De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros.
Las opiniones son responsabilidad de los autores.
Dynamical Hierarchical Tree in Currency Markets

Juan Gabriel Brida† David Matesanz Gómez‡ and Wiston Adrián Risso§

Abstract

In this paper we introduce a new method to describe dynamical patterns of the real exchange rate movements time series and to analyze contagion in currency crisis. The method combines the tools of Symbolic Time Series Analysis [19] with the nearest neighbor single linkage clustering algorithm [35]. Data symbolization allows to obtain a metric distance between two different time series that is used to construct an ultrametric distance. By analyzing the data of various countries, we derive a hierarchical organization, constructing minimal-spanning and hierarchical trees. From these trees we detect different clusters of countries according to their proximity. We show that the derived clusters corresponds with the geographical location of the countries. The obtained classification of countries can be used to study the contagion phenomena in currency crisis.

Keywords: Symbolic Time Series Analysis; real exchange rate; hierarchical tree

JEL classification: C10, C14, F31.

1 Introduction

There is no doubt that currency markets are extremely important. As highlighted by [37] they represent the largest market in the world, having daily transactions totalling trillions of dollars, exceeding the yearly GDP of most countries. This global integration of capital markets has accelerated since the early 1990s, as illustrated, for example, by the rapid simultaneous increase in foreign assets and liabilities. The trend toward larger external assets and liabilities has been particularly relevant for industrial countries, where, relative to output, both average external assets and liabilities about tripled between

*Our research was supported by the Free University of Bolzano (project "Dynamical Regimes in Economics: modelling and statistical tools").
†School of Economics and Management - Free University of Bolzano, Italy. E-mail adress: JuanGabriel.Brida@unibz.it Tel.: +39 0471 013492, Fax: +39 0471 013 009
‡Applied Economics Department - University of Oviedo, Spain. E-mail adress: matesanz-david@uniovi.es, Tel.: +34 985104847, Fax: +34 985105050
§Department of Economics - University of Siena, Italy. E-mail adress: risso@unisi.it. Tel.: +39 0577 235058, Fax: +39 0577 232661
1990 and 2003. In emerging markets global trend has been similar, unless much smaller than in industrial countries. Hence it is not surprising the high interest both in predicting currency crises and understanding how a country without any apparent problem can be contagious.

European Monetary System (EMS) speculative attacks in 1992, "Tequila crisis" originated in Mexico in December 1994 and collapse of southern Asian currencies from mid 1997 to first months 1998; Brazilian currency devaluation on January 1999 and Argentine currency board collapse and external debt default on January 2002, are the most relevant episodes in the 1990s generating interest in both academic and policy circles in the potential causes on symptoms of currency crisis and contagion.

Precisely the objective of this work is to understand the structure and dynamics of cross-country exchange rate liaisons to inquiry on the contagion phenomenon in currency markets. [40] use Minimal Spanning Tree (MST) methodology in order to detect clusters of countries which could be affected when a crisis occurs.\footnote{Recently, the correlations between economic data have been studied by using techniques and tools formerly used by physicists. See [5] (where the hierarchical structure of a portfolio of US stocks is constructed using a metric distance between stocks), [7] and [34].} Constructing a cross-country hierarchical structure they detect three groups of countries which are clearly divided in regional dimension (EU, Asian countries, and Latin-American). In this paper we will study the same problem, but applying a different methodology and including cross-country analysis of the structures and linkages when countries are swimming into more volatile periods and currency crises events. We will combine the Symbolic Time Series tools with the nearest neighbor single linkage clustering algorithm in order to construct different MST that can be used to represent the evolution of the phenomena. The theoretical setup of Symbolic Time Series Analysis is based on [19], [10] and [11]. In the first stage we introduce a partition of the space of states. Using this partition, all the values of the time series data are transformed into a finite string of symbols. This converts the original signal into a symbolic sequence, from where symbolic sequence statistics can be computed. In particular we apply concepts from information theory and symbolic dynamics to process the symbolic sequence.

The paper is organized as follows. In the next section we briefly review the theoretical literature in currency crisis and contagion and we state some possible causes of contagion during currency crisis. In the section 3 we introduce the Minimal Spanning Tree, the ultrametric distance and the hierarchical tree, constructed from the Pearson correlation coefficient. Section 4 describes the data, introduces a criteria for data symbolization and the Symbolic Time Series tools. Next, by analyzing the data of various countries, we derive a hierarchical organization, constructing minimal-spanning and hierarchical trees constructed from different distances. From these trees we detect different clusters of countries according to their proximity. In the last section we draw our conclusions and present some future lines of studying.
2 Theoretical Literature about Currency Crisis and Contagion

Nowadays theoretical literature in currency crisis continues to grow but we can recognize three generation of models. First generation-models have flourished following seminal Krugman’s paper [32]. This literature establishes that crises were caused by weak "economic fundamentals". It was proposed that assuming fixed exchange rate, both excessively expansionary fiscal and monetary policies would result in a persistent loss of international reserves provoking speculative attacks against the currency and finally forcing the authorities to abandon the exchange rate value. Krugman’s model has been extended to incorporate deviations from purchasing power parity, capital controls, uncertainty about monetary and fiscal policies and portfolio optimization by investors. However these kind of models only worked explaining few cases of countries with histories of high inflation (Mexico and Chile in 1970s; France and Italy in the early 1980s). In fact [21] highlights that fundamentals did not predict the timing of the 1992 attack on the EMS.

This literature marks that crisis may develop without a significant change in fundamentals departing from assumptions and prediction of canonical Krugman model. For this reason, in the 1990s appear a second generation of models based on Obstfeld’s model [39]. Ozkan and Sutherland [41] present a model where authorities have an objective function depending positively on keeping the exchange rate fixed and negatively on the deviations of output from a certain target level. Hence an increase in foreign interests rate lead to higher domestic interest rates and lower levels of output, making it more costly for the authorities to maintain the parity. This model then highlights a trade-off between output targets and monetary policy. According to [20] the prediction of this model are consistent with European experience in 1992-93, when speculative attacks coincided with a deepening recession that aggravated existing levels of unemployment. [36] also concludes that high unemployment increased the perceived probability that government would abandon the sterling parity in the UK.

According to [45] first generation and second-generation models focus on different aspects of a currency crisis. The first generation models focus less on the underlying reasons for the speculative attack, for instance it is not clear why the government is financing its budget deficit by printing money. This kind of models care more on describing the speculative attack process.

The second generation models focus on a description of the underlying reasons for the speculative attack. Note that they take into account the cost-benefit analysis made by the government.

However second generation models were not successful explaining the East Asia Crisis. Even more, Sachs [46] asserts that there was no "fundamental" reason for Asia’s financial calamity except financial panic itself. Hence a third generation model surged also known as "twin crisis", these models propose that a weak bank sector can precipitate the beginning of both currency and financial
crises.

Finally (and maybe more relevant in the present work), some papers have focused on contagion. Some recent crises concern about contagion. EMS crises of 1992-93, "Tequila Crisis" in Latin America 1994-95, the "Asian flu" starting with the crisis in Thailand. The spread is almost always regional however the August 1998 Russian crisis spread to Brazil in the fall, triggering the January 1999 crisis. According to Tirole [48] there are several hypothesis for the contagious aspects of crisis. First hypothesis of contagion is known as portfolio rebalancing hypothesis states that after losing money in one country foreign investors have to readjust their positions in other countries. A second hypothesis is the trading links hypothesis, [24] highlights that devaluation in one country leads its trading partners to devalue in order to avoid a loss of competitiveness.

A third hypothesis relates to the existence of common shocks (for instance: rise in interest rates, increase in price of oil) although in this cases there is not systematic effect so to speak, the crisis exhibit a strong correlation. Finally the fourth hypothesis is the change in expectations. Investors realize the lack of solidity of certain types of economies or the unwillingness of the IMF to help restructure the debt.

In general, explanation theories of contagion have been divided in two groups by [22] and [23]: crises-contingent and non-crises-contingent theories. In crises-contingent models it is assume that the transmission mechanisms change after a shock or, to put it another way, the behaviour of investors is different after a crises and therefore cross-market linkages increases after a shock among countries. This can occur due to changes in investors’ sentiment or herding behaviour. In non-crises-contingent models it is assume that any increase in cross-market correlations after a shock is a continuation of previous and stable links among countries and, so, the transmission mechanism is the same during both crises and non-crises periods. These linkages are commercial, financial and/or institutional liaisons among countries.

Related to this division, there is an ongoing empirical debate around crises and non-crises contingent explanations of contagion. The stress of debate is focused then on the difference between interdependence (non-crises-contingent models) and contagion, or pure contagion, (crises-contingent models). Many other works have tried to make progress on the debate by using new methodologies; some of them have found evidence of contagion, for instance [27] find evidence of contagion between Thailand and Indonesia equity markets during the Asian financial crises by estimating correlations between the slopes in a regression of pairs of financial variables. [26] find evidence of contagion in developed countries and find evidence of interdependence in Latin American countries. [17] use conditional correlation analysis and find evidence of contagion for most pair of countries during the Asian crises; moreover they find strong evidence of interdependence among Asian countries during tranquil times. [18] find some contagion effects and some interdependence effects on the Hong Kong stock market crisis of October 1997 as a case study. [16] find no evidence of contagion in Mexican and Asian crises but long term interdependence among involved countries.
3 Minimal Spanning Tree and Hierarchical Tree construction

Methodology proposed by Mantegna [34] uses Pearson correlation coefficient as fundamental input which quantifies the degree of similarity between the synchronous time evolution of a pair of variables

$$\rho_{ij} = \frac{\langle Y_i Y_j \rangle - \langle Y_i \rangle \langle Y_j \rangle}{\sqrt{\langle Y_i^2 \rangle - \langle Y_i \rangle^2} \sqrt{\langle Y_j^2 \rangle - \langle Y_j \rangle^2}}$$ \hspace{1cm} (1)$$

where Y_i and Y_j are the real exchange rate of countries i and j. This coefficient is a temporal average performed on all the trading days of the investigated time period. By definition ρ_{ij} can vary from -1 (completely anti-correlation) to 1 (completely correlation). Taking all possible combination of countries it is possible to form the correlation matrix. This is clearly a symmetric matrix with a diagonal of 1 ($\rho_{ii} = 1$). To construct an appropriate taxonomy of currency countries we need a metric distance; i.e., a function d defined for each pair of countries that takes values in \mathbb{R} such that:

1. $d(i, j) \geq 0 \quad \forall i, j$
2. $d(i, j) = 0$ if and only if $i = j$;
3. $d(i, j) = d(j, i) \quad \forall i, j$
4. $d(i, j) \leq d(i, k) + d(k, j)$

As it is well known, function (1) does not verifies all these properties. As in [25], distances between countries can be constructed using the correlation coefficient.

$$d(i, j) = \sqrt{2(1 - \rho_{ij})} \hspace{1cm} (2)$$

This distance is used to determine the Minimal Spanning Tree (MST) connecting the n countries. The MST is progressively constructed by linking all the countries together in a graph characterized by a minimal distance between time series, starting with the shortest distance. This method is the Kruskal’s algorithm and consists of the following steps: In the first step we choose a pair of countries with the nearest distance and connect with a line proportional to the distance. In the second step we also connect a pair with the 2nd nearest distance. In the third step we also connect the nearest pair that is not connected by the same tree. We repeat the third step until all the given countries are connected in a unique tree. The attractive thing of MST is that provides an arrangement of currencies which selects the most relevant connections of each element of the set.

The MST permits to obtain the subdominant ultrametric distance matrix $D^<$. This matrix (see [34]) can be constructed from the ultrametric distance $d^<(i, j)$. The subdominant ultrametric distance $d^<(i, j)$ between i and j is the
maximum value of any Euclidean distance $d(k; l)$ detected by moving in single steps from i to j through the shortest path connecting i and j in the MST. Note that

$$d^c(i, j) \leq \max\{d(i, l), d(l, j)\}$$

(3)

From these trees we can obtain both geometrical (throughout the MST) and taxonomic (throughout the hierarchical tree) information of the correlation present between the elements of the set. Note that the MST (and then the HT) is constructed using the Pearson Correlation coefficient as an input of a measure of distance between the time series. This methodology has demonstrated useful insights on the global structure, taxonomy\(^2\) and hierarchy in the dynamics of the financial data, specially on the stock markets, but also in the exchange markets. (see [40], [34], [30], [38], [6], [8]) This is the point that we will modify in our paper. We will introduce different types of distances that will generate respective MST and HT. In particular, we introduce distances between time series that can be constructed using the tools of Symbolic Time Series Analysis (STSA). Combination of these two methods permit us to characterize the dynamics of the structure and hierarchy of exchange rate dynamics in different regime states and, in so doing, we present a new and visual method for testing contagion in currency crises episodes. In the next section we describe the symbolic methods and we introduce our data set.

4 Symbolic Time Series Analysis

The distinctive element of STSA is the introduction of a discrete partition into the state space. In our case, the state space consists of all the possible values that the returns from real exchange rate may adopt. We start with a given set of measurements \(\{x_1, x_2, \ldots, x_t, \ldots, x_T\}\) that are transformed into symbolic form. This transformation is based on partitioning the state space D into a finite number of regions D_1, D_2, \ldots, D_N. Original measurement x_t is transformed into the symbol $s \in \{1, 2, \ldots, N\}$ if and only if x_t belongs to the region (D_s) labeled by s. This process of transformation of data into a symbolic sequence is called symbolization in the STSA literature and can be done in several ways. Clearly, the detailed features of the resulting symbol series will depend on the specific choice of the partition. See [43], [28], [19], [33] and [4] for a discussion of symbolization methods and the relevance of selecting a good partition. In [28] and [47] some methods to approximate generating partitions from data are presented. In this paper we use the simplest possible partition involving a division of the data range into two parts (a binary partition) determined by a threshold value τ: we transform the sequence of data $\{x_1, x_2, \ldots, x_t, \ldots, x_T\}$ into the sequence of symbols $s_1s_2\ldots s_t$, where $s_t = 1$ if and only if x_t is above the threshold value τ and $s_t = 0$ if and only if x_t is below τ.

In our case we will progressively move the threshold τ testing whether certain structures and dynamics remain.

\(^2\)Originally term taxonomy referred to science of classifying living organisms. Mathematically, a hierarchical taxonomy is a tree structure of classification for a given set of objects.
Let now introduce the data set that will be used in our empirical exercise and the corresponding data symbolization.

4.1 Data

Returns from real exchange rate (RER) are obtained for 28 countries calculated as follows:

\[rRER_i = \frac{RER_i(k + 1) - RER_i(k)}{RER_i(k)} \]

(4)

where \(RER_i(k) \) is the monthly real exchange rate from country \(i \), at month \(k \), and \(rRER_i(k) \) the corresponding return.

Data is obtained from International Financial Statistics in the IMF database available on-line (http://ifs.apdi.net/imf/logon.aspx) and coincides with the monthly data from 1990 to 2002 as in [40]. This will help us to do comparative analysis of both methodologies to construct the MST and the HT. RER is computed as the ratio of domestic consumer price to foreign price proxied by USA consumer price, and the result is multiplied by the nominal exchange rate of the domestic currency with US dollar.

4.2 Data symbolization

As described in [29], when studying currency crisis one of the main variables is the deviation from the trend of real exchange rates. Let \(\mu_i \) be the threshold separating two regimes. At first \(\mu_i \) will be the statistical mean of the \(rRER \) of country \(i \). This represents the trend of real exchange rates. From this remark, we can divide our state space into two sets: the values that are above and below the trend. With this space state partition we will be able to represent the co-movements of pair of countries around the trend of their exchange rate dynamics.

After that we will take different thresholds in order to capture hierarchies and links structures among countries when their currencies are suffered more volatile times and crises episodes. In so doing, our thresholds will be based on the past standard deviation of the exchange rate dynamics. Therefore we will be able to detect if particular structures and dynamics prevail, deducing something about contagion. This determines a binary partition where \(\mu_i \) is the threshold value and each piece of the partition can be viewed as having a particular qualitative dynamics that can be distinguished from the dynamics of the complementary piece. In other words, if we want to represent the dynamics of this phenomena, we have to use two (qualitatively) different models, one for each element of the partition. In this case the system generating the dynamics of the observed data is a multiregime system where we can observe a twofold dynamics, one within a given regime and one across regimes, running at the same time though with different clocks.\(^3\) The former represents the behavior

\(^3\)See [9], [10], [11], [12], [13], [14] and [15] for a detailed expositions about the notion of
within any specific regime, the latter captures and formalizes the concept of
regime switch. Regime changing corresponds to a form of structural change
since it is the very model of the system that is changing. To study structural
changes in multiregime models, we can focus our attention on this dynamics
across regimes (we call it regime dynamics). Regime dynamics is defined on
the finite set of regimes and then we only need two symbols to describe its
domain. In other words, regime dynamics can be represented in a natural way
by resorting to the idea of coding. The coding procedure translates a classical
trajectory in the state space into a trajectory in the space of regimes. This
representation of the system dynamics is obtained by associating a symbol to a
chosen regime and then coding observed dynamics by means of a string of two
symbols. In this way, each trajectory of the model turns out to be a sequence
of traverses of regimes. Consequently, we label each regime by a symbol and
describe the evolution of the system in terms of regime changing with a symbolic
sequence. The use of such a technique is the fundamental difference between
our approach and the conventional one where state variables are real numbers.

Hence, we can construct a binary partition where \(\mu_i \) is the threshold value
that defines two regimes. Regime labelled by 0 is determined by the values of
rRER of country \(i \) that are less than \(\mu_i \). Let regime 1 be the portion of the
state space formed by the values of the real exchange rate bigger than \(\mu_i \). It is
reasonable to think that each regime has its own data patterns that characterize
it. Then data is symbolized by:

\[
\begin{align*}
 s_i &= 0 & \text{if } rRER_i < \mu_i \\
 s_i &= 1 & \text{if } rRER_i > \mu_i
\end{align*}
\]

Note that, as is highlighted by Bergstrand [3], relative productivity levels,
capital-labor ratios and tastes can explain as much as 90% of the variation across
countries in real exchange rates. Hence each country has its own trend which
depsends on particular monetary targets, quantity of international reserves, level
of competitiveness or ratio capital-labor.

4.3 Statistical tools

STSA addresses the issue of how to extract and describe time patterns of com-
plex dynamic processes. Compared with more standard analytical approaches,
the novelty is in that this set of methods does not rest upon any hypotheses as
to the data generating (deterministic and/or stochastic) model. STSA accepts
the paradigm of irregularity, where irregularity is the generic, and regularity the
rare property of time series reflecting a dynamic process endowed with sufficient
complexity. Under such paradigm, we have to look at most for near-regularities
in the raw data sets, or at higher levels of dynamics of regime or coded dynamics.

The simplest statistical tool that can be introduced to compare symbolic
sequences is the distance \(d_0 \) that counts the coincidences of symbols. In parti-
cular, given two binary symbolic sequences \(a_1 a_2 \ldots a_t \ldots a_T \) and \(b_1 b_2 \ldots b_t \ldots b_T \),

regime, examples of multiregime models and multiregime dynamics statistical and modelling
tools.
let
\[f(a, b) = \begin{cases}
1, & \text{if } a \neq b \\
0, & \text{if } a = b
\end{cases} \]

Then
\[d_0(a_1a_2 \ldots a_T, b_1b_2 \ldots b_T) = \sqrt{\sum_{t=1}^{T} f(a_t, b_t)} \quad (6) \]

measures the distance between two sequences. Note that
\[0 \leq d_0(a_1a_2 \ldots a_T, b_1b_2 \ldots b_T) \leq \sqrt{T}. \]

Note that
\[d_0(a_1a_2 \ldots a_T, b_1b_2 \ldots b_T) = 0 \]
means that the two processes have traversed the same regimes at the same time and that
\[d_0(a_1a_2 \ldots a_T, b_1b_2 \ldots b_T) \leq \sqrt{T} \]
reflects the contrary situation; i.e., the two processes have traversed complementary regimes at each tick of the clock.

The first step in identification of temporal patterns is the extraction of short symbol sequences of chosen length, from the overall sequence of symbols \(s_1s_2 \ldots s_T \) coding the whole history of a system in terms of regimes, and we do this by grouping symbols together while preserving their temporal order. Such ordered subsequences are called words in the symbolic dynamics literature. They stand to us for paths (to adhere to dynamic terminology) or patterns to emphasize their qualitative significance looking at them from the regime point of view. To extract information encoded in the strings so constructed, we introduce the symbolic tree. This is a graphical representation of the symbol statistics in a given coded history as a function of the length of patterns in what has been called the available dynamic menu. We compute the relative frequency of occurrence of all symbol sequences of length \(k \) in a system’s symbolic history and, varying the length \(k \geq 1 \), represent them as a tree, one branch for each value of length \(k \). Hence, the first level shows the probabilities of occurrence of the individual symbols or regimes (as patterns of unitary length), the second the probabilities of occurrence of paths with two (different or equal) symbols, and so on and so forth. The symbol tree is a compact information summary of the regime dynamics under observation.

Given two measurements with the corresponding coded sequences, we can evaluate how different they are by means of some measure of their distance. The most commonly used of such measures is, of course, the Euclidean distance from the \(k \)-th levels of their trees \((k \geq 1) \) or in other words, for \(k \)-long episodes, here re-defined as
\[d_k(A, B) = \sqrt{\sum_{i} (A_i - B_i)^2} \quad (7) \]
where \(A_i \) and \(B_i \) are the probabilities for the possible sequence code or episode \(i \) in the distinct \(k \)-levels \(A \) and \(B \) of the corresponding symbolic trees. Descriptions of other measures of distances are given by [31] and [19] and in references
included in these papers. The Euclidean distance works like a metric in the space of all possible sequences providing a measure of the distance between different k-histograms in terms of the probability of exhibiting like episodes: a greater distance implies that the dynamics in the two data set is very different.

5 Minimal Spanning Tree: the case of d_0.

In this section we construct the MST and the HT for our set of countries when the metric is defined by d_0 and the threshold is the mean as explained above. Note that in this case the distance reflects the (regime) dynamics of the sequences at the same moment in each country. In this case, being similar to the Pearson correlation coefficient, d_0 is useful to compare our results with [40].

To construct the Minimal Spanning Tree (MST) we compare the distances between pairs of countries. The methodology is simple, once we have computed all the possible distances between two countries of the sample, we first connect the closest countries. For instance, in our case when considering the mean as partition $d_0(\text{ARG, BRA}) = d_0(\text{DEN, SWI}) = 4.1231$ is the minimum distance of the sample implying that we have to link ARG and BRA in a group and DEN and SWI in a different group. Then, being that the second distance is $d_0(\text{DEN, NOR}) = 4.899$, we link NOR to DEN which was connected to SWI. One proceeds by linking the remaining countries with their closeness to the previously connected countries. See [34], [35], [5], [7] and [40] for a detailed description of the previous construction. If the number of countries is n, then the MST is a graph with $n - 1$ links (27 in our exercise) which selects the most relevant connections of each country of the sample. In Fig. 1 we show the MST determined by the distance d_0. Figure 2 shows the distances between connected countries.

From the MST we can identify three clusters where South America appears
connected to Europe by Asia. MST results are quite similar to those presented by [40], with three groups clearly defined in regional terms: European countries, Asian countries and Latin American group. We find “strange” connections such as Malaysia and Spain or Peru and India, for instance. In general, these results are showing that exchange rate has followed dynamics based on economic regional liaisons and that co-movements in these groups are, in some sense, structural and are due to strong commercial and financial links among them. Interesting enough, Denmark and Thailand (and Norway) are the most linked countries in EU and Asian groups respectively and they were the countries where currency crises begun in the European storm and the Asian crises. So, by using the simplest threshold we are able with this methodology to detect regional hierarchy consistent with commercial and financial links among countries and to detect the most linked countries which have suffered the first currency crises in their groups. Of course, because of the simple threshold used we find mistaken connections.

Now, to construct the respective HT we use the ultrametric distance $d^<$ as introduced in [34] and [35]. One method to obtain $d^<(i, j)$ directly from the distance matrix $d_0(i, j)$ is through the MST method as described in [44]. From the MST, the distance $d^<(i, j)$ between two countries i and j is given by

$$d^<(i, j) = \max \{d_0(w_i; w_{i+1}); 1 \leq i \leq n - 1 = 27\}$$

where $\{(w_1; w_2); (w_2; w_3); \ldots; (w_{n-1}, w_n)\}$ denotes the unique path in the MST connecting i and j, where $w_1 = i$ and $w_n = j$. Then we compute $d^<(i, j)$ for each pair of countries. Then to construct the HT we proceed as in the following example. Note that SWI is connected with NOR by DEN, the distance between SWI and NOR is the maximum among $d_0(SWI, DEN) = 4.1231$ and $d_0(DEN, NOR) = 4.899$.

$$d^<(SWI, NOR) = 4.899,$$

even though the computed distance $d_0(SWI, NOR)$ was 5.3852. This is the procedure to compute the distances between two countries. Note that the most distant country will have the same distance with all country (in our case is INDI, where

Table 2: In this table we show the 27 distances representing the MST links when mean is the partition.

<table>
<thead>
<tr>
<th>Link</th>
<th>C</th>
<th>C2</th>
<th>d_0</th>
<th>Link</th>
<th>C</th>
<th>C2</th>
<th>d_0</th>
<th>Link</th>
<th>C</th>
<th>C2</th>
<th>d_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ARG</td>
<td>BRA</td>
<td>4.1231</td>
<td>10</td>
<td>DEN</td>
<td>IRE</td>
<td>6.245</td>
<td>19</td>
<td>SIN</td>
<td>SWI</td>
<td>7.071</td>
</tr>
<tr>
<td>2</td>
<td>DEN</td>
<td>SWI</td>
<td>4.1231</td>
<td>11</td>
<td>PER</td>
<td>VEN</td>
<td>6.3246</td>
<td>20</td>
<td>SIN</td>
<td>THA</td>
<td>7.071</td>
</tr>
<tr>
<td>3</td>
<td>DEN</td>
<td>NOR</td>
<td>4.899</td>
<td>12</td>
<td>INDO</td>
<td>PER</td>
<td>6.4807</td>
<td>21</td>
<td>MEX</td>
<td>PER</td>
<td>7.144</td>
</tr>
<tr>
<td>4</td>
<td>ITA</td>
<td>SPA</td>
<td>5.099</td>
<td>13</td>
<td>ARG</td>
<td>PER</td>
<td>6.6332</td>
<td>22</td>
<td>MAL</td>
<td>SPA</td>
<td>7.280</td>
</tr>
<tr>
<td>5</td>
<td>NOR</td>
<td>SWE</td>
<td>5.2915</td>
<td>14</td>
<td>INDO</td>
<td>THA</td>
<td>6.6332</td>
<td>23</td>
<td>AUS</td>
<td>SIN</td>
<td>7.416</td>
</tr>
<tr>
<td>6</td>
<td>ITA</td>
<td>SPA</td>
<td>5.3852</td>
<td>15</td>
<td>NOR</td>
<td>UK</td>
<td>6.7823</td>
<td>24</td>
<td>KOR</td>
<td>THA</td>
<td>7.483</td>
</tr>
<tr>
<td>7</td>
<td>GRE</td>
<td>NOR</td>
<td>5.6569</td>
<td>16</td>
<td>INDO</td>
<td>PHI</td>
<td>6.8557</td>
<td>25</td>
<td>COL</td>
<td>MEX</td>
<td>7.746</td>
</tr>
<tr>
<td>8</td>
<td>FIN</td>
<td>NOR</td>
<td>5.7446</td>
<td>17</td>
<td>ECU</td>
<td>PER</td>
<td>6.9282</td>
<td>26</td>
<td>CHI</td>
<td>SWI</td>
<td>7.810</td>
</tr>
<tr>
<td>9</td>
<td>NOR</td>
<td>POR</td>
<td>6</td>
<td>18</td>
<td>GRE</td>
<td>TUR</td>
<td>6.9282</td>
<td>27</td>
<td>INDI</td>
<td>PER</td>
<td>7.937</td>
</tr>
</tbody>
</table>

Figure 2: In this table we show the 27 distances representing the MST links when mean is the partition.
Figure 3: Hierarchical tree for the 28 countries when mean is the partition.

\[d^<(INDI, PER) = 7.9373 \]; this is showed in Figure 3, representing the Hierarchical tree for the 28 countries. The hierarchical tree shows that the EU countries present the smallest distances among them. After that no other homogeneous group is detected but Argentine with Brasil and Peru with Venezuela in the HT. We observe some Asian countries (Thailand, Philippines and Indonesia) together in the middle of the HT. As in [40] using mean as partition of the space state yields interesting regional groups implying similar exchange rate dynamics, unless we obtained strange results from the economic liaisons point of view.

As expected, EU countries have shown the shortest distances in our sample range due to common relative real exchange movements inside the European Monetary System until January 1, 1999 when EU countries decided to give up their own currencies and adopted the Euro currency with fixed exchange rates among them. (See, for instance, [1] and [2]) In this group we have found two different subgroups of countries: one composed by Denmark, Norway, Finland, Sweden plus Greece and Switzerland and the second composed by Italy, Spain and Portugal. Three EU countries are within the group but outside both subgroups: United Kingdom, Ireland and Turkey. Note that Denmark is the most linked country in the EU group implying that currency variations in this country produce effects on the rest of the countries in the group. Finally, Finland is the least connected country in this group. This group makes sense when remembering the exchange market turmoil in 1992-1993 where speculative attack which led to the floating of the Finnish markka on 8th September 1992 appears to trigger speculative against the Swedish krona. According to [24] after the floating of the Finnish exchange rate the probability of a devaluation during the coming three months increased by 12% in Sweden and 5% in Norway. Abandonment of the Swedish krona’s ECU parity on 18th November 1992 caused substantial pressure on the parity of the Norwegian krone. Then Spanish peseta and the Portuguese escudo were devaluated. Again, in this case the hypothesis introduced in [24] is verified: according to a speculative attack which leads to a devaluation by one
country may threaten the competitiveness of trading partner. In fact this was
the argument invoked for Portugal in 1993 after Spanish peseta depreciation,
again in 1995 the realignment of the Portuguese escudo was blamed on exchange
market difficulties finishing in realignment in neighboring Spain.

6 Changing the partition 1 and 3 standard deviations of the statistical mean

As it was mentioned, we also changed the partition in order to detect if partic-
ular structures and dynamics related to crises events or volatile periods remain
in the MST and HT and so we could offer some insights on the contagion-
interdependence debate by using this methodology. In the currency crises em-
pirical literature, one of the most usual definition of crises is that currency crises
is an unusual or sudden variation of the exchange rate. In many works, stan-
dard deviation has been used to represent this sudden variation of real exchange
rate (see [42] for a survey on the statistical definitions of currency crises used
in the literature). To detect hierarchical structures in our group of countries
in crises periods, we have used two partitions of the state making regime 1 a
progressively riskier regime. Specifically, we have move our threshold to 1 and
3 standard deviations of the 36 past months above the mean of, again, the 36
past months of each country. Different MSTs show that the three clusters pre-
vail when changing the threshold highlighting a strong structure in the regional
 Hierarchies. We find that our three regions remain very connected and form
a group independently the threshold we use. European Union, Asian group
and Latin American countries seem to have very similar co-movements both
in what we can call tranquil times (when threshold used is the mean) and in
more volatile times and crises events (standard deviations thresholds). Besides,
countries originating crises in Europe and Asia (Denmark and Thailand) are the
most linked in their groups showing that currency problems can extend very fast
to nearest countries. In figure 6 we can observe this interesting result, when ex-
change rate dynamics are in crises event, Thailand and Denmark became the
centre of their groups where almost all connections converge. In Latin America
is interesting to note that Chile is now the very centre of the region suggesting
that a currency crisis in this country could spread to others

In this sense, results of this new methodology are showing that most of
the times, during nineties there were no contagion evidence in currency crises.
Contrary, exchange rate liaisons among countries seem to be structural and
clearly based on commercial and financial linkages, supporting the theory of
non-crisis-contingent models and so the spread of currency crises has been due
to previous interdependence among countries.

\footnote{This result is suggesting that Chile could be a case of contagion in Latin America if a
currency crisis occurs. As we can observe in figure 1 Chile is not connected to the Latin
American group showing that links are intense in crises periods but not in tranquil times,
what is the definition of crises-contingent models or contagion.}
The different HTs also show that EU is the region with the least distance among them showing a strong structure with remain in spite of changing the partition.

7 Dynamical Evolution: MST defined from d_k ($k \geq 1$).

In this section we study the dynamical evolution of the MST looking at the tree structure across time (1, 2, 3, etc. time lags). We know that the symbolic tree is a compact summary of the dynamics under observation. Then the dynamical evolution of the MST can be represented by the sequence of trees constructed from the distances d_k ($k \geq 1$) introduced in the STSA section. Note that distance d_k takes into account the k–th level of the symbolic trees of the involved
Figure 6: MST d_0 3 s.d. of the mean

Figure 7: HT 28 countries (3 s.d. of the mean)
countries and then it can be interpreted as a representation of the dynamic process as a system with memory length k. Then, by repeating the construction of the MST as in the previous section but substituting d_0 with the distances $d_k \ (k \geq 1)$, we can obtain a representation of the dynamic of the MSTs when time evolves. From the MSTs trees constructed from d_1, d_2, d_3 and d_4 the clusters defined in the previous section (EU, Asian and Latin American countries) can be detected for each of the MSTs. This fact reveals some kind of strong stability of the links between the geographical regions.

8 Conclusions

In the last years interest in studying currency crises, and in particular the effects of contagion has grown due to important crises in the nineties. Events such as occurred with the EMS in 1992, the “Tequila crisis” originated in Mexico and the Southern Asian crisis had a high impact in the international financial markets.

First-generation models based on Krugman (Krugman 1979) did not have success in explaining recent crises. Subsequent second-generation models focussing on the trade-off faced by the government did not explained completely the phenomenon. Even more some hypothesis appeared in order to explain the contagion effects, such as trade links among countries, the portfolio rebalance, existence of common shocks, and finally the change in expectations.

In this sense the present article tried to introduce a methodology based on the Symbolic Time Series Analysis with the nearest neighbor single linkage clustering algorithm. Using this method was possible to construct the MST and the associated HT. These trees seems to be useful as a theoretical description of the currency markets showing the most narrowly connected countries and those who seems to be more distant. Therefore, countries with strong links among them are subject to spread rapidly.

From the results three large regions or clusters of countries are obtained. They are related with their geographical and commercial closeness: Europe, Asia and Latin America. The European countries are the most connected among them, logically these countries have strong monetary and commercial links. In this group, Denmark is the most linked country. In second place appears a group of Asiatic countries where the least distance is taken by Thailand, this was precisely the country which started the Asian crisis in 1998 devaluing its currency. Finally there is a group of Latin American countries which are the most distant. We have shown that this regional hierarchical structure prevails in tranquil times and in more volatile and crises periods which we analyse by moving up our threshold. In this sense, this new methodology help to inquiry on the contagion-interdependence debate around currency and financial crises, supporting no evidence of contagion during currency crises in the nineties, but interdependence among exchange rate dynamics. Besides, we have observed some countries which could be generators of currency crises contagion in their regions because they became centre of all the regional links in crises periods (Chile and Brazil are clear examples). From this last result, we conclude that
our methodology could be useful for countries to take into account for eventual exchange rate problems in this central countries.

A Countries

The 28 countries included in this work are as follows: Argentine (ARG), Malaysia (MAL), Thailand (THA), Mexico (MEX), Korea (KOR), Indonesia (INDO), Brazil (BRA), Venezuela (VEN), Peru (PER), India (INDI), Ecuador (ECU), Turkey (TUR), Colombia (COL), Singapore (SIN), Philippines (PHI), United Kingdom (UK), Sweden (SWE), Italy (ITA), Ireland (IRE), Finland (FIN), Chile (CHI), Greece (GRE), Portugal (POR), Switzerland (SWI), Denmark (DEN), Spain (SP), Norway (NOR), Australia (AUS)

References

<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td>159/2000</td>
<td>Participación privada en la construcción y explotación de carreteras de peaje</td>
<td>Ginés de Rus, Manuel Romero y Lourdes Trujillo</td>
</tr>
<tr>
<td>160/2000</td>
<td>Errores y posibles soluciones en la aplicación del Value at Risk</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>161/2000</td>
<td>Tax neutrality on saving assets. The spahish case before and after the tax reform</td>
<td>Cristina Ruza y de Paz-Curbera</td>
</tr>
<tr>
<td>163/2000</td>
<td>El control interno del riesgo. Una propuesta de sistema de límites riesgo neutral</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>164/2001</td>
<td>La evolución de las políticas de gasto de las Administraciones Públicas en los años 90</td>
<td>Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells</td>
</tr>
<tr>
<td>165/2001</td>
<td>Bank cost efficiency and output specification</td>
<td>Emili Tortosa-Ausina</td>
</tr>
<tr>
<td>166/2001</td>
<td>Recent trends in Spanish income distribution: A robust picture of falling income inequality</td>
<td>Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara</td>
</tr>
<tr>
<td>167/2001</td>
<td>Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF</td>
<td>Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández</td>
</tr>
<tr>
<td>168/2001</td>
<td>The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some European Countries</td>
<td>Mónica Melle-Hernández</td>
</tr>
<tr>
<td>169/2001</td>
<td>La política de cohesión de la UE ampliada: la perspectiva de España</td>
<td>Ismael Sanz Labrador</td>
</tr>
<tr>
<td>170/2002</td>
<td>Riesgo de liquidez de Mercado</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>171/2002</td>
<td>Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas de capitalización individual: medida y comparación internacional.</td>
<td>José Enrique Devesa Carpio, Rosa Rodríguez Barrera, Carlos Vidal Meliá</td>
</tr>
<tr>
<td>172/2002</td>
<td>La encuesta continua de presupuestos familiares (1985-1996): descripción, representatividad y propuestas de metodología para la explotación de la información de los ingresos y el gasto.</td>
<td>Llorenç Pou, Joaquín Alegre</td>
</tr>
<tr>
<td>173/2002</td>
<td>Modelos paraméticos y no paraméticos en problemas de concesión de tarjetas de crédito.</td>
<td>Rosa Puertas, María Bonilla, Ignacio Olmeda</td>
</tr>
</tbody>
</table>
174/2002 Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.
José Vicente Blanes Cristóbal

175/2003 La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y
de los gastos.
Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González

Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

177/2003 Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.
Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

178/2003 Factors explaining the interest margin in the banking sectors of the European Union.
Joaquín Maudos y Juan Fernández Guevara

179/2003 Los planes de stock options para directivos y consejeros y su valoración por el mercado de
valores en España.
Mónica Melle Hernández

180/2003 Ownership and Performance in Europe and US Banking – A comparison of Commercial, Co-
operative & Savings Banks.
Yener Altunbas, Santiago Carbó y Phil Molyneux

181/2003 The Euro effect on the integration of the European stock markets.
Mónica Melle Hernández

182/2004 In search of complementarity in the innovation strategy: international R&D and external
knowledge acquisition.
Bruno Cassiman, Reinhilde Veugelers

183/2004 Fijación de precios en el sector público: una aplicación para el servicio municipal de sumi-
nistro de agua.
Mª Ángeles García Valiñas

184/2004 Estimación de la economía sumergida en España: un modelo estructural de variables latentes.
Ángel Alanón Pardo, Miguel Gómez de Antonio

185/2004 Causas políticas y consecuencias sociales de la corrupción.
Joaquín Prats Cabrera

186/2004 Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.
Andrés Guiral Contreras and José A. Gonzalo Angulo

Marta Tolentino García-Abadillo y Antonio Díaz Pérez

188/2004 Does market competition make banks perform well?.
Mónica Melle

189/2004 Efficiency differences among banks: external, technical, internal, and managerial
Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en españa: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in notional defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodríguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchior, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do 'Insertion Contracts' Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodríguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodriguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Miguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Díaz
221/2005 Tendencia post-anuncio de resultados contables: evidencia para el mercado español
Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García

222/2005 Human capital accumulation and geography: empirical evidence in the European Union
Jesús López-Rodríguez, J. Andrés Faíña y Jose Lopez Rodriguez

223/2005 Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing
Waymond Rodgers and Andrés Guiral

José Ramón Cancelo de la Torre, J. Andrés Faíña and Jesús López-Rodríguez

225/2005 The effects of ownership structure and board composition on the audit committee activity: Spanish evidence
Carlos Fernández Méndez and Rubén Arrondo García

226/2005 Cross-country determinants of bank income smoothing by managing loan loss provisions
Ana Rosa Fonseca and Francisco González

Alejandro Estellé Moré

228/2005 Region versus Industry effects: volatility transmission
Pilar Soriano Felipe and Francisco J. Climent Diranzo

Daniel Vázquez-Bustelo and Sandra Valle

Alfonso Palacio-Vera

231/2005 Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal
M. Carmen Almansa Sáez and Javier Calatrava Requena

232/2005 Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?
Santiago Carbó Valverde and Rafael López del Paso

Miguel Angel Barberán Lahuerta

Víctor M. González

Waymond Rodgers, Paul Pavlou and Andres Guiral.

Francisco J. André, M. Alejandro Cardenete y Carlos Romero.
Santiago Carbó-Valverde, Francisco Rodríguez-Fernández y Gregory F. Udell.

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

Marcos Álvarez-Díaz y Gonzalo Caballero Miguez.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes.
Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo.
Inés P. Murillo.

Manuel A. Gómez.

Jose Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro y Javier Salinas-Jiménez.

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries?.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

Marta Pascual and David Cantarero.

Salvador Rojí Ferrari and Ana Gonzalez Marcos.

247/2006 Testing For Structural Breaks In Variance Withadditive Outliers And Measurement Errors.
Paulo M.M. Rodrigues and Antonio Rubia.

Joaquín Maudos and Juan Fernández de Guevara.

Desiderio Romero Jordán, José Félix Sanz Sanz y César Pérez López.

250/2006 Regional Income Disparities in Europe: What role for location?.

251/2006 Funciones abreviadas de bienestar social: Una forma sencilla de simultanear la medición de la eficiencia y la equidad de las políticas de gasto público.
Nuria Badenes Plá y Daniel Santín González.

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”.
Luis Muga and Rafael Santamaria.

253/2006 Dinámica de precios en el mercado español de gasolina: un equilibrio de colusión tácita.
Jordi Perdiguero García.
José M. Pastor, Empar Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana María Aldanondo-Ochoa y Carmen Almansa-Sáez

José Felix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguer.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich
A. García-Lorenzo y Jesús López-Rodríguez

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luís Muga y Rafael Santamaría

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría
de opciones reales
Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a
political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un
modelo de equilibrio general
Robert Meneu Gaya

278/2006 El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006 Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006 Three measures of returns to education: An illustration for the case of Spain
María Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006 La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tram-
ways, 1895-1918
Alberte Martínez López

283/2006 Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

284/2006 Foreign Capital and Business Strategies: a comparative analysis of urban transport in Madrid and
Barcelona, 1871-1925
Alberte Martínez López

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>290/2006</td>
<td>La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico</td>
<td>Fernando Hernández Martínez</td>
</tr>
<tr>
<td>291/2006</td>
<td>Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain</td>
<td>Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso</td>
</tr>
<tr>
<td>292/2006</td>
<td>Una teoría sobre la contribución de la función de compras al rendimiento empresarial</td>
<td>Javier González Benito</td>
</tr>
<tr>
<td>294/2006</td>
<td>Testing the parametric vs the semiparametric generalized mixed effects models</td>
<td>Maria José Lombardía and Stefan Sperlich</td>
</tr>
<tr>
<td>295/2006</td>
<td>Nonlinear dynamics in energy futures</td>
<td>Mariano Matilla-García</td>
</tr>
<tr>
<td>296/2006</td>
<td>Estimating Spatial Models By Generalized Maximum Entropy Or How To Get Rid Of W</td>
<td>Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez</td>
</tr>
<tr>
<td>297/2006</td>
<td>Optimización fiscal en las transmisiones lucrativas: análisis metodológico</td>
<td>Félix Domínguez Barrero</td>
</tr>
<tr>
<td>298/2006</td>
<td>La situación actual de la banca online en España</td>
<td>Francisco José Climent Diranzo y Alexandre Momparler Pechuán</td>
</tr>
<tr>
<td>299/2006</td>
<td>Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas</td>
<td>Javier González Benito y Isabel Suárez González</td>
</tr>
<tr>
<td>300/2006</td>
<td>A Parametric Model to Estimate Risk in a Fixed Income Portfolio</td>
<td>Pilar Abad and Sonia Benito</td>
</tr>
<tr>
<td>301/2007</td>
<td>Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros</td>
<td>Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé</td>
</tr>
<tr>
<td>302/2007</td>
<td>Assessing the enlargement and deepening of regional trading blocs: The European Union case</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano</td>
</tr>
<tr>
<td>303/2007</td>
<td>¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español</td>
<td>Vanesa Solís Rodríguez y Manuel González Díaz</td>
</tr>
<tr>
<td>305/2007</td>
<td>Spain is Different: Relative Wages 1989-98</td>
<td>José Antonio Carrasco Gallego</td>
</tr>
</tbody>
</table>
Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor

Agricultural Productivity in the European Regions: Trends and Explanatory Factors
Roberto Ezcurra, Belen Iráizoz, Pedro Pascual and Manuel Rapún

Long-run Regional Population Divergence and Modern Economic Growth in Europe: a Case Study of Spain
María Isabel Ayuda, Fernando Collantes and Vicente Pinilla

Financial Information effects on the measurement of Commercial Banks’ Efficiency
Borja Amor, María T. Tascón and José L. Fanjul

Neutralidad e incentivos de las inversiones financieras en el nuevo IRPF
Félix Domínguez Barrero

The Effects of Corporate Social Responsibility Perceptions on The Valuation of Common Stock
Waymond Rodgers, Helen Choy and Andres Guiral-Contreras

Country Creditor Rights, Information Sharing and Commercial Banks’ Profitability Persistence across the world
Borja Amor, Maria T. Tascón and Jose L. Fanjul

¿Es Relevante el Déficit Corriente en una Unión Monetaria? El Caso Español
Javier Blanco González y Ignacio del Rosal Fernández

The Impact of Credit Rating Announcements on Spanish Corporate Fixed Income Performance: Returns, Yields and Liquidity
Pilar Abad, Antonio Díaz and M. Dolores Robles

Indicadores de Lealtad al Establecimiento y Formato Comercial Basados en la Distribución del Presupuesto
Cesar Augusto Bustos Reyes y Óscar González Benito

Migrants and Market Potential in Spain over The XXth Century: A Test Of The New Economic Geography
Daniel A. Tirado, Jordi Pons, Elisenda Paluzie and Javier Silvestre

El Impacto del Coste de Oportunidad de la Actividad Emprendedora en la Intención de los Ciudadanos Europeos de Crear Empresas
Luis Miguel Zapico Aldeano

Los belgas y los ferrocarriles de via estrecha en España, 1887-1936
Alberte Martínez López

Competición política bipartidista. Estudio geométrico del equilibrio en un caso ponderado
Isabel Lillo, Mª Dolores López y Javier Rodrigo

Human resource management and environment management systems: an empirical study
Mª Concepción López Fernández, Ana Mª Serrano Bedia and Gema García Piqueres
323/2007 Wood and industrialization. evidence and hypotheses from the case of Spain, 1860-1935. Iñaki Iriarte-Goñi and María Isabel Ayuda Bosque

325/2007 Monetary policy and structural changes in the volatility of us interest rates. Juncal Cuñado, Javier Gomez Biscarri and Fernando Perez de Gracia

326/2007 The productivity effects of intrafirm diffusion. Lucio Fuentelsaz, Jaime Gómez and Sergio Palomas

328/2007 El grado de cobertura del gasto público en España respecto a la UE-15 Nuria Rueda, Begoña Barruso, Carmen Calderón y Mª del Mar Herrador

329/2007 The Impact of Direct Subsidies in Spain before and after the CAP'92 Reform Carmen Murillo, Carlos San Juan and Stefan Sperlich

330/2007 Determinants of post-privatisation performance of Spanish divested firms Laura Cabeza García and Silvia Gómez Ansón

331/2007 ¿Por qué deciden diversificar las empresas españolas? Razones oportunistas versus razones económicas Almudena Martínez Campillo

332/2007 Dynamical Hierarchical Tree in Currency Markets Juan Gabriel Brida, David Matesanz Gómez and Wiston Adrián Risso