencial del capital humano en el crecimiento económico andaluz entre 1985 y 2004: comparación con el resto de España</td>
<td>Mª del Pópulo Pablo-Romero Gil-Delgado y Mª de la Palma Gómez-Calero Valdés</td>
</tr>
<tr>
<td>404/2008</td>
<td>Análisis de fusiones, variaciones conjeturales y la falacia del estimator en diferencias</td>
<td>Juan Luis Jiménez y Jordi Perdigueru</td>
</tr>
<tr>
<td>405/2008</td>
<td>Política fiscal en la uem: ¿basta con los estabilizadores automáticos?</td>
<td>Jorge Uxó González y Mª Jesús Arroyo Fernández</td>
</tr>
<tr>
<td>406/2008</td>
<td>Papel de la orientación emprendedora y la orientación al mercado en el éxito de las empresas</td>
<td>Óscar González-Benito, Javier González-Benito y Pablo A. Muñoz-Gallego</td>
</tr>
<tr>
<td>407/2008</td>
<td>La presión fiscal por impuesto sobre sociedades en la unión europea</td>
<td>Elena Fernández Rodríguez, Antonio Martínez Arias y Santiago Álvarez García</td>
</tr>
</tbody>
</table>
The environment as a determinant factor of the purchasing and supply strategy: an empirical analysis
Dr. Javier González-Benito y MS Duilio Reis da Rocha

Cooperation for innovation: the impact on innovatory effort
Gloria Sánchez González and Liliana Herrera

Spanish post-earnings announcement drift and behavioral finance models
Carlos Forner and Sonia Sanabria

Decision taking with external pressure: evidence on football manager dismissals in Argentina and their consequences
Ramón Flores, David Forrest and Juan de Dios Tena

Comercio agrario latinoamericano, 1963-2000: aplicación de la ecuación gravitacional para flujos desagregados de comercio
Raúl Serrano y Vicente Pinilla

Voter heuristics in Spain: a descriptive approach elector decision
José Luis Sáez Lozano and Antonio M. Jaime Castillo

Análisis del efecto área de salud de residencia sobre la utilización y acceso a los servicios sanitarios en la Comunidad Autónoma Canaria
Ignacio Abásolo Alessón, Lidia García Pérez, Raquel Aguiar Ibáñez y Asier Amador Robayna

Impact on competitive balance from allowing foreign players in a sports league: an analytical model and an empirical test
Ramón Flores, David Forrest & Juan de Dios Tena

Organizational innovation and productivity growth: Assessing the impact of outsourcing on firm performance
Alberto López

Value Efficiency Analysis of Health Systems
Eduardo González, Ana Cárcaba & Juan Ventura

Equidad en la utilización de servicios sanitarios públicos por comunidades autónomas en España: un análisis multinivel
Ignacio Abásolo, Jaime Pinilla, Miguel Negrín, Raquel Aguiar y Lidia García

Piedras en el camino hacia Bolonia: efectos de la implantación del EEES sobre los resultados académicos
Carmen Florido, Juan Luis Jiménez e Isabel Santana

The welfare effects of the allocation of airlines to different terminals
M. Pilar Socorro and Ofelia Betancor

How bank capital buffers vary across countries. The influence of cost of deposits, market power and bank regulation
Ana Rosa Fonseca and Francisco González

Analysing health limitations in Spain: an empirical approach based on the European Community household panel
Marta Pascual and David Cantarero
<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>423/2008</td>
<td>Regional productivity variation and the impact of public capital stock: an analysis with spatial interaction, with reference to Spain</td>
<td>Miguel Gómez-Antonio and Bernard Fingleton</td>
</tr>
<tr>
<td>424/2008</td>
<td>Average effect of training programs on the time needed to find a job. The case of the training schools program in the south of Spain (Seville, 1997-1999).</td>
<td>José Manuel Cansino Muñoz-Repiso and Antonio Sánchez Braza</td>
</tr>
<tr>
<td>425/2008</td>
<td>Medición de la eficiencia y cambio en la productividad de las empresas distribuidoras de electricidad en Perú después de las reformas</td>
<td>Raúl Pérez-Reyes y Beatriz Tovar</td>
</tr>
<tr>
<td>426/2008</td>
<td>Acercando posturas sobre el descuento ambiental: sondeo Delphi a expertos en el ámbito internacional</td>
<td>Carmen Almansa Sáez y José Miguel Martinez Paz</td>
</tr>
<tr>
<td>427/2008</td>
<td>Determinants of abnormal liquidity after rating actions in the Corporate Debt Market</td>
<td>Pilar Abad, Antonio Díaz and M. Dolores Robles</td>
</tr>
<tr>
<td>428/2008</td>
<td>Export led-growth and balance of payments constrained. New formalization applied to Cuban commercial regimes since 1960</td>
<td>David Matesanz Gómez, Guadalupe Fugarolas Álvarez-Ude and Isis Mañalich Gálvez</td>
</tr>
<tr>
<td>429/2008</td>
<td>La deuda implícita y el desequilibrio financiero-actuarial de un sistema de pensiones. El caso del régimen general de la seguridad social en España</td>
<td>José Enrique Devesa Carpio y Mar Devesa Carpio</td>
</tr>
<tr>
<td>430/2008</td>
<td>Efectos de la descentralización fiscal sobre el precio de los carburantes en España</td>
<td>Desiderio Romero Jordán, Marta Jorge García-Inés y Santiago Álvarez García</td>
</tr>
<tr>
<td>431/2008</td>
<td>Euro, firm size and export behavior</td>
<td>Silviano Esteve-Pérez, Salvador Gil-Pareja, Rafael Llorca-Vivero and José Antonio Martinez-Serrano</td>
</tr>
<tr>
<td>432/2008</td>
<td>Does social spending increase support for free trade in advanced democracies?</td>
<td>Ismael Sanz, Ferran Martínez i Coma and Federico Steinberg</td>
</tr>
<tr>
<td>433/2008</td>
<td>Potencial de Mercado y Estructura Espacial de Salarios: El Caso de Colombia</td>
<td>Jesús López-Rodríguez y María Cecilia Acevedo</td>
</tr>
<tr>
<td>434/2008</td>
<td>Persistence in Some Energy Futures Markets</td>
<td>Juncal Cunado, Luis A. Gil-Alana and Fernando Pérez de Gracia</td>
</tr>
<tr>
<td>435/2008</td>
<td>La inserción financiera externa de la economía francesa: inversores institucionales y nueva gestión empresarial</td>
<td>Ignacio Álvarez Peralta</td>
</tr>
<tr>
<td>436/2008</td>
<td>¿Flexibilidad o rigidez salarial en España?: un análisis a escala regional</td>
<td>Ignacio Moral Arce y Adolfo Maza Fernández</td>
</tr>
<tr>
<td>438/2009</td>
<td>Friendly or Controlling Boards?</td>
<td>Pablo de Andrés Alonso & Juan Antonio Rodríguez Sanz</td>
</tr>
<tr>
<td>Número</td>
<td>Título</td>
<td>Autor</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>439/2009</td>
<td>La sociedad Trenor y Cía. (1838-1926): un modelo de negocio industrial en la España del siglo XIX</td>
<td>Amparo Ruiz Llopis</td>
</tr>
<tr>
<td>440/2009</td>
<td>Continental bias in trade</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero & José Antonio Martínez Serrano</td>
</tr>
<tr>
<td>441/2009</td>
<td>Determining operational capital at risk: an empirical application to the retail banking</td>
<td>Enrique José Jiménez-Rodriguez, José Manuel Feria-Dominguez & José Luis Martín-Marín</td>
</tr>
<tr>
<td>442/2009</td>
<td>Costes de mitigación y escenarios post-kyoto en España: un análisis de equilibrio general para España</td>
<td>Mikel González Ruiz de Eguino</td>
</tr>
<tr>
<td>443/2009</td>
<td>Las revistas españolas de economía en las bibliotecas universitarias: ranking, valoración del indicador y del sistema</td>
<td>Valentín Edo Hernández</td>
</tr>
<tr>
<td>444/2009</td>
<td>Convergencia económica en España y coordinación de políticas económicas. un estudio basado en la estructura productiva de las CC.AA.</td>
<td>Ana Cristina Mingorance Arnáiz</td>
</tr>
<tr>
<td>445/2009</td>
<td>Instrumentos de mercado para reducir emisiones de co2: un análisis de equilibrio general para España</td>
<td>Mikel González Ruiz de Eguino</td>
</tr>
<tr>
<td>446/2009</td>
<td>El comercio intra e inter-regional del sector Turismo en España</td>
<td>Carlos Llano y Tamara de la Mata</td>
</tr>
<tr>
<td>447/2009</td>
<td>Efectos del incremento del precio del petróleo en la economía española: Análisis de cointegración y de la política monetaria mediante reglas de Taylor</td>
<td>Fernando Hernández Martínez</td>
</tr>
<tr>
<td>449/2009</td>
<td>Global Economy Dynamics? Panel Data Approach to Spillover Effects</td>
<td>Gregory Daco, Fernando Hernández Martínez & Li-Wu Hsu</td>
</tr>
<tr>
<td>450/2009</td>
<td>Pricing levered warrants with dilution using observable variables</td>
<td>Isabel Abinzano & Javier F. Navas</td>
</tr>
<tr>
<td>452/2009</td>
<td>A Detailed Comparison of Value at Risk in International Stock Exchanges</td>
<td>Pilar Abad & Sonia Benito</td>
</tr>
<tr>
<td>453/2009</td>
<td>Understanding offshoring: has Spain been an offshoring location in the nineties?</td>
<td>Belén González-Diaz & Rosario Gandoy</td>
</tr>
<tr>
<td>454/2009</td>
<td>Outsourcing decision, product innovation and the spatial dimension: Evidence from the Spanish footwear industry</td>
<td>José Antonio Belso-Martinez</td>
</tr>
</tbody>
</table>
Does playing several competitions influence a team’s league performance? Evidence from Spanish professional football
Andrés J. Picazo-Tadeo & Francisco González-Gómez

Does accessibility affect retail prices and competition? An empirical application
Juan Luis Jiménez and Jordi Perdiguero

Cash conversion cycle in smes
Sonia Baños-Caballero, Pedro J. García-Teruel and Pedro Martínez-Solano

Un estudio sobre el perfil de hogares endeudados y sobreendeudados: el caso de los hogares vascos
Alazne Mujika Alberdi, Iñaki García Arrizabalaga y Juan José Gibaja Martins

Imposing monotonicity on outputs in parametric distance function estimations: with an application to the spanish educational production
Sergio Perelman and Daniel Santín

Key issues when using tax data for concentration analysis: an application to the Spanish wealth tax
José Mª Durán-Cabré and Alejandro Esteller-Moré

¿Se está rompiendo el mercado español? Una aplicación del enfoque de feldstein –horioka
Saúl De Vicente Queijeiro, José Luis Pérez Rivero y María Rosalía Vicente Cuervo

Financial condition, cost efficiency and the quality of local public services
Manuel A. Muñiz & José L. Zafra

Including non-cognitive outputs in a multidimensional evaluation of education production: an international comparison
Marián García Valiñas & Manuel Antonio Muñiz Pérez

A political look into budget deficits. The role of minority governments and oppositions
Albert Falcó-Gimeno & Ignacio Jurado

La simulación del cuadro de mando integral. Una herramienta de aprendizaje en la materia de contabilidad de gestión
Elena Urquía Grande, Clara Isabel Muñoz Colomina y Elisa Isabel Cano Montero

Análisis histórico de la importancia de la industria de la desalinización en España
Borja Montaño Sanz

The dynamics of trade and innovation: a joint approach
Silviano Esteve-Pérez & Diego Rodríguez

Measuring international reference-cycles
Sonia de Lucas Santos, Inmaculada Álvarez Ayuso & Mª Jesús Delgado Rodríguez

Measuring quality of life in Spanish municipalities
Eduardo González Fidalgo, Ana Cárcaba García, Juan Ventura Victoria & Jesús García García

¿Cómo se valoran las acciones españolas: en el mercado de capitales doméstico o en el europeo?
Begoña Font Belaire y Alfredo Juan Grau Grau

Patterns of e-commerce adoption and intensity. evidence for the european union-27
Maria Rosalía Vicente & Ana Jesús López
489/2009 Capital structure determinants in growth firms accessing venture funding
Marina Balboa, José Martí & Álvaro Tresierra

490/2009 Determinants of debt maturity structure across firm size
Víctor M. González

491/2009 Análisis del efecto de la aplicación de las NIIF en la valoración de las salidas a bolsa
Susana Álvarez Otero y Eduardo Rodríguez Enríquez

492/2009 An analysis of urban size and territorial location effects on employment probabilities: the spanish case
Ana Viñuela-Jiménez, Fernando Rubiera-Morollón & Begoña Cueto

493/2010 Determinantes de la estructura de los consejos de administración en España
Isabel Acero Fraile y Nuria Alcalde Fradejas

494/2010 Performance and completeness in repeated inter-firm relationships: the case of franchising
Vanesa Solís-Rodríguez & Manuel González-Díaz

495/2010 A Revenue-Based Frontier Measure of Banking Competition
Santiago Carbó, David Humphrey & Francisco Rodríguez

496/2010 Categorical segregation in social networks
Antoni Rubí-Barceló

497/2010 Beneficios ambientales no comerciales de la directiva marco del agua en condiciones de escasez: análisis económico para el Guadalquivir
Julia Martín-Ortega, Giacomo Giannocarco y Julio Berbel Vecino

498/2010 Monetary integration and risk diversification in eu-15 sovereign debt markets
Juncal Cuñado & Marta Gómez-Puig

José Antonio Carrasco Gallego

500/2010 The role of learning in firm R&D persistence
Juan A. Mañez, María E. Rochina-Barrachina, Amparo Sanchis-Llopis & Juan A. Sanchis-Llopis