MEASURING EDUCATIONAL EFFICIENCY AND ITS DETERMINANTS IN SPAIN WITH PARAMETRIC DISTANCE FUNCTIONS

JOSÉ MANUEL CORDERO FERRERA
EVA CRESPO CEBADA
DANIEL SANTÍN GONZÁLEZ

FUNDACIÓN DE LAS CAJAS DE AHORROS
DOCUMENTO DE TRABAJO
Nº 484/2009
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.

ISSN: 1988-8767

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros.

Las opiniones son responsabilidad de los autores.
Abstract

The aim of this paper is to measure educational efficiency in Spanish regions using data at student level from PISA 2006. For this purpose, we use a parametric output distance function to implement the methodology developed by Battese and Coelli (1995). The use of this framework allows us to obtain significant conclusions. Thus, in Spain regional educational policies seem to matter since Andalusia, Catalonia and the regions that do not participate in PISA 2006 with an extended sample are the most inefficient regions. We also conclude that the peer group effect is a crucial variable to increase students’ test scores. However class size or school ownership has no effect on efficiency results.

Keywords: Efficiency, Education, parametric distance function.

JEL classification: C14, H52, I21
1. INTRODUCTION

One of the main goals in the field of economics of education is to define the relationship between school inputs, student background and achievement at school. However, after five decades of research, evidences found are still not solid enough, especially regarding the role of school inputs (Cohn and Geske, 1990; Hedges et al., 1994; Hanushek, 1997, 2003). This fact implies a serious drawback for policy-makers taking decisions about the allocation of public resources devoted to enhance the accumulation of human quality in their countries.

What we actually know is that education is a high complex process with variables such as organization or non-monetary inputs implied in production (Vandenberghe, 1999), which make it extraordinarily difficult to define a general educational production function that accurately includes all relevant factors in the educational production. Furthermore, it should be taken into account that there may be inefficient behaviours in the learning process which may be due to multiple reasons such as the way in which resources are organized and managed, the motivation of the agents involved in the process or the structure itself of the educational system (Nechyva, 2000; Woessman, 2001).

In order to tackle the inefficiency issue in education, many studies use deterministic nonparametric data envelopment analysis in empirical evaluations. Pioneer studies applying data envelopment analysis in education originate with Bessent and Bessent (1980), Charnes, Cooper, and Rhodes (1981) and Bessent et al. (1982). Other studies have considered parametric methodologies, mainly using the Cobb–Douglas specifications, but also the translog functional form proposed by Christensen, Jorgenson, and Lau (1971). These studies have included Jiménez (1986), Callan and Santerre (1990), Gyimah-Brempong and Gyapong (1992), Deller and Rudnicki (1993), Grosskopf et al. (1997) and Perelman and Santín (2008). The main advantage of the parametric translog function is its highly flexible nature, which allows the study of second order interactions in the production process as well as allowing the calculus of output-input partial derivatives. Nevertheless it is worth noting that most of the applied work developed around this issue is conducted using school as Decision Making Unit (DMU). However, Summers and Wolfe (1977) and Figlio (1999) used student-level data in their econometric studies; both concluded that the student level is more appropriate than higher levels of aggregation. Their findings show that school

1 For an empirical survey of frontier efficiency techniques in education, see Worthington (2001).
inputs matter but that their impact on different types of student varies considerably. In addition to this, Hanushek, Rivkin and Taylor (1996) concludes that in the econometric estimation of the educational production function data aggregation at school, district or even country level implies an upwards bias of estimated school resource effects.

In this paper we propose the use of a parametric stochastic distance function at student level. Under this specification, we explicitly consider that education is a process in which students use their own and school inputs in order to transform them into academic results, subject to inefficient behaviours that can be identified at both student and school levels. Moreover, parametric stochastic distance functions allow us to deal simultaneously with multiple outputs (e.g. math, reading and science test scores) and multiple inputs (including school inputs, student background and peer-group characteristics) within a stochastic framework. We adopt here a translog specification to estimate the parametric stochastic distance function at the student level. This allows us to calculate several aspects of educational technology, mainly output elasticities with respect to inputs and outputs. Moreover we employ the methodology proposed by Battese and Coelli (1995) to find out what are the main driven factors for explaining educational inefficiency.

In order to illustrate the potentialities of the approach proposed here, we provide an application to Spanish educational data from the Programme for International Student Assessment (PISA), implemented in 2006 by the Organization for Economic Cooperation and Development (OECD). Through this initiative, the cognitive skills of students around the world are measured with the aim of identifying potential causes of school failure and serving as a basis for educational policy. The study was first developed in 2000 and it has been carried out periodically every three years with a regular increase in the number of participating schools and countries. PISA 2006 data base comprises information about over 400,000 students, belonging to 57 countries from which 30 countries belong to OECD and another 27 were not associated.

This database includes a wide variety of background information on the students collected by student questionnaires. Among this individual information we can students' family background or their learning strategies. In addition, the study also conducted interviews among the principals of the respective schools in order to collect information on the school resources, the number of teachers in the school, the responsibility of the school regarding school relevant decisions or the principles of selecting students and so on (for an extensive review see OECD, 2007 and 2009).
This great volume of data offers an exciting framework to analyze and identify the potential influence of those different variables on results. Although we restrict our analysis to the Spanish case, in 2006 ten Spanish regions decided to take part in evaluation with an extended representative sample of their population. In Spain, the decision about the quantity of the educational budget and its allocation is full competency of the regions. For this reason this analysis allows us to evaluate potential efficiency divergences among regions within the same country.

As we mentioned before, the possibility of using information at student level involves a great advantage regarding most of the studies completed within the educational context, which usually use aggregate data at country (Alfonso and St. Aubyn, 2006), district (McCarty and Yaisawarng, 1993; Banker et al., 2004) or school (Muñiz, 2002; Cordero et al., 2008) level. In addition to facilitate the analysis and interpretation of results from estimations (Summers and Wolfe, 1977; Hanushek et al., 1996), it allows providing information on students' efficiency independently of either educational system or school efficiency. Furthermore, measurement of efficiency at student level allows considering separately student's own socioeconomic level and their schoolmates one (the so-called peer-group effect), two inputs which cannot be simultaneously included with aggregated data (Santin, 2006).

The paper is organized as follows. Section 2 provides an overview of educational production functions and presents the parametric stochastic distance function and our estimation strategy. In Section 3 data set and variables selected are described. Section 4 provides results and a discussion of our empirical analysis and the final section offers some conclusions.

2. EDUCATION AND EFFICIENCY MEASUREMENT WITH A PARAMETRIC DISTANCE FUNCTION

2.1. Estimating an educational production function through distance functions

The attempts to estimate educational production functions are based on the analogy between this sector and an industry. In the latter, the firms produce different outputs using inputs such as labour and capital which are transformed according to the existing technology into commodities and/or services. In education, schools produce educational outputs in the form of student achievement and other valued results using
facilities, equipment, teachers, students’ own characteristics, peer-group interactions, supervisors and administrators. This relationship can be defined with a basic formulation expressed on the following way (Levin, 1974; Hanushek, 1986):

\[
A_{is} = f (B_{is}, S_{is}, P_{is}, I_{is})
\] (1)

where \(A_{is} \) represents the achievement of student \(i \) at school \(s \), usually represented by the results obtained in standardized tests. This output vector depends on a set of factors represented by socioeconomic background \(B_{is} \), mainly family characteristics, school inputs \(S_{is} \) such as educational material, teachers or infrastructures in school, influence of classmates or peer-group effect \(P_{is} \), and the students’ innate abilities \(I_{is} \).

This function can be estimated statistically using a multivariate regression model. A further refinement of the educational production function would be to construct a frontier production function where only those units that maximize their results according to their resources are placed within the boundary. In this case, instead of using simple econometric analysis to estimate the Equation (1), more sophisticated methods are required. In this paper we propose to use parametric stochastic distance functions at student level in order to go beyond in the analysis of production functions in education. For this purpose, Equation (1) becomes:

\[
D_{is} = g (A_{is}, B_{is}, S_{is}, P_{is}, I_{is})
\] (2)

where \(g \) represents the best practice technology used in the transformation of educational inputs to outputs, and \(D_{is} \) is the distance that separates each student \(i \) attending school \(s \) from the technological boundary. Unobservable student innate abilities, \(I_{is} \), are assumed to be randomly normally distributed in the population and to influence individual performance in a multiplicative way. This simple transformation places the empirical estimation of Equation (2) within the framework of parametric stochastic frontier analysis, which, under specific distributional assumptions, allows to disentangling educational inputs, random effects and efficiency (distance to the production frontier).
2.2. The parametric stochastic distance function

Defining a vector of inputs \(x = (x_1, x_2, \ldots, x_k) \in \mathbb{R}^K \) and a vector of outputs \(y = (y_1, y_2, \ldots, y_m) \in \mathbb{R}^M \), a feasible multi-input multi-output production technology can be defined using the output possibility set \(P(x) \), which represent the set of all outputs, \(y \in \mathbb{R}_+^M \), that can be produced using the input vector, \(x \in \mathbb{R}_+^K \). That is, \(P(x) = \{ (x, y) : x \text{ can produce } y \} \) and we assume that the technology satisfies the set of microeconomic axioms listed in Fare and Primont (1995) including strong disposability, convexity, closedness and boundedness.

In order to capture efficiency behaviours the output distance function, introduced by Shephard (1970), can be defined in the output set, \(P(x) \), as \(D_o(x, y) = \min \{ \theta : \theta > 0, (x, y / \theta) \in P(x) \} \). As noted in Fare and Primont (1995), \(D_o(x, y) \) is non-decreasing, positively linearly homogeneous and convex in \(y \) and non-increasing and quasi-convex in \(x \). The distance function, \(D_o(x, y) \), will take a value that is less or equal to one if the output vector, \(y \), is an element of the feasible production set, \(P(x) \). Then, if \(D_o(x, y) \leq 1 \) the mix \((x, y) \) belongs to the production set \(P(x) \) and only when \(D_o(x, y) = 1 \) the output vector, \(y \), is located on the boundary of the output possibility set\(^2\).

Figure 1 illustrates these concepts in a simple two-output one input setting. Let assume that DMUs A, B, C and D dispose of equal input endowment to produce outputs \(y_1 \) and \(y_2 \). Then B and C are efficient because both lies on the boundary of the output possibility set, whereas D and A, as interior points, are inefficient. The measurement of the relative inefficiency for A and D is given by the distance function \(\theta_A = OA/OB \) and \(\theta_D = OD/OC \).

\(^2\) The distance function may be specified with either input or output orientation. So input distance function analysis could be defined in a similar way imposing an input orientation and given output endowments.
Our analysis is focused on an output distance function in order to reach our aim of evaluating the behavior of a group of students seeking to obtain the best possible academic results. More in depth, the definition of the distance function in the educational context is how the achievement vector may be proportionally increased subject to a fixed input vector.

In our study we assume a translog functional form to estimate the distance function with some properties such as flexibility, easily to calculate or homogeneity of degree +1 behavior\(^3\). This form has been used previously in other studies such as Lovell et al. (1994), Grosskopf et al. (1997) or Coelli and Perelman (1999, 2000).

The translog distance function for the case of M outputs and K inputs adopts the following specification:

\[
\ln D_{oi} (x, y) = \alpha_0 + \sum_{m=1}^{M} \alpha_m \ln y_{mi} + \frac{1}{2} \sum_{m=1}^{M} \sum_{n=1}^{M} \alpha_{mn} \ln y_{mi} \ln y_{ni} + \sum_{k=1}^{K} \beta_k \ln x_{ki} + \\
\frac{1}{2} \sum_{k=1}^{K} \sum_{l=1}^{K} \beta_{kl} \ln x_{ki} \ln x_{li} + \sum_{k=1}^{K} \sum_{m=1}^{M} \gamma_{km} \ln x_{ki} \ln y_{mi} \quad (i = 1,2,\ldots, N)
\]

\(^3\) The Cobb Douglas form does not satisfy the concave imposition in the output dimension.
Where sub-index \(i\) denotes the \(ith\) firm in the sample, \(K\) is the total number of inputs and \(M\) the total number of outputs. With the aim of obtaining the frontier surface, we set \(D_o(x, y) = 1\), which implies that \(\ln D_o(x, y) = 0\). Furthermore, the parameters of the above distance function must satisfy some restrictions of symmetry

\[
\alpha_{mn} = \alpha_{nm}; \quad m, n = 1, 2, \ldots, M,
\]

\[
\beta_{kl} = \beta_{lk}; \quad k, l = 1, 2, \ldots, K,
\]

and homogeneity of degree +1 in outputs\(^4\). The analytical expressions of those restrictions are:

\[
\sum_{m=1}^{M} \alpha_m = 1; \quad \sum_{m=1}^{M} \alpha_{mn} = 0 \quad (m, n = 1, 2, \ldots, M) \quad \text{and} \quad \sum_{m=1}^{M} \gamma_{km} = 0 \quad (k = 1, 2, \ldots, K) \quad (4)
\]

In order to impose the homogeneity of degree +1 in outputs we normalize the output distance function arbitrarily by one of the outputs according to Lovell et al. (1994) and the expression can be expressed as follows:

\[
\ln D_{oi}(x, y) / \ln y_{Mi} = TL(x_i, y_i / y_{Mi}, \alpha, \beta, \gamma) \quad (i = 1, 2, \ldots, N) \quad (5)
\]

where:

\[
TL(x_i, y_i / y_{Mi}, \alpha, \beta, \gamma) = \alpha_0 + \alpha_{m} \ln(y_{mi} / y_{Mi}) + \frac{1}{2} \sum_{m=1}^{M-1} \sum_{n=m+1}^{M} \alpha_{mn} \ln(y_{mi} / y_{Mi}) \ln(y_{ni} / y_{Mi}) + \\
\sum_{k=1}^{K} \beta_k \ln x_{ki} + \frac{1}{2} \sum_{k=1}^{K} \sum_{i=1}^{K} \beta_{ki} \ln x_{ki} \ln x_{li} + \sum_{k=1}^{K} \sum_{m=1}^{M-1} \gamma_{km} \ln x_{ki} \ln(y_{mi} / y_{Mi}) \quad i = 1, 2, \ldots, N \quad (6)
\]

Rearranging terms, the function above can be rewritten as follows:

\[
-\ln(y_{Mi}) = TL(x_i, y_i / y_{Mi}, \alpha, \beta, \gamma) - \ln D_{oi}(x, y) \quad (i = 1, 2, \ldots, N) \quad (7)
\]

Following Lovell et al. (1994) we can consider the unobservable term \(- \ln D_{oi}(x, y)\) as a random error term, which is the radial distance from the boundary.

\(^4\) The homogeneity restriction implies that the distance of the unit to the boundary of the production set is measured by radial expansion.
Then we can easily obtain the Battese and Coelli (1988) expression of the traditional stochastic frontier model proposed by Aigner, Lovel and Smith (1977) and Meeusen and van den Broeck (1977) considering \(u = -\ln D_{oi}(x, y) \) and adding another term \(v_i \) capturing for noise:

\[
-ln(y_{Mi}) = TL(x_i, y_i, y_{Mi}, \alpha, \beta, \gamma) + \varepsilon_i \quad (\varepsilon_i = u_i + v_i)
\] \hspace{1cm} (8)

Notice that the term \(u = -\ln D_{oi}(x, y) \) is a negative random term assumed to be independently distributed as truncations at zero of the \(N(0, \sigma^2) \) distribution and the term \(v_i \) is assumed to be a two-sided random (stochastic) disturbance designated to account for statistical noise and distributed iid \(v \sim N(0, \sigma^2) \). Both terms are independently distributed \(\sigma_{uv} = 0 \).

In the context of this study, three kinds of variables are considered: scores obtained by students in standardized tests (outputs), one vector of educational variables indispensable for achievement (inputs), whose effect on results must be positive, i.e., a greater endowment of any of these variables must have positive impact on results, and finally, a set of variables about which we need to know whether or not they have influence on educational process since it cannot be known a priori if their effect is positive, negative or inexistent (environmental variables).

Therefore, we opt for using the Battese and Coelli (1995) model who propose a stochastic frontier model in which the inefficiencies effects \(u_i \) are expressed as an explicit function of a vector of environmental variables \(z = (z_1, z_2, \ldots, z_r) \in \mathbb{R}^r \). Now \(u_i \) is assumed to be independently distributed as truncations at zero of the \(N(\varphi, \sigma^2_u) \) distribution, where

\[
\varphi = \delta_0 + z_i \delta
\] \hspace{1cm} (9)

Where \(\delta \) is a vector of parameters that must be estimated. This model allows us to analyse the sign of each environmental variable but its influence over students’ efficiencies. We think this framework is appealing in terms of educational policy makers.
taking of decisions in order to get a better distribution and organization of public resources.

2.3. Variance decomposition

Due to the purpose of the paper, our main concern is not only to obtain an efficiency score for each pupil, but to identify which can be the causes of detected inefficiency: school inefficiency and the own student inefficiency. We are especially interested in disentangling the inefficiency attributable to school management of educational resources, since this is a factor over which public sector can make interventions through education policy.

After the estimation of the Battese and Coelli (1995) model depicted above, the decomposition of estimated efficiency may be carried out through an analysis of variance of the term \hat{u}_u. Following Perelman and Santin (2008) we assume mean inefficiency differences among schools are due to inefficiency attributable to schools (between) while differences among students in the same school (within) are due to students’ self efficiency. Hence, the decomposition of efficiency variance can be done as follows through a one way analysis of variance,

$$\hat{S}^2_{u,w} = \hat{S}^2_{u,B} + \hat{S}^2_{u,W}$$

(10)

Thus, inefficiencies between schools ($\hat{S}^2_{u,B}$) include teachers’ characteristics and motivation, pedagogical methods employed, management strategies or relationship between parents and principals. On the other hand, inefficiencies within school ($\hat{S}^2_{u,W}$) are attributable to students’ dedication and effort.

2.4. Elasticity estimations

One advantage of parametric distance function is that this technique allows calculating the output and input elasticities which give us relevant information about the effect of each input on each output. A peculiarity of translog distance functions is that elasticity value is different in each observed unit, thus it is necessary to obtain the elasticity for each point. As it is usual in educational studies we analyse the distance
function elasticity with respect to inputs and outputs and the change rate between inputs and outputs. For these purposes we use the following expressions:

\[
\begin{align*}
\frac{\partial D}{\partial x_k} &= \frac{\partial \ln D(x, y)}{\partial x_k} D(x, y) \quad ; \quad \frac{\partial D}{\partial y_m} &= \frac{\partial \ln D(x, y)}{\partial y_m} D(x, y)
\end{align*}
\]

where positive values of \(r_{D,x_k} \) (\(r_{D,y_m} \)) indicate that an increase in the input (output) implies a higher inefficiency (efficiency).

Expressions of partial elasticities between output “m” and input “k”, which indicate the variation in output “m” level before an increase in the input “k” proportion, and the variation of an output “n” with respect to another one “m”, which can be interpreted as the extent the output “n” changes before an increase in the output “m”, are as follows:

\[
\begin{align*}
\frac{dy_m}{dx_k} &= \frac{r_{D,x_k}}{r_{D,y_m}} = \beta_k + \sum_{k=1}^{K} \alpha_m \ln x_k + \sum_{m=1}^{M} \delta_{km} \ln y_m \\
\frac{dy_n}{dy_m} &= \frac{r_{D,y_m}}{r_{D,y_n}} = \alpha_n + \sum_{n=1}^{N} \delta_{mn} \ln y_n + \sum_{k=1}^{K} \delta_{km} \ln x_k
\end{align*}
\]

A positive sign in Equation (12) means that an increase in input “k” produces another increase in output “m”. The interpretation is the opposite for the case of a negative sign. While in Equation (13) a negative sign entails that an increase in output “m” produces a decrease in output “n”, and the opposite interpretation in case of a positive sign.
3. ANALYSIS OF SPANISH EDUCATION IN PISA 2006

3.1. Data

In our empirical analysis, we use Spanish data from PISA 2006 which provides us with data from 15 year-old students belonging to ten regions that decided to take part in evaluation with an extended representative sample of their population\(^5\) (Andalusia, Aragon, Asturias, Cantabria, Castile Leon, Catalonia, Galicia, La Rioja, Navarre, Basque Country) and a group labelled as ‘other regions’ including the seven remaining Spanish regions. It is worth noting here, that the Spanish Autonomous Communities (hereafter the regions) are actually fully responsible for the management of educational resources in Spain since 2000. Therefore, they should be the ones most interested in analysing PISA results as a previous step for the application of more effective educational policies. To perform this analysis, we have data about 19,605 students and 685 schools distributed across eleven regions as shown in Table 1. Schools can be divided into three groups according to the type of ownership: public (financed from government), private (government independent) and government dependent (private management and financed by the government).

<table>
<thead>
<tr>
<th>Region</th>
<th>Students</th>
<th>Schools</th>
<th>Public</th>
<th>Semi-Private</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andalusia</td>
<td>1,463</td>
<td>51</td>
<td>37</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Aragon</td>
<td>1,526</td>
<td>51</td>
<td>31</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Asturias</td>
<td>1,579</td>
<td>53</td>
<td>31</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Cantabria</td>
<td>1,496</td>
<td>53</td>
<td>31</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Castile-Leon</td>
<td>1,512</td>
<td>52</td>
<td>31</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Catalonia</td>
<td>1,527</td>
<td>51</td>
<td>29</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Galicia</td>
<td>1,573</td>
<td>53</td>
<td>36</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>La Rioja</td>
<td>1,333</td>
<td>45</td>
<td>22</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Navarre</td>
<td>1,590</td>
<td>52</td>
<td>30</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Basque Country</td>
<td>3,929</td>
<td>150</td>
<td>63</td>
<td>83</td>
<td>4</td>
</tr>
<tr>
<td>Remainder regions</td>
<td>2,077</td>
<td>74</td>
<td>44</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Spain</td>
<td>19,605</td>
<td>685</td>
<td>385</td>
<td>243</td>
<td>57</td>
</tr>
</tbody>
</table>

Source: PISA 2006 Report for Spain

Basque Country has the highest number of students (3,929) and schools (150) since it has an extended sample. Most of regions have over 1,400 students and 50 schools so it guarantees that their sample is representative. Regarding the ownership,
we can see that almost 60 percent of schools are public and most of the remainder are semi-private, thus the number of private schools is really small. This proportion is similar in all regions although, but in the Basque Country where there are more government dependent than public schools. Andalusia is the region with the least number of private schools (only one) while Catalonia and the ‘other regions’ are the ones with the highest number(10)\(^{6}\).

One of the main advantages of the PISA study is that it does not evaluate cognitive abilities or skills through using one single score but each student receives a score in each test within a continuous scale. In this way, PISA attempts to collect the effect of particular external conditioning factors not depending on the students when taking the test, namely being ill, becoming very nervous, among other random factors. Furthermore, it also involves that measurement error in education is not independent from the position of the student in the distribution of results. Precisely, students with very low or high results have higher associated measurement errors and higher asymmetry in error distribution.

Likewise, given that school factors, home and socioeconomic context play an important role in students’ learning, PISA also collects an extensive dataset on these variables through two questionnaires: one completed by the students themselves and another one filled out by school principals. From these data, it is possible to extract a great amount of information referred to the main determining driven factors of educational performance represented by variables associated to familiar and educational environments as well as to school management and educational supply.

3.2. Variables

Outputs and plausible values

The true output as result of an individual education is very difficult to measure empirically due to its inherent intangibility. Education does not only consist of the ability of repeating information and answering questions, but it also involves the skills to interpret the information and learn how to behave in the society. Unfortunately, it is really difficult to measure all of them. In spite of the multi-product nature of education, most studies have used the results obtained in cognitive tests since they are difficult to

\(^{6}\) Most of private schools in the sample of “other regions” belong to Madrid.
manipulate and respond to administration demands. But perhaps, according to Hoxby (2000), the most important reason could be that both policy makers and parents use this criterion to evaluate the educational output and its subsequent information to choose the school for their children and even their place of residence.

In this study we use the results obtained by students in the three competences evaluated in PISA (mathematics, reading comprehension and sciences) as the vector of educational output. As it has already been mentioned above, PISA uses the concept of plausible values to measure the performance of students, since measures in these subjects have a wide margin of error due to the fact that the measuring concept is abstract and is subject to the special circumstances of students and their environment on the date of their exams. Moreover, questions about educational knowledge may have different levels of difficulties and the measuring error is dependent on the student’s position in the distribution of performance results. Therefore, students with very high result suffer higher measuring error and higher asymmetry in his distribution than those students with average result. For this reason PISA 2006 used measures based on Rasch model (Rasch, 1960; Wright and Masters, 1982), which uses plausible values instead of working with a particular mean value for each student’s knowledge. These values are random values obtained from the distribution function of results estimated from the answers in each test. They can be interpreted as a representation of the ability range for each student7 (Wu and Adams, 2002).

Table 2 reports the average value for plausible values for the three tests (math, reading comprehension and sciences) in each region. Plausible values in the three tests are used as outputs in the efficiency analysis. In order to obtain correct results and avoid problems of bias in estimations it will be necessary to calculate five different efficiency measures for each trio of plausible values and take the mean value afterwards, instead of using mean values to obtain one efficiency measure (OECD, 2005).

7 For a review of plausible values literature see Mislevy et al. (1992). For a concrete Studio of Rasch model and how obtain feasible values in PISA, see OECD (2005.).
<table>
<thead>
<tr>
<th></th>
<th>Plausibles Values Science</th>
<th></th>
<th>Plausibles Values Maths</th>
<th></th>
<th>Plausibles Values Read</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sci_1 Sci_2 Sci_3 Sci_4 Sci_5</td>
<td>Math_1 Math_2 Math_3 Math_4 Math_5</td>
<td>Read_1 Read_2 Read_3 Read_4 Read_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andalusia</td>
<td>479,38 479,99 478,66 478,70 478,96</td>
<td>467,92 468,31 468,00 467,82 468,42</td>
<td>450,74 451,94 449,70 450,01 450,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aragon</td>
<td>514,11 514,79 515,68 515,03 515,66</td>
<td>513,87 514,01 516,08 514,56 514,72</td>
<td>484,84 485,09 485,84 484,90 484,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asturias</td>
<td>512,91 511,77 513,24 512,88 513,51</td>
<td>501,09 499,89 501,82 500,84 502,34</td>
<td>481,84 480,59 482,26 481,30 480,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castile Leon</td>
<td>522,99 521,74 520,57 521,09 521,65</td>
<td>518,52 517,90 517,20 516,39 517,14</td>
<td>481,54 480,87 480,01 479,82 481,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galicia</td>
<td>506,40 507,04 507,20 507,21 506,90</td>
<td>496,37 496,38 496,32 496,55 495,64</td>
<td>481,88 481,93 481,79 481,65 481,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Rioja</td>
<td>517,93 516,24 518,71 517,52 517,48</td>
<td>522,31 522,48 523,22 521,79 522,36</td>
<td>496,18 494,11 495,91 495,49 494,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navarre</td>
<td>511,81 511,42 512,19 511,93 512,37</td>
<td>515,80 518,20 517,57 517,83 517,78</td>
<td>481,98 481,63 481,86 481,16 481,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>487,39 488,08 487,66 486,19 488,62</td>
<td>476,78 477,85 478,24 476,73 479,14</td>
<td>459,66 459,98 459,70 458,64 459,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Spain</td>
<td>502,13 502,27 502,29 501,84 502,61</td>
<td>498,96 499,23 499,45 498,72 499,57</td>
<td>478,72 478,63 478,41 478,27 478,60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: PISA 2006 Report for Spain
Inputs

In order to carry out the distance function efficiency analysis we have used three different inputs that are directly involved with student learning (ESCS, SCMATEDU and PEER) together with a set of control variables. Table 3 presents a brief description of each variable and Table 4 reports the main descriptive statistics of inputs and environmental variables by regions.

Table 3. Variable definitions

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td></td>
</tr>
<tr>
<td>SCMATEDU</td>
<td>Index of the quality of the school’s educational resources</td>
</tr>
<tr>
<td>ESCS</td>
<td>Index of economic, social and cultural status</td>
</tr>
<tr>
<td>PEER</td>
<td>Average ESCS index of the student’s peer group</td>
</tr>
<tr>
<td>Z’s</td>
<td></td>
</tr>
<tr>
<td>PRIVATE</td>
<td>Attending to a private school (1 = yes; 0 = no)</td>
</tr>
<tr>
<td>GOVDEP</td>
<td>Attending to a government-dependent school (1 = yes; 0 = no)</td>
</tr>
<tr>
<td>SCHLSIZE</td>
<td>Number of students in school</td>
</tr>
<tr>
<td>STRATIO</td>
<td>Weighted number of teachers divided by total number of students</td>
</tr>
<tr>
<td>REPEAT ONCE</td>
<td>The student has repeated once (1 = yes; 0 = no)</td>
</tr>
<tr>
<td>REPEAT MORE</td>
<td>The student has repeated more than once (1 = yes; 0 = no)</td>
</tr>
<tr>
<td>IMMIGRANT1</td>
<td>The student and at least one of the parents was born abroad</td>
</tr>
<tr>
<td>IMMIGRANT2</td>
<td>The student was born in Spain but at least one of the parents were not</td>
</tr>
<tr>
<td>REGIONS</td>
<td>Belong to one region (ten different dummy variables)</td>
</tr>
</tbody>
</table>

Source: PISA 2006 Report

SCMATEDU represents school resources. This variable is an index derived from school principals’ responses to seven items related with the availability of educational resources, such us computers to learning practising, educational software, calculators, books and library items, audiovisual resources and laboratory equipment. ESCS reflects the socio-economic background of each student. It is an index of economic, social and cultural status of students created by PISA analysts from three variables related to family background from students’ questionnaire: the index of highest level of parental education in number of years of education according to the International Standard Classification of Education (ISCED, OECD, 1999), the index of highest parental occupation status according to International Socio-economic index of Occupational Status (ISEI, Ganzeboom et al., 1992) and the index of educational possessions at home. Finally, PEER incorporates information about classmates’

8 Since positive and negative values can be found in the original variable, we have re-scale all the values in order to have only positive values for the input variables.
characteristics of students\(^9\). This variable is defined by the average of ESCS variable of students that share the same school with the evaluated one.

In addition to inputs variables we have considered that other factors related to the characteristics of schools and students can influence efficiency in education (z’s variables). In particular, we have analyzed the effect of the following ones:

- **School type** (SCHLTYPE): We consider interesting to analyze whether the public, government-dependent private or private schools have some influence over students efficiency. There is a wide literature approaching this idea, some of them have found evidence that supports the idea of a higher level of effectiveness in private schools (Chubb and Moe, 1990; Sander, 1996; Figlio and Stone, 1997; Neal, 1997; Stevans and Sessions, 2000; Opdennaker, M. and Van Damme, J. (2006), McEwan, 2001) while others do not find enough evidence to justify this superiority (Witte, 1992; Goldhaber, 1996; Fertig, 2003; Vandenberghe and Robin, 2004; Mancebón and Muñiz, 2007). In our case, we have included this information using public school as reference. So two dummy variables have been defined: *Private*, which takes the value one if the school is private and zero otherwise, and *Government-dependent*, which takes the value one if the school is government-dependent and zero otherwise.

- **School size** (SCHLSIZE): This variable indicates the total number of students in school. It is derived from school principals’ questionnaire. About the influence of this variable in the educational process there is also a wide debate in the literature. Thus, there are some studies that find a direct relationship among a bigger size of the school and academic results (Bradley and Taylor, 1998; Barnett et al., 2002), while others conclude that this factor does not have influence on results (Hanushek and Luque, 2003).

\(^9\) For a review of the effect of these variables over results see Betts and Shkolnik (2000) or Hanushek et al. (2001).
<table>
<thead>
<tr>
<th>Region</th>
<th>Observ.</th>
<th>Statistic</th>
<th>ESCS</th>
<th>SCMAT</th>
<th>PEER</th>
<th>Private (%)</th>
<th>Semi-Priv (%)</th>
<th>School Size</th>
<th>Teacher-Student Ratio</th>
<th>Repeat once</th>
<th>Repeat more</th>
<th>Inmig1</th>
<th>Inmig2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andalusia</td>
<td>1,463</td>
<td>Mean</td>
<td>5.508</td>
<td>4.050</td>
<td>5.488</td>
<td>0.023</td>
<td>0.243</td>
<td>700.88</td>
<td>13.51</td>
<td>0.322</td>
<td>0.091</td>
<td>0.027</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(1.075)</td>
<td>(1.012)</td>
<td>(0.548)</td>
<td>(0.148)</td>
<td>(0.429)</td>
<td>(356.62)</td>
<td>(4.059)</td>
<td>(0.467)</td>
<td>(0.288)</td>
<td>(0.163)</td>
<td>(0.256)</td>
</tr>
<tr>
<td>Aragon</td>
<td>1,526</td>
<td>Mean</td>
<td>5.957</td>
<td>4.632</td>
<td>6.024</td>
<td>0.088</td>
<td>0.299</td>
<td>708.24</td>
<td>12.12</td>
<td>0.279</td>
<td>0.064</td>
<td>0.068</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(1.016)</td>
<td>(0.892)</td>
<td>(0.479)</td>
<td>(0.282)</td>
<td>(0.458)</td>
<td>(412.82)</td>
<td>(3.953)</td>
<td>(0.448)</td>
<td>(0.245)</td>
<td>(0.253)</td>
<td>(0.294)</td>
</tr>
<tr>
<td>Asturias</td>
<td>1,579</td>
<td>Mean</td>
<td>5.967</td>
<td>4.605</td>
<td>6.010</td>
<td>0.156</td>
<td>0.238</td>
<td>645.18</td>
<td>11.44</td>
<td>0.252</td>
<td>0.052</td>
<td>0.034</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(1.023)</td>
<td>(0.920)</td>
<td>(0.545)</td>
<td>(0.363)</td>
<td>(0.426)</td>
<td>(336.62)</td>
<td>(4.603)</td>
<td>(0.434)</td>
<td>(0.222)</td>
<td>(0.182)</td>
<td>(0.291)</td>
</tr>
<tr>
<td>Cantabria</td>
<td>1,496</td>
<td>Mean</td>
<td>5.933</td>
<td>4.438</td>
<td>5.965</td>
<td>0.063</td>
<td>0.331</td>
<td>619.23</td>
<td>11.46</td>
<td>0.298</td>
<td>0.058</td>
<td>0.055</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(0.970)</td>
<td>(0.821)</td>
<td>(0.452)</td>
<td>(0.243)</td>
<td>(0.471)</td>
<td>(257.44)</td>
<td>(4.640)</td>
<td>(0.457)</td>
<td>(0.234)</td>
<td>(0.227)</td>
<td>(0.303)</td>
</tr>
<tr>
<td>Castile-Leon</td>
<td>1,512</td>
<td>Mean</td>
<td>5.889</td>
<td>4.657</td>
<td>5.863</td>
<td>0.089</td>
<td>0.304</td>
<td>717.15</td>
<td>12.07</td>
<td>0.282</td>
<td>0.056</td>
<td>0.038</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(1.014)</td>
<td>(0.945)</td>
<td>(0.472)</td>
<td>(0.285)</td>
<td>(0.460)</td>
<td>(390.38)</td>
<td>(3.938)</td>
<td>(0.450)</td>
<td>(0.229)</td>
<td>(0.192)</td>
<td>(0.250)</td>
</tr>
<tr>
<td>Catalonia</td>
<td>1,527</td>
<td>Mean</td>
<td>5.913</td>
<td>4.675</td>
<td>5.944</td>
<td>0.232</td>
<td>0.220</td>
<td>636.09</td>
<td>12.35</td>
<td>0.242</td>
<td>0.028</td>
<td>0.099</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(1.049)</td>
<td>(1.024)</td>
<td>(0.585)</td>
<td>(0.422)</td>
<td>(0.414)</td>
<td>(283.75)</td>
<td>(3.408)</td>
<td>(0.428)</td>
<td>(0.166)</td>
<td>(0.299)</td>
<td>(0.399)</td>
</tr>
<tr>
<td>Galicia</td>
<td>1,573</td>
<td>Mean</td>
<td>5.745</td>
<td>4.218</td>
<td>5.766</td>
<td>0.114</td>
<td>0.190</td>
<td>517.31</td>
<td>10.49</td>
<td>0.277</td>
<td>0.100</td>
<td>0.051</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(1.048)</td>
<td>(0.890)</td>
<td>(0.596)</td>
<td>(0.318)</td>
<td>(0.393)</td>
<td>(261.76)</td>
<td>(3.982)</td>
<td>(0.447)</td>
<td>(0.300)</td>
<td>(0.220)</td>
<td>(0.314)</td>
</tr>
<tr>
<td>La Rioja</td>
<td>1,333</td>
<td>Mean</td>
<td>5.972</td>
<td>4.665</td>
<td>5.992</td>
<td>0.061</td>
<td>0.424</td>
<td>611.76</td>
<td>13.10</td>
<td>0.270</td>
<td>0.048</td>
<td>0.070</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(0.989)</td>
<td>(0.855)</td>
<td>(0.449)</td>
<td>(0.239)</td>
<td>(0.494)</td>
<td>(363.27)</td>
<td>(4.461)</td>
<td>(0.444)</td>
<td>(0.214)</td>
<td>(0.255)</td>
<td>(0.301)</td>
</tr>
<tr>
<td>Navarre</td>
<td>1,590</td>
<td>Mean</td>
<td>5.947</td>
<td>4.690</td>
<td>5.884</td>
<td>0.054</td>
<td>0.383</td>
<td>700.04</td>
<td>10.78</td>
<td>0.216</td>
<td>0.038</td>
<td>0.081</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(1.007)</td>
<td>(0.910)</td>
<td>(0.519)</td>
<td>(0.225)</td>
<td>(0.486)</td>
<td>(424.33)</td>
<td>(3.577)</td>
<td>(0.412)</td>
<td>(0.192)</td>
<td>(0.273)</td>
<td>(0.328)</td>
</tr>
<tr>
<td>Basque</td>
<td>3,929</td>
<td>Mean</td>
<td>6.062</td>
<td>4.517</td>
<td>6.107</td>
<td>0.019</td>
<td>0.581</td>
<td>784.88</td>
<td>11.99</td>
<td>0.184</td>
<td>0.035</td>
<td>0.048</td>
<td>0.077</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td>St. Dev.</td>
<td>(0.981)</td>
<td>(0.896)</td>
<td>(0.512)</td>
<td>(0.137)</td>
<td>(0.493)</td>
<td>(518.17)</td>
<td>(4.733)</td>
<td>(0.388)</td>
<td>(0.183)</td>
<td>(0.214)</td>
<td>(0.267)</td>
</tr>
<tr>
<td>Remainder</td>
<td>2,077</td>
<td>Mean</td>
<td>5.894</td>
<td>4.443</td>
<td>5.920</td>
<td>0.141</td>
<td>0.296</td>
<td>764.63</td>
<td>13.36</td>
<td>0.291</td>
<td>0.058</td>
<td>0.094</td>
<td>0.159</td>
</tr>
<tr>
<td>Regions</td>
<td></td>
<td>St. Dev.</td>
<td>(1.084)</td>
<td>(0.985)</td>
<td>(0.642)</td>
<td>(0.348)</td>
<td>(0.457)</td>
<td>(344.37)</td>
<td>(5.263)</td>
<td>(0.454)</td>
<td>(0.233)</td>
<td>(0.292)</td>
<td>(0.366)</td>
</tr>
<tr>
<td>SPAIN</td>
<td>19,605</td>
<td>Mean</td>
<td>5.494</td>
<td>3.209</td>
<td>5.760</td>
<td>0.087</td>
<td>0.350</td>
<td>689.49</td>
<td>12.07</td>
<td>0.255</td>
<td>0.055</td>
<td>0.060</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Dev.</td>
<td>(0.885)</td>
<td>(0.119)</td>
<td>(0.368)</td>
<td>(0.282)</td>
<td>(0.477)</td>
<td>(395.23)</td>
<td>(4.45)</td>
<td>(0.436)</td>
<td>(0.227)</td>
<td>(0.238)</td>
<td>(0.304)</td>
</tr>
</tbody>
</table>

Source: Personal compilation based on PISA 2006 data for Spain
• **Size of classroom** (STRATIO): This variable is a ratio between total number of students in school (SCHLSIZE) and total number of teachers weighted on their dedication (part-time teachers contributes 0.5 and full-time teachers 1). This variable is usually considered a school input in efficiency analysis according to the results of some studies in which a direct relationship is found between reduced groups and higher academic performance (Card and Krueger, 1992; Hoxby, 2000; Krueger, 2003). However, other studies conclude that this variable is not significant (Hanushek, 1997 and 2003; Pritchett and Filmer, 1999). In order to avoid potential bias in estimation, we decide to introduce this information as an environmental variable in efficiency analysis, instead of considering it as an input.

• **Immigrant condition.** This factor, whose influence has received increasing attention in literature within the last years (Gang and Zimmermann, 2000; Entorf and Minoiu, 2005, Cortes, 2006), becomes especially interesting for Spain as a consequence of the huge growth undergone by immigrant population at school age during the last decade. According to Spanish official statistics captured by MEC (2008), foreign students in non-university education have grown from 72,335 in 1998 to 695,190 in 2008. In view of this phenomenon, several studies have studied recently the influence of this factor on the results of Spanish students by using information provided by PISA database (Calero and Escardibul, 2007; Zinovyeva et al., 2008). In our study, this factor is incorporated throughout two dummy variables (Inmig1 and Inmig2) that allow us to identify the first (the student and at least one of the parents was born abroad) and second order (the student was born in Spain but at least one of the parents was born abroad) immigrant condition, according to the nationality of the own students or their parents.

• **Academic year**, defined through two dummy variables: *Repeat once* and *Repeat more*, which indicate if the student has repeat one or more than one courses. This phenomenon is quite important in the case of Spain, where the repeat rate is much higher than in OE\(^{10}\) (Fuentes, 2009). Again, the effect over academic performance of this politic is controversial. Thus, in the literature is possible to find studies where there is a positive relationship (Pierson and Connell, 1992; Roderick *et al.*, 2002), although most of them find out that this

\(^{10}\) More than 40% of Spanish students have repeated a course almost once.
practical drives to decrease the scholar performance and increase the possibilities of leaving the educative system (Holmes and Mathews, 1984; Shepard et al., 1996; Alexander et al., 2003).

- **Regions.** Under the hypothesis that the students of certain regions may be more efficient than those from others, ten different dummy variables have been constructed, one for each region. Therefore, the reference with which regions are compared is the sample belonging to the remainder regions.

4. RESULTS

In this section, we present the main results obtained in our analysis. We estimate five output distance function, one for each trio of plausible values, assuming a stochastic translog technology to measure students’ efficiency in PISA 2006. To do that, the first step is to impose homogeneity condition by selecting students’ performance in math (y_2) as the dependent variable and then the ratios (y_2 / y_1) and (y_3 / y_1) as explanatory variables instead of y_2 or y_3 (students’ performance in reading and sciences, respectively)\(^{11}\).

In order to facilitate the interpretation of parameters, the original variables were transformed into deviation to the mean values, so first order parameters should be interpreted as the partial elasticity at mean values. Table 5 shows the results after averaging the five estimations.

\(^{11}\) Following Lovell et al. (1994) homogeneity of degree +1 may be imposed if one arbitrary output is chosen and set $w = 1 / y_M$ one obtains $D_o(x, y / y_M) = D_o(x, y) / y_M$.

19
Table 5: Average of the five parametric output distance function estimations.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coeff</th>
<th>St. Dev</th>
<th>t-ratio</th>
<th>Variables</th>
<th>Coeff</th>
<th>St. Dev</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.1969</td>
<td>0.004</td>
<td>-45.91</td>
<td>(Lnx2)(Lny2)</td>
<td>-0.0330</td>
<td>0.055</td>
<td>-6.61</td>
</tr>
<tr>
<td>Lny1 (mathematics score)</td>
<td>0.4219</td>
<td></td>
<td></td>
<td>(Lnx2)(Lny3)</td>
<td>0.1710</td>
<td>0.075</td>
<td>2.30</td>
</tr>
<tr>
<td>Lny2 (reading score)</td>
<td>0.3014</td>
<td>0.009</td>
<td>32.91</td>
<td>(Lnx3)(Lny1)</td>
<td>0.1159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lny3 (science score)</td>
<td>0.2767</td>
<td>0.012</td>
<td>22.58</td>
<td>(Lnx3)(Lny2)</td>
<td>0.6005</td>
<td>0.110</td>
<td>5.48</td>
</tr>
<tr>
<td>(Lny1)^2</td>
<td>1.9146</td>
<td></td>
<td></td>
<td>(Lnx3)(Lny3)</td>
<td>-0.7164</td>
<td>0.142</td>
<td>-5.06</td>
</tr>
<tr>
<td>(Lny2)^2</td>
<td>0.0995</td>
<td>0.008</td>
<td>11.73</td>
<td>z’s variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lny3)^2</td>
<td>1.1993</td>
<td>0.046</td>
<td>25.95</td>
<td>Intercept</td>
<td>0.2269</td>
<td>0.030</td>
<td>7.52</td>
</tr>
<tr>
<td>(Lny1)(Lny2)</td>
<td>-0.4074</td>
<td></td>
<td></td>
<td>Repeat once</td>
<td>0.2317</td>
<td>0.007</td>
<td>31.75</td>
</tr>
<tr>
<td>(Lny1)(Lny3)</td>
<td>-1.5072</td>
<td></td>
<td></td>
<td>Repeat more</td>
<td>0.3738</td>
<td>0.010</td>
<td>38.73</td>
</tr>
<tr>
<td>(Lny2)(Lny3)</td>
<td>0.3079</td>
<td>0.028</td>
<td>9.10</td>
<td>Gov-Dep</td>
<td>0.0123</td>
<td>0.009</td>
<td>1.40</td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
<td></td>
<td>Private</td>
<td>-0.0045</td>
<td>0.012</td>
<td>-0.37</td>
</tr>
<tr>
<td>Lnx1 (Scmatedu)</td>
<td>-0.0100</td>
<td>0.004</td>
<td>-2.23</td>
<td>LN School size</td>
<td>-0.0141</td>
<td>0.005</td>
<td>-2.99</td>
</tr>
<tr>
<td>Lnx2 (ESCS)</td>
<td>-0.1265</td>
<td>0.007</td>
<td>-19.39</td>
<td>Inmig1</td>
<td>0.0511</td>
<td>0.011</td>
<td>4.74</td>
</tr>
<tr>
<td>Lnx3 (EFCO)</td>
<td>-0.1169</td>
<td>0.014</td>
<td>-8.25</td>
<td>Inmig2</td>
<td>0.0086</td>
<td>0.009</td>
<td>0.94</td>
</tr>
<tr>
<td>(Lnx1)^2</td>
<td>0.0041</td>
<td>0.002</td>
<td>2.29</td>
<td>LN Stratio</td>
<td>-0.0221</td>
<td>0.013</td>
<td>-1.75</td>
</tr>
<tr>
<td>(Lnx2)^2</td>
<td>0.1008</td>
<td>0.050</td>
<td>2.01</td>
<td>Andalusia</td>
<td>-0.0136</td>
<td>0.010</td>
<td>-1.31</td>
</tr>
<tr>
<td>(Lnx3)^2</td>
<td>-0.2709</td>
<td>0.205</td>
<td>-1.31</td>
<td>Aragon</td>
<td>-0.0855</td>
<td>0.011</td>
<td>-8.08</td>
</tr>
<tr>
<td>(Lnx1)(Lnx2)</td>
<td>-0.0072</td>
<td>0.012</td>
<td>-0.59</td>
<td>Asturias</td>
<td>-0.0559</td>
<td>0.010</td>
<td>-5.33</td>
</tr>
<tr>
<td>(Lnx1)(Lnx3)</td>
<td>0.0013</td>
<td>0.026</td>
<td>0.05</td>
<td>Cantabria</td>
<td>-0.0741</td>
<td>0.011</td>
<td>-6.93</td>
</tr>
<tr>
<td>(Lnx2)(Lnx3)</td>
<td>0.0582</td>
<td>0.077</td>
<td>0.76</td>
<td>Castile-Leon</td>
<td>-0.1017</td>
<td>0.011</td>
<td>-9.40</td>
</tr>
<tr>
<td>Input-output</td>
<td></td>
<td></td>
<td></td>
<td>Catalonia</td>
<td>-0.0052</td>
<td>0.010</td>
<td>-0.51</td>
</tr>
<tr>
<td>(Lnx1)(Lny1)</td>
<td>-0.0082</td>
<td></td>
<td></td>
<td>Galicia</td>
<td>-0.0901</td>
<td>0.011</td>
<td>-8.47</td>
</tr>
<tr>
<td>(Lnx1)(Lny2)</td>
<td>-0.0229</td>
<td>0.016</td>
<td>-1.40</td>
<td>La Rioja</td>
<td>-0.1164</td>
<td>0.012</td>
<td>-9.66</td>
</tr>
<tr>
<td>(Lnx1)(Lny3)</td>
<td>0.0311</td>
<td>0.024</td>
<td>1.29</td>
<td>Navarre</td>
<td>-0.0663</td>
<td>0.011</td>
<td>-6.03</td>
</tr>
<tr>
<td>(Lnx2)(Lny1)</td>
<td>-0.1380</td>
<td></td>
<td></td>
<td>Basque Country</td>
<td>-0.0185</td>
<td>0.009</td>
<td>-2.13</td>
</tr>
<tr>
<td>Sigma-squared</td>
<td>0.0256</td>
<td>0.001</td>
<td>39.48</td>
<td>Expected mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>0.7796</td>
<td>0.011</td>
<td>71.66</td>
<td>Efficiency</td>
<td>0.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Underlined parameters are calculated by applying imposed homogeneity conditions.

Therefore, mathematics, reading and science parameters are all of them positive which means that the efficiency increases when, ceteris paribus, the performance in these subjects improve. In contrast, the opposite effect happens in input coefficients, which are all negative and significant; indicating that an input expansion suppose a reduction in the student efficiency performance keeping the output vector fixed. For this estimation we consider the model without separability between inputs and outputs due to most of the input-output cross-products coefficients are statistically significant. The average efficiency, computed as $E[exp(-u_1|\epsilon)]$, is equal to 0.82, indicating average student efficiency in Spain.

The results derived from the analysis with z’s variables allow us to draw some interesting conclusions. The first relevant idea is that the class size has not effect on
estimated inefficiency. In fact, we find a weak but significant at 90% effect pointing out that more students per teacher provides better efficiency12. This result bears strong implications for the educational policies instrumented by many Spanish regional governments generally concerned about reducing class size in schools. From this result we can learn that class size is not a major concern for parents when choosing school. Most of the families seek the best possible peer group for their children although these schools had bigger groups as a consequence of a demand effect.

The second evidence is that variables related to course repetition show a clear negative relation with efficiency scores, even higher when the student has repeated more than one academic year. These results are also relevant from the viewpoint of educational policy, since it raises certain questions regarding decisions on the convenience of repetition policies and their conditioning factors. Therefore, it seems more productive to early invest in at risk students in order to prevent school failure than continue devoting resources to fight against the economic consequences of students not finishing secondary education.

Thirdly, as we expected, the immigrant condition have a negative influence on efficiency scores, although this relationship is only significant for first generation immigrants, being non-significant for the second-generation immigrants13. These results reveal the need to implement specific policies aimed at improving the academic performance of these students.

Fourthly, schools’ ownership is not significant so do not contribute to explain the students’ efficiency. In other words, once school, student and environmental variables are taken into account we cannot conclude that ownership matter for explaining differences in efficiency. And finally, the results obtained by students from all regions (with the exception of Catalonia and Andalusia) present better results in terms of efficiency than the students forming the sample of the remainder Spanish territory.

Once the results of the initial efficiency analysis and second stage analysis have been carried out, we may step forward and calculate the percentage of student inefficiency directly attributable to their schools once the effect of the exogenous variables has been discounted. For this purpose and following Equation 10 we have

12 Calero and Escardibul (2007) also obtain this non expected result between class size and PISA tests scores.

13 This result may be conditioned by the low number of observations that have the value of one in this variable, since in Spain there are few second order immigrant yet.
completed an analysis of variance of results obtained at student level which allows us identifying differences in average efficiency in students belonging to different schools (between-school variance), which can be attributed to school managerial inefficiency, and the variance among students belonging to the same school (within-school variance).

Results reported in Table 6 show that the most important proportion of inefficiency detected depends on the student, thus the average school inefficiency is 14.7 percent, denoting that school quality is quite uniform in Spain. However, some significant divergences among regions can be detected. Hence, whereas Andalusia, Galicia or Cantabria presents a percentage around 8.5 percent, the Basque Country has a school variance of 25 percent.

<table>
<thead>
<tr>
<th>CC.AA.</th>
<th>Between (school)</th>
<th>Within (student)</th>
<th>Nº Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andalucía</td>
<td>8.66</td>
<td>91.34</td>
<td>51</td>
</tr>
<tr>
<td>Aragón</td>
<td>11.48</td>
<td>88.52</td>
<td>51</td>
</tr>
<tr>
<td>Asturias</td>
<td>12.01</td>
<td>87.99</td>
<td>53</td>
</tr>
<tr>
<td>Cantabria</td>
<td>8.53</td>
<td>91.47</td>
<td>53</td>
</tr>
<tr>
<td>Castilla and León</td>
<td>10.24</td>
<td>89.76</td>
<td>52</td>
</tr>
<tr>
<td>Cataluña</td>
<td>16.16</td>
<td>83.84</td>
<td>51</td>
</tr>
<tr>
<td>Galicia</td>
<td>8.57</td>
<td>91.43</td>
<td>53</td>
</tr>
<tr>
<td>La Rioja</td>
<td>13.34</td>
<td>86.66</td>
<td>45</td>
</tr>
<tr>
<td>Navarra</td>
<td>11.04</td>
<td>88.96</td>
<td>52</td>
</tr>
<tr>
<td>País Vasco</td>
<td>25.10</td>
<td>74.90</td>
<td>150</td>
</tr>
<tr>
<td>Others</td>
<td>17.00</td>
<td>83.00</td>
<td>74</td>
</tr>
<tr>
<td>Mean</td>
<td>14.7</td>
<td>85.3</td>
<td>685</td>
</tr>
</tbody>
</table>

* All F-test present statistical signification at 99%.

Finally, with regard to elasticity estimations, we only report inter-quartiles values for the sake of simplicity, since we have an elasticity value for each student as it was discussed in section 2.4. Table 7 reports the output elasticities with respect outputs and inputs. For output elasticities with respect to outputs, the results show that an average loss of 1.40 percent in Reading scores or 1.34 percent in Science scores would be necessary for a 1% improvement in Math. However, an increase of one percent in the Reading score implies only a decrease of 0.68 percent in Math and 1.02 percent in Sciences. Finally, an increase of one percent in the Science score is at the cost of around 0.62 percent in Math and a decrease of 0.92 in Reading. Therefore, these
results suggest that in the production frontier the improving on Sciences scores has mean smaller costs in terms of other disciplines scores.

Table 7: Output/output and output/input derivates

<table>
<thead>
<tr>
<th></th>
<th>Math Inter-quartiles</th>
<th>Reading Inter-quartiles</th>
<th>Science Inter-quartiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25% 50% 75%</td>
<td>25% 50% 75%</td>
<td>25% 50% 75%</td>
</tr>
<tr>
<td>Output with respect to outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math score</td>
<td>-1.0343 -0.6820 -0.4834</td>
<td>-1.2040 -0.6192 -0.2712</td>
<td></td>
</tr>
<tr>
<td>Reading score</td>
<td>-2.0227 -1.4006 -0.8917</td>
<td>-1.2686 -0.9225 -0.5632</td>
<td></td>
</tr>
<tr>
<td>Science score</td>
<td>-2.7111 -1.3431 -0.6491</td>
<td>-1.5720 -1.0179 -0.7261</td>
<td></td>
</tr>
<tr>
<td>SCMATEDU</td>
<td>-0.3175 -0.0319 0.2589</td>
<td>-0.3766 -0.0379 0.3983</td>
<td>-0.4781 -0.0710 0.3675</td>
</tr>
<tr>
<td>ESCS</td>
<td>0.2338 0.2845 0.3976</td>
<td>0.3221 0.4216 0.5581</td>
<td>0.2636 0.4101 0.6845</td>
</tr>
<tr>
<td>PEER</td>
<td>0.1403 0.2689 0.4400</td>
<td>0.2228 0.3784 0.5584</td>
<td>0.1897 0.3823 0.6811</td>
</tr>
</tbody>
</table>

For inputs elasticities, the first and second inter-quartil values are negatives for SCMATEDU, what means that less than one half of students obtains benefits from educational resources with a median effect close to zero. The opposite effect happens with ESCS and PEER, indicating that socio-economic background or peer-group effect has a positive and significant influence on scores. Furthermore, the variations in outputs over inputs are different depending on the discipline. On the one hand the median elasticity of the ESCS on reading is 0.42, 0.28 on Math and 0.41 on Sciences. The average elasticity of PEER on mathematics, reading and sciences is 0.2689, 0.3784 and 0.3823 respectively. Here newly arises that an educational policy to avoid the concentration of students with a low socioeconomic background can become more productive that investing more in educational resources.

14 The interpretation of elasticities is referring to the mean values, since original variables were transformed in deviation to the mean values.
5. CONCLUSIONS

In this paper we have analyzed the differences on Spanish students’ results in PISA 2006 through an educational frontier framework. With this aim, we have implemented an efficiency analysis using data at student level and considering information about Spanish regions and schools ownership that participate in this study. To the best of our knowledge, this is the first paper that analyzes the results of Spanish students in PISA 2006 using individual data.

Considering the uncertain environment around the educational production function, we apply a stochastic parametric distance function methodology in order to measure students’ efficiency. Our results show that detected divergences among regions results maintain even when information about socioeconomic background, quality of resources and peer effects are taken into account in the analysis.

Moreover, the influence of exogenous variables over the student efficiency level is proved in the analysis using the Battese and Coelli (1995) approach in which inefficiencies effects are expressed as an explicit function of a vector of these specific variables. The results show that the teacher-student ratio is not a significant variable for explaining students’ efficiency results. This result entails strong implications for the educational policies instrumented by many Spanish regional governments generally concerned about reducing class size in schools. Moreover, the type of school (private or government dependent) do not seem to have influence on results either, since after considering the socioeconomic characteristics of students attending to schools they obtain similar results than public ones.

In contrast, students repeating courses or those who were born in a foreign country have worse results in terms of efficiency. These results reveal the need to implement specific policies aimed at improving the academic performance of these students, such as hiring support teachers, improving teachers’ training to cater for diversity or strengthening the role of social workers when it comes to make parents aware of the importance of education. Likewise, the school size or belong to any region, with the exception of Andalusia, Catalonia and remaining Spain, have a positive effect on the results.
Furthermore, an important advantage of our study is the interpretation of output and input elasticities. After carrying out this analysis, the results show that all output-output elasticities present negative signs, being an increase in Math the discipline that supposes a higher impact on the remaining. Regarding the input-elasticities, we conclude that school resources have a close to zero median effect on students’ scores, while socio-economic background and peer-group effect have a positive and significant effect on scores. This last result claims for a deep revision of the actual system of assigning students to public financed schools that is strongly based on proximity to residence criteria.

Although these conclusions should be interpreted with caution, since they are referred to cross-sectional data from a single year, our results have relevant implications for regional educational policy, which seems to be focused on enhancing students’ efforts in view of the scarce percentage of variance attributable to schools.

REFERENCES

Witte, J. (1992): “Private schools and public school achievement: are there findings that should affect the educational choice debate?”, Economics of Education Review, 11 (4), 371-394.

Últimos números publicados

159/2000 Participación privada en la construcción y explotación de carreteras de peaje
 Ginés de Rus, Manuel Romero y Lourdes Trujillo

160/2000 Errores y posibles soluciones en la aplicación del Value at Risk
 Mariano González Sánchez

161/2000 Tax neutrality on saving assets. The spahish case before and after the tax reform
 Cristina Ruza y de Paz-Curbera

162/2000 Private rates of return to human capital in Spain: new evidence
 F. Barceinas, J. Oliver-Alonso, J.L. Raymond y J.L. Roig-Sabaté

163/2000 El control interno del riesgo. Una propuesta de sistema de límites
 riesgo neutral
 Mariano González Sánchez

164/2001 La evolución de las políticas de gasto de las Administraciones Públicas en los años 90
 Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells

165/2001 Bank cost efficiency and output specification
 Emili Tortosa-Ausina

166/2001 Recent trends in Spanish income distribution: A robust picture of falling income inequality
 Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara

167/2001 Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF
 Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández

168/2001 The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some Euro-
 pean Countries
 Mónica Melle-Hernández

169/2001 La política de cohesión de la UE ampliada: la perspectiva de España
 Ismael Sanz Labrador

170/2002 Riesgo de liquidez de Mercado
 Mariano González Sánchez

171/2002 Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas
 de capitalización individual: medida y comparación internacional.
 José Enrique Devesa Carpio, Rosa Rodriguez Barrera, Carlos Vidal Meliá

 y propuestas de metodología para la explotación de la información de los ingresos y el gasto.
 Llorenç Pou, Joaquín Alegre

173/2002 Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de credito.
 Rosa Puertas, María Bonilla, Ignacio Olmeda
<table>
<thead>
<tr>
<th>Año</th>
<th>Título</th>
<th>Autor/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>174/2002</td>
<td>Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.</td>
<td>José Vicente Blanes Cristóbal</td>
</tr>
<tr>
<td>175/2003</td>
<td>La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos.</td>
<td>Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González</td>
</tr>
<tr>
<td>176/2003</td>
<td>The Falling Share of Cash Payments in Spain.</td>
<td>Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey</td>
</tr>
<tr>
<td>177/2003</td>
<td>Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.</td>
<td>Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey</td>
</tr>
<tr>
<td>178/2003</td>
<td>Factors explaining the interest margin in the banking sectors of the European Union.</td>
<td>Joaquín Maudos y Juan Fernández Guevara</td>
</tr>
<tr>
<td>179/2003</td>
<td>Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España.</td>
<td>Mónica Melle Hernández</td>
</tr>
<tr>
<td>181/2003</td>
<td>The Euro effect on the integration of the European stock markets.</td>
<td>Mónica Melle Hernández</td>
</tr>
<tr>
<td>182/2004</td>
<td>In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition.</td>
<td>Bruno Cassiman, Reinhilde Veugelers</td>
</tr>
<tr>
<td>183/2004</td>
<td>Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua.</td>
<td>Mª Ángeles García Valiñas</td>
</tr>
<tr>
<td>184/2004</td>
<td>Estimación de la economía sumergida en España: un modelo estructural de variables latentes.</td>
<td>Ángel Alañón Pardo, Miguel Gómez de Antonio</td>
</tr>
<tr>
<td>185/2004</td>
<td>Causas políticas y consecuencias sociales de la corrupción.</td>
<td>Joan Oriol Prats Cabrera</td>
</tr>
<tr>
<td>186/2004</td>
<td>Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.</td>
<td>Andrés Guiral Contreras and José A. Gonzalo Angulo</td>
</tr>
<tr>
<td>187/2004</td>
<td>El modelo de Black, Derman y Toy en la práctica. Aplicación al mercado español.</td>
<td>Marta Tolentino García-Abadillo y Antonio Díaz Pérez</td>
</tr>
<tr>
<td>188/2004</td>
<td>Does market competition make banks perform well?.</td>
<td>Mónica Melle</td>
</tr>
<tr>
<td>189/2004</td>
<td>Efficiency differences among banks: external, technical, internal, and managerial</td>
<td>Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso</td>
</tr>
</tbody>
</table>
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en españa: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in notional defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Conrreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional:
Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodríguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do 'Insertion Contracts' Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodríguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodríguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Miguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Diaz
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>221/2005</td>
<td>Tendencia post-anuncio de resultados contables: evidencia para el mercado español</td>
<td>Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García</td>
</tr>
<tr>
<td>223/2005</td>
<td>Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing</td>
<td>Waymond Rodgers and Andrés Guiral</td>
</tr>
<tr>
<td>225/2005</td>
<td>The effects of ownership structure and board composition on the audit committee activity: Spanish evidence</td>
<td>Carlos Fernández Méndez and Rubén Arrondo García</td>
</tr>
<tr>
<td>226/2005</td>
<td>Cross-country determinants of bank income smoothing by managing loan loss provisions</td>
<td>Ana Rosa Fonseca and Francisco González</td>
</tr>
<tr>
<td>228/2005</td>
<td>Region versus Industry effects: volatility transmission</td>
<td>Pilar Soriano Felipe and Francisco J. Climent Diranzo</td>
</tr>
<tr>
<td>230/2005</td>
<td>On zero lower bound traps: a framework for the analysis of monetary policy in the ‘age’ of central banks</td>
<td>Alfonso Palacio-Vera</td>
</tr>
<tr>
<td>231/2005</td>
<td>Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal</td>
<td>M. Carmen Almansa Sáez and Javier Calatrava Requena</td>
</tr>
<tr>
<td>232/2005</td>
<td>Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?</td>
<td>Santiago Carbó Valverde and Rafael López del Paso</td>
</tr>
</tbody>
</table>

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes. Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo. Inés P. Murillo.

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries?. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”. Luis Muga and Rafael Santamaria.

José M. Pastor, Empar Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana María Aldanondo-Ochoa y Carmen Almansa-Sáez

José Félix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguer.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth.
Joaquín Maudos y Juan Fernández de Guevara

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP.
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich
A. García-Lorenzo y Jesús López-Rodríguez

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luis Muga y Rafael Santamaria

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales
Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general
Robert Meneu Gaya

278/2006 El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006 Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006 Three measures of returns to education: An illustration for the case of Spain
Maria Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006 La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

283/2006 Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

Alberte Martínez López

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
Globalisation and the Composition of Government Spending: An analysis for OECD countries
Norman Gemmell, Richard Kneller and Ismael Sanz

La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico
Fernando Hernández Martínez

Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain
Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso

Una teoría sobre la contribución de la función de compras al rendimiento empresarial
Javier González Benito

Agility drivers, enablers and outcomes: empirical test of an integrated agile manufacturing model
Daniel Vázquez-Bustelo, Lucía Avella and Esteban Fernández

Testing the parametric vs the semiparametric generalized mixed effects models
Maria José Lombardía and Stefan Sperlich

Nonlinear dynamics in energy futures
Mariano Matilla-García

Estimating Spatial Models By Generalized Maximum Entropy Or How To Get Rid Of W
Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez

Optimización fiscal en las transmisiones lucrativas: análisis metodológico
Félix Domínguez Barrero

La situación actual de la banca online en España
Francisco José Climent Diranzo y Alexandre Momparler Pechuán

Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas
Javier González Benito y Isabel Suárez González

A Parametric Model to Estimate Risk in a Fixed Income Portfolio
Pilar Abad and Sonia Benito

Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros
Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé

Assessing the enlargement and deepening of regional trading blocs: The European Union case
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano

¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español
Vanesa Solís Rodríguez y Manuel González Díaz

On the Finite-Sample Biases in Nonparametric Testing for Variance Constancy
Paulo M.M. Rodrigues and Antonio Rubia

Spain is Different: Relative Wages 1989-98
José Antonio Carrasco Gallego
Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor

Agricultural Productivity in the European Regions: Trends and Explanatory Factors
Roberto Ezcurra, Belén Iráizoz, Pedro Pascual and Manuel Rapún

Long-run Regional Population Divergence and Modern Economic Growth in Europe: a Case Study of Spain
María Isabel Ayuda, Fernando Collantes and Vicente Pinilla

Financial Information effects on the measurement of Commercial Banks’ Efficiency
Borja Amor, María T. Tascón and José L. Fanjul

Neutralidad e incentivos de las inversiones financieras en el nuevo IRPF
Félix Domínguez Barrero

The Effects of Corporate Social Responsibility Perceptions on The Valuation of Common Stock
Waymond Rodgers , Helen Choy and Andres Guiral-Contreras

Country Creditor Rights, Information Sharing and Commercial Banks’ Profitability Persistence across the world
Borja Amor, María T. Tascón and José L. Fanjul

¿Es Relevante el Déficit Corriente en una Unión Monetaria? El Caso Español
Javier Blanco González y Ignacio del Rosal Fernández

The Impact of Credit Rating Announcements on Spanish Corporate Fixed Income Performance: Returns, Yields and Liquidity
Pilar Abad, Antonio Díaz and M. Dolores Robles

Indicadores de Lealtad al Establecimiento y Formato Comercial Basados en la Distribución del Presupuesto
César Augusto Bustos Reyes y Óscar González Benito

Migrants and Market Potential in Spain over The XXth Century: A Test Of The New Economic Geography
Daniel A. Tirado, Jordi Pons, Elisenda Paluzie and Javier Silvestre

El Impacto del Coste de Oportunidad de la Actividad Emprendedora en la Intención de los Ciudadanos Europeos de Crear Empresas
Luis Miguel Zapico Aldeano

Los belgas y los ferrocarriles de via estrecha en España, 1887-1936
Alberte Martínez López

Competición política bipartidista. Estudio geométrico del equilibrio en un caso ponderado
Isabel Lillo, Mª Dolores López y Javier Rodrigo

Human resource management and environment management systems: an empirical study
Mª Concepción López Fernández, Ana Mª Serrano Bedía and Gema García Piqueres
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>323</td>
<td>Wood and industrialization. evidence and hypotheses from the case of Spain, 1860-1935.</td>
<td>Inñaki Iriarte-Goñi and María Isabel Ayuda Bosque</td>
</tr>
<tr>
<td>324</td>
<td>New evidence on long-run monetary neutrality.</td>
<td>J. Cunado, L.A. Gil-Alana and F. Perez de Gracia</td>
</tr>
<tr>
<td>325</td>
<td>Monetary policy and structural changes in the volatility of us interest rates.</td>
<td>Juncal Cuñado, Javier Gomez Biscarri and Fernando Perez de Gracia</td>
</tr>
<tr>
<td>326</td>
<td>The productivity effects of intrafirm diffusion.</td>
<td>Lucio Fuentelsaz, Jaime Gómez and Sergio Palomas</td>
</tr>
<tr>
<td>327</td>
<td>Unemployment duration, layoffs and competing risks.</td>
<td>J.M. Arranz, C. García-Serrano and L. Toharia</td>
</tr>
<tr>
<td>328</td>
<td>El grado de cobertura del gasto público en España respecto a la UE-15</td>
<td>Nuria Rueda, Begoña Barruso, Carmen Calderón y Mª del Mar Herrador</td>
</tr>
<tr>
<td>329</td>
<td>The Impact of Direct Subsidies in Spain before and after the CAP’92 Reform</td>
<td>Carmen Murillo, Carlos San Juan and Stefan Sperlich</td>
</tr>
<tr>
<td>330</td>
<td>Determinants of post-privatisation performance of Spanish divested firms</td>
<td>Laura Cabeza García and Silvia Gómez Ansón</td>
</tr>
<tr>
<td>331</td>
<td>¿Por qué deciden diversificar las empresas españolas? Razones oportunistas versus razones económicas</td>
<td>Almudena Martínez Campillo</td>
</tr>
<tr>
<td>332</td>
<td>Dynamical Hierarchical Tree in Currency Markets</td>
<td>Juan Gabriel Brida, David Matesanz Gómez and Wiston Adrián Risso</td>
</tr>
<tr>
<td>333</td>
<td>Los determinantes sociodemográficos del gasto sanitario. Análisis con microdatos individuales</td>
<td>Ana María Angulo, Ramón Barberán, Pilar Egea y Jesús Mur</td>
</tr>
<tr>
<td>334</td>
<td>Why do companies go private? The Spanish case</td>
<td>Inés Pérez-Soba Aguilar</td>
</tr>
<tr>
<td>335</td>
<td>The use of gis to study transport for disabled people</td>
<td>Verónica Cañal Fernández</td>
</tr>
<tr>
<td>336</td>
<td>The long run consequences of M&A: An empirical application</td>
<td>Cristina Bernad, Lucio Fuentelsaz and Jaime Gómez</td>
</tr>
<tr>
<td>337</td>
<td>Las clasificaciones de materias en economía: principios para el desarrollo de una nueva clasificación</td>
<td>Valentín Edo Hernández</td>
</tr>
<tr>
<td>338</td>
<td>Reforming Taxes and Improving Health: A Revenue-Neutral Tax Reform to Eliminate Medical and Pharmaceutical VAT</td>
<td>Santiago Álvarez-García, Carlos Pestana Barros y Juan Prieto-Rodriguez</td>
</tr>
<tr>
<td>339</td>
<td>Impacts of an iron and steel plant on residential property values</td>
<td>Celia Bilbao-Terol</td>
</tr>
<tr>
<td>340</td>
<td>Firm size and capital structure: Evidence using dynamic panel data</td>
<td>Víctor M. González and Francisco González</td>
</tr>
</tbody>
</table>
¿Cómo organizar una cadena hotelera? La elección de la forma de gobierno
Marta Fernández Barcala y Manuel González Díaz

Análisis de los efectos de la decisión de diversificar: un contraste del marco teórico “Agencia-Stewardship”
Almudena Martínez Campillo y Roberto Fernández Gago

Selecting portfolios given multiple eurostoxx-based uncertainty scenarios: a stochastic goal programming approach from fuzzy betas
Enrique Ballestero, Blanca Pérez-Gladish, Mar Arenas-Parra y Amelia Bilbao-Terol

“El bienestar de los inmigrantes y los factores implicados en la decisión de emigrar”
Anastasia Hernández Alemán y Carmelo J. León

Andrea Martínez-Noya y Esteban García-Canal

Diferencias salariales entre empresas públicas y privadas. El caso español
Begoña Cueto y Nuria Sánchez- Sánchez

Effects of Fiscal Treatments of Second Home Ownership on Renting Supply
Celia Bilbao Terol y Juan Prieto Rodríguez

Auditors’ ethical dilemmas in the going concern evaluation
Andres Guiral, Waymond Rodgers, Emiliano Ruiz y Jose A. Gonzalo

Convergencia en capital humano en España. Un análisis regional para el periodo 1970-2004
Susana Morales Sequera y Carmen Pérez Esparrells

Socially responsible investment: mutual funds portfolio selection using fuzzy multiobjective programming
Blanca Mª Pérez-Gladish, Mar Arenas-Parra , Amelia Bilbao-Terol y Mª Victoria Rodríguez-Uría

Persistencia del resultado contable y sus componentes: implicaciones de la medida de ajustes por devengo
Raúl Iñiguez Sánchez y Francisco Poveda Fuentes

Wage Inequality and Globalisation: What can we Learn from the Past? A General Equilibrium Approach
Concha Betrán, Javier Ferri and María A. Pons

Eficacia de los incentivos fiscales a la inversión en I+D en España en los años noventa
Desiderio Romero Jordán y José Félix Sanz Sanz

Convergencia regional en renta y bienestar en España
Robert Meneu Gaya

Tributación ambiental: Estado de la Cuestión y Experiencia en España
Ana Carrera Poncela

Salient features of dependence in daily us stock market indices
Luis A. Gil-Alana, Juncal Cuñado y Fernando Pérez de Gracia

La educación superior: ¿un gasto o una inversión rentable para el sector público?
Inés P. Murillo y Francisco Pedraja
358/2007 Effects of a reduction of working hours on a model with job creation and job destruction
Emilio Domínguez, Miren Ullibarri y Idoya Zabaleta

359/2007 Stock split size, signaling and earnings management: Evidence from the Spanish market
José Yagüe, J. Carlos Gómez-Sala and Francisco Poveda-Fuentes

360/2007 Modelización de las expectativas y estrategias de inversión en mercados de derivados
Begoña Font-Belaire

361/2008 Trade in capital goods during the golden age, 1953-1973
Mª Teresa Sanchis and Antonio Cubel

362/2008 El capital económico por riesgo operacional: una aplicación del modelo de distribución de pérdidas
Enrique José Jiménez Rodríguez y José Manuel Feria Domínguez

363/2008 The drivers of effectiveness in competition policy
Joan-Ramon Borrell and Juan-Luis Jiménez

364/2008 Corporate governance structure and board of directors remuneration policies: evidence from Spain
Carlos Fernández Méndez, Rubén Arrondo García and Enrique Fernández Rodríguez

365/2008 Beyond the disciplinary role of governance: how boards and donors add value to Spanish foundations
Pablo De Andrés Alonso, Valentin Azofra Palenzuela and M. Elena Romero Merino

366/2008 Complejidad y perfeccionamiento contractual para la contención del oportunismo en los acuerdos de franquicia
Vanessa Solís Rodríguez y Manuel González Díaz

367/2008 Inestabilidad y convergencia entre las regiones europeas
Jesús Mur, Fernando López y Ana Angulo

368/2008 Análisis espacial del cierre de explotaciones agrarias
Ana Aldanondo Ochoa, Carmen Almansa Sáez y Valero Casanovas Oliva

369/2008 Cross-Country Efficiency Comparison between Italian and Spanish Public Universities in the period 2000-2005
Tommaso Agasisti and Carmen Pérez Esparrells

370/2008 El desarrollo de la sociedad de la información en España: un análisis por comunidades autónomas
María Concepción García Jiménez y José Luis Gómez Barroso

371/2008 El medioambiente y los objetivos de fabricación: un análisis de los modelos estratégicos para su consecución
Lucia Avella Camarero, Esteban Fernández Sánchez y Daniel Vázquez-Bustelo

372/2008 Influence of bank concentration and institutions on capital structure: New international evidence
Víctor M. González and Francisco González

373/2008 Generalización del concepto de equilibrio en juegos de competición política
Mª Dolores López González y Javier Rodrigo Hitos

374/2008 Smooth Transition from Fixed Effects to Mixed Effects Models in Multi-level regression Models
Maria José Lombardía and Stefan Sperlich
375/2008 A Revenue-Neutral Tax Reform to Increase Demand for Public Transport Services
Carlos Pestana Barros and Juan Prieto-Rodriguez

376/2008 Measurement of intra-distribution dynamics: An application of different approaches to the European regions
Adolfo Maza, María Hierro and José Villaverde

377/2008 Migración interna de extranjeros y ¿nueva fase en la convergencia?
María Hierro y Adolfo Maza

378/2008 Efeclos de la Reforma del Sector Eléctrico: Modelización Teórica y Experiencia Internacional
Ciro Eduardo Bazán Navarro

379/2008 A Non-Parametric Independence Test Using Permutation Entropy
Mariano Matilla-García and Manuel Ruiz Marín

380/2008 Testing for the General Fractional Unit Root Hypothesis in the Time Domain
Uwe Hassler, Paulo M.M. Rodrigues and Antonio Rubia

381/2008 Multivariate gram-charlier densities
Esther B. Del Brio, Trino-Manuel Ñíguez and Javier Perote

382/2008 Analyzing Semiparametrically the Trends in the Gender Pay Gap - The Example of Spain
Ignacio Moral-Arce, Stefan Sperlich, Ana I. Fernández-Sainz and Maria J. Roca

383/2008 A Cost-Benefit Analysis of a Two-Sided Card Market
Santiago Carbó Valverde, David B. Humphrey, José Manuel Liñares Zegarra and Francisco Rodríguez Fernandez

384/2008 A Fuzzy Bicriteria Approach for Journal Deselection in a Hospital Library
M. L. López-Avello, M. V. Rodriguez-Uria, B. Pérez-Gladish, A. Bilbao-Terol, M. Arenas-Parra

385/2008 Valoración de las grandes corporaciones farmaceúticas, a través del análisis de sus principales intangibles, con el método de opciones reales
Gracia Rubio Martin y Prosper Lamothe Fernández

386/2008 El marketing interno como impulsor de las habilidades comerciales de las pymes españolas: efectos en los resultados empresariales
Mª Leticia Santos Vijande, Mª José Sanzo Pérez, Nuria García Rodríguez y Juan A. Trespalacios Gutiérrez

387/2008 Understanding Warrants Pricing: A case study of the financial market in Spain
David Abad y Belén Nieto

388/2008 Aglomeración espacial, Potencial de Mercado y Geografía Económica: Una revisión de la literatura
Jesús López-Rodríguez y J. Andrés Faiña

389/2008 An empirical assessment of the impact of switching costs and first mover advantages on firm performance
Jaime Gómez, Juan Pablo Maícas

390/2008 Tender offers in Spain: testing the wave
Ana R. Martínez-Cañete y Inés Pérez-Soba Aguilar
La integración del mercado español a finales del siglo XIX: los precios del trigo entre 1891 y 1905
Mariano Matilla García, Pedro Pérez Pascual y Basilio Sanz Carnero

Cuando el tamaño importa: estudio sobre la influencia de los sujetos políticos en la balanza de bienes y servicios
Alfonso Echazarra de Gregorio

Una visión cooperativa de las medidas ante el posible daño ambiental de la desalación
Borja Montaño Sanz

Efectos externos del endeudamiento sobre la calificación crediticia de las Comunidades Autónomas
Andrés Leal Marcos y Julio López Laborda

Technical efficiency and productivity changes in Spanish airports: A parametric distance functions approach
Beatriz Tovar & Roberto Rendeiro Martín-Cejas

Network analysis of exchange data: Interdependence drives crisis contagion
David Matesanz Gómez & Guillermo J. Ortega

Explaining the performance of Spanish privatised firms: a panel data approach
Laura Cabeza García and Silvia Gomez Anson

Technological capabilities and the decision to outsource R&D services
Andrea Martínez-Noya and Esteban García-Canal

Hybrid Risk Adjustment for Pharmaceutical Benefits
Manuel García-Goñi, Pere Ibern & José María Inoriza

The Team Consensus–Performance Relationship and the Moderating Role of Team Diversity
José Henrique Dieguez, Javier González-Benito and Jesús Galende

The institutional determinants of CO₂ emissions: A computational modelling approach using Artificial Neural Networks and Genetic Programming
Marcos Álvarez-Díaz, Gonzalo Caballero Miguez and Mario Soliño

Alternative Approaches to Include Exogenous Variables in DEA Measures: A Comparison Using Monte Carlo
José Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro and Daniel Santín-González

Efecto diferencial del capital humano en el crecimiento económico andaluz entre 1985 y 2004: comparación con el resto de España
Mª del Pópulo Pablo-Romero Gil-Delgado y Mª de la Palma Gómez-Calero Valdés

Análisis de fusiones, variaciones conjeturales y la falacia del estimador en diferencias
Juan Luis Jiménez y Jordi Perdiguero

Política fiscal en la uem: ¿basta con los estabilizadores automáticos?
Jorge Uxó González y Mª Jesús Arroyo Fernández

Papel de la orientación emprendedora y la orientación al mercado en el éxito de las empresas
Óscar González-Benito, Javier González-Benito y Pablo A. Muñoz-Gallego

La presión fiscal por impuesto sobre sociedades en la unión europea
Elena Fernández Rodríguez, Antonio Martínez Arias y Santiago Álvarez García
408/2008 The environment as a determinant factor of the purchasing and supply strategy: an empirical analysis
Dr. Javier González-Benito y MS Duilio Reis da Rocha

409/2008 Cooperation for innovation: the impact on innovatory effort
Gloria Sánchez González and Liliana Herrera

410/2008 Spanish post-earnings announcement drift and behavioral finance models
Carlos Forner and Sonia Sanabria

411/2008 Decision taking with external pressure: evidence on football manager dismissals in argentina and their consequences
Ramón Flores, David Forrest and Juan de Dios Tena

Raúl Serrano y Vicente Pinilla

413/2008 Voter heuristics in Spain: a descriptive approach elector decision
José Luis Sáez Lozano and Antonio M. Jaime Castillo

414/2008 Análisis del efecto área de salud de residencia sobre la utilización y acceso a los servicios sanitarios en la Comunidad Autónoma Canaria
Ignacio Abásolo Alessón, Lidia García Pérez, Raquel Aguiar Ibáñez y Asier Amador Robayna

415/2008 Impact on competitive balance from allowing foreign players in a sports league: an analytical model and an empirical test
Ramón Flores, David Forrest & Juan de Dios Tena

416/2008 Organizational innovation and productivity growth: Assessing the impact of outsourcing on firm performance
Alberto López

417/2008 Value Efficiency Analysis of Health Systems
Eduardo González, Ana Cárcaba & Juan Ventura

418/2008 Equidad en la utilización de servicios sanitarios públicos por comunidades autónomas en España: un análisis multinivel
Ignacio Abásolo, Jaime Pinilla, Miguel Negrín, Raquel Aguiar y Lidia García

419/2008 Piedras en el camino hacia Bolonia: efectos de la implantación del EEES sobre los resultados académicos
Carmen Florido, Juan Luis Jiménez e Isabel Santana

420/2008 The welfare effects of the allocation of airlines to different terminals
M. Pilar Socorro and Ofelia Betancor

421/2008 How bank capital buffers vary across countries. The influence of cost of deposits, market power and bank regulation
Ana Rosa Fonseca and Francisco González

422/2008 Analysing health limitations in spain: an empirical approach based on the european community household panel
Marta Pascual and David Cantarero
Regional productivity variation and the impact of public capital stock: an analysis with spatial interaction, with reference to Spain
Miguel Gómez-Antonio and Bernard Fingleton

Average effect of training programs on the time needed to find a job. The case of the training schools program in the south of Spain (Seville, 1997-1999).
José Manuel Cansino Muñoz-Repiso and Antonio Sánchez Braza

Medición de la eficiencia y cambio en la productividad de las empresas distribuidoras de electricidad en Perú después de las reformas
Raúl Pérez-Reyes y Beatriz Tovar

Acerca de posturas sobre el descuento ambiental: sondeo Delphi a expertos en el ámbito internacional
Carmen Almansá Sáez y José Miguel Martínez Paz

Determinants of abnormal liquidity after rating actions in the Corporate Debt Market
Pilar Abad, Antonio Díaz and M. Dolores Robles

Export led-growth and balance of payments constrained. New formalization applied to Cuban commercial regimes since 1960
David Matesanz Gómez, Guadalupe Fugarolas Álvarez-Ude and Isís Mañalich Gálvez

La deuda implícita y el desequilibrio financiero-actuarial de un sistema de pensiones. El caso del régimen general de la seguridad social en España
José Enrique Devesa Carpio y Mar Devesa Carpio

Efectos de la descentralización fiscal sobre el precio de los carburantes en España
Desiderio Romero Jordán, Marta Jorge García-Inés y Santiago Álvarez García

Euro, firm size and export behavior
Silviano Esteve-Pérez, Salvador Gil-Pareja, Rafael Llorca-Vivero and José Antonio Martínez-Serrano

Does social spending increase support for free trade in advanced democracies?
Ismael Sanz, Ferran Martínez i Coma and Federico Steinberg

Potencial de Mercado y Estructura Espacial de Salarios: El Caso de Colombia
Jesús López-Rodríguez y Maria Cecilia Acevedo

Persistence in Some Energy Futures Markets
Juncal Cunado, Luis A. Gil-Alana and Fernando Pérez de Gracia

La inserción financiera externa de la economía francesa: inversores institucionales y nueva gestión empresarial
Ignacio Álvarez Peralta

¿Flexibilidad o rigidez salarial en España?: un análisis a escala regional
Ignacio Moral Arce y Adolfo Maza Fernández

Intangible relationship-specific investments and the performance of r&d outsourcing agreements
Andrea Martínez-Noya, Esteban García-Canal & Mauro F. Guillén

Friendly or Controlling Boards?
Pablo de Andrés Alonso & Juan Antonio Rodríguez Sanz
On measuring the effect of demand uncertainty on costs: an application to port terminals
Ana Rodríguez-Álvarez, Beatriz Tovar & Alan Wall

Order of market entry, market and technological evolution and firm competitive performance
Jaime Gómez, Gianvito Lanzolla & Juan Pablo Maicas

La Unión Económica y Monetaria Europea en el proceso exportador de Castilla y León (1993-2007): un análisis de datos de panel
Almudena Martínez Campillo y Mª del Pilar Sierra Fernández

Do process innovations boost SMEs productivity growth?
Juan A. Mañez, María E. Rochina Barrachina, Amparo Sanchis Llopis & Juan A. Sanchis Llopis

Incertidumbre externa y elección del modo de entrada en el marco de la inversión directa en el exterior
Cristina López Duarte y Marta Mª Vidal Suárez

Testing for structural breaks in factor loadings: an application to international business cycle
José Luis Cendejas Bueno, Sonia de Lucas Santos, Inmaculada Álvarez Ayuso & Mª Jesús Delgado Rodríguez

¿Esconde la rigidez de precios la existencia de colusión? El caso del mercado de carburantes en las Islas Canarias
Juan Luis Jiménez y Jordi Perdiguero

The poni test with structural breaks
Antonio Aznar & María-Isabel Ayuda

Accuracy and reliability of Spanish regional accounts (CRE-95)
Verónica Cañal Fernández

Estimating regional variations of R&D effects on productivity growth by entropy econometrics
Esteban Fernández-Vázquez y Fernando Rubiera-Morollón

Why do local governments privatize the provision of water services? Empirical evidence from Spain
Francisco González-Gómez, Andrés J. Picazo-Tadeo & Jorge Guardiola

Assessing the regional digital divide across the European Union-27
María Rosalía Vicente & Ana Jesús López

Measuring educational efficiency and its determinants in Spain with parametric distance functions
José Manuel Cordero Ferrera, Eva Crespo Cebada & Daniel Santín González