PRICING LEVERED WARRANTS WITH DILUTION USING OBSERVABLE VARIABLES

ISABEL ABÍNZANO
JAVIER F. NAVAS
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contratar su nivel técnico.

ISSN: 1988-8767

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros.
Las opiniones son responsabilidad de los autores.
Pricing levered warrants with dilution using observable variables1

Isabel Abínzano*
Javier F. Navas**

Abstract

We propose a valuation framework for pricing European call warrants on the issuer's own stock, allowing for the possibility of the issuer firm being debt-financed. In contrast to other works which also price warrants with dilution issued by levered firms, ours uses only observable variables. Thus, we extend the models of both Crouhy and Galai (1994) and Ukhov (2004). We provide numerical examples to study some implementation issues and to compare the model with existing ones.

\textit{JEL Classification:} C13, G63, G32.
\textit{Keywords:} Warrant pricing, dilution, leverage, observable variables.

1We are grateful for valuable comments from Louis Ederington, Stewart Hodges, Gonzalo Rubio, Andrey Ukhov and seminar participants at the XLII Conference of the Euro Working Group in Financial Modelling and the CEU Cardenal Herrera University. Isabel Abínzano gratefully acknowledges financial support from the Spanish Ministry of Education and Science (MEC, SEJ2006-14809-C03-01), while Javier F. Navas gratefully acknowledges financial support from Junta de Andalucía (P06-SEJ-01537 grant). The usual caveat applies.
1 Introduction

As European call options, European call warrants give the holder the right to purchase a specified quantity of an asset at an agreed price, on a fixed date. There are two types of warrants: warrants on the company's own stock and warrants on other assets. In the former case, the exercise of the warrant in exchange for new shares results in a dilution of the firm's own stock. To allow for possible dilution when pricing warrants, some studies, such as Galai and Schneller (1978), Noreen and Wolfson (1981), later revised in Galai (1989), and Lauterbach and Schultz (1990), present different revisions of the Black and Scholes (1973) option pricing model. In the valuation formulas obtained by these studies, firm value and return volatility need to be known. However, when warrants are outstanding, the firm value is itself a function of the warrant price, and is therefore unobservable. The fact that firm asset value is unobservable also makes it difficult to estimate return volatility. To overcome these problems, Schulz and Trautmann (1994) propose a warrant-pricing procedure based on the price and volatility of the underlying stock, both of which are observable variables. More recently, Ukhov (2004) develops an algorithm that generalizes the Schulz and Trautmann (1994) proposal for the case of the warrant ratio being distinct from unity.

The above studies value warrants issued by companies financed by shares and warrants. The majority of firms, however, are also debt financed. To reflect this fact, Crouhy and Galai (1994) develop a pricing model for the valuation of warrants issued by levered companies. Later, Koziol (2006) extends the analysis of Crouhy and Galai to explore optimal warrant exercise strategies in the case of American-type warrants.

Both the Crouhy-Galai formula and its extension in Koziol (2006) depend on the value of a firm with the same investment policy as the one issuing the warrant but financed entirely with shares of stock. Therefore, these pricing models again present the drawback of dependence on unobservable variables. To overcome this problem, we devise a model for the valuation of warrants issued by levered companies, where only the values of observable variables need to be known.

The remainder of the study is organized as follows. Section 2 briefly describes the valuation of unlevered warrants with dilution. Section 3 presents a valuation framework for pricing warrants on own stock issued by debt-financed firms that uses only variables that can be observed. Section 4 examines its implementation through some numerical examples. Finally, section 5 contains the conclusions of our research.

2 We use the term ratio to refer to the number of units of the underlying asset that can be purchased by exercising a call warrant.
2 Pricing unlevered warrants with dilution

A recurring issue in the corporate warrant pricing literature is the fact that the value of a warrant is a function of firm value, which in turn includes the warrant value and is therefore unobservable. Authors such as Ingersoll (1987), Galai (1989), Crouhy and Galai (1991) and Veld (2003) explicitly acknowledge this problem, indicating the implications and possible warrant-pricing alternatives. In order to solve this problem, Ukhov (2004) draws on the work of Schulz and Trautmann (1987) and proposes an algorithm that requires only knowledge of observable variables. First, he follows the work of Ingersoll (1987) to derive an expression of warrant value as a function of firm value and return volatility, then he establishes a relationship between these variables and the price and volatility of the underlying stock.

2.1 Valuation of unlevered warrants using unobservable variables

Ingersoll (1987) presents the following valuation framework to value warrants with dilution. Let there be a firm financed by N shares of stock and M European call warrants. Each warrant gives the holder the right to k shares at time $t = T$, in exchange for the payment of an amount X. Let V_t be the asset value of the firm at time t, S_t and σ_s are the price and volatility of the underlying share, respectively, and let w_t be the warrant price at time t.

If the M warrants are exercised at $t = T$, the firm receives an amount of money MX and issues Mk new shares of stock. Thus, immediately before the exercise of the warrants, each warrant must be worth $\frac{k}{N + kM} (V_T + MX) - X$. According to Ingersoll (1987), warrant holders will exercise the warrants only when this value is non-negative, that is, when $kV_T \geq NX$. Thus, the warrant price at date of exercise can be expressed as follows:

$$w_T = \frac{1}{N + kM} \max(kV_T - NX, 0)$$

Assuming the validity of the Black and Scholes (1973) assumptions, Ingersoll obtains the following expression for the warrant price:

$$w_t = \frac{1}{N + kM} \left[kV_t \Phi(d_1) - e^{-r(T-t)} NX \Phi(d_2) \right]$$

with:

$$d_1 = \frac{\ln(kV_t/NX) + (r + \sigma_s^2/2)(T-t)}{\sigma_s \sqrt{T-t}}$$
\[d_2 = d_1 - \sigma_v \sqrt{T-t} \]

(4)

where \(\Phi(\cdot) \) is the distribution function of a Normal random variable and \(\sigma_v \) is the return volatility of \(V_t \).

As we can see, the warrant pricing formula proposed by Ingersoll (1987) depends on \(V_t \) and \(\sigma_v \), which are unobservable values.

2.2 Valuation of unlevered warrants using observable variables

To obtain a warrant-pricing formula where only the values of observable variables need to be known, Ukhov (2004) draws on expressions (2) - (4) and proposes relating \(V_t \) and \(\sigma_v \) to the underlying share price, \(S_t \), and its return volatility, \(\sigma_s \).

Ukhov (2004) relates these variables as follows:

\[\sigma_s = \sigma_v \Delta_s \frac{V_t}{S_t} \]

(5)

where \(\Delta_s = \partial S_t / \partial V_t \). Given that \(V_t = NS_t + MW_t \), the following expression is satisfied:

\[N\Delta_s + M\Delta_w = \Delta_v = 1 \]

(6)

where \(\Delta_w = \partial W(V_t; \cdot) / \partial V_t \). Furthermore, using (2) we have that:

\[\Delta_w = \frac{k}{N + kM} \Phi(d_1) \]

(7)

Substituting the above into (6), the expression for \(\Delta_s \) is obtained:

\[\Delta_s = \frac{1 - M\Delta_w}{N} = \frac{N + kM - kM\Phi(d_1)}{N(N + kM)} \]

(8)

Finally, substituting the expression (8) into (5) the relationship between the unobservable variables, \(V_t \) and \(\sigma_v \), and the observable variables \(S_t \) and \(\sigma_s \) is given.

Having established this relationship, Ukhov (2004) proposes the following algorithm to obtain the warrant price:

1. Solve (numerically) the following system of non-linear equations for \((V_t^{*}, \sigma_v^{*}):\)
\[
\begin{align*}
NS_t &= V_t - \frac{M}{N+kM} \left[kV_t \Phi(d_1) - e^{-r(T-t)} NX \Phi(d_2) \right] \\
\sigma_s &= \frac{V_t}{S_t} \Delta_s \sigma_v
\end{align*}
\]

with:
\[
\Delta_s = \frac{N+kM - kM \Phi(d_1)}{N(N+kM)}
\]

and where:
\[
\begin{align*}
d_1 &= \frac{\ln(kV_t/NX) + (r + \sigma^2_v/2)(T-t)}{\sigma_v \sqrt{T-t}} \\
d_2 &= d_1 - \sigma_v \sqrt{T-t}
\end{align*}
\]

2. The warrant price, \(w_t \), is computed as:
\[
w_t = \frac{V_t^* - NS_t}{M}
\]

This way Ukhov provides a valuation formula for the warrant price based on observable variables.

3 Pricing levered warrants with dilution

Despite the advantage of using only the values of observable variables, the Ukhov (2004) model has the limitation of assuming that the issuer of the warrant is a pure-equity firm, since the majority of firms issuing warrants are also debt financed.

Thus, in this section, we propose a framework for pricing corporate warrants taking into account the possibility that the issuer is also debt financed, and that requires data on observable variables only. Specifically, we consider a firm financed by \(N \) shares of stock, \(M \) European call warrants and debt \(D \). The debt consists of a zero-coupon bond with face value \(F \) and maturity \(T_D \). For every warrant held, the holder has the right to purchase \(k \) shares of stock at \(T \), in exchange for the payment of an amount \(X \).

As other authors (see Ingersoll, 1987 and Crouhy and Galai, 1994 among others), we
assume that the proceeds from exercising the warrants are reinvested in the company. We also assume no economies of scale and a stationary return distribution for one unit of investment, independent of firm size. Due to this assumption, in case of the exercise of warrants, the value of the company increases and the number of shares outstanding also changes. This fact has a different effect on the price of the warrant depending on if the firm debt has matured previously, or it is still alive. Because of this, we are going to consider three different cases: a) warrants expiring before debt maturity \((T < T_D)\); b) warrants with the same maturity as debt \((T = T_D)\); and c) warrants with longer maturity than debt \((T > T_D)\).

To obtain the pricing formula in each case, we follow Ukhov (2004) and express the value of the levered warrant as a function of the unobservable variables. Then, we establish a relationship between the unobservable variables and the underlying stock price and its return volatility.

3.1 Warrants with shorter maturity than debt

Let us consider the case in which the warrant issuer is financed with a zero-coupon bond with longer maturity than the exercise date of the warrants, that is, \(T < T_D\). We first draw upon Crouhy and Galai (1994) and obtain an expression for the value of the warrants depending on unobservable variables. Crouhy and Galai (1994) propose a pricing formula for levered warrants when debt maturity is longer than the exercise date of warrants. In their formula, the warrant price depends on the value of a firm with the same investment policy as the firm issuing the warrant, but financed entirely by shares. Thus, the initial value of the reference firm is the same as the one of the levered firm. The assumptions from which Crouhy and Galai (1994) derive their results are that the risk-free interest rate, \(r\), is known and constant, and perfect market conditions.

Let us suppose that at \(t = 0\) the reference firm issues \(N'\) shares of stock at a price \(V_0/N' = S_0\), while the warrant-issuing firm issues \(N\) shares of stock, \(M\) warrants and a zero-coupon bond. Thus we have that for \(0 \leq t < T\):

\[
V_t = NS_t + Mw_t + D_t, \quad \text{with} \quad V_t = V'_t
\]

(14)

where \(S_t\), \(w_t\) and \(D_t\) are the value of a share, a warrant and the debt of the levered firm at time \(t\). Thus, the warrant value at any time prior to the exercise date is given by the following expression:

\[
w_t = \frac{V'_t - NS_t - D_t}{M}, \quad \text{with} \quad t < T
\]

(15)
As Crouhy and Galai (1994), to obtain S_t and D_t with $t < T$, first, we the own stock value and the debt value at $t = T$, and then we perform a risk-neutral valuation of these two variables at time t. Let us begin by analyzing the value of the company at the maturity date of debt ($t = T_D$). If the warrants are exercised at $t = T$ an amount MX is reinvested in the company, thus, the value of the levered company as of the date of exercise may differ from the reference firm value. If the warrants have not been exercised at $t = T$, the value of the levered company at $t = T_D$ will be equal to the reference asset value, V_{T_D}', whereas if the warrants have been exercised at $t = T$, the value of the levered company at $t = T_D$ will be $V_{T_D}'(1 + MX/V_{T}')$, where V_{t}' is the reference asset value at $t = T$. The ratio $\frac{MX}{V_{t}'}$ measures the expansion of the company's assets at $t = T$.

The exercise of the warrants at $t = T$ depends on whether the value of the shares received by the warrant-holders is greater than the exercise price. Although the traditional analysis\(^3\) argues that warrants should be exercised if the value of the shares immediately prior to the exercise date is greater than X, Crouhy and Galai (1994) show that this condition may lead to erroneous decisions and defend that warrants should be exercised if the value of the shares of stock is greater than X immediately after the expiration.

As we have mentioned, we consider each warrant gives the holder the right to buy k shares of stock\(^4\), with $k > 0$. Then, we can write the post-expiration value of a share of stock at $t = T$, S_T, as follows:

$$S_T = \begin{cases} \frac{V_T' - D_T^{NW}}{N} \equiv S_T^{NW} & \text{if warrants are not exercised at } t = T \\ \frac{V_T' + MX - D_T^{W}}{N + kM} \equiv S_T^W & \text{if warrants are exercised at } t = T \end{cases}$$

(16)

where V_T' is the reference firm value at $t = T$, and D_T^{W}, D_T^{NW}, S_T^W and S_T^{NW} denote the debt value and the price of a share of stock in the company immediately after T with warrants exercised and without warrants exercised, respectively. Given that S_T^W is an increasing function of V_T', there exists a unique value of V_T', $\overline{V_T'}$, for which the warrant-holders are indifferent as to whether to exercise their warrants or let them expire, that is, $kS_T^W(\overline{V_T'}) \equiv X$. Thus, for reference asset values above (below) $\overline{V_T'}$, the warrants will (will not) be exercised at $t = T$.

However, we might also consider that at time $t = T$, just after the warrant exercise.

\(^3\)See for example Ingersoll (1987), Schulz and Trautmann (1994) and Ukhov (2004).

\(^4\)We should note that in their work, Crouhy and Galai (1994) only consider the case in which $k = 1$, that is, each warrant entitles the right to purchase one share of stock.
date, the shareholders have a call option on the firm’s assets, with strike price F and maturity T_D. This is because if the firm's value at T_D is greater than the debt face value, F, the creditors receive F while the shareholders receive the firm value minus the debt face value, otherwise, the creditors receive whatever is left of the firm and the shareholders receive nothing. Thus, the value of a share at $t = T$ can be expressed as follows:

$$S_T = \begin{cases} \frac{c(V'_T, F, T_D - T)}{N} & \text{if } V'_T \leq \bar{V}^*_T \\ \frac{c(V'_T + M, F, T_D - T)}{N + kM} & \text{if } V'_T > \bar{V}^*_T \end{cases} \tag{17}$$

where $c(x, K, T)$ denotes the value of a European call option on x, with strike K and time to maturity T, and where \bar{V}^*_T is the reference firm value at which the warrants may be exercised. In addition, for any time t, with $T < t \leq T_D$, the value of one share of stock may be expressed as follows:

$$S_t = \begin{cases} \frac{c(V'_t, F, T_D - t)}{N} & \text{if } V'_t \leq \bar{V}^*_T \\ \frac{c(V'_t + M, F, T_D - t)}{N + kM} & \text{if } V'_t > \bar{V}^*_T \end{cases} \tag{18}$$

Supposing that the reference asset value follows a lognormal process and in the absence of arbitrage opportunities, then it is satisfied that there exists a risk-neutral probability measure below which $e^{-rt}V'_t$ is a martingale, such that:

$$dV'_t = rV'_t dt + \sigma'_V V'_t dZ'_t \tag{19}$$

where r is the risk-free interest rate, σ'_V is the return volatility of V'_t, and Z'_t is a standard Brownian motion. Therefore, we can apply the Black and Scholes (1973) option pricing formula to the systems (17) and (18) and thus obtain the value of S_t, with $T \leq t \leq T_D$.

A further consequence of the above assumption is that for any time t, with $t < T$, we can value the firm’s shares discounting their expected value at T at the risk-free discount rate, r:

$$S_t = e^{-r(T-t)} E^*[S_T]$$
\[
e^{-(r-t)E^*\left[\frac{c(V_{t'}, F, T_D - T)}{N}I_{v_{t'} \in \mathcal{F}_t} + \frac{c(V_{t'} + MX, F, T_D - T)}{N + kM}I_{v_{t'} > \mathcal{F}_t} \mid F_t\right]} \quad (20)
\]

where \(E^* \) denotes the expected value under the risk-free probability measure, \(F_t \) is the available information set at time \(t \), and \(I_{\text{condition}} \) is an indicator that takes a value of 1 when the condition is satisfied and 0 otherwise.

Furthermore, we know that the solution of the process given by (19) is:

\[
V_t' = V_t' \exp((r - 1/2\sigma_t^2)(T - t) + \sigma_t'(Z_t' - Z_t)) \quad (21)
\]

Thus, \(V_t' \) follows a lognormal distribution, that is \([\ln V_t'] \mid V_t' : \Phi[(\ln V_t' + (r - 0.5\sigma_t^2)(T - t), \sigma_t^2(T - t))]. \)

From the properties of the lognormal distribution, expression (20) can be rewritten as follows:

\[
S_t = e^{-(r-t)\int_{-\infty}^{\infty} \frac{c(V_{t'}, F, T_D - T)}{N} f(V_{t'}) dV_{t'} + \int_{-\infty}^{\infty} \frac{c(V_{t'} + MX, F, T_D - T)}{N + kM} f(V_{t'}) dV_{t'}}
+ e^{-rt} \int_{-\infty}^{\infty} \frac{c(V_{t'}, F, T_D - T)}{N} \frac{1}{\sigma_t' V_t' \sqrt{2\pi(T - t)}} e^{\frac{1}{2} \frac{[\ln V_{t'} - (\ln V_t' + (r - 0.5\sigma_t^2)(T - t))]^2}{\sigma_t' \sqrt{T - t}}} dV_{t'}
+ \int_{-\infty}^{\infty} \frac{c(V_{t'} + MX, F, T_D - T)}{N + kM} \frac{1}{\sigma_t' V_t' \sqrt{2\pi(T - t)}} e^{\frac{1}{2} \frac{[\ln V_{t'} - (\ln V_t' + (r - 0.5\sigma_t^2)(T - t))]^2}{\sigma_t' \sqrt{T - t}}} dV_{t'} \quad (22)
\]

Let \(y(V_t') = \frac{\ln V_t' + (r - 1/2\sigma_t^2)(T - t)}{\sigma_t' \sqrt{T - t}} \). Then, \(dy = \frac{1}{\sigma_t' \sqrt{T - t}} dV_{t'} \). If \(V_t' = V_t' \), \(y = \overline{y} \). Thus, the expression for \(S_t \), with \(t < T \), can be written as:

\[
S_t = e^{-(r-t)\int_{-\infty}^{\infty} \frac{c(V_{t'}, F, T_D - T)}{N} e^{\frac{1}{2} \frac{y^2}{T - t}} dy + \int_{-\infty}^{\infty} \frac{c(V_{t'} + MX, F, T_D - T)}{N + kM} e^{\frac{1}{2} \frac{y^2}{T - t}} dy} \quad (23)
\]

In the same way, the debt value at time \(t \), with \(t < T \), is given by:

\[
D_t = e^{-(r-t)E^*[D_t]} \quad (24)
\]
\[D_t = F_e^{r (T_D - t)} - e^{-r (T_D - t)} \frac{1}{\sqrt{2\pi(T-t)}} \left(\int_{-\infty}^{\infty} p(V_t', F, T_D - T)e^{\frac{y^2}{2}} \, dy + \int_{-\infty}^{\infty} p(V_t' + MX, F, T_D - T)e^{\frac{y^2}{2}} \, dy \right) \] \hspace{1cm} (25)

Once we have the expressions for \(S_t \) and \(D_t \), we substitute them into equation (15) to obtain the warrant price, \(w_t \), as a function of the reference asset value and its return volatility, \(V_t' \) and \(\sigma_v \). It should be noted that, for \(t < T \), both the reference firm value and its return volatility are equal to those of the levered firm, that is, \(V_t' = V_t \) and \(\sigma_v = \sigma_y \). Thus, following the Crouhy and Galai approach we have obtained an expression for \(w_t \), with \(t < T \), that depends on the levered firm value and its return volatility, \(V_t \) and \(\sigma_y \).

Once we have the price of the warrant expressed as a function of the reference asset value and return volatility, \(V_t' \) and \(\sigma_v \), based on Ukhov (2004) we propose to establish a relationship between these variables and the firm's stock price, \(S_t \), and its return volatility, \(\sigma_s \). To relate these variables, we use the expression (23), which relates the variables \(V_t' \) and \(\sigma_v \) to the stock price, \(S_t \), and also the following expression to relate \(V_t', \sigma_v \), and \(S_t \) to \(\sigma_s \):

\[\sigma_s = \sigma_v \frac{\partial S_t}{\partial V_t'} \frac{V_t'}{S_t} \] \hspace{1cm} (26)

where \(S_t \) is given by (23).

Having related the unobservable and observable variables, we formulate the following proposition:

Proposition 1 Let us consider a company with value denoted by \(V_t \) and financed by \(N \) shares of stock, \(M \) European corporate call warrants with exercise date \(T \), and a zero-coupon bond with face value \(F \) and maturity \(T_D \), with \(T_D > T \). For every warrant held, the warrant holder has the right to \(k \) shares in the company in exchange for payment of an
amount \(X \) at time \(t = T \). Let \(S \) be the stock price and let \(\sigma_S \) be the stock return volatility. Let \(V_t' \) be the value of a firm with the same investment policy but financed entirely by shares. The value of this firm and its return volatility are equal to the value of the levered firm and its volatility for \(t < T_D \) if the warrants are not exercised at \(t = T \), and for \(t < T \) if the warrants are exercised at \(t = T \). Furthermore, if \(V_t' \) follows a geometric Brownian motion with standard deviation \(\sigma_{V_t'} \) under a risk-neutral probability measure and in the absence of arbitrage opportunities, then the value at time \(t \) of a European call warrant on the company's shares will be given by the following algorithm:

1. Solve (numerically) the following system of non-linear equations for \((V_t'', \sigma_{V_t'}) \):

\[
\begin{cases}
S_t = \frac{e^{-r(T-t)}}{\sqrt{2\pi(T-t)}} \left(\int_{-\infty}^{\tau} c(V_t', F, T_D - T) e^{-\frac{y^2}{2}} dy + \int_{\tau}^{\infty} c(V_t' + MX, F, T_D - T) e^{-\frac{y^2}{2}} dy \right) \\
\sigma_S = \sigma_{V_t'} \frac{\partial S_t}{\partial V_t'} \frac{V_t'}{S_t}
\end{cases}
\]

where \(c(x, K, T) \) denotes the value of a European call option on \(x \), with strike \(K \) and time to maturity \(T \), whereas \(V_t' \) denotes the value of \(V_t'' \) that satisfies

\[
k \frac{c(V_t' + MX, F, T_D - T)}{N + kM} = X, \quad \bar{y} = y(V_t'), \quad \text{and} \quad y(V_t') = \frac{\ln \frac{V_t'}{V_t''} + (r - \frac{1}{2} \sigma_{V_t'}^2)(T-t)}{\sigma_{V_t'} \sqrt{T-t}}.
\]

2. The warrant price at time \(t \), with \(t < T \), is obtained as:

\[
w_t = \frac{V_t'' - NS_t - D_t}{M}
\]

where \(D_t \) is given by:

\[
D_t = Fe^{-r(T_D - t)} - \frac{e^{-r(T-t)}}{\sqrt{2\pi(T-t)}} \left(\int_{-\infty}^{\tau} p(V_t'', F, T_D - T)e^{-\frac{y^2}{2}} dy + \int_{\tau}^{\infty} p(V_t'' + MX, F, T_D - T)e^{-\frac{y^2}{2}} dy \right)
\]

and where \(p(x, K, T) \) is the value of a European put option on \(x \), with strike price and time to maturity \(T \).

It should be noted that our proposed algorithm is based on observable variables only, such as the risk-free interest rate and the current price of the underlying stock. Thus, we can claim to have solved a problem found in the literature concerning the valuation of corporate warrants issued by levered firms when \(T < T_D \).
3.2 Warrants with the same maturity as debt

Let us suppose now that the warrants issued by the company have the same maturity as debt, that is $T = T_D$. This case is consistent with many issues of warrants that are joint to some bond issues. In this situation, the owner of a warrant has the right to pay X at T and receive k shares of stock with individual value \(\frac{1}{N + kM}(E_T + MX) \), where E_T is the value of equity at T, just after the maturity of debt. We can thus express the value of the warrant at $t = T$ as:

$$w_T = \max(0, k\lambda(E_T + MX) - X)$$

(30)

where $\lambda = \frac{1}{N + kM}$. Furthermore, we know that $E_T = \max(V_T - F, 0)$, because if the value of the company at T is larger than the face value of debt, F, debtholders get F while shareholders get $V_T - F$, and in case of default, the debtholders receive what is left of the company, V_T, while the shareholders get 0. Thus, we can write (30) this way:

$$w_T = \max(0, \max(k\lambda(V_T - F + MX) - X, -\lambda NX))$$

(31)

Additionally, since the values of λ, N and X are non-negative, we can express w_T as follows:

$$w_T = \lambda \max(0, kV_T - kF - NX)$$

(32)

We must note that at time $t = T$ the warrantholder receives the same payoff as the owner of λ European call options on kV_T, with strike $kF + NX$ and exercise date at T. Thus, if we assume that the Black-Scholes assumptions are satisfied, the value of the warrant is given by the following expression:

$$w(V, \sigma, X) = \lambda[kV_T\Phi(f_1) - e^{-r(T-t)}(kF + NX)\Phi(f_2)]$$

(33)

with:

$$f_1 = \frac{\ln\left(\frac{kV_T}{kF + NX}\right) + (r + \frac{1}{2}\sigma_v^2)(T-t)}{\sigma_v\sqrt{T-t}}$$

(34)

$$f_2 = f_1 - \sigma_v\sqrt{T-t}$$

(35)

where $\Phi(\cdot)$ is the distribution function of a Normal random variable and where σ_v is the standard deviation of V_T.

12
This way we have expressed the value of the warrant as a function of the firm value, V_t, and its volatility, σ. Since these variables cannot be observed, on the basis of Ukhov (2004) we search for a relationship between V_t and σ_t with S_t and σ_S. As we have seen before, we can establish a relationship by this expression:

$$\sigma_s = \frac{V_t}{S_t} \Delta_s \sigma_v$$ \hspace{1cm} (36)

where $\Delta_s = \frac{\partial S_t}{\partial V_t}$. To compute Δ_s when there exists debt we see that now $V_t = NS_t + MW_t + D_t$, so we have that:

$$\Delta_v = 1 - N \Delta_s + M \Delta_w + \Delta_D$$ \hspace{1cm} (37)

Using (33) we obtain the following:

$$\Delta_w = \frac{\partial w_t}{\partial V_t} = k \lambda \Phi(f_t)$$ \hspace{1cm} (38)

On the other hand, to obtain the expression for Δ_D first we must determine the expression for D_t. We know that the payoff received by debtholders at maturity can be written this way: $D_t = \min(F, V_t) = F - \max(0, F - V_t)$. Thus, D_t can be expressed as:

$$D_t = Fe^{-r(T-t)} - p(V_t, F, T-t)$$ \hspace{1cm} (39)

where $p(x, K, T)$ is the value of a European put option on x with strike price K and time to maturity T. Thus, Δ_D is given by this expression:

$$\Delta_D = \frac{\partial D_t}{\partial V_t} = 1 - \Phi(h_t)$$ \hspace{1cm} (40)

where:

$$h_t = \frac{\ln \frac{V_t}{F} + (r + \frac{1}{2} \sigma^2_v)(T-t)}{\sigma_v \sqrt{T-t}}$$ \hspace{1cm} (41)

Once we know the expressions for Δ_w and Δ_D and substituting in (37), we obtain the expression for Δ_s and therefore, we have V_t related to σ_v, S_t and σ_S when the firm is financed by equity, warrants and debt and $T = T_D$.

Furthermore, we can consider that stockholders and warrantholders have a European call option on the value of the firm, with exercise price equal to the face value of the debt,
and with maturity at T, that is, $NS_t + Mw_t = c(V_t, F, T - t)$. Moreover, using the put-call parity we can check that $V_t = NS_t + Mw_t + D_t$ is satisfied for all $t \in [0, T]$.

Having established the relationship between the unobservable and observable variables, we can now enunciate our second proposition:

Proposition 2 Let us consider a company with value denoted by V_t, and financed by N shares of stock, M European corporate call warrants with exercise date T, and a zero-coupon bond with face value F and maturity T. For every warrant held, the warrant holder has the right to k shares in the company in exchange for payment of an amount X at time $t = T$. Let S_t be the share price and let σ_S be the share return volatility. If V_t follows a geometric Brownian motion with standard deviation σ_V, then the value at time t of a European call warrant on the company's shares will be given by the following algorithm:

1. Solve (numerically) the following system of nonlinear equations for (V'^*_t, σ^*_t):

$$
\begin{align*}
N S_t &= V_t \Phi(h_1) - e^{-r(T-t)} F \Phi(h_2) - M \lambda[kV_t \Phi(f_1) - e^{-r(T-t)} (kF + NX) \Phi(f_2)] \\
\sigma_S &= \frac{V_t}{S_t} \Delta_S \sigma_V \\
\Lambda_S &= \frac{\Phi(h_1) - \frac{kM}{N + kM} \Phi(f_1)}{N} \\
f_1 &= \frac{\ln(\frac{V_t}{kF + NX}) + (r + \frac{1}{2} \sigma_V^2)(T-t)}{\sigma_V \sqrt{T-t}} \\
f_2 &= f_1 - \sigma_V \sqrt{T-t} \\
h_1 &= \frac{\ln(\frac{V}{F}) + (r + \frac{1}{2} \sigma_V^2)(T-t)}{\sigma \sqrt{T-t}} \\
h_2 &= h_1 - \sigma_V \sqrt{T-t}
\end{align*}
$$

with:

$$
\begin{align*}
\Delta_S &= \frac{\Phi(h_1) - \frac{kM}{N + kM} \Phi(f_1)}{N} \\
f_2 &= f_1 - \sigma_V \sqrt{T-t} \\
h_2 &= h_1 - \sigma_V \sqrt{T-t}
\end{align*}
$$

and where $\lambda = \frac{1}{N + kM}$.

2. The warrant price at t is obtained as:
We must remark that the formula obtained represents an extension of Ukhov’s model to consider the possibility of the firm financed with debt. Moreover, when the firm has no debt, we can verify that the expression we obtain is the same as that given by Ukhov (2004). Furthermore, if the firm has no debt and the effect of dilution is minimal, that is, \(\frac{M}{N} \to 0 \), the pricing formula collapses to the Black-Scholes model.

3.3 Warrants with longer maturity than debt

Let us consider now that case of warrants with longer maturity than debt \((T > T_D)\). Thus, at \(t = T \) the owner of a warrant has the right to pay \(X \) and receive \(k \) shares of stock with individual value \(\frac{V_T}{N + kM} \), where \(V_T \) is the value of the company at \(T \).

In the same way as Crouhy and Galai (1994) we are going to express \(V_T \) as a function of the value of a reference firm with the same investment policy as the warrant issuer but financed only with shares of stock. For any time prior to the maturity of debt, \(t < T_D \), it is satisfied that the values of the two companies are the same, that is:

\[
V_t = NS_t + Mw_t + D_t, \quad \text{with } V_t = V'_t
\]

where \(V_t \) is the value of the issuer company, \(S_t \) is the value of an individual stock of the company, \(w_t \) is the value of a warrant, \(D_t \) is the value of debt, and \(V'_t \) denotes the value of the reference firm.

Moreover, we know that at \(t = T_D \), if the value of the issuer firm is larger than the face value of debt, \(F \), debholders get \(F \) while shareholders get the rest of the firm value, and if the contrary, the firm defaults and debholders receive what is left of the company, while shareholders get 0. In terms of the value of the reference company, we can express the value of the issuer’s firm this way:

\[
V'_{t_D} = \begin{cases}
0 & \text{if } V'_{t_D} < F \\
V'_{t_D} - F & \text{if } V'_{t_D} \geq F
\end{cases}
\]

And at \(t = T \), just after the expiration date of the warrants, we can express \(V_T \) as this:
The condition for a warrantholder to exercise a warrant at \(t = T \) is that the value of the \(k \) shares of stock he or she would receive in case of exercise be greater than the strike price, that is, \(\frac{V_T' - F + MX}{N + km} \geq X \). This way, we can write the value at \(t = T \) of a warrant as:

\[
V_T = \begin{cases}
0 & \text{if } V_{T_D}' < F \\
V_T' - F & \text{if } V_{T_D}' \geq F \text{ and the warrants are not exercised at } t = T \\
V_T' - F + MX & \text{if } V_{T_D}' \geq F \text{ and the warrants are exercised at } t = T
\end{cases}
\]

(51)

The condition for a warrantholder to exercise a warrant at \(t = T \) is that the value of the \(k \) shares of stock he or she would receive in case of exercise be greater than the strike price, that is, \(\frac{V_T' - F + MX}{N + km} \geq X \). This way, we can write the value at \(t = T \) of a warrant as:

\[
w_T = \begin{cases}
0 & \text{if } V_{T_D}' < F \\
\lambda \max(0, kV_T' - kF - NX) & \text{if } V_{T_D}' \geq F
\end{cases}
\]

(52)

where \(\lambda = \frac{1}{N + km} \). Consequently, we can consider that at \(t = T_D \), just after maturity of debt, the warrant value is:

\[
w_{T_D} = \begin{cases}
0 & \text{if } V_{T_D}' < F \\
\lambda c(kV_{T_D}', kF + NX, T - T_D) & \text{if } V_{T_D}' \geq F
\end{cases}
\]

(53)

where \(c(x, K, T) \) denotes the value of a European call option on \(x \), with strike \(K \) and time to maturity \(T \).

As in the case of warrants with shorter maturity than debt, if we suppose that the value of the reference firm follows a lognormal process and the absence of arbitrage opportunities, then it is satisfied that there exists a risk-neutral probability measure below which \(e^{-rT}V_T' \) is a martingale, such that equation (19) is satisfied. As a consequence, we can value the warrant discounting its expected value at \(T_D \) at the risk-free discount rate, \(r \), that is:

\[
w_t = e^{-r(T_D - t)} E^*[w_{T_D}] = e^{-r(T_D - t)} E^*[\lambda c(kV_{T_D}', kF + NX, T - T_D)I_{V_{T_D}' \geq F} | F_t]
\]

(54)

where \(E^* \) denotes the expected value under the risk-free probability measure, \(F_t \) is the available information set at time \(t \) and \(I_{\text{condicion}} \) is an indicator that takes a value of 1 when the condition is satisfied and 0 otherwise. Using the same reasoning as in subsection 3.1. we can write \(w_t \) this way:

\[
w_t = \frac{e^{-r(T_D - t)}}{\sqrt{2\pi(T_D - t)}} \int_{-\infty}^{\infty} \lambda c(V_{T_D}', F, T - T_D) e^{-\frac{y^2}{2}} dy
\]

(55)
Once obtained the expression for \(w_t \) depending on the unobservable variables \(V'_t \) and \(\sigma_{V'} \), we search for a relationship between these variables and the price of the underlying stock and its return volatility. Thus, on one hand we use that for any time before the maturity of debt, shareholders and warrantholders own jointly a European call option on the value of the company, with strike the face value of debt, and exercise date at \(T_D \), that is, \(NS_t + Mw_t = c(V'_t, F, T_D - t) \), where \(w_t \) is given by (55). On the other hand, we use the expression \(\sigma_s = \sigma_{V'} \Delta_s V'_t S_t \).

Having related the unobservable and the observable variables, we formulate the following proposition:

Proposition 3 Let us consider a company with value denoted by \(V_t \), and financed by \(N \) shares of stock, \(M \) European corporate call warrants with exercise date \(T \), and a zero-coupon bond with face value \(F \) and maturity \(T_D \), with \(T_D < T \). For every warrant held, the warrant holder has the right to \(k \) shares in the company in exchange for payment of an amount \(X \) at time \(t = T \). Let \(S_t \) be the stock price and let \(\sigma_s \) be the stock return volatility. Let \(V'_t \) be the value of a firm with the same investment policy as the warrant issuer but financed entirely by shares. For any time before the maturity of debt it is satisfied that the value of this firm and its return volatility are equal to the value of the levered firm and its volatility. Furthermore, if \(V'_t \) follows a geometric Brownian motion with standard deviation \(\sigma_{V'} \) under a risk-neutral probability measure and in the absence of arbitrage opportunities, then the value at time \(t \) of a European call warrant on the company's shares will be given by the following algorithm:

1. Solve (numerically) the following system of non-linear equations for \((V''_t, \sigma^*_t)\):

\[
\begin{cases}
 NS_t + M \frac{e^{-r(T_D-t)}}{\sqrt{2\pi(T_D-t)}} \int_0^\infty \lambda c(V''_t, F, T - T_D)e^{-\frac{y^2}{2}} dy = c(V'_t, F, T_D - t) \\
 \sigma_s = \sigma_{V'} \frac{\partial S_t}{\partial V'_t} V'_t S_t
\end{cases}
\]

where \(c(x, K, T) \) denotes the value of a European call option on \(x \), with strike \(K \) and time to maturity \(T \), and with

\[
\lambda = \frac{1}{N + kM}, \quad y(V''_t) = \frac{\ln \frac{V''_t}{V'_t} + (r - \frac{1}{2} \sigma_{V'}^2)(T_D - t)}{\sigma_{V'} \sqrt{T_D - t}}, \quad \text{and}
\]

\[
\sigma'_{V'} \sqrt{T_D - t}.
\]
\[
\frac{\ln \frac{F}{V_t'} + (r - \frac{1}{2} \sigma_v^2)(T_D - t)}{\sigma_v \sqrt{T_D - t}}.
\]

2. The warrant price at time \(t \), with \(t < T_D \), is obtained as:

\[
w_i(V_{t'}^{**, \sigma_v^*}) = \frac{e^{-r(T_D - t)}}{\sqrt{2\pi(T_D - t)}} \left(\int_{-\infty}^{\infty} \lambda c(V_{t_D}', F, T - T_D) e^{-\frac{y^2}{2}} dy \right)
\]

\[
(57)
\]

4 Numerical examples

In this section we provide some applications of the warrant-pricing framework proposed in this paper to study its implementation. Specifically, we show various numerical applications comparing the results given by other warrant-pricing models.

First of all, in Tables 1 and 2 we study the application of the Ukhov (2004) algorithm by expanding Table 1 presented in his paper. In his table, Ukhov compares the prices given by three methods: the Black-Scholes-Merton formula, the Ingersoll (1987) pricing model and his own model. He investigates whether they are close for hypothetical warrants with different levels of dilution, different underlying stock prices and stock return variance. Parameters common for all calculations are \(\kappa = 1 \), \(X = 100 \), \(t = 3 \), \(r = 0.0488 \) and \(N = 100 \). In our tables we add the warrant value given by the Ingersoll (1987) warrant-pricing formula, taking as values of \(V_t' \) and \(\sigma_v \) the values \(V_{t'}^{**, \sigma_v^*} \) that satisfy the system of equations (9), that is, the equilibrium values obtained for the reference firm and its volatility when using the observed value of the underlying stock and its volatility. We can check that the results for the warrant price given by this procedure are the same as we obtain when using the Ukhov (2004) formula taking as inputs the stock price, \(S_t \), and its volatility, \(\sigma_s \). Furthermore, we see that, as dilution increases, the warrant price decreases for every model, except the Black and Scholes (1973) model, which ignores the dilution effect. We should also stress that the variation between the share volatility, \(\sigma_s \), and the volatility obtained for firm value, \(\sigma_v^* \), increases with increasing dilution.

In Tables 3 and 4 we compare the valuation of warrants using three models: the Black-Scholes-Merton formula, the Crouhy and Galai (1994) pricing model, and our own model when \(T < T_D \). Parameters common for all calculations are now \(\kappa = 1 \), \(X = 100 \), \(T = 1 \), \(r = 0.0488 \), \(N = 100 \), \(F = 1000 \) and \(T_D = 3 \). The second column gives the warrant prices given by the Black-Scholes-Merton formula. The third column shows the results given by the Crouhy and Galai model taking as initial values of \(V_t' \) and \(\sigma_v \) the values of \(N S_t \) and \(\sigma_s \). From these values we find the reference asset value above which the warrants
are exercised, \bar{V}_T', which is the value of V_t' that satisfies
\[\frac{c(V_t' + 100M, 1000, 2)}{N + M} = 100, \]
where $c(\cdot)$ is given by the Black and Scholes (1973) option pricing formula. Using the value of \bar{V}_T' thus obtained, we simulate by Monte Carlo the value of V_t' from $t = 0$ to $t = T$. In each run, the firm value is determined as a function of whether the value of V_t' given by the simulation is below or above \bar{V}_T', for which we use the expression of S_i given by (18). If the warrants are not exercised, the debt value at $t = T$ is $D_T^{NW} = V_t' - NS_T^{NW}$ and the warrant value is $w_T = 0$, whereas, if the warrants are exercised, we calculate the debt value as $D_T^{W} = V_t' + MX - (N + kM)S_T^{NW}$ and the warrant value as $w_T = kS_T^{NW} - X$. Finally, after running 1.000.000 simulations, we obtain the values of S_t, D_t and w_t. With this valuation of the warrant at time $t = 0$, we have complemented the analysis performed by Crouhy and Galai, who implement their valuation model only for times close to the exercise date. Columns 4 - 6 show the results obtained with the algorithm presented in this paper for pricing levered warrants when $T < T_D$, which is implemented using the simulation described above and solving the system of non-linear equations given by (27) such that the value given by the simulation coincides with the known value of S_i and the expression of σ_s is satisfied. As before, we perform 1.000.000 simulations to obtain the warrant value, w_t. We show, in addition to the value of w_t obtained with our model, the values of V_t' and $\sigma_{\sigma'}$ that solve the aforementioned system of equations, that is, the values of V_t'' and $\sigma_{\sigma'}^*$. Finally, the seventh column shows the result obtained with the Crouhy and Galai (1994) model, using these values as values of V_t' and $\sigma_{\sigma'}$. It can be seen that the value obtained for w_t is practically the same as that obtained with our algorithm. We should point out that, as in Tables 1 and 2, in both the Crouhy and Galai model and ours, the differences between the stock return volatility, σ_s, and the volatility obtained for the firm asset value, $\sigma_{\sigma'}$, increase with increasing dilution. We should also mention, however, that in the case of low stock volatility and for warrants in the money or at the money, the value of each warrant decreases with increasing dilution with the Crouhy and Galai (1994) model but increases slightly with our valuation proposal. We must notice that while in the application of Crouhy and Galai with $T \leq T_D$ the value of the reference firm is invariant to changes in the degree of dilution, in the case of the implementation of our model, the value of the reference firm changes depending on the number of warrants and stocks outstanding.

Finally, in Tables 5 and 6 we compare the valuation of warrants when $T = T_D$. Parameters are now $k = 1$, $X = 100$, $r = 0.0488$, $N = 100$, $F = 1000$ and $T = T_D = 3^5$. The second column provides the warrant prices given by the Black-Scholes-Merton formula. The third column shows the results given by the Crouhy and Galai model taking as initial

\[T_D \text{ as } 3.0000001. \]
values of V_t and σ_t the values of NS_t and σ_S. The procedure followed to implement Crouhy and Galai (1994) in this case is the same as described for the case in which $T < T_D$. Next, in columns 4 - 6 we show the results obtained with the algorithm presented in this paper for pricing levered warrants when $T = T_D$, given by expressions (42) - (48). In addition to the value obtained for w_t, we provide the values of V_t and σ_t that solve system (42), that is, V_t^* and σ_t^*. Finally, the seventh column shows the result obtained with the Crouhy and Galai (1994) model using these values as values of V_t and σ_t. It can be seen that the value obtained for w_t is practically the same as that obtained with our algorithm. We should remark that, as in Tables 1 - 4, in both the Crouhy and Galai model and ours, the differences between the stock return volatility, σ_S, and the volatility obtained for the firm asset value, σ_V^*, increase with dilution. Moreover, as in the case of $T < T_D$, we obtain that for low stock volatility and warrants in the money or at the money, the value of each warrant decreases with dilution with the Crouhy and Galai (1994) model but increases slightly with our valuation proposal. The reasoning for this fact is the same as before, that is, while in Crouhy and Galai (1994) the value of the reference firm is invariant to changes in the degree of dilution, in the valuation model we propose, the value of the reference firm changes depending on the number of warrants and stocks outstanding.

5 Conclusions

In this paper, we provide a valuation framework for pricing European call warrants on the issuer's own stock that takes debt into account. In contrast to other works which also price warrants with dilution issued by levered firms, ours uses only observable variables.

We consider three different cases depending on the exercise date: warrants expiring before debt maturity, warrants with the same maturity as debt and warrants with longer maturity than debt. In order to derive the valuation formula for each situation, and following Ukhov (2004), we first express the value of the warrant as a function of some unobservable variables. With the aim of obtaining such expression, we follow the Crouhy and Galai (1994) framework in the case of warrants with shorter and longer maturity than debt, and we draw on Ingersoll (1987) when the warrants have the same maturity as debt. Once obtained the expression for the warrant depending on unobservable variables, we relate these variables to the price of the underlying asset and its return volatility, whose values are observable.

Finally, to study the implementation of our valuation framework, we provide some numerical examples. Specifically, we provide various numerical applications comparing the results given by other warrant-pricing models, such as the Black-Scholes-Merton formula, the Crouhy and Galai (1994) model and the Ukhov (2004) algorithm. We study the prices given by the models for different levels of dilution, underlying stock prices and stock return variance.
References

Table 1: Expansion of Table 1 of Ukhov (2004) for low volatility of the stock return. This table displays warrant prices computed by four methods: 1) w_{BSM} is the warrant price computed according to the Black-Scholes-Merton option formula; 2) w_I corrects for dilution according to Ingersoll (1987), and uses $V = N \cdot S_0$, and $\sigma_V = \sigma_S$; 3) w_U is the warrant price obtained with Ukhov's model, and V^*_U and σ^*_U are, respectively, the firm value and the standard deviation of the firm value process that satisfy system (9); and 4) w_{I^*} is the warrant price computed with the Ingersoll's formula when firm value and its volatility are obtained with Ukhov's model. The remaining parameters are: $k = 1$, $X = 100$, $T = 3$ and $r = 0.0488$. Warrant prices are shown for three stock prices and three levels of dilution due to warrant exercise.
High volatility, $\sigma_S = 40\%$

<table>
<thead>
<tr>
<th></th>
<th>BSM</th>
<th>Ingersoll</th>
<th>Ukhov's model</th>
<th>Ingersoll (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0, σ_S</td>
<td>$V = NS_0, \sigma_V = \sigma_S$</td>
<td>S_0, σ_S</td>
<td>$V = \sigma_U^\ast, \sigma_V = \sigma_{V_U}^\ast$</td>
<td></td>
</tr>
<tr>
<td>S_0</td>
<td>w_{BSM}</td>
<td>w_I</td>
<td>V_U^\ast</td>
<td>$\sigma_{V_U}^\ast$ (%)</td>
</tr>
<tr>
<td>75</td>
<td>16.6081</td>
<td>15.0983</td>
<td>16.5598</td>
<td>7665.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.5598</td>
</tr>
<tr>
<td>100</td>
<td>32.5992</td>
<td>29.6356</td>
<td>32.5671</td>
<td>10325.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.5672</td>
</tr>
<tr>
<td>110</td>
<td>39.9462</td>
<td>36.3148</td>
<td>39.9089</td>
<td>11399.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.9089</td>
</tr>
</tbody>
</table>

PANEL A. Low dilution, $N = 100, M = 10$

75	16.6081	11.0721	16.3742	8318.71
				45.77
				16.3741
100	32.5992	21.7328	32.3964	11619.82
				46.51
				32.3964
110	39.9462	26.6308	39.7088	12985.44
				46.59
				39.7088

PANEL B. Medium dilution, $N = 100, M = 50$

75	16.6081	8.3040	16.1638	9116.38
				50.26
				16.1638
100	32.5992	16.2996	32.1503	13215.00
				51.39
				32.1503
110	39.9462	19.9731	39.4214	14942.14
				51.46
				39.4214

PANEL C. High dilution, $N = 100, M = 100$

Table 2: Expansion of Table 1 of Ukhov (2004) for high volatility of the stock return. This table displays warrant prices computed by four methods: 1) w_{BSM} is the warrant price computed according to the Black-Scholes-Merton option formula; 2) w_I corrects for dilution according to Ingersoll (1987), and uses $V = N\cdot S_0$, and $\sigma_V = \sigma_S$; 3) w_U is the warrant price obtained with Ukhov's model, and V_U^\ast and $\sigma_{V_U}^\ast$ are, respectively, the firm value and the standard deviation of the firm value process that satisfy system (9); and 4) w_{I_2} is the warrant price computed with the Ingersoll's formula when firm value and its volatility are obtained with Ukhov's model. The remaining parameters are: $k = 1$, $X = 100$, $T = 3$ and $r = 0.0488$. Warrant prices are shown for three stock prices and three levels of dilution due to warrant exercise.
Table 3: Pricing of levered warrants for low volatility of the stock return when \(T < T_D \). This table displays warrant prices computed by four methods: 1) \(w_{BSM} \) is the warrant price computed according to the Black-Scholes-Merton option formula; 2) \(w_{CG} \) corrects for dilution according to Crouhy-Galai (1994), and uses \(V' = N \cdot S_0 \), and \(\sigma_{V'} = \sigma_S \); 3) \(w_{AN} \) is the warrant price obtained with the Abínzano-Navas (2008) approach when \(T < T_D \); \(V_{AN}^* \) and \(\sigma^*_{V_{AN}} \) are, respectively, the firm value and the standard deviation of the firm value process that satisfy system (27); and 4) \(w_{CG2} \) is the warrant price computed with Crouhy-Galai's formula when firm value and its volatility are obtained with the Abínzano-Navas model. The remaining parameters are: \(k = 1 \), \(X = 100 \), \(T = 1 \), \(r = 0.0488 \), \(F = 1000 \) and \(T_D = 3 \). Warrant prices are shown for three stock prices and three levels of dilution due to warrant exercise.
Table 4: Pricing of levered warrants for high volatility of the stock return when $T < T_D$. This table displays warrant prices computed by four methods: 1) w_{BSM} is the warrant price computed according to the Black-Scholes-Merton option formula; 2) w_{CG} corrects for dilution according to Crouhy-Galai (1994), and uses $V' = N \cdot S_0$, and $\sigma_{V'} = \sigma_S$; 3) w_{AN} is the warrant price obtained with the Abínzano-Navas (2008) approach when $T < T_D$; V'_{AN}^* and $\sigma_{V'_{AN}}^*$ are, respectively, the firm value and the standard deviation of the firm value process that satisfy system (27); and 4) w_{CG2} is the warrant price computed with Crouhy-Galai's formula when firm value and its volatility are obtained with the Abínzano-Navas model. The remaining parameters are: $k = 1$, $X = 100$, $T = 1$, $r = 0.0488$, $F = 1000$ and $T_D = 3$. Warrant prices are shown for three stock prices and three levels of dilution due to warrant exercise.

<table>
<thead>
<tr>
<th></th>
<th>BSM</th>
<th>CG94</th>
<th>AN08 model</th>
<th>CG94 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0, σ_S</td>
<td>$V' = NS_0, \sigma_{V'} = \sigma_S$</td>
<td>S_0, σ_S</td>
<td>$V'' = V'{AN}^*, \sigma{V'_{AN}}^*$</td>
<td></td>
</tr>
<tr>
<td>S_0</td>
<td>w_{BSM}</td>
<td>w_{CG}</td>
<td>w_{AN}</td>
<td>V'_{AN}^*</td>
</tr>
<tr>
<td>75</td>
<td>5.6669</td>
<td>3.5519</td>
<td>5.4839</td>
<td>8420.77</td>
</tr>
<tr>
<td>100</td>
<td>17.9693</td>
<td>12.7799</td>
<td>18.0276</td>
<td>11044.99</td>
</tr>
<tr>
<td>110</td>
<td>24.6768</td>
<td>18.1191</td>
<td>24.8004</td>
<td>12112.95</td>
</tr>
<tr>
<td>PANEL A. Low dilution, $N = 100$, $M = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>5.6669</td>
<td>2.6928</td>
<td>5.2266</td>
<td>8626.28</td>
</tr>
<tr>
<td>100</td>
<td>17.9693</td>
<td>9.4893</td>
<td>17.9858</td>
<td>11760.20</td>
</tr>
<tr>
<td>110</td>
<td>24.6768</td>
<td>13.4165</td>
<td>24.8051</td>
<td>13100.56</td>
</tr>
<tr>
<td>PANEL B. Medium dilution, $N = 100$, $M = 50$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>5.6669</td>
<td>2.0278</td>
<td>5.0064</td>
<td>8862.83</td>
</tr>
<tr>
<td>100</td>
<td>17.9693</td>
<td>7.1280</td>
<td>17.9171</td>
<td>12652.83</td>
</tr>
<tr>
<td>110</td>
<td>24.6768</td>
<td>10.0745</td>
<td>24.7653</td>
<td>14335.71</td>
</tr>
<tr>
<td>PANEL C. High dilution, $N = 100$, $M = 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Low volatility, $\sigma_s = 25\%$

| | BSM S_0, σ_s | CG94 $V' = NS_0, \sigma_{v'} = \sigma_s$ | AN08 model S_0, σ_s | CG94 (2) $V' = V_{AN}, \sigma_{v'} = \sigma^*_{V_{AN}}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>w_{BSM}</td>
<td>w_{CG}</td>
<td>w_{AN}</td>
<td>$\sigma^*{V{AN}}$ (%)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>8.8572</td>
<td>6.0650</td>
<td>8.7391</td>
<td>8451.20</td>
</tr>
<tr>
<td>100</td>
<td>23.6712</td>
<td>17.6025</td>
<td>23.7982</td>
<td>11101.79</td>
</tr>
<tr>
<td>110</td>
<td>31.1412</td>
<td>23.7167</td>
<td>31.3129</td>
<td>12176.94</td>
</tr>
<tr>
<td>PANEL A. Low dilution, $N = 100, M = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>8.8572</td>
<td>4.4273</td>
<td>8.5739</td>
<td>8792.51</td>
</tr>
<tr>
<td>100</td>
<td>23.6712</td>
<td>12.8813</td>
<td>23.8083</td>
<td>12054.23</td>
</tr>
<tr>
<td>110</td>
<td>31.1412</td>
<td>17.3624</td>
<td>31.3195</td>
<td>13429.78</td>
</tr>
<tr>
<td>PANEL B. Medium dilution, $N = 100, M = 50$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>8.8572</td>
<td>3.3186</td>
<td>8.4041</td>
<td>9204.22</td>
</tr>
<tr>
<td>100</td>
<td>23.6712</td>
<td>9.6584</td>
<td>23.7540</td>
<td>13239.21</td>
</tr>
<tr>
<td>110</td>
<td>31.1412</td>
<td>13.0190</td>
<td>31.2473</td>
<td>14988.54</td>
</tr>
<tr>
<td>PANEL C. High dilution, $N = 100, M = 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Pricing of levered warrants for low volatility of the stock return when $T = T_D$. This table displays warrant prices computed by four methods: 1) w_{BSM} is the warrant price computed according to the Black-Scholes-Merton option formula; 2) w_{CG} corrects for dilution according to Crouhy-Galai (1994), and uses $V' = N \cdot S_0$, and $\sigma_{v'} = \sigma_s$; 3) w_{AN} is the warrant price obtained with the Abínzano-Navas (2008) approach when $T = T_D$; V^*_{AN} and $\sigma^*_{V_{AN}}$ are, respectively, the firm value and the standard deviation of the firm value process that satisfy system (42); and 4) w_{CG2} is the warrant price computed with Crouhy-Galai's formula when firm value and its volatility are obtained with the Abínzano-Navas model. The remaining parameters are: $k = 1$, $X = 100$, $r = 0.0488$, $F = 1000$ and $T = T_D = 3$. Warrant prices are shown for three stock prices and three levels of dilution due to warrant exercise.
Table 6: Pricing of levered warrants for high volatility of the stock return when $T = T_D$. This table displays warrant prices computed by four methods: 1) w_{BSM} is the warrant price computed according to the Black-Scholes-Merton option formula; 2) w_{CG} corrects for dilution according to Crouhy-Galai (1994), and uses $V' = N \cdot S_0'$, and $\sigma_{V'} = \sigma_S$; 3) w_{AN} is the warrant price obtained with the Abínzano-Navas (2008) approach when $T = T_D$; V_{AN}' and $\sigma_{V_{AN}}'$ are, respectively, the firm value and the standard deviation of the firm value process that satisfy system (42); and 4) w_{CG2} is the warrant price computed with Crouhy-Galai's formula when firm value and its volatility are obtained with the Abínzano-Navas model. The remaining parameters are: $k = 1$, $X = 100$, $r = 0.0488$, $F = 1000$ and $T = T_D = 3$. Warrant prices are shown for three stock prices and three levels of dilution due to warrant exercise.

<table>
<thead>
<tr>
<th></th>
<th>BSM</th>
<th>CG94</th>
<th>AN08 model</th>
<th>CG94 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_0, σ_S</td>
<td>$V' = NS_0, \sigma_{V'} = \sigma_S$</td>
<td>S_0, σ_S</td>
<td>$V' = V_{AN}', \sigma_{V'} = \sigma_{V_{AN}}'$</td>
</tr>
<tr>
<td>S_0</td>
<td>w_{BSM}</td>
<td>w_{CG}</td>
<td>w_{AN}</td>
<td>V_{AN}'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>16.6081</td>
<td>13.1133</td>
<td>16.4939</td>
<td>8528.68</td>
</tr>
<tr>
<td>100</td>
<td>32.5992</td>
<td>20.5033</td>
<td>32.8007</td>
<td>11191.79</td>
</tr>
<tr>
<td>110</td>
<td>39.9462</td>
<td>32.7731</td>
<td>40.2254</td>
<td>12266.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>16.6081</td>
<td>9.5438</td>
<td>16.3116</td>
<td>9179.16</td>
</tr>
<tr>
<td>100</td>
<td>32.5992</td>
<td>19.3389</td>
<td>32.6573</td>
<td>12496.58</td>
</tr>
<tr>
<td>110</td>
<td>39.9462</td>
<td>23.9270</td>
<td>40.0572</td>
<td>13866.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>16.6081</td>
<td>7.1511</td>
<td>16.1071</td>
<td>9973.96</td>
</tr>
<tr>
<td>100</td>
<td>32.5992</td>
<td>14.4951</td>
<td>32.4353</td>
<td>14107.09</td>
</tr>
</tbody>
</table>
Últimos números publicados

159/2000 Participación privada en la construcción y explotación de carreteras de peaje
Ginés de Rus, Manuel Romero y Lourdes Trujillo

160/2000 Errores y posibles soluciones en la aplicación del Value at Risk
Mariano González Sánchez

161/2000 Tax neutrality on saving assets. The spahish case before and after the tax reform
Cristina Ruza y de Paz-Curbera

162/2000 Private rates of return to human capital in Spain: new evidence
F. Barceinas, J. Oliver-Alonso, J.L. Raymond y J.L. Roig-Sabaté

163/2000 El control interno del riesgo. Una propuesta de sistema de límites riesgo neutral
Mariano González Sánchez

164/2001 La evolución de las políticas de gasto de las Administraciones Públicas en los años 90
Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells

165/2001 Bank cost efficiency and output specification
Emili Tortosa-Ausina

166/2001 Recent trends in Spanish income distribution: A robust picture of falling income inequality
Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara

167/2001 Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF
Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández

168/2001 The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some European Countries
Mónica Melle-Hernández

169/2001 La política de cohesión de la UE ampliada: la perspectiva de España
Ismael Sanz Labrador

170/2002 Riesgo de liquidez de Mercado
Mariano González Sánchez

171/2002 Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas de capitalización individual: medida y comparación internacional.
José Enrique Devesa Carpio, Rosa Rodríguez Barrera, Carlos Vidal Meliá

172/2002 La encuesta continua de presupuestos familiares (1985-1996): descripción, representatividad y propuestas de metodología para la explotación de la información de los ingresos y el gasto. Llorente Pou, Joaquín Alegre

173/2002 Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de credito.
Rosa Puertas, María Bonilla, Ignacio Olmeda
<table>
<thead>
<tr>
<th>Ano</th>
<th>Título</th>
<th>Autor/Coautores</th>
</tr>
</thead>
</table>
| 174/2002 | Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.
José Vicente Blanes Cristóbal | |
| 175/2003 | La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos.
Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González | |
Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey
| 177/2003 | Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.
Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey | |
| 178/2003 | Factors explaining the interest margin in the banking sectors of the European Union.
Joaquín Maudos y Juan Fernández Guevara | |
| 179/2003 | Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España.
Mónica Melle Hernández | |
Yener Altunbas, Santiago Carbó y Phil Molyneux | |
| 181/2003 | The Euro effect on the integration of the European stock markets.
Mónica Melle Hernández | |
| 182/2004 | In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition.
Bruno Cassiman, Reinhilde Veugelers | |
| 183/2004 | Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua.
Mª Ángeles García Valiñas | |
| 184/2004 | Estimación de la economía sumergida en España: un modelo estructural de variables latentes.
Ángel Alañón Pardo, Miguel Gómez de Antonio | |
| 185/2004 | Causas políticas y consecuencias sociales de la corrupción.
Joan Oriol Prats Cabrera | |
| 186/2004 | Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.
Andrés Guiral Contreras and José A. Gonzalo Angulo | |
Marta Tolentino García-Abadillo y Antonio Díaz Pérez | |
| 188/2004 | Does market competition make banks perform well?.
Mónica Melle | |
| 189/2004 | Efficiency differences among banks: external, technical, internal, and managerial
Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso | |
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en España: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodríguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>Precio de la tierra con presión urbana: un modelo para España</td>
<td>Esther Decimavilla, Carlos San Juan y Stefan Sperlich</td>
</tr>
<tr>
<td>206</td>
<td>Interregional migration in Spain: a semiparametric analysis</td>
<td>Adolfo Maza y José Villaverde</td>
</tr>
<tr>
<td>207</td>
<td>Productivity growth in European banking</td>
<td>Carmen Murillo-Melchhor, José Manuel Pastor y Emili Tortosa-Ausina</td>
</tr>
<tr>
<td>208</td>
<td>Explaining Bank Cost Efficiency in Europe: Environmental and Productivity Influences</td>
<td>Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso</td>
</tr>
<tr>
<td>209</td>
<td>La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia</td>
<td>Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar</td>
</tr>
<tr>
<td>210</td>
<td>Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español</td>
<td>Begoña Font-Belaire y Alfredo Juan Grau-Grau</td>
</tr>
<tr>
<td>211</td>
<td>Permanent income, convergence and inequality among countries</td>
<td>José M. Pastor and Lorenzo Serrano</td>
</tr>
<tr>
<td>212</td>
<td>The Latin Model of Welfare: Do ’Insertion Contracts’ Reduce Long-Term Dependence?</td>
<td>Luis Ayala and Magdalena Rodriguez</td>
</tr>
<tr>
<td>213</td>
<td>The effect of geographic expansion on the productivity of Spanish savings banks</td>
<td>Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina</td>
</tr>
<tr>
<td>214</td>
<td>Dynamic network interconnection under consumer switching costs</td>
<td>Ángel Luis López Rodríguez</td>
</tr>
<tr>
<td>215</td>
<td>La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa</td>
<td>Marta Rahona López</td>
</tr>
<tr>
<td>216</td>
<td>The valuation of spanish ipos: efficiency analysis</td>
<td>Susana Álvarez Otero</td>
</tr>
<tr>
<td>217</td>
<td>On the generation of a regular multi-input multi-output technology using parametric output distance functions</td>
<td>Sergio Perelman and Daniel Santín</td>
</tr>
<tr>
<td>218</td>
<td>La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España</td>
<td>Gonzalo Caballero Miguez</td>
</tr>
<tr>
<td>219</td>
<td>Determinants of bank market structure: Efficiency and political economy variables</td>
<td>Francisco González</td>
</tr>
<tr>
<td>220</td>
<td>Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance</td>
<td>David Abad Díaz</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2005</td>
<td>Tendencia post-anuncio de resultados contables: evidencia para el mercado español</td>
<td>Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García</td>
</tr>
<tr>
<td>2005</td>
<td>Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing</td>
<td>Waymond Rodgers and Andrés Guiral</td>
</tr>
<tr>
<td>2005</td>
<td>The effects of ownership structure and board composition on the audit committee activity: Spanish evidence</td>
<td>Carlos Fernández Méndez and Rubén Arrondo García</td>
</tr>
<tr>
<td>2005</td>
<td>Cross-country determinants of bank income smoothing by managing loan loss provisions</td>
<td>Ana Rosa Fonseca and Francisco González</td>
</tr>
<tr>
<td>2005</td>
<td>Region versus Industry effects: volatility transmission</td>
<td>Pilar Soriano Felipe and Francisco J. Climent Diranzo</td>
</tr>
<tr>
<td>2005</td>
<td>On zero lower bound traps: a framework for the analysis of monetary policy in the ‘age’ of central banks</td>
<td>Alfonso Palacio-Vera</td>
</tr>
<tr>
<td>2005</td>
<td>Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal</td>
<td>M. Carmen Almansa Sáez and Javier Calatrava Requena</td>
</tr>
<tr>
<td>2005</td>
<td>Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?</td>
<td>Santiago Carbó Valverde and Rafael López del Paso</td>
</tr>
<tr>
<td>2006</td>
<td>Bank Ownership And Informativeness Of Earnings.</td>
<td>Víctor M. González</td>
</tr>
</tbody>
</table>

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes. Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo. Inés P. Murillo.

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries?. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”. Luis Muga and Rafael Santamaria.

Desigualdad regional en España: renta permanente versus renta corriente.
José M. Pastor, Empar Pons y Lorenzo Serrano

Environmental implications of organic food preferences: an application of the impure public goods model.
Ana Maria Aldanondo-Ochoa y Carmen Almansa-Sáez

Family tax credits versus family allowances when labour supply matters: Evidence for Spain.
José Felix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Asimetrías en volatilidad, beta y contagios entre las empresas grandes y pequeñas cotizadas en la bolsa española.
Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Crisis y Reforma del Pacto de Estabilidad y Crecimiento. Las Limitaciones de la Política Económica en Europa.
Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguero.

El cumplimiento del Protocolo de Kyoto para los hogares españoles: el papel de la imposición sobre la energía.
Desiderio Romero-Jordán y José Félix Sanz-Sanz.

Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich
A. García-Lorenzo y Jesús López-Rodriguez

272/2006Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luís Muga y Rafael Santamaría

273/2006Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría
de opciones reales
Gracia Rubio Martín

274/2006Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006Study of the influence of the voters’ political culture on vote decision through the simulation of a
political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un
modelo de equilibrio general
Robert Meneu Gaya

278/2006El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006Three measures of returns to education: An illustration for the case of Spain
María Arrazola y José de Hevia

281/2006Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

283/2006Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

284/2006Foreign Capital and Business Strategies: a comparative analysis of urban transport in Madrid and
Barcelona, 1871-1925
Alberte Martínez López

285/2006Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
Globalisation and the Composition of Government Spending: An analysis for OECD countries
Norman Gemmell, Richard Kneller and Ismael Sanz

La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico
Fernando Hernández Martínez

Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain
Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso

Una teoría sobre la contribución de la función de compras al rendimiento empresarial
Javier González Benito

Agility drivers, enablers and outcomes: empirical test of an integrated agile manufacturing model
Daniel Vázquez-Bustelo, Lucía Avella and Esteban Fernández

Testing the parametric vs the semiparametric generalized mixed effects models
Maria José Lombardía and Stefan Sperlich

Nonlinear dynamics in energy futures
Mariano Matilla-García

Estimating Spatial Models By Generalized Maximum Entropy Or How To Get Rid Of W
Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez

Optimización fiscal en las transmisiones lucrativas: análisis metodológico
Félix Domínguez Barrero

La situación actual de la banca online en España
Francisco José Climent Diranzo y Alexandre Momparler Pechuán

Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas
Javier González Benito y Isabel Suárez González

A Parametric Model to Estimate Risk in a Fixed Income Portfolio
Pilar Abad and Sonia Benito

Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros
Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé

Assessing the enlargement and deepening of regional trading blocs: The European Union case
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano

¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español
Vanesa Solís Rodríguez y Manuel González Díaz

On the Finite-Sample Biases in Nonparametric Testing for Variance Constancy
Paulo M.M. Rodrigues and Antonio Rubia

Spain is Different: Relative Wages 1989-98
José Antonio Carrasco Gallego
Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor

Agricultural Productivity in the European Regions: Trends and Explanatory Factors
Roberto Ezcurra, Belen Iráizoz, Pedro Pascual and Manuel Rapún

Long-run Regional Population Divergence and Modern Economic Growth in Europe: a Case Study of Spain
Maria Isabel Ayuda, Fernando Collantes and Vicente Pinilla

Financial Information effects on the measurement of Commercial Banks' Efficiency
Borja Amor, Maria T. Tascón and José L. Fanjul

Neutralidad e incentivos de las inversiones financieras en el nuevo IRPF
Félix Domínguez Barrero

The Effects of Corporate Social Responsibility Perceptions on The Valuation of Common Stock
Waymond Rodgers, Helen Choy and Andres Guiral-Contreras

Country Creditor Rights, Information Sharing and Commercial Banks’ Profitability Persistence across the world
Borja Amor, Maria T. Tascón and José L. Fanjul

¿Es Relevante el Déficit Corriente en una Unión Monetaria? El Caso Español
Javier Blanco González y Ignacio del Rosal Fernández

The Impact of Credit Rating Announcements on Spanish Corporate Fixed Income Performance: Returns, Yields and Liquidity
Pilar Abad, Antonio Díaz and M. Dolores Robles

Indicadores de Lealtad al Establecimiento y Formato Comercial Basados en la Distribución del Presupuesto
Cesar Augusto Bustos Reyes y Óscar González Benito

Migrants and Market Potential in Spain over The XXth Century: A Test Of The New Economic Geography
Daniel A. Tirado, Jordi Pons, Elisenda Paluzie and Javier Silvestre

El Impacto del Coste de Oportunidad de la Actividad Emprendedora en la Intención de los Ciudadanos Europeos de Crear Empresas
Luis Miguel Zapico Aldeano

Los belgas y los ferrocarriles de via estrecha en España, 1887-1936
Alberte Martínez López

Competición política bipartidista. Estudio geométrico del equilibrio en un caso ponderado
Isabel Lillo, Mª Dolores López y Javier Rodrigo

Human resource management and environment management systems: an empirical study
Mª Concepción López Fernández, Ana Mª Serrano Bedía and Gema García Piqueres
Iñaki Iriarte-Goñi and María Isabel Ayuda Bosque

324/2007 New evidence on long-run monetary neutrality.
J. Cunado, L.A. Gil-Alana and F. Perez de Gracia

325/2007 Monetary policy and structural changes in the volatility of us interest rates.
Juncal Cuñado, Javier Gomez Biscarri and Fernando Perez de Gracia

326/2007 The productivity effects of intrafirm diffusion.
Lucio Fuentelsaz, Jaime Gómez and Sergio Palomas

327/2007 Unemployment duration, layoffs and competing risks.
J.M. Arranz, C. García-Serrano and L. Toharia

328/2007 El grado de cobertura del gasto público en España respecto a la UE-15
Nuria Rueda, Begoña Barruso, Carmen Calderón y Mª del Mar Herrador

329/2007 The Impact of Direct Subsidies in Spain before and after the CAP'92 Reform
Carmen Murillo, Carlos San Juan and Stefan Sperlich

330/2007 Determinants of post-privatisation performance of Spanish divested firms
Laura Cabeza García and Silvia Gómez Ansón

331/2007 ¿Por qué deciden diversificar las empresas españolas? Razones oportunistas versus razones económicas
Almudena Martínez Campillo

332/2007 Dynamical Hierarchical Tree in Currency Markets
Juan Gabriel Brida, David Matesanz Gómez and Wiston Adrián Risso

333/2007 Los determinantes sociodemográficos del gasto sanitario. Análisis con microdatos individuales
Ana María Angulo, Ramón Barberán, Pilar Egea y Jesús Mur

334/2007 Why do companies go private? The Spanish case
Inés Pérez-Soba Aguilar

335/2007 The use of gis to study transport for disabled people
Verónica Cañal Fernández

336/2007 The long run consequences of M&A: An empirical application
Cristina Bernad, Lucio Fuentelsaz and Jaime Gómez

337/2007 Las clasificaciones de materias en economía: principios para el desarrollo de una nueva clasificación.
Valentín Edo Hernández

338/2007 Reforming Taxes and Improving Health: A Revenue-Neutral Tax Reform to Eliminate Medical and Pharmaceutical VAT
Santiago Álvarez-García, Carlos Pestana Barros y Juan Prieto-Rodriguez

339/2007 Impacts of an iron and steel plant on residential property values
Celia Bilbao-Terol

340/2007 Firm size and capital structure: Evidence using dynamic panel data
Víctor M. González and Francisco González
¿Cómo organizar una cadena hotelera? La elección de la forma de gobierno
Marta Fernández Barcala y Manuel González Díaz

Análisis de los efectos de la decisión de diversificar: un contraste del marco teórico “Agencia-Stewardship”
Almudena Martínez Campillo y Roberto Fernández Gago

Selecting portfolios given multiple eurostoxx-based uncertainty scenarios: a stochastic goal programming approach from fuzzy betas
Enrique Ballestero, Blanca Pérez-Gladish, Mar Arenas-Parra and Amelia Bilbao-Terol

“El bienestar de los inmigrantes y los factores implicados en la decisión de emigrar”
Anastasia Hernández Alemán y Carmelo J. León

Andrea Martínez-Noya and Esteban García-Canal

Diferencias salariales entre empresas públicas y privadas. El caso español
Begoña Cueto y Nuria Sánchez- Sánchez

Effects of Fiscal Treatments of Second Home Ownership on Renting Supply
Celia Bilbao Terol and Juan Prieto Rodriguez

Auditors’ ethical dilemmas in the going concern evaluation
Andres Guiral, Waymond Rodgers, Emiliano Ruiz and Jose A. Gonzalo

Convergencia en capital humano en España. Un análisis regional para el periodo 1970-2004
Susana Morales Sequera y Carmen Pérez Esparrells

Socially responsible investment: mutual funds portfolio selection using fuzzy multiobjective programming
Blanca Mª Pérez-Gladish, Mar Arenas-Parra , Amelia Bilbao-Terol and Mª Victoria Rodríguez-Uría

Persistencia del resultado contable y sus componentes: implicaciones de la medida de ajustes por devengo
Raúl Iñiguez Sánchez y Francisco Poveda Fuentes

Wage Inequality and Globalisation: What can we Learn from the Past? A General Equilibrium Approach
Concha Betrán, Javier Ferri and Maria A. Pons

Eficacia de los incentivos fiscales a la inversión en I+D en España en los años noventa
Desiderio Romero Jordán y José Félix Sanz Sanz

Convergencia regional en renta y bienestar en España
Robert Meneu Gaya

Tributación ambiental: Estado de la Cuestión y Experiencia en España
Ana Carrera Poncelsa

Salient features of dependence in daily us stock market indices
Luis A. Gil-Alana, Juncal Cuñado and Fernando Pérez de Gracia

La educación superior: ¿un gasto o una inversión rentable para el sector público?
Inés P. Murillo y Francisco Pedraja
358/2007 Effects of a reduction of working hours on a model with job creation and job destruction
Emilio Domínguez, Miren Ullibarri y Idoya Zabaleta

359/2007 Stock split size, signaling and earnings management: Evidence from the Spanish market
José Yagüe, J. Carlos Gómez-Sala and Francisco Poveda-Fuentes

360/2007 Modelización de las expectativas y estrategias de inversión en mercados de derivados
Begoña Font-Belaire

361/2008 Trade in capital goods during the golden age, 1953-1973
Mª Teresa Sanchis and Antonio Cubel

362/2008 El capital económico por riesgo operacional: una aplicación del modelo de distribución de pérdidas
Enrique José Jiménez Rodríguez y José Manuel Feria Domínguez

363/2008 The drivers of effectiveness in competition policy
Joan-Ramon Borrell and Juan-Luis Jiménez

364/2008 Corporate governance structure and board of directors remuneration policies: evidence from Spain
Carlos Fernández Méndez, Rubén Arrondo García and Enrique Fernández Rodríguez

365/2008 Beyond the disciplinary role of governance: how boards and donors add value to Spanish foundations
Pablo De Andrés Alonso, Valentín Azofra Palenzuela y M. Elena Romero Merino

366/2008 Complejidad y perfeccionamiento contractual para la contención del oportunismo en los acuerdos de franquicia
Vanessa Solís Rodríguez y Manuel González Díaz

367/2008 Inestabilidad y convergencia entre las regiones europeas
Jesús Mur, Fernando López y Ana Angulo

368/2008 Análisis espacial del cierre de explotaciones agrarias
Ana Aldanondo Ochoa, Carmen Almansa Sáez y Valero Casanovas Oliva

369/2008 Cross-Country Efficiency Comparison between Italian and Spanish Public Universities in the period 2000-2005
Tommaso Agasisti and Carmen Pérez Esparrells

370/2008 El desarrollo de la sociedad de la informacion en España: Un análisis por comunidades autónomas
María Concepción García Jiménez y José Luis Gómez Barroso

371/2008 El medioambiente y los objetivos de fabricación: un análisis de los modelos estratégicos para su consecución
Lucía Avella Camarero, Esteban Fernández Sánchez y Daniel Vázquez-Bustelo

372/2008 Influence of bank concentration and institutions on capital structure: New international evidence
Víctor M. González and Francisco González

373/2008 Generalización del concepto de equilibrio en juegos de competición política
Mª Dolores López González y Javier Rodrigo Hitos

374/2008 Smooth Transition from Fixed Effects to Mixed Effects Models in Multi-level regression Models
María José Lombardía and Stefan Sperlich
375/2008 A Revenue-Neutral Tax Reform to Increase Demand for Public Transport Services
Carlos Pestana Barros and Juan Prieto-Rodriguez

376/2008 Measurement of intra-distribution dynamics: An application of different approaches to the European regions
Adolfo Maza, María Hierro and José Villaverde

377/2008 Migración interna de extranjeros y ¿nueva fase en la convergencia?
María Hierro y Adolfo Maza

378/2008 Efetos de la Reforma del Sector Eléctrico: Modelización Teórica y Experiencia Internacional
Ciro Eduardo Bazán Navarro

379/2008 A Non-Parametric Independence Test Using Permutation Entropy
Mariano Matilla-García and Manuel Ruiz Marín

380/2008 Testing for the General Fractional Unit Root Hypothesis in the Time Domain
Uwe Hassler, Paulo M.M. Rodrigues and Antonio Rubia

381/2008 Multivariate gram-charlier densities
Esther B. Del Brio, Trino-Manuel Ñíguez and Javier Perote

382/2008 Analyzing Semiparametrically the Trends in the Gender Pay Gap - The Example of Spain
Ignacio Moral-Arce, Stefan Sperlich, Ana I. Fernández-Sainz and Maria J. Roca

383/2008 A Cost-Benefit Analysis of a Two-Sided Card Market
Santiago Carbó Valverde, David B. Humphrey, José Manuel Liñares-Zegarra and Francisco Rodriguez Fernandez

384/2008 A Fuzzy Bicriteria Approach for Journal Deselection in a Hospital Library
M. L. López-Avello, M. V. Rodriguez-Uría, B. Pérez-Gladish, A. Bilbao-Terol, M. Arenas-Parra

385/2008 Valoración de las grandes corporaciones farmacéuticas, a través del análisis de sus principales intangibles, con el método de opciones reales
Gracia Rubio Martin y Prosper Lamothe Fernández

386/2008 El marketing interno como impulsor de las habilidades comerciales de las pyme españolas: efectos en los resultados empresariales
Mª Leticia Santos Vijande, Mª José Sanzo Pérez, Nuria García Rodríguez y Juan A. Trespalacios Gutiérrez

387/2008 Understanding Warrants Pricing: A case study of the financial market in Spain
David Abad y Belén Nieto

388/2008 Aglomeración espacial, Potencial de Mercado y Geografía Económica: Una revisión de la literatura
Jesús López-Rodríguez y J. Andrés Faiña

389/2008 An empirical assessment of the impact of switching costs and first mover advantages on firm performance
Jaime Gómez, Juan Pablo Maícas

390/2008 Tender offers in Spain: testing the wave
Ana R. Martínez-Cañete y Inés Pérez-Soba Aguilar
391/2008 La integración del mercado español a finales del siglo XIX: los precios del trigo entre 1891 y 1905
Mariano Matilla García, Pedro Pérez Pascual y Basilio Sanz Carnero

392/2008 Cuando el tamaño importa: estudio sobre la influencia de los sujetos políticos en la balanza de bienes y servicios
Alfonso Echazarra de Gregorio

393/2008 Una visión cooperativa de las medidas ante el posible daño ambiental de la desalación
Borja Monteño Sanz

394/2008 Efectos externos del endeudamiento sobre la calificación crediticia de las Comunidades Autónomas
Andrés Leal Marcos y Julio López Laborda

395/2008 Technical efficiency and productivity changes in Spanish airports: A parametric distance functions approach
Beatriz Tovar & Roberto Rendeiro Martín-Cejas

396/2008 Network analysis of exchange data: Interdependence drives crisis contagion
David Matesanz Gómez & Guillermo J. Ortega

397/2008 Explaining the performance of Spanish privatised firms: a panel data approach
Laura Cabeza García and Silvia Gomez Anson

398/2008 Technological capabilities and the decision to outsource R&D services
Andrea Martínez-Noya and Esteban García-Canal

399/2008 Hybrid Risk Adjustment for Pharmaceutical Benefits
Manuel García-Goñi, Pere Ibern & José María Inoriza

400/2008 The Team Consensus–Performance Relationship and the Moderating Role of Team Diversity
José Henrique Dieguez, Javier González-Benito and Jesús Galende

401/2008 The institutional determinants of CO₂ emissions: A computational modelling approach using Artificial Neural Networks and Genetic Programming
Marcos Álvarez-Díaz, Gonzalo Caballero Miguez and Mario Solíño

402/2008 Alternative Approaches to Include Exogenous Variables in DEA Measures: A Comparison Using Monte Carlo
José Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro and Daniel Santín-González

403/2008 Efecto diferencial del capital humano en el crecimiento económico andaluz entre 1985 y 2004: comparación con el resto de España
Mª del Pópulo Pablo-Romero Gil-Delgado y Mª de la Palma Gómez-Calero Valdés

404/2008 Análisis de fusiones, variaciones conjeturales y la falacia del estimador en diferencias
Juan Luis Jiménez y Jordi Perdiguero

405/2008 Política fiscal en la unión monetaria: ¿basta con los estabilizadores automáticos?
Jorge Uxó González y Mª Jesús Arroyo Fernández

406/2008 Papel de la orientación emprendedora y la orientación al mercado en el éxito de las empresas
Óscar González-Benito, Javier González-Benito y Pablo A. Muñoz-Gallego

407/2008 La presión fiscal por impuesto sobre sociedades en la unión europea
Elena Fernández Rodríguez, Antonio Martínez Arias y Santiago Álvarez García
408/2008 The environment as a determinant factor of the purchasing and supply strategy: an empirical analysis
Dr. Javier González-Benito y MS Duilio Reis da Rocha

409/2008 Cooperation for innovation: the impact on innovatory effort
Gloria Sánchez González and Liliana Herrera

410/2008 Spanish post-earnings announcement drift and behavioral finance models
Carlos Forner and Sonia Sanabria

411/2008 Decision taking with external pressure: evidence on football manager dismissals in Argentina and their consequences
Ramón Flores, David Forrest and Juan de Dios Tena

Raúl Serrano y Vicente Pinilla

413/2008 Voter heuristics in Spain: a descriptive approach elector decision
José Luis Sáez Lozano and Antonio M. Jaime Castillo

414/2008 Análisis del efecto área de salud de residencia sobre la utilización y acceso a los servicios sanitarios en la Comunidad Autónoma Canaria
Ignacio Abásolo Alessón, Lidia García Pérez, Raquel Aguiar Ibáñez y Asier Amador Robayna

415/2008 Impact on competitive balance from allowing foreign players in a sports league: an analytical model and an empirical test
Ramón Flores, David Forrest & Juan de Dios Tena

416/2008 Organizational innovation and productivity growth: Assessing the impact of outsourcing on firm performance
Alberto López

417/2008 Value Efficiency Analysis of Health Systems
Eduardo González, Ana Cárabella & Juan Ventura

418/2008 Equidad en la utilización de servicios sanitarios públicos por comunidades autónomas en España: un análisis multinivel
Ignacio Abásolo, Jaime Pinilla, Miguel Negrín, Raquel Aguiar y Lidia García

419/2008 Piedras en el camino hacia Bolonia: efectos de la implantación del EEES sobre los resultados académicos
Carmen Florido, Juan Luis Jiménez e Isabel Santana

420/2008 The welfare effects of the allocation of airlines to different terminals
M. Pilar Socorro and Ofelia Betancor

421/2008 How bank capital buffers vary across countries. The influence of cost of deposits, market power and bank regulation
Ana Rosa Fonseca and Francisco González

422/2008 Analysing health limitations in Spain: an empirical approach based on the European Community household panel
Marta Pascual and David Cantarero
Regional productivity variation and the impact of public capital stock: an analysis with spatial interaction, with reference to Spain
Miguel Gómez-Antonio and Bernard Fingleton

Average effect of training programs on the time needed to find a job. The case of the training schools program in the south of Spain (Seville, 1997-1999).
José Manuel Cansino Muñoz-Repiso and Antonio Sánchez Braza

Medición de la eficiencia y cambio en la productividad de las empresas distribuidoras de electricidad en Perú después de las reformas
Raúl Pérez-Reyes y Beatriz Tovar

Acercando posturas sobre el descuento ambiental: sondeo Delphi a expertos en el ámbito internacional
Carmen Almansa Sáez y José Miguel Martínez Paz

Determinants of abnormal liquidity after rating actions in the Corporate Debt Market
Pilar Abad, Antonio Díaz and M. Dolores Robles

Export led-growth and balance of payments constrained. New formalization applied to Cuban commercial regimes since 1960
David Matesanz Gómez, Guadalupe Fugarolas Álvarez-Ude and Isis Mañalich Gálvez

La deuda implícita y el desequilibrio financiero-actuarial de un sistema de pensiones. El caso del régimen general de la seguridad social en España
José Enrique Devesa Carpio y Mar Devesa Carpio

Efectos de la descentralización fiscal sobre el precio de los carburantes en España
Desiderio Romero Jordán, Marta Jorge García-Inés y Santiago Álvarez García

Euro, firm size and export behavior
Silviano Esteve-Pérez, Salvador Gil-Pareja, Rafael Llorca-Vivero and José Antonio Martínez-Serrano

Does social spending increase support for free trade in advanced democracies?
Ismael Sanz, Ferran Martínez i Coma and Federico Steinberg

Potencial de Mercado y Estructura Espacial de Salarios: El Caso de Colombia
Jesús López-Rodríguez y María Cecilia Acevedo

Persistence in Some Energy Futures Markets
Juncal Cunado, Luis A. Gil-Alana and Fernando Pérez de Gracia

La inserción financiera externa de la economía francesa: inversores institucionales y nueva gestión empresarial
Ignacio Álvarez Peralta

¿Flexibilidad o rigidez salarial en España?: un análisis a escala regional
Ignacio Moral Arce y Adolfo Maza Fernández

Intangible relationship-specific investments and the performance of r&d outsourcing agreements
Andrea Martínez-Noya, Esteban García-Canal & Mauro F. Guillén

Friendly or Controlling Boards?
Pablo de Andrés Alonso & Juan Antonio Rodríguez Sanz
439/2009 La sociedad Trenor y Cía. (1838-1926): un modelo de negocio industrial en la España del siglo XIX
Amparo Ruiz Llopis

440/2009 Continental bias in trade
Salvador Gil-Pareja, Rafael Llorca-Vivero & José Antonio Martínez Serrano

441/2009 Determining operational capital at risk: an empirical application to the retail banking
Enrique José Jiménez-Rodríguez, José Manuel Feria-Domínguez & José Luis Martín-Marín

442/2009 Costes de mitigación y escenarios post-kyoto en España: un análisis de equilibrio general para España
Mikel González Ruiz de Eguino

443/2009 Las revistas españolas de economía en las bibliotecas universitarias: ranking, valoración del indicador y del sistema
Valentín Edo Hernández

444/2009 Convergencia económica en España y coordinación de políticas económicas. un estudio basado en la estructura productiva de las CC.AA.
Ana Cristina Mingorance Arnáiz

445/2009 Instrumentos de mercado para reducir emisiones de co2: un análisis de equilibrio general para España
Mikel González Ruiz de Eguino

446/2009 El comercio intra e inter-regional del sector Turismo en España
Carlos Llano y Tamara de la Mata

447/2009 Efectos del incremento del precio del petróleo en la economía española: Análisis de cointegración y de la política monetaria mediante reglas de Taylor
Fernando Hernández Martínez

448/2009 Bologna Process and Expenditure on Higher Education: A Convergence Analysis of the EU-15
T. Agasisti, C. Pérez Esparrells, G. Catalano & S. Morales

449/2009 Global Economy Dynamics? Panel Data Approach to Spillover Effects
Gregory Daco, Fernando Hernández Martínez & Li-Wu Hsu

450/2009 Pricing levered warrants with dilution using observable variables
Isabel Abínzano & Javier F. Navas