NEW EVIDENCE ON LONG-RUN MONETARY NEUTRALITY

J. Cunado
L.A. Gil-Alana
F. Perez de Gracia
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.
NEW EVIDENCE ON LONG-RUN MONETARY NEUTRALITY*

J. Cunadoa, L.A. Gil-Alanaa and F. Perez de Graciab

a Universidad de Navarra, Pamplona, Spain

ABSTRACT

This paper re-examines the issue of long-run monetary neutrality by using fractional integration and allowing for possible structural breaks in six countries. We use an extension of Fisher and Seater’s (1993) reduced-form test recently proposed by Bae et al. (2005). The results show that long-run monetary neutrality holds for five countries when no structural breaks are taken into account, and for all countries if one break is allowed.

Keywords: Money neutrality; Long memory; Structural breaks.

JEL Classification: E40; E51; C32.

a Corresponding author: Fernando Perez de Gracia
University of Navarra
Department of Economics
Campus Universitario
31080 Pamplona, SPAIN

Tel: 00 34 948 425 625
Fax: 00 34 948 425 626
E-mail: fgracia@unav.es

* Juncal Cunado and Luis A. Gil-Alana gratefully acknowledge financial support from the Ministerio de Ciencia y Tecnología (SEJ2005-07657/ECON). Fernando Pérez de Gracia also acknowledges research support from the Ministerio de Ciencia y Tecnología and FEDER through grant SEJ2005-06302/ECON and Plan Especial de Investigacion of the Universidad de Navarra. Finally, we thank Antonio Noriega for providing us the data set used in this paper.
1. Introduction

In the recent years, neutrality of money has received increasing attention from academic researchers. The empirical evidence concerning the monetary neutrality hypothesis is mixed.\(^1\) Many papers have analyzed long-run neutrality (e.g., King and Watson, 1992, 1997; Fisher and Seater, 1993; Boschen and Otrok, 1994; Haug and Lucas, 1997; Serletis and Koustas 1998, 2001; Shelley and Wallace, 2004; Noriega, 2004; Coe and Nason, 2004; Bae et al., 2005; Noriega and Soria 2005 and Noriega et al., 2005 among many others). Most of these papers test the existence of long-run neutrality and superneutrality using traditional unit-root tests to the monetary aggregates and output with a long span of data. The tests are then applied on the reduced form of the Fisher and Seater (1993) conditions.

In line with the papers aforementioned, we also test for long-run monetary neutrality considering the reduced form of Fisher and Seater (1993). Two main differences of the present work with the former ones are the following. First, instead of using classic approaches based on $I(1)/I(0)$ integration and cointegration techniques we employ fractional integration. Note that most of the above mentioned papers employ classic methods such as DF (Dickey and Fuller, 1979), PP (Phillips and Perron, 1988), KPSS (Kwiatkowski et al., 1992), or some of the recent developments based on these procedures (Elliot et al., 1996; Ng and Perron, 2001; etc.). These methods are too restrictive in the sense that they only consider the cases of $I(0)$ stationarity and $I(1)$ nonstationarity, and do not take into account fractional orders of integration. Bae et al.

\(^1\) For example, King and Watson (1992) using US quarterly data found that long run neutrality was supported while Fisher and Seater (1993) found that long run neutrality was rejected using US annual data. Serletis and Krause (1996) found that the long run neutrality hypotheses were also supported using the Fisher and Seater’ conditions.
(2005) test the long-run neutrality using a fractional approach in various countries.2 They apply the time domain maximum likelihood estimation procedure of Sowell (1992) in an AutoRegressive Fractionally Integrated Moving Average (ARFIMA) model using annual data of money and real output for six countries. Their results support the long-run neutrality in five out of the six countries considered.

Second, we also allow for structural breaks in a fractionally integrated framework. In the above-mentioned literature, only a few papers consider structural breaks in the I(1)/I(0) approach (see, for example, Boschen and Otrok, 1994; Serletis and Krause, 1996; Serletis and Koustas, 1998 and Noriega et al., 2005 among others). Moreover, structural breaks and fractional integration are issues that are closely related. Granger and Hyung (1999), Gourieroux and Jasiak (2001), Diebold and Inoue (2001) are some of the papers relating these two concepts.

This paper is organized as follows. The following section provides a brief description of the Fisher and Seater’s (1993) conditions of long-run monetary neutrality, along with the Bae et al.’s (2005) extension to the fractional case. In Section 3 we briefly describe the econometric approach employed in the paper for fractional integration and structural breaks. In Section 4, the long-run neutrality hypothesis is tested for six economies using long annual data already used by Noriega (2004) and Noriega et al. (2005). Finally, Section 5 contains some concluding comments.

2 Compared to Bae et al. (2005), this paper present two main differences. First, we used the testing methodology recently proposed by Gil-Alana (2007) instead of using domain maximum likelihood estimation procedure proposed by Sowell (1992). Second, we use data for Argentina, Australia, Mexico, the UK and the US while Bae et al. (2005) use data for Argentina, Canada, Italy, Sweden, the UK and the US.
2. The Fisher - Seater conditions and the Bae et al.’s (2005) extension

Following Fisher and Seater (1993) we consider a bivariate ARMA model where m_t and y_t are log of nominal money supply and log of real output respectively. The stationary bivariate Vector Autoregressive (VAR) model is given by the equations:

$$a(L)(1-L)^{d_m}m_t = b(L)(1-L)^{d_y}y_t + u_t,$$

$$d(L)(1-L)^{d_y}y_t = c(L)(1-L)^{d_m}m_t + w_t,$$

where $a(L)$, $b(L)$, $c(L)$ and $d(L)$ are polynomials in the lag operator L (i.e., $Lx_t = x_{t-1}$), $a_0 = d_0 = 1$ and $\Delta = (1 - L)$. d_m and d_y refers respectively to the orders of integration of money supply and real output, which in most cases are assumed to be 0 or 1. The error vector $(u_t, w_t)^T$ is assumed to be i.i.d., with zero mean and variance-covariance matrix V with elements σ_{uu}, σ_{ww} and σ_{uw}.

As in Fisher and Seater (1993), the neutrality of money is obtained through the long-run derivative (LRD) or long-run elasticity of output with respect to permanent changes in money (represented by $\text{LRD}_{y,m}$),

$$\text{LRD}_{y,m} = \lim_{k \to \infty} \frac{\partial y_{t+k}}{\partial u_t} / \frac{\partial m_{t+k}}{\partial u_t}. \quad (3)$$

Equation (3) shows that the long-run derivative is the limit of the long-run elasticity of output with respect to money. According to Fisher and Seater (1993), there is evidence of monetary neutrality when $d_m \geq d_y + 1 \geq 1$, and the long-run derivative is zero.

In order to test for long-run monetary neutrality, most of the papers examine the orders of integration of log of nominal money supply and log of real output (see for example Fisher and Seater, 1993; Boschen and Mills, 1995; King and Watson, 1997;
Serletis and Koustas, 1998; Noriega, 2004; Noriega and Soria, 2005 and Noriega et al., 2005 among others) using standard I(0)/I(1) procedures. However, in a recent paper Bae et al. (2005) propose a fractionally integrated model to analyse the same topic. They present the extension of Fisher and Seater (1993) framework to the fractional case. This extension can be found in Table 1 (page 262) in Bae et al. (2005). They present seven different cases where the relative order of integration for m (d_m) and y (d_y) are between 0 and 1 along with the economic interpretation.

3. The econometric approach

In this section we present a procedure suggested by Gil-Alana (2007) that enables us to examine the stationarity/nonstationarity nature of the series of interest in a very general framework. Firstly, instead of restricting ourselves to the standard I(0) (stationarity) or I(1) (nonstationarity) cases, we consider the possibility of fractional orders of integration. Secondly, this framework also allows for the inclusion of deterministic terms, like intercepts or linear trends. Finally, the possibility of structural breaks at unknown points in time is also taken into account.

For the purpose of simplicity, we suppose by now that there is just a single break in the data. Following Gil-Alana (2007) we assume that y_t is the observed time series, generated by the model

\[y_t = \alpha_1 + \beta_1 t + x_t; \quad (1 - L)^{d_1} x_t = u_t, \quad t = 1, \ldots, T_b \quad (4) \]
\[y_t = \alpha_2 + \beta_2 t + x_t; \quad (1 - L)^{d_2} x_t = u_t, \quad t = T_b + 1, \ldots, T, \quad (5) \]

where the \(\alpha \)'s and the \(\beta \)'s are the coefficients corresponding respectively to the intercept and the linear trend; \(d_1 \) and \(d_2 \) may be real values, \(u_t \) is I(0) and \(T_b \) is the time of the break.
that is supposed to be unknown. Note that the model in equations (4) and (5) can also be written as:

\[(1 - L)^{d_1} y_t = \alpha_1 \tilde{I}_t(d_1) + \beta_1 \tilde{t}_t(d_1) + u_t, \quad t = 1, ..., T_b, \tag{6}\]

\[(1 - L)^{d_2} y_t = \alpha_2 \tilde{I}_t(d_2) + \beta_2 \tilde{t}_t(d_2) + u_t, \quad t = T_b + 1, ..., T, \tag{7}\]

where \(\tilde{I}_t(d_1) = (1 - L)^{d_1}1\), and \(\tilde{t}_t(d_1) = (1 - L)^{d_1}t\), \(i = 1, 2\).

The approach taken in this article is based on the least square principle. First, we choose a grid for the values of the fractionally differencing parameters \(d_1\) and \(d_2\), for example, \(d_{1o} = 0, 0.01, 0.02, ..., 2\), \(i = 1, 2\). Then, for a given partition \(\{T_b\}\) and given \(d_1\), \(d_2\)-values, \((d^{(j)}_{1o}, d^{(j)}_{2o})\), we estimate the \(\alpha\)'s and the \(\beta\)'s by minimising the sum of squared residuals,

\[
\min_{\alpha_1, \alpha_2, \beta_1, \beta_2} \frac{\sum_{t=1}^{T_b} \left((1 - L)^{d^{(j)}_{1o}} y_t - \alpha_1 \tilde{I}_t(d^{(j)}_{1o}) - \beta_1 \tilde{t}_t(d^{(j)}_{1o}) \right)^2 + \sum_{t=T_b+1}^{T} \left((1 - L)^{d^{(j)}_{2o}} y_t - \alpha_2 \tilde{I}_t(d^{(j)}_{2o}) - \beta_2 \tilde{t}_t(d^{(j)}_{2o}) \right)^2}
\]

for uncorrelated \(u_t\), or, alternatively, using GLS for weakly autocorrelated disturbances. Let \(\hat{\alpha}(T_b; d^{(1)}_{1o}, d^{(1)}_{2o})\) and \(\hat{\beta}(T_b; d^{(1)}_{1o}, d^{(1)}_{2o})\) denote the resulting estimates for partition \(\{T_b\}\) and initial values \(d^{(1)}_{1o}\) and \(d^{(1)}_{2o}\). Substituting these estimated values in the objective function, we obtain \(\text{RSS}(T_b; d^{(1)}_{1o}, d^{(1)}_{2o})\), and minimising this expression for all values of \(d_{1o}\) and \(d_{2o}\) in the grid we obtain: \(\text{RSS}(T_b) = \arg\min \text{RSS}(T_b; d^{(i)}_{1o}, d^{(j)}_{2o})\). Then, the estimated break date, \(\hat{T}_k\), is such that \(\hat{T}_k = \arg\min_{i = 1, ..., m} \text{RSS}(T_i)\), where the minimisation is over all partitions \(T_1, T_2, ..., T_m\), such that \(T_i - T_{i-1} \geq \varepsilon T\). The regression
parameter estimates are the associated least-squares estimates of the estimated k-partition, i.e., \(\hat{\alpha}_i = \hat{\alpha}_k(\{\hat{T}_k\}) \), \(\hat{\beta}_i = \hat{\beta}_k(\{\hat{T}_k\}) \), and their corresponding differencing parameters, \(\hat{d}_i = \hat{d}_k(\{\hat{T}_k\}) \), for \(i = 1 \) and 2. Several Monte Carlo experiments conducted in Gil-Alana (2007) show that the procedure performs well even in relatively small samples.

Clearly, this model can be extended to allow for multiple breaks. One then considers the following specification:

\[
y_t = \alpha_j + \beta_j t + x_t; \quad (1 - L)^{d_j} x_t = u_t, \quad t = T_{j-1} + 1, \ldots, T_j,
\]

for \(j = 1, \ldots, m+1 \), \(T_0 = 0 \) and \(T_{m+1} = T \), and \(m \) stands for the number of breaks. The break dates \((T_1, \ldots, T_m) \) are explicitly treated as unknown and for \(i = 1, \ldots, m \), we have \(\lambda_i = T_i/T \), with \(\lambda_1 < \ldots < \lambda_m < 1 \). Following the same lines as in the previous case, for each j-partition, \(\{T_1, \ldots, T_j\} \), denoted \(\{T_j\} \), the associated least-squares estimates of \(\alpha_j, \beta_j \) and the \(d_j \) are obtained by minimising the sum of squared residuals in the \(d_i \)-differenced models, i.e.,

\[
\sum_{j=1}^{m+1} \sum_{t=T_{j-1}+1}^{T_j} \left[(1 - L)^{d_i} y_t - \alpha_i \tilde{t}_i - \beta_i \tilde{t}_i\right]^2,
\]

where \(\hat{\alpha}_i(T_j), \hat{\beta}_i(T_j) \) and \(\hat{d}(T_j) \) denote the resulting estimates. Substituting them in the new objective function and denoting the sum of squared residuals as \(\text{RSS}_T(T_1, \ldots, T_m) \), the estimated break dates \((\hat{T}_1, \hat{T}_2, \ldots, \hat{T}_m) \) are obtained by:

\[
\min_{(T_1, T_2, \ldots, T_m)} \text{RSS}_T(T_1, \ldots, T_m)
\]

where the minimisation is again obtained over all partitions \((T_1, \ldots, T_m) \).

In the present study, however, we focus instead on a single break to explain the stochastic nature of the series. The reason is the following. Though historical annual data such as those studied here may contain more than one single break, for the validity of the type of long-memory (fractional integration) model we use here it is necessary that the
data span a sufficiently long period of time to detect the dependence across time of the observations; given the sample size of the series employed here, the inclusion of two or more breaks would result in relatively short sub-samples, thereby invalidating the analysis based on fractional integration. Moreover, other recent empirical studies on macro series in the US and the UK come to the conclusion that a single break is sufficient to describe the behaviour of many series. Thus, for example, Boschen and Otrok (1994), Serletis and Krause (1996), Haugg and Lucas (1997), Serletis and Koustas (1998) and Shelley and Wallace (2004) among others test the long-run monetary neutrality hypothesis considering a single structural break.

4. Data and results

In this section we examine if there is evidence of the monetary neutrality hypothesis using annual international data. We use the same dataset as in Noriega (2004) and Noriega et al. (2005).

The data include information on real output and monetary aggregates for a group of six countries: Argentina, Australia, Brazil, Mexico, the UK and the US. The starting dates are 1869 for the US; 1870 for Australia; 1871 for the UK; 1884 for Argentina; 1912 for Brazil, and 1932 for Mexico. The ending years are 1995 (Brazil), 1996 (Argentina), 1997 (Australia) and 2000 for Mexico, the US and the UK.

3 For a detailed description of the source of the variables and the sample period see Table 1 in Noriega (2004). Noriega (2004) uses the Backus and Kehoe’s (1992) dataset for Australia; Bae and Ratti’s (2000) data for Argentina and Brazil, and Friedman and Schwartz’s (1992) for the UK and the US.
We first suppose that there are no breaks in the data and look at the orders of integration of the series from a fractional viewpoint. We present the estimates of \(d \) based on maximum likelihood in the frequency domain for the monetary aggregates (see Table 1) and for real output (see Table 2). In both tables we assume that the disturbances are white noise and autocorrelated, in the latter case using the model of Bloomfield (1973)\(^4\), and we do so for the three cases of no deterministic components, an intercept and an intercept with a linear trend.

Starting with the monetary aggregates (Table 1) we observe that if the disturbances are white noise, the estimates of \(d \) are strictly above 1 in all cases, the values ranging from 1.02 (Australia with no regressors) to 1.96 (UK with a linear trend), and the unit-root null hypothesis (i.e., \(d = 1 \)) is rejected in practically all cases in favor of higher orders of integration, the only exceptions being the US, Brazil and Australia in the case of no deterministic terms.

If we permit autocorrelation throughout the model of Bloomfield (1973), the values of \(d \) are generally smaller than in the white noise case, though again above 1 in the majority of cases. The exceptions are now the US with an intercept / linear trend and Brazil with no deterministic components. As a conclusion, we can summarize the results presented in this table by saying that the order of integration for the monetary aggregates seems to be in most cases above 1. If the disturbances are autocorrelated, the values are slightly smaller, and, if we allow for an intercept and/or a linear time trend the unit-root hypothesis is rejected in all countries except in the US and Australia.

\(^4\) The model of Bloomfield (1973) is a non-parametric approach of modelling the I(0) disturbances that produces autocorrelations decaying exponentially as in the AR case.
Table 2 reports the estimates of d for the real output across countries. A first look at this table indicates that the unit-root cannot be rejected in many cases. Thus, if we do not consider deterministic terms, the unit-root is included in all the intervals. Including an intercept and/or a linear trend, the unit root cannot be rejected for the US and the UK (in case of white noise u_t), for Mexico and Brazil (with autocorrelated disturbances) and for Australia and Argentina for the two types of disturbances. Finally, the lowest degrees of persistence are achieved in the cases of the US and the UK with autocorrelated disturbances. In these cases, d is strictly smaller than 1 and statistically significantly different from 1. On the other extreme we have the cases of Mexico and Brazil with white noise u_t, with values of d strictly above 1 in all cases.

The results presented so far seem to indicate that the order of integration of the monetary aggregates is 1 or above 1, while the one corresponding to real output is 1 or smaller than 1. In order to have more concise results about the orders of integration of the series, we have selected the best specification for each series according first to the significance of the coefficients related with the deterministic components, and then using likelihood criteria (LR tests) to choose between the white noise and the weak dependence structure for the $I(0)$ disturbances. Figure 1 summarizes the estimates of d_m and d_y for each country, and the numerical values are displayed in Table 3.

It is observed that for all cases d_m is higher than d_y. We also see that the US is the only country where the two orders of integration are strictly below unity. For the UK, Brazil and Argentina, the order of integration of money is above 1, while d_y (the order of integration of output) is below 1. Finally, for Australia and Mexico, the two degrees of
integration are strictly above 1. The orders of integration of money supply and real output, displayed in Table 3, suggest that long-run neutrality holds for Argentina, Brazil and the UK. According to Fisher and Seater (1993) and Bae et al. (2005) when $d_m \geq 1$ and $d_y \in (0,1)$ long-run monetary neutrality holds since real output will be unaffected in the long-run by a change in money (see case (ii) in Bae et al.’s Table 1). Furthermore, in the cases of Australia and Mexico the long-run neutrality also holds, $d_y - d_m < 0$ (see case (v) in Bae et al.’s Table 1). Finally, for the US $d_m = 0.82$, and the long-run derivative is then not defined (see case (i) in Bae et al.’s Table 1).

Next we are concerned with the effect that a structural break in the data might have had on the above results. For this purpose we employ the procedure described in Section 3. Table 4 refers to the monetary aggregates and displays the estimates of the fractional differencing parameters and the coefficients associated to the deterministic terms for each subsample along with the time of the break across countries. The break dates take place at 1883 for Australia; around 1920 for the US and the UK; at 1965 for Brazil, and during the 1980s for Mexico and Argentina. Note that though we do not explicitly provide confidence intervals for the fractional differencing parameters in the procedure presented in Section 3, they can be obtained by means of using alternative methods of fractional integration for each subsample. Across the tables we display the 95% confidence intervals corresponding to Robinson’s (1994) univariate test, which is a Lagrange Multiplier procedure and it should thus approximate the maximum likelihood intervals. The orders of integration are substantially above 1 in all except one case (Australia, first subsample), and only for the UK and Brazil do we observe a decrease in
the degree of persistence during the second subsample.\(^5\)

Table 5 refers to the real output. We observe that in all countries except in Mexico, the break date occurs now at the early part of the sample. It is at 1891 for Australia; at 1913 for Argentina; 1918 for the UK; 1931 for US, and at 1982 for Mexico. For the first subsamples, the orders of integration are smaller than 1, (the exception here is Brazil), and the values increase during the second subsample for the US, the UK, Australia and Argentina. The inclusion of a structural break reduces then the estimates of \(d_m\) and \(d_y\) in Brazil, the UK and the US while both estimates increase in the case of Australia.

Figures 2 and 3 and Tables 6 and 7 are similar to Figure 1 and Table 3 above referring now to the first and second subsamples respectively. The results for the first subsample show that long-run neutrality holds for Argentina, Mexico, the US and the UK (see case (ii) of Bae et al.’s). For Brazil the values of 1.96 for \(d_m\) and 1.70 for \(d_y\) also suggests that long-run neutrality holds (see case (v) in Bae et al.’s paper). Finally, long-run neutrality is rejected in the case of Australia. Table 7 reports the estimates of \(d_m\) and \(d_y\) in the second subsample period across countries. The values of the estimates for Australia, Argentina and Mexico support case (ii) in Bae et al.’s (2005) paper. Brazil, the US and the UK are consistent with case (v) in that paper, supporting thus the long-run neutrality hypothesis for the six countries examined.

\(^5\) In order to deal with the problem of breaks occurring in the extremes of the samples, we have constrained the analysis to the \([0.1T, 0.9T]\) interval of the samples.
5. Concluding comments

In this paper we have re-examined the issue of long-run monetary neutrality in a group of six countries using fractional integration techniques and allowing for a structural break that is endogenously determined by the model. Most of the previous empirical evidence is based on the reduced-form test of Fisher and Seater (1993), which is conducted via classic methods of I(0)/I(1) hypotheses. In this paper, we employ an extension of Fisher and Seater’s (1993) recently proposed by Bae et al. (2005) to the fractional case.

When we suppose that there is no break in the data, the results with fractional integration suggest that long-run monetary neutrality holds for Argentina, Australia, Brazil, Mexico and the UK, whereas the US monetary neutrality is not addressable. However, when we take into account one possible structural break, we find that in five cases (Argentina, Brazil, Mexico, the UK and the US) the long-run monetary neutrality holds in the first subsamples, and for all countries in the second subsamples.

The results presented in this work still leave several questions unanswered. Thus, for example, we should investigate why the neutrality hypothesis is not addressable in the US if no break is taken into account or why this hypothesis is not satisfied in the case of Australia for the first subsample. Another remarkable result is the fact that the break dates do not coincide either across countries or within each country for the two series examined. Thus, only for the UK are the breaks in output and money close in time, though for the US and Australia (in the early part of the sample) and for Mexico (during the 1980s) the breaks are not too far apart.

Finally, the paper can be extended in several directions. First, the orders of integration of the series can be estimated in a multivariate model. Note that in the present work as well as in Bae et al. (2005) the estimation of d_m and d_y is univariate. Multivariate
models of fractional integration have been recently developed by Gil-Alana (2003a, b) and Nielsen (2005), the latter proposing a time domain version of Gil-Alana's tests. These approaches can be viewed as reduced form models that permit us to identify structural fractional VAR models through standard identification restrictions. The bivariate fractional VAR approach can be then extended to the case of structural breaks though the theoretical model in this context still needs to be fully developed.
References

<table>
<thead>
<tr>
<th>Country</th>
<th>Disturbances</th>
<th>No regressors</th>
<th>An intercept</th>
<th>A linear trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED STATES</td>
<td>White noise</td>
<td>1.10</td>
<td>1.64</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.00, 1.25)</td>
<td>(1.43, 1.92)</td>
<td>(1.43, 1.91)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>1.00</td>
<td>0.90</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.87, 1.25)</td>
<td>(0.83, 1.21)</td>
<td>(0.51, 1.20)</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>White noise</td>
<td>1.27</td>
<td>1.94</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.18, 1.41)</td>
<td>(1.75, 2.22)</td>
<td>(1.77, 2.20)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>1.20</td>
<td>1.36</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.07, 1.44)</td>
<td>(1.21, 1.62)</td>
<td>(1.27, 1.71)</td>
</tr>
<tr>
<td>MEXICO</td>
<td>White noise</td>
<td>1.21</td>
<td>1.48</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.09, 1.40)</td>
<td>(1.33, 1.69)</td>
<td>(1.34, 1.73)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>1.18</td>
<td>1.28</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.98, 1.56)</td>
<td>(1.10, 1.66)</td>
<td>(1.18, 1.93)</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>White noise</td>
<td>1.08</td>
<td>1.82</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.96, 1.28)</td>
<td>(1.62, 2.69)</td>
<td>(1.60, 2.66)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>0.90</td>
<td>1.49</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.71, 1.15)</td>
<td>(1.34, 1.70)</td>
<td>(1.37, 1.70)</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>White noise</td>
<td>1.02</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.92, 1.16)</td>
<td>(1.13, 1.38)</td>
<td>(1.13, 1.38)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>1.01</td>
<td>1.12</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.85, 1.25)</td>
<td>(0.99, 1.31)</td>
<td>(0.99, 1.33)</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>White noise</td>
<td>1.14</td>
<td>1.84</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.05, 1.28)</td>
<td>(1.62, 2.23)</td>
<td>(1.62, 2.23)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>1.15</td>
<td>1.23</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.99, 1.42)</td>
<td>(1.13, 1.37)</td>
<td>(1.15, 1.42)</td>
</tr>
</tbody>
</table>

In bold those cases where the unit root null hypothesis cannot be rejected at 5% level. The values in parenthesis refer to the 95% confidence intervals for the values of d.
TABLE 2: Estimates of d based on maximum likelihood in the frequency domain:

REAL INCOME

<table>
<thead>
<tr>
<th>Country</th>
<th>Disturbances</th>
<th>No regressors</th>
<th>An intercept</th>
<th>A linear trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>White noise</td>
<td>0.99</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.86, 1.14)</td>
<td>(0.80, 1.24)</td>
<td>(0.82, 1.24)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>0.87</td>
<td>0.74</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.59, 1.18)</td>
<td>(0.68, 0.83)</td>
<td>(0.21, 0.86)</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>White noise</td>
<td>0.98</td>
<td>1.16</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.88, 1.12)</td>
<td>(0.99, 1.42)</td>
<td>(0.99, 1.42)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>0.94</td>
<td>0.81</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.75, 1.18)</td>
<td>(0.73, 0.97)</td>
<td>(0.57, 0.98)</td>
</tr>
<tr>
<td>MEXICO</td>
<td>White noise</td>
<td>0.97</td>
<td>1.33</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.79, 1.20)</td>
<td>(1.15, 1.57)</td>
<td>(1.20, 1.50)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>0.76</td>
<td>1.22</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.37, 1.26)</td>
<td>(0.95, 1.64)</td>
<td>(0.92, 1.41)</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>White noise</td>
<td>0.94</td>
<td>1.40</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.81, 1.13)</td>
<td>(1.17, 1.72)</td>
<td>(1.22, 1.72)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>0.84</td>
<td>0.97</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.61, 1.17)</td>
<td>(0.86, 1.25)</td>
<td>(0.64, 1.25)</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>White noise</td>
<td>1.00</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.90, 1.12)</td>
<td>(0.92, 1.15)</td>
<td>(0.93, 1.15)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>1.08</td>
<td>1.02</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.89, 1.41)</td>
<td>(0.86, 1.40)</td>
<td>(0.85, 1.38)</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>White noise</td>
<td>0.97</td>
<td>0.93</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.86, 1.12)</td>
<td>(0.84, 1.09)</td>
<td>(0.96, 1.29)</td>
</tr>
<tr>
<td></td>
<td>Bloomfield</td>
<td>0.92</td>
<td>0.75</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.73, 1.21)</td>
<td>(0.68, 1.13)</td>
<td>(0.69, 1.08)</td>
</tr>
</tbody>
</table>

In bold those cases where the unit root null hypothesis cannot be rejected at 5% level. The values in parenthesis refer to the 95% confidence intervals for the values of d.
FIGURE 1: Estimates of d_m and d_y in case of no structural break

![Graph showing estimates of d_m and d_y](image)

TABLE 3: Estimates of d_m and d_y in case of no structural break

<table>
<thead>
<tr>
<th>Country</th>
<th>d_m (money)</th>
<th>d_y (output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED STATES</td>
<td>0.82*</td>
<td>0.49</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>1.43</td>
<td>0.72</td>
</tr>
<tr>
<td>MEXICO</td>
<td>1.43</td>
<td>1.13*</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>1.51</td>
<td>0.91*</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>1.13*</td>
<td>1.04*</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>1.26</td>
<td>0.85*</td>
</tr>
</tbody>
</table>

*: The unit root hypothesis cannot be rejected at the 5% level.
TABLE 4: Estimates of the parameters in the model with a single break:
MONETARY AGGREGATES

<table>
<thead>
<tr>
<th>Country</th>
<th>Time</th>
<th>First sub-sample</th>
<th></th>
<th></th>
<th>Second sub-sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>d₁</td>
<td>α₁</td>
<td>β₁</td>
<td>d₂</td>
</tr>
<tr>
<td>United States</td>
<td>1920</td>
<td>1.45</td>
<td>-1.4256</td>
<td>0.0639</td>
<td>1.89</td>
<td>0.2266</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.12, 1.83)</td>
<td>(-30.13)</td>
<td>(2.08)</td>
<td>(1.60, 2.13)</td>
<td>(0.078)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1919</td>
<td>2.04</td>
<td>0.7296</td>
<td>0.0963</td>
<td>1.86</td>
<td>3.4958</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.79, 2.29)</td>
<td>(32.26)</td>
<td>(3.04)</td>
<td>(1.64, 2.11)</td>
<td>(1.84)</td>
</tr>
<tr>
<td>Mexico</td>
<td>1986</td>
<td>1.55</td>
<td>-1.8626</td>
<td>0.2372</td>
<td>2.02</td>
<td>-9.1703</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.38, 1.71)</td>
<td>(-18.14)</td>
<td>(2.77)</td>
<td>(1.21, 2.97)</td>
<td>(-1.28)</td>
</tr>
<tr>
<td>Brazil</td>
<td>1965</td>
<td>1.96</td>
<td>-14.378</td>
<td>-0.0495</td>
<td>1.85</td>
<td>-29.397</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.64, 2.18)</td>
<td>(-195.0)</td>
<td>(-0.48)</td>
<td>(1.42, 2.64)</td>
<td>(-0.72)</td>
</tr>
<tr>
<td>Australia</td>
<td>1883</td>
<td>0.71</td>
<td>3.851</td>
<td>0.0681</td>
<td>1.28</td>
<td>4.2135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.40, 1.56)</td>
<td>(74.74)</td>
<td>(8.66)</td>
<td>(1.12, 1.41)</td>
<td>(14.63)</td>
</tr>
<tr>
<td>Argentina</td>
<td>1987</td>
<td>1.75</td>
<td>-11.205</td>
<td>-382.81</td>
<td>2.51</td>
<td>0.2085</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.58, 1.94)</td>
<td>(-58.51)</td>
<td>(-4.63)</td>
<td>(1.19, 2.98)</td>
<td>(0.93)</td>
</tr>
</tbody>
</table>

The values in parenthesis for d₁ and d₂ refer to the 95% confidence intervals for the fractional differencing parameters. For α₁, β₁, α₂ and β₂ they are t-values.
TABLE 5: Estimates of the parameters in the model with a single break:

REAL INCOME

<table>
<thead>
<tr>
<th>Country</th>
<th>Time break</th>
<th>First sub-sample</th>
<th>Second sub-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>d_1</td>
<td>α_1</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>1931</td>
<td>0.72</td>
<td>(0.63, 1.02)</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>1918</td>
<td>0.85</td>
<td>(0.77, 1.25)</td>
</tr>
<tr>
<td>MEXICO</td>
<td>1982</td>
<td>0.88</td>
<td>(0.78, 1.28)</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>1930</td>
<td>1.70</td>
<td>(1.04, 2.42)</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>1891</td>
<td>0.44</td>
<td>(0.19, 0.78)</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>1913</td>
<td>0.71</td>
<td>(0.58, 1.04)</td>
</tr>
</tbody>
</table>

The values in parenthesis for d_1 and d_2 refer to the 95% confidence intervals for the fractional differencing parameters. For α_1, β_1, α_2 and β_2 they are t-values.
d(m) refers to the order of integration of money, while d(y) is the order of integration of output.

TABLE 6: Estimates of d_m and d_y in case of the first subsample

<table>
<thead>
<tr>
<th>Country</th>
<th>d_m (money)</th>
<th>d_y (output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED STATES</td>
<td>1.45</td>
<td>0.72*</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>2.04</td>
<td>0.85*</td>
</tr>
<tr>
<td>MEXICO</td>
<td>1.55</td>
<td>0.88*</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>1.96</td>
<td>1.70</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>0.71*</td>
<td>0.44</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>1.75</td>
<td>0.71*</td>
</tr>
</tbody>
</table>

*: The unit root hypothesis cannot be rejected at the 5% level.
d(m) refers to the order of integration of money, while d(y) is the order of integration of output.

<table>
<thead>
<tr>
<th>Country</th>
<th>d_m (money)</th>
<th>d_y (output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED STATES</td>
<td>1.89</td>
<td>1.18</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>1.86</td>
<td>1.03*</td>
</tr>
<tr>
<td>MEXICO</td>
<td>2.02</td>
<td>0.80*</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>1.85</td>
<td>1.25</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>1.28</td>
<td>0.92*</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>2.51</td>
<td>0.83*</td>
</tr>
</tbody>
</table>

*: The unit root hypothesis cannot be rejected at the 5% level.
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td>159/2000</td>
<td>Participación privada en la construcción y explotación de carreteras de peaje</td>
<td>Ginés de Rus, Manuel Romero y Lourdes Trujillo</td>
</tr>
<tr>
<td>160/2000</td>
<td>Errores y posibles soluciones en la aplicación del Value at Risk</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>161/2000</td>
<td>Tax neutrality on saving assets. The spahish case before and after the tax reform</td>
<td>Cristina Ruza y de Paz-Curbera</td>
</tr>
<tr>
<td>163/2000</td>
<td>El control interno del riesgo. Una propuesta de sistema de límites riesgo neutral</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>164/2001</td>
<td>La evolución de las políticas de gasto de las Administraciones Públicas en los años 90</td>
<td>Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells</td>
</tr>
<tr>
<td>165/2001</td>
<td>Bank cost efficiency and output specification</td>
<td>Emili Tortosa-Ausina</td>
</tr>
<tr>
<td>166/2001</td>
<td>Recent trends in Spanish income distribution: A robust picture of falling income inequality</td>
<td>Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara</td>
</tr>
<tr>
<td>167/2001</td>
<td>Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF</td>
<td>Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández</td>
</tr>
<tr>
<td>168/2001</td>
<td>The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some European Countries</td>
<td>Mónica Melle-Hernández</td>
</tr>
<tr>
<td>169/2001</td>
<td>La política de cohesión de la UE ampliada: la perspectiva de España</td>
<td>Ismael Sanz Labrador</td>
</tr>
<tr>
<td>170/2002</td>
<td>Riesgo de liquidez de Mercado</td>
<td>Mariano González Sánchez</td>
</tr>
<tr>
<td>171/2002</td>
<td>Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas de capitalización individual: medida y comparación internacional.</td>
<td>José Enrique Devesa Carpio, Rosa Rodriguez Barrera, Carlos Vidal Meliá</td>
</tr>
<tr>
<td>172/2002</td>
<td>La encuesta continua de presupuestos familiares (1985-1996): descripción, representatividad y propuestas de metodología para la explotación de la información de los ingresos y el gasto.</td>
<td>Llorene Pou, Joaquin Alegre</td>
</tr>
<tr>
<td>173/2002</td>
<td>Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de crédito.</td>
<td>Rosa Puertas, María Bonilla, Ignacio Olmeda</td>
</tr>
</tbody>
</table>
174/2002 Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.
José Vicente Blanes Cristóbal

175/2003 La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y
de los gastos.
Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González

Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

177/2003 Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.
Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

178/2003 Factors explaining the interest margin in the banking sectors of the European Union.
Joaquín Maudos y Juan Fernández Guevara

179/2003 Los planes de stock options para directivos y consejeros y su valoración por el mercado de
valores en España.
Mónica Melle Hernández

180/2003 Ownership and Performance in Europe and US Banking – A comparison of Commercial, Co-
operative & Savings Banks.
Yener Altunbas, Santiago Carbó y Phil Molyneux

181/2003 The Euro effect on the integration of the European stock markets.
Mónica Melle Hernández

182/2004 In search of complementarity in the innovation strategy: international R&D and external
knowledge acquisition.
Bruno Cassiman, Reinhilde Veugelers

183/2004 Fijación de precios en el sector público: una aplicación para el servicio municipal de sumi-
nistro de agua.
Mª Ángeles García Valiñas

184/2004 Estimación de la economía sumergida es España: un modelo estructural de variables latentes.
Ángel Alañón Pardo, Miguel Gómez de Antonio

185/2004 Causas políticas y consecuencias sociales de la corrupción.
Joan Oriol Prats Cabrera

186/2004 Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.
Andrés Guiral Contreras and José A. Gonzalo Angulo

Marta Tolentino García-Abadillo y Antonio Díaz Pérez

188/2004 Does market competition make banks perform well?.
Mónica Melle

189/2004 Efficiency differences among banks: external, technical, internal, and managerial
Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en españa: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodríguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do ‘Insertion Contracts’ Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodríguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodríguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Miguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Díaz
221/2005 Tendencia post-anuncio de resultados contables: evidencia para el mercado español
Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García

222/2005 Human capital accumulation and geography: empirical evidence in the European Union
Jesús López-Rodríguez, J. Andrés Faíña y Jose Lopez Rodríguez

223/2005 Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing
Waymond Rodgers and Andrés Guiral

José Ramón Cancelo de la Torre, J. Andrés Faíña and Jesús López-Rodriguez

225/2005 The effects of ownership structure and board composition on the audit committee activity: Spanish evidence
Carlos Fernández Méndez and Rubén Arrondo García

226/2005 Cross-country determinants of bank income smoothing by managing loan loss provisions
Ana Rosa Fonseca and Francisco González

Alejandro Estellér Moré

228/2005 Region versus Industry effects: volatility transmission
Pilar Soriano Felipe and Francisco J. Climent Diranzo

Daniel Vázquez-Bustelo and Sandra Valle

Alfonso Palacio-Vera

231/2005 Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal
M. Carmen Almansa Sáez and Javier Calatrava Requena

232/2005 Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?
Santiago Carbó Valverde and Rafael López del Paso

Miguel Angel Barberán Lahuerta

Víctor M. González

Waymond Rodgers, Paul Pavlou and Andres Guiral.

Francisco J. André, M. Alejandro Cardenete y Carlos Romero.
Santiago Carbó-Valverde, Francisco Rodríguez-Fernández y Gregory F. Udell.

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

Marcos Álvarez-Díaz y Gonzalo Caballero Miguez.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como deter-
minantes de la decisión de exportación en las Pymes.
Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el
tiempo.
Inés P. Murillo.

Manuel A. Gómez.

243/2006 Measuring efficiency in education: an analysis of different approaches for incorporating
non-discretionary inputs.
Jose Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro y Javier Salinas-Jiménez

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral
Countries?.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

Marta Pascual and David Cantarero.

246/2006 Measurement and analysis of the Spanish Stock Exchange using the Lyapunov exponent with
digital technology.
Salvador Rojí Ferrari and Ana Gonzalez Marcos.

247/2006 Testing For Structural Breaks In Variance Withadditive Outliers And Measurement Errors.
Paulo M.M. Rodrigues and Antonio Rubia.

Joaquín Maudos and Juan Fernández de Guevara.

Desiderio Romero Jordán, José Félix Sanz Sanz y César Pérez López.

250/2006 Regional Income Disparities in Europe: What role for location?.
Jesús López-Rodríguez and J. Andrés Faíña.

251/2006 Funciones abreviadas de bienestar social: Una forma sencilla de simultanear la medición de la
eficiencia y la equidad de las políticas de gasto público.
Nuria Badenes Plá y Daniel Santín González.

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”.
Luis Muga and Rafael Santamaria.

253/2006 Dinámica de precios en el mercado español de gasolina: un equilibrio de colusión tácita.
Jordi Perdiguero García.
José M. Pastor, Empar Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana Maria Aldanondo-Ochoa y Carmen Almansa-Sáez

José Felix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguero.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich
A. García-Lorenzo y Jesús López-Rodríguez

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luis Muga y Rafael Santamaría

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales
Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general
Robert Meneu Gaya

278/2006 El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006 Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006 Three measures of returns to education: An illustration for the case of Spain
Maria Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006 La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

283/2006 Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

Alberte Martínez López

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>290/2006</td>
<td>La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico</td>
<td>Fernando Hernández Martínez</td>
</tr>
<tr>
<td>291/2006</td>
<td>Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain</td>
<td>Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso</td>
</tr>
<tr>
<td>292/2006</td>
<td>Una teoría sobre la contribución de la función de compras al rendimiento empresarial</td>
<td>Javier González Benito</td>
</tr>
<tr>
<td>294/2006</td>
<td>Testing the parametric vs the semiparametric generalized mixed effects models</td>
<td>Maria José Lombardía and Stefan Sperlich</td>
</tr>
<tr>
<td>295/2006</td>
<td>Nonlinear dynamics in energy futures</td>
<td>Mariano Matilla-García</td>
</tr>
<tr>
<td>296/2006</td>
<td>Estimating Spatial Models By Generalized Maximum Entropy Or How To Get Rid Of W</td>
<td>Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez</td>
</tr>
<tr>
<td>297/2006</td>
<td>Optimización fiscal en las transmisiones lucrativas: análisis metodológico</td>
<td>Félix Domínguez Barrero</td>
</tr>
<tr>
<td>298/2006</td>
<td>La situación actual de la banca online en España</td>
<td>Francisco José Climent Diranzo y Alexandre Momparler Pechuán</td>
</tr>
<tr>
<td>299/2006</td>
<td>Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas</td>
<td>Javier González Benito y Isabel Suárez González</td>
</tr>
<tr>
<td>300/2006</td>
<td>A Parametric Model to Estimate Risk in a Fixed Income Portfolio</td>
<td>Pilar Abad and Sonia Benito</td>
</tr>
<tr>
<td>301/2007</td>
<td>Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros</td>
<td>Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé</td>
</tr>
<tr>
<td>302/2007</td>
<td>Assessing the enlargement and deepening of regional trading blocs: The European Union case</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano</td>
</tr>
<tr>
<td>303/2007</td>
<td>¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español</td>
<td>Vanesa Solís Rodríguez y Manuel González Díaz</td>
</tr>
<tr>
<td>305/2007</td>
<td>Spain is Different: Relative Wages 1989-98</td>
<td>José Antonio Carrasco Gallego</td>
</tr>
</tbody>
</table>
306/2007 Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

307/2007 La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

308/2007 Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor

Roberto Ezcurra, Belen Iráizoz, Pedro Pascual and Manuel Rapún

310/2007 Long-run Regional Population Divergence and Modern Economic Growth in Europe: a Case Study of Spain
María Isabel Ayuda, Fernando Collantes and Vicente Pinilla

311/2007 Financial Information effects on the measurement of Commercial Banks’ Efficiency
Borja Amor, María T. Tascón and José L. Fanjul

312/2007 Neutralidad e incentivos de las inversiones financieras en el nuevo IRPF
Félix Domínguez Barrero

313/2007 The Effects of Corporate Social Responsibility Perceptions on The Valuation of Common Stock
Waymond Rodgers, Helen Choy and Andres Guiral-Contreras

314/2007 Country Creditor Rights, Information Sharing and Commercial Banks’ Profitability Persistence across the world
Borja Amor, María T. Tascón and José L. Fanjul

315/2007 ¿Es Relevante el Déficit Corriente en una Unión Monetaria? El Caso Español
Javier Blanco González y Ignacio del Rosal Fernández

316/2007 The Impact of Credit Rating Announcements on Spanish Corporate Fixed Income Performance: Returns, Yields and Liquidity
Pilar Abad, Antonio Díaz and M. Dolores Robles

317/2007 Indicadores de Lealtad al Establecimiento y Formato Comercial Basados en la Distribución del Presupuesto
Cesar Augusto Bustos Reyes y Óscar González Benito

318/2007 Migrants and Market Potential in Spain over The XXth Century: A Test Of The New Economic Geography
Daniel A. Tirado, Jordi Pons, Elisenda Paluzie and Javier Silvestre

319/2007 El Impacto del Coste de Oportunidad de la Actividad Emprendedora en la Intención de los Ciudadanos Europeos de Crear Empresas
Luis Miguel Zapico Aldeano

320/2007 Los belgas y los ferrocarriles de vía estrecha en España, 1887-1936
Alberte Martínez López

321/2007 Competición política bipartidista. Estudio geométrico del equilibrio en un caso ponderado
Isabel Lillo, Mª Dolores López y Javier Rodrigo

322/2007 Human resource management and environment management systems: an empirical study
Mª Concepción López Fernández, Ana Mª Serrano Bedía and Gema García Piñeres
Wood and industrialization. evidence and hypotheses from the case of Spain, 1860-1935. Iñaki Iriarte-Goñi and María Isabel Ayuda Bosque

New evidence on long-run monetary neutrality. J. Cunado, L.A. Gil-Alana and F. Perez de Gracia