OPTIMAL ENVIRONMENTAL POLICY IN TRANSPORT: UNINTENDED EFFECTS ON CONSUMERS' GENERALIZED PRICE

M. Pilar Socorro
Ofelia Betancor
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros.
Las opiniones son responsabilidad de los autores.
Optimal environmental policy in transport: unintended effects on consumers' generalized price

M. Pilar Socorro†
Economics of Infrastructure and Transport Group, Universidad de Las Palmas de Gran Canaria. Departamento de Análisis Económico Aplicado 35017 Las Palmas de Gran Canaria, Spain.

Ofelia Betancor
Institute for Transport Studies, University of Leeds and Economics of Infrastructure and Transport Group, Universidad de Las Palmas de Gran Canaria Departamento de Análisis Económico Aplicado 35017 Las Palmas de Gran Canaria, Spain.

Abstract

Transport activity is strongly linked to environmental damage. However, transport operators may reduce their pollutant emissions through abatement effort. The government can make use of several instruments to increase operator's abatement effort, such as emissions taxes, emission subsidies or technological standards. All these instruments induce different effects on the number of operations to be offered and on the overall distortions of the economy. The optimal ranking of policies may strongly depend on whether regulators consider or not the effect that frequency has on consumers' generalized price. Thus, the main purpose of this paper is to highlight the importance of such an effect on regulation policies.

Keywords: environmental damage, generalized price, frequency

JEL Classification: Q53, H23, L91

* We would like to thank Javier Campos, Juan Carlos Martín and Stef Proost for their helpful comments and suggestions. This research was undertaken with support from the Ministerio de Educación y Ciencia and from FEDER, research grant SEJ2004-00143. The responsibility for possible errors is solely ours.

† Corresponding autor. Tel.: +34928 459605- Fax: +34928 458183. E-mail: psocorro@dea.ulpgc.es
1. Introduction

The transport sector is quite probably one of the most troublesome areas of the economy regarding production of externalities. Air quality, greenhouse gas emissions, noise, impact on biodiversity and land use are the main issues. About 90% of all lead emissions, about 50% of all nitrogen oxides (NOx) emissions and about 30% of all volatile organic compound (VOC) emissions, can be attributable to the transport sector (Hensher and Button, 2003).

Although most externalities found in transport have a negative impact, there may also be a positive one: the Mohring effect (Mohring, 1972). For buses, the Mohring effect relates to the reduction of passengers' waiting times at bus stops when the operator increases the frequency. Even though in other transport modes, such as air, rail and maritime transport, the arrival of vehicles to pick passengers up might not share the stochastic nature of buses, there exist effects of similar nature. Passengers have a preferred departure time and dislike the “schedule delay”, which equals the difference between the actual and preferred departure time (see, for example, Brueckner, 2004, Panzar, 1979, or Pels and Verhoef, 2002). Increases in frequency reduce the “schedule delay” and, hence, consumers’ generalized price.1

The treatment of externalities in transport is usually tackled at several grounds. We can mainly distinguish two types of policies:

1. Command and control measures concerning abatement. These are all measures intended to reduce the externality impact that are not market related. For example: restrictions on operations, restrictions on the type of technology and fuels used, the fulfilment of certain requirements and standards, etc.

2. Market related instruments. Any tax or subsidy aiming to reduce the externality level and hence the externality impact, forcing the operators to internalize the negative effects of their own actions.

1 Additionally to the reduction in the "schedule delay", an increase in frequency may diminish consumers’ generalized price since some indirect flights may be substituted by direct flights (Betancor and Nombela, 2002).
Utilization of market related instruments for correction of externalities is less frequently found in reality. For the case of air transport the application of noise charges at airports is better known though still not widely applicable. Less well known and, hence much less frequent, are pollution related charges (Betancor and Martin, 2005). In general the options of reduction of noise at source and implementation of command and control instruments have been much more common in the regulatory practice. In the case of rail, road and maritime transport, there is nothing like a noise or a pollution charge. Most measures concerning these modes have to do with the use of more environmentally efficient vehicles and fuels or with command and control measures. However the situation is starting to change. For instance in roads some types of vehicles (e.g. Four wheel drive) are being now subject to a special tax due to their higher pollution levels.

In roads revenues arising at the taxation of fuel may be seen as a way to pay for the externality, though this tax is not usually ear-marked in this regard. Other modes such as railways, maritime and air transport do not even pay taxes on fuel.

The existing literature on the treatment of externalities in transport usually concentrate its attention on solving just one externality, though there are some papers that consider the presence of multiple distortions (see, for example, Parry and Bento, 2002, or Verhoef, 2002). However, to our knowledge, regulation of negative externalities through any means and by taking into account its implications in terms of Mohring effects has not been considered till now.

In this work we analyze such an impact. We consider a route in which there is only a transport service provider. Each operation produces an environmental damage that may be reduced through an abatement effort made by carriers. Abatement effort is not costless, so it will not be exerted without public intervention. We concentrate our attention on three possible public instruments to increase the operators' abatement effort: an emission tax, an emission subsidy and a technological standard. Although these policies may be equivalent in order to achieve the socially optimal level of pollution, they have different effects on the frequency to be offered. However, such effects on the frequency are less severe if the Mohring effect is considered.
As it is usual in the literature, we assume that public funds are obtained through distortionary taxation. Emission taxes generate revenues that can be used to finance cuts in existing distortionary taxes. Some economists and politicians have argued that there might be a "double dividend" associated with the introduction of an emission tax: not only discourages environmentally damaging activities but also reduces the distortion cost of the tax system (see, for example, Goulder, 1995, Goulder et al., 1997, Pearce, 1991, Poterba, 1993, or Repetto et al., 1992).

There are several papers in the literature looking for the optimal ranking of policies to tackle environmental damage in general (see Kolstad, 1999, for a general view) and, specifically, in the transport sector (see, for example, Calthrop and Proost, 2003, Fullerton and West, 2000, and Proost and Van Dender, 2001). However, all these papers ignore the effect that frequency has on consumers' generalized price. In this paper, we show that that the optimal ranking of policies may strongly depend on whether regulators consider or not the Mohring effect. Ignoring the importance of such an effect may lead to the choice of wrong environmental policies, reducing the social welfare of the overall economy.

The rest of the paper is organized as follows. Section 2 presents the model. In section 3, we analyze as a benchmark situation the case in which there is not public intervention at all. For this case, we compare the private solution and the social optimum. In section 4, we discuss the optimal environmental and importance of the Mohring effect. Section 5 concludes.

2. The model

We consider a route in which there is only a transport service provider with constant marginal operating cost denoted by c_0. The inverse demand function is assumed to be linear, this is:

$$G = \alpha - \beta Q,$$

(1)
where G denotes consumers' generalized price, α and β are positive parameters, and Q denotes the total number of operations or frequency. As Zhang and Zhang (2006) point out, this measurement of Q is equivalent to the number of passengers if each operation has an equal number of passengers, which holds when all vehicles are identical and have the same load factor.

Consumers' generalized price is the sum of the ticket price P and the value of the time spent in making the trip $vT(Q)$:

$$G = P + vT(Q),$$ \hspace{1cm} (2)

where v is a positive parameter denoting the passengers' value of time, and $T(Q)$ is the total time that passengers spend in the trip (including the walking time to/from stops, the waiting time at stops and in vehicle time). The total amount of time required to make the trip decreases as the frequency increases, $dT(Q)/dQ < 0$. Thus, the higher the frequency, the lower consumers' generalized price. This effect is similar to the Mohring effect that is often considered in the context of the bus industry (Mohring, 1972).

In order to guarantee uniqueness of equilibrium for any possible value of the parameters β and v, we also assume that, for every strictly positive Q, the following condition for the function $T(Q)$ is satisfied:

$$-2\frac{dT(Q)}{dQ} - Q\frac{d^2T(Q)}{dQ^2} < 0.$$ \hspace{1cm} (3)

When operating, the transport provider produces pollutant emissions (e.g. noise and air pollution). Each operation causes a constant environmental damage denoted by $d \in [0,1]$. However, the operator may reduce the amount of his emissions of noise and air pollution through an abatement effort. Abatement effort can take different forms: the use of cleaner technology or cleaner fuels, lower speed, etc. Let us denote by $e \in [0,1]$.

2 There are several decreasing and convex functions for $T(Q)$ satisfying this expression. One example is $T(Q) = a + f / Q^2$.

3 No other externalities inherent to the transport system such as congestion or accidents are considered.
firm's abatement effort per operation, which is supplied at a constant marginal cost c_e per operation. We assume quadratic costs for effort, $c_e = e^2 / 2$. This latter assumption implies that the marginal cost of abatement is rising, that is, more sophisticated and costly techniques are required to further decrease pollutant emissions.\(^4\)

Thus, $(1 - e) \in [0,1]$ denotes firm's final level of emissions per operation. We assume that if the transport service provider exerts an abatement effort e, then the environmental damage reduces to $d(1 - e)$.

From previous assumptions, we can deduce that the total cost of the transport operator $C(Q)$ is a linear function of the total number of operations. Formally:

$$C(Q) = c_T Q = (c_o + c_e) Q,$$

where c_T denotes the total marginal cost of the transport service provider, obtained as the sum of the marginal operating cost and the marginal cost of effort (both constant per operation).

3. Benchmark: No intervention

The operator chooses the level of frequency and abatement effort in order to solve the following maximization problem:

$$\max_{Q,e} \pi(Q,e) = [\alpha - \beta Q - \nu T(Q)] Q - c_T Q.$$

If the government does not intervene at all, the monopolist will choose the level of abatement effort that minimizes his total costs. Clearly, the operator's total costs are

\(^4\) The assumption of quadratic costs for abatement effort is usually applied in the environmental economics literature. Some examples are Calthrop and Proost (2003), Chavez and Stanlund (2003), Hoel and Karp (2001), Nannerup (1998), and Yates and Cronshaw (2001).
minimized by setting $e^{NI} = 0$, where the superscript NI denotes the case of no public intervention.

For the optimal choice of the frequency, the monopolist solves the maximization program given by expression (5). The choice of the operator is obtained by setting the first derivative of profits, $\pi(Q,e)$, with respect to Q equal to zero. Using subscripts to denote partial derivatives, the first order condition of such a maximization program can be written as:

$$
\pi_{Q}(Q^{NI},e^{NI}) = \alpha - 2\beta Q^{NI} - vT(Q^{NI}) - vQ^{NI} \frac{dT(Q^{NI})}{dQ} - c_T = 0. \tag{6}
$$

The second order condition of the operator's maximization problem is given by:

$$
\pi_{QQ}(Q^{NI},e^{NI}) = -2\beta - 2v \frac{dT(Q^{NI})}{dQ} - vQ^{NI} \frac{d^2T(Q^{NI})}{dQ^2} < 0, \tag{7}
$$

which, given our assumptions, it is clearly satisfied. Thus, expression (6) defines implicitly the optimal frequency to be offered by the transport service provider without public intervention.

Let us compare the operator's optimal choice of abatement effort and frequency with the socially optimal solutions. Social welfare is defined as the sum of consumers surplus and the operator's profits, minus the external cost of environmental pollution. If the regulator were able to control directly the choice of abatement effort and frequency, he would solve the following maximization program:

$$
Max_{Q,e} SW(Q,e) = \frac{1}{2} \beta Q^2 + [\alpha - \beta Q - vT(Q) - c_o - \frac{e^2}{2}]Q - d(1-e)Q. \tag{8}
$$

First order conditions lead to the following expressions:\footnote{Given our assumptions, the social objective function is strictly concave, and hence the first order conditions are also sufficient.}
\[e^{SO} = d. \]
\[\pi_{Q}(Q^{SO}, e^{SO}) + \beta Q^{SO} - d(1 - e^{SO}) = 0, \]
\[\text{where the superscript } SO \text{ denotes the socially optimal solution. Investment in pollution abatement effort is optimal when the marginal cost of abatement per operation, } e, \text{ equals the marginal benefit of abatement effort per operation, } d. \text{ Hence, it is socially optimal to force the operator to exert a strictly positive effort in reducing noise and air pollution, though it is not socially optimal to force him to exert the maximum effort.} \]

If the market size is high enough, the optimal frequency from the social point of view will be higher than the frequency offered by the monopolist. In this case, it is socially optimal to increase the frequency since the social loss in terms of consumers surplus would be higher than the environmental damage. All these results are summarized in the following Lemma.

Lemma 1: The socially optimal level of abatement effort per operation is higher than the effort exerted by the operator without public intervention. Moreover, if the market size is high enough, for every abatement effort, the socially optimal frequency is higher than the frequency offered by the operator.

Proof: The socially optimal frequency is implicitly defined by expression (10). We have that \(\beta Q^{SO} - d(1 - e^{SO}) > 0 \) if \(Q^{SO} \) is high enough, that is, if the market size is high enough. If \(\beta Q^{SO} - d(1 - e^{SO}) > 0 \), then \(\pi_{Q}(Q^{SO}, e^{SO}) < 0 \). For a certain level of abatement effort \(e \), the frequency \(Q \) offered by the operator is given by setting the first derivative of \(\pi(Q, e) \) equal to zero: \(\pi_{Q}(Q, e) = 0 \). Since \(\pi_{QQ} < 0 \) for every strictly positive \(Q \), \(\pi_{Q}(Q^{SO}, e) < 0 = \pi_{Q}(Q, e) \) necessarily implies that \(Q^{SO} > Q \), for every possible \(e \). This completes the proof.

From this simple case we can obtain some interesting results. Forcing the transport service provider to exert a strictly positive abatement effort would have a negative effect on frequency. However, the negative impact on frequency due to an increase in
firm’s abatement effort will be mitigated if the Mohring effect is considered. These results are formally stated in the following Proposition.

Proposition 1: If the operator were forced to exert a strictly positive abatement effort, the optimal frequency to be offered would be reduced. However, such a reduction would be lower if the Mohring effect is considered.

Proof: On the one hand, if the monopolist were forced to exert a strictly positive effort, his total marginal cost \(c_T \) would be increased. Applying the implicit function theorem to the first order condition given by expression (6), it is straightforward to prove that as \(c_T \) rises, the optimal frequency \(Q \) decreases. Formally:

\[
\frac{dQ}{dc_T} = 1/\pi_{\psi_0} < 0,
\]

where \(\pi_{\psi_0} = -2\beta - 2\nu \frac{dT(Q)}{dQ} + \beta Q d^2T(Q)/dQ^2 \) if the Mohring effect is considered, and \(\pi_{\psi_0} = -2\beta \) otherwise. Since, given our assumptions, we have that, for every strictly positive \(Q \), \(-2(dT(Q)/dQ) - Q(d^2T(Q)/dQ^2) < 0\), the reduction on frequency due to an increase in firm’s abatement effort would be lower if the Mohring effect is considered. This completes the proof. ■

The abatement effort is not costless so the transport operator will exert no effort without public intervention. Thus, in this context government’s intervention is justified.

From Proposition 1 we can deduce that any policy aimed to increase the operator's abatement effort will have a negative impact on the frequency to be offered. However, such a negative effect will be mitigated if the Mohring effect is taken into account. The intuition of this result is as follows: If the total amount of time required to make the trip decreases with frequency, consumers' generalized price will decrease as frequency increases. So, the higher the frequency, the higher the ticket price that the monopolist can charge to passengers. Therefore, when deciding the frequency to be offered, the monopolist takes into account the positive effects that frequency has on travel times.
The government can make use of several instruments to increase the transport service operator's abatement effort, such as emissions taxes, emission subsidies or technological standards. All these instruments induce different effects on the number of operations to be offered and the overall distortions of the economy. The optimal ranking of policies may strongly depend on whether regulators take or not into account the effect that frequency has on consumers’ generalized price, that is, on whether the Mohring effect is or not considered.

4. Optimal environmental policy

A socially optimal level of pollution can be achieved either by an emission tax, an emission subsidy or a technological standard. Although these policies may be equivalent to achieve such an optimal level of pollution, they have different effects on the frequency to be offered by the monopolist, and thus on social welfare. Moreover, emission taxes generate revenues that can be used to finance cuts in existing distortionary taxes. Let us analyze the optimal environmental policy to be implemented.

In Section 3, we show that the socially optimal level of abatement effort is $e^{SO} = d$. In this section, we will analyze three equivalent policies to implement such an abatement effort. The first one is an emission tax. Let t be the emission tax that the operator must pay per operation, which is proportional to his emission rate. The operator chooses the level of abatement effort in order to minimize his total costs. Thus, when deciding his abatement effort, the carrier must balance the additional cost of exerting more effort against the reduction in tax payments. Formally, the operator chooses the level of effort that solves the following minimization problem:

$$\min_e t(1-e) + \frac{e^2}{2}. \quad (11)$$

The first order condition requires that $e^{ET} = t$, where the superscript ET denotes the presence of an emission tax. Clearly, by setting $t = d$, the government implements the
socially optimal effort. In this case, the carrier's total marginal cost is given by the following formula:

\[c^{ET}_r = c_o + d - \frac{d^2}{2}. \]

(12)

The second policy that might be used by the regulator to implement the socially optimal level of abatement effort is an emission subsidy. Let \(s \) be the emission subsidy per operation that the transport service provider obtains for each unit of abatement effort. In this case, when deciding the level of abatement effort to be exerted, the operator solves:

\[\text{Min} \ e \quad \frac{e^2}{2} - se. \]

(13)

The optimal solution implies that \(e^{ES} = s \), where the superscript \(ES \) denotes the presence of an emission subsidy. By setting \(s = d \), the government implements the socially optimal effort, and the operator's total marginal cost is given by:

\[c^{ES}_r = c_o - \frac{d^2}{2}. \]

(14)

Finally, the third policy that might be used by the government to implement the socially optimal level of abatement effort is a command and control policy. Command and control regulations applied to transport typically imply the introduction of some requirements or standards on the vehicles and the technology they use. Suppose that the regulator issues detailed requirements for the operator in order to force him to exert an effort \(e^{TS} = d \), where the superscript \(TS \) denotes the presence of a technological standard. Then, the carrier's total marginal cost is given by the following expression:

\[c^{TS}_r = c_o + \frac{d^2}{2}. \]

(15)

Although the socially optimal level of abatement effort can be achieved either with an emission tax, an emission subsidy or a technological standard, these policies have
different effects on the operator's total marginal cost and, thus, on the frequency to be offered. Indeed, comparing expressions (12), (14), (15), it is straightforward to see that $c^T_E < c^T_S < c^T_T$ and, thus, $Q^E > Q^S > Q^T$. These results are summarized in the following Lemma.

Lemma 2: The socially optimal level of abatement effort can be implemented either with an emission tax, an emission subsidy or a technological standard. However, these policies have different effects on the frequency to be offered by the monopolist. In particular, an emission subsidy induces the highest frequency while an emission tax the lowest.

Proof: The frequency offered by the operator is given by setting $\pi_0(Q,e^{SO}) = 0$. The optimal frequency Q is implicitly defined by such first derivative and, applying the implicit function theorem, we have that $dQ/dc = 1/\pi_{QQ} < 0$. Since $c^E_T < c^E_S < c^E_T$, then $Q^E > Q^S > Q^T$, as we wanted to prove. ■

With an emission subsidy the regulator manages to implement the socially optimal level of abatement effort and the highest frequency. But any subsidy requires the use of public funds that are obtained through distortionary taxation. Let λ denote the cost of public funds.\(^6\)

The social welfare if an emission subsidy is used to implement the socially optimal level of abatement effort $e^{SO} = d$ is given by the following formula:

$$ SW(Q^E, e^{SO}) = \frac{1}{2} \beta(Q^E)^2 + [\alpha - \beta T(Q^E) - c_o + \frac{d^2}{2}]Q^E - d(1-d)Q^E - (1+\lambda)d^2 Q^E. $$

\(^6\) There are several papers in the literature estimating the cost of public funds. For instance, Ballard, Shoven and Whalley (1985) find that the welfare loss due to 1% increase in all distortionary tax rates is between 17% and 56% per dollar. In the Canadian case, Campbell (1975) finds that this distortion is equal to 24%. More generally, it seems that the shadow cost of public funds falls in the range of 15% to 50% in countries with a developed efficient tax-collection system (Gagnepain e Ivaldi, 2002).
The socially optimal level of abatement effort may be also implemented through an emission tax, though this policy induces the lowest frequency. If we assume that the revenues that are obtained through such a tax are used to reduce the overall distortions of the economy, the social welfare is obtained by:

\[
SW(Q^{ET}, e^{SO}) = \frac{1}{2} \beta (Q^{ET})^2 + [\alpha - \beta Q^{ET} - vT(Q^{ET}) - c_o - d + \frac{d^2}{2}]Q^{ET} - d(1-d)Q^{ET} + (1+\lambda)d(1-d)Q^{ET}.
\]

(17)

Command and control policies can be implemented without affecting the government's revenues since they only imply the fulfilment of certain requirements. Thus, if a technological standard is used to implement the socially optimal level of abatement effort, the social welfare is given by the following expression:

\[
SW(Q^{TS}, e^{SO}) = \frac{1}{2} \beta (Q^{TS})^2 + [\alpha - \beta Q^{TS} - vT(Q^{TS}) - c_o - d + \frac{d^2}{2}]Q^{TS} - d(1-d)Q^{ET}.
\]

(18)

From Lemma 1 we know that, if the market size is high enough, the frequency offered by the operator is lower than the optimal frequency from the social point of view. Thus, if the market size is high enough, when deciding the optimal environmental policy to implement the socially optimal level of abatement effort, the regulator faces a trade off. On the one hand, the highest (lowest) frequency is obtained with an emission subsidy (tax). On the other hand, the use of subsidies increases (decreases) the overall distortion of the economy.

In this section we show that the optimal ranking of policies may vary if we consider the Mohring effect. If the regulator chooses an emission subsidy rather than an emission tax, we can deduce that the positive effect of subsidies on the frequency is higher than the negative impact of subsidies in terms of overall distortions on the economy. Since the effect on frequency is lower if there exists a Mohring effect, it may be the case that the optimal ranking of policies changes if the government does take into account this Mohring effect. This is stated in the following proposition.
Proposition 2: The optimal ranking of policies may depend on whether regulators take or not into account the effect that frequency has on consumers' generalized price, that is, on whether the Mohring effect is or not considered.

Proof: To demonstrate that this possibility can indeed arise, let us consider the following counter example. Assume that the total amount of time required to make the trip is given by \(T(Q) = a + \left(\frac{f}{Q^2} \right) \), where \(a \) denotes the minimum time required to make the trip (access/ egress time plus travel time). As \(Q \) increases the total amount of time \(T(Q) \) tends to the minimum \(a \). This is the so-called Mohring effect.

When regulators do not take into account the Mohring effect, they consider that the total amount of time required to make the trip is given by: \(T = a + b \), where \(b \) denotes the distance between the real total time and the minimum. Such a distance is strictly positive and does not depend on the frequency. In other words, when regulators ignore the Mohring effect, they take the total travel time as given, disregarding the effects of frequency on such a total travel time.

Suppose the following values for the parameters: \(\alpha = 70, \beta = 1, \nu = 6, a = 10, b = 0.4, c_o = 5, d = 0.5, f = 3 \) and \(\lambda = 0.38 \).

The following table compares the social welfare and the frequency offered by the operator if an emission subsidy, a technological standard or an emission tax is used to implement the socially optimal level of abatement effort, \(e^{SO} = 0.5 \), both in the case in which the Mohring effect is and is not considered. It also includes the frequency and social welfare obtained if there is no public intervention and the operator exerts no effort at all.
Table 1: Comparison of environmental policies if the Mohring effect is and is not considered

<table>
<thead>
<tr>
<th></th>
<th>The Mohring effect is not considered</th>
<th>The Mohring effect is considered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>Q</td>
</tr>
<tr>
<td>Emission subsidy</td>
<td>0.5</td>
<td>1.3625</td>
</tr>
<tr>
<td>Technological standard</td>
<td>0.5</td>
<td>1.2375</td>
</tr>
<tr>
<td>Emission tax</td>
<td>0.5</td>
<td>1.1125</td>
</tr>
<tr>
<td>No intervention</td>
<td>0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

In both cases, for every environmental policy, the social welfare is higher than in the case in which there is no public intervention at all. However, the increase in social welfare due to the introduction of a certain environmental policy varies depending on whether the Mohring effect is or is not considered. In particular, if regulators do not take into account the Mohring effect, the optimal ranking of policies is, first, a technological standard, second, an emission subsidy and, third, an emission tax. However, if the Mohring effect is considered, the optimal ranking of environmental policies completely changes: first, an emission tax, second, a technological standard and, third, an emission subsidy. Moreover, if we compare the frequency an level of social welfare for the cases in which the Mohring effect is and is not considered, we can observe that both are higher in the former case. This completes the proof.

The Mohring effect may have a crucial role when deciding the optimal environmental policy. However, so far, the literature on environmental regulation has paid little attention to this fact. Ignoring the importance of the Mohring effect may lead to the choice of wrong environmental policies, reducing the social welfare of the overall economy.

5. Conclusions

The Mohring effect refers to the fact that, as the frequency increases, the total amount of time required to make a trip declines. Thus, as the frequency raises, consumers' generalized price decreases. Although this effect was firstly applied to the bus industry...
(Mohring, 1972), it can be extended to other transport modes, such as the rail, maritime or air transport.

The existence of a Mohring effect may have important consequences on the optimality of environmental policies. However, environmental regulators do not usually take into account the impact that the frequency has on consumers' generalized price. The model analyzed in this paper, though very simple, highlights the importance of the Mohring effect in optimal environmental and transport regulation. In particular, we show that if the Mohring effect is considered, the negative effect of environmental regulations on the frequency to be offered is mitigated. As a consequence, the optimal ranking of environmental policies may drastically change.

References

Últimos números publicados

159/2000 Participación privada en la construcción y explotación de carreteras de peaje
Ginés de Rus, Manuel Romero y Lourdes Trujillo

160/2000 Errores y posibles soluciones en la aplicación del *Value at Risk*
Mariano González Sánchez

161/2000 Tax neutrality on saving assets. The spahish case before and after the tax reform
Cristina Ruza y de Paz-Curbera

162/2000 Private rates of return to human capital in Spain: new evidence
F. Barceinas, J. Oliver-Alonso, J.L. Raymond y J.L. Roig-Sabaté

163/2000 El control interno del riesgo. Una propuesta de sistema de límites riesgo neutral
Mariano González Sánchez

164/2001 La evolución de las políticas de gasto de las Administraciones Públicas en los años 90
Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells

165/2001 Bank cost efficiency and output specification
Emili Tortosa-Ausina

166/2001 Recent trends in Spanish income distribution: A robust picture of falling income inequality
Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara

167/2001 Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF
Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández

168/2001 The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some European Countries
Mónica Melle-Hernández

169/2001 La política de cohesión de la UE ampliada: la perspectiva de España
Ismael Sanz Labrador

170/2002 Riesgo de liquidez de Mercado
Mariano González Sánchez

171/2002 Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas de capitalización individual: medida y comparación internacional.
José Enrique Devesa Carpio, Rosa Rodriguez Barrera, Carlos Vidal Meliá

172/2002 La encuesta continua de presupuestos familiares (1985-1996): descripción, representatividad y propuestas de metodología para la explotación de la información de los ingresos y el gasto.
Llorec Pou, Joaquin Alegre

173/2002 Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de crédito.
Rosa Puertas, María Bonilla, Ignacio Olmeda
174/2002 Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas. José Vicente Blanes Cristóbal

175/2003 La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos. Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González

177/2003 Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case. Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

178/2003 Factors explaining the interest margin in the banking sectors of the European Union. Joaquín Maudos y Juan Fernández Guevara

179/2003 Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España. Mónica Melle Hernández

181/2003 The Euro effect on the integration of the European stock markets. Mónica Melle Hernández

182/2004 In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition. Bruno Cassiman, Reinhilde Veugelers

183/2004 Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua. Mª Ángeles García Valiñas

184/2004 Estimación de la economía sumergida en España: un modelo estructural de variables latentes. Ángel Alaño Pardo, Miguel Gómez de Antonio

185/2004 Causas políticas y consecuencias sociales de la corrupción. Joan Oriol Prats Cabrera

186/2004 Loan bankers’ decisions and sensitivity to the audit report using the belief revision model. Andrés Guiral Contreras and José A. Gonzalo Angulo

187/2004 El modelo de Black, Derman y Toy en la práctica. Aplicación al mercado español. Marta Tolentino García-Abadillo y Antonio Díaz Pérez

188/2004 Does market competition make banks perform well?. Mónica Melle

189/2004 Efficiency differences among banks: external, technical, internal, and managerial. Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en España: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodríguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do ‘Insertion Contracts’ Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodríguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodríguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Míguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Díaz
Tendencia post-anuncio de resultados contables: evidencia para el mercado español
Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García

Human capital accumulation and geography: empirical evidence in the European Union
Jesús López-Rodriguez, J. Andrés Faíña y Jose Lopez Rodriguez

Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing
Waymond Rodgers and Andrés Guiral

José Ramón Cancelo de la Torre, J. Andrés Faíña and Jesús López-Rodriguez

The effects of ownership structure and board composition on the audit committee activity: Spanish evidence
Carlos Fernández Méndez and Rubén Arrondo García

Cross-country determinants of bank income smoothing by managing loan loss provisions
Ana Rosa Fonseca and Francisco González

Incumplimiento fiscal en el irpf (1993-2000): un análisis de sus factores determinantes
Alejandro Estellér Moré

Region versus Industry effects: volatility transmission
Pilar Soriano Felipe and Francisco J. Climent Diranxo

Concurrent Engineering: The Moderating Effect Of Uncertainty On New Product Development Success
Daniel Vázquez-Bustelo and Sandra Valle

On zero lower bound traps: a framework for the analysis of monetary policy in the ‘age’ of central banks
Alfonso Palacio-Vera

Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal
M. Carmen Almansa Sáez and Javier Calatrava Requena

Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?
Santiago Carbó Valverde and Rafael López del Paso

Inheritance Taxes In The Eu Fiscal Systems: The Present Situation And Future Perspectives.
Miguel Angel Barberán Lahuerta

Bank Ownership And Informativeness Of Earnings.
Víctor M. González

Waymond Rodgers, Paul Pavlou and Andres Guiral.

Francisco J. André, M. Alejandro Cardenete y Carlos Romero.
<table>
<thead>
<tr>
<th>N°</th>
<th>Título</th>
<th>Autores</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
<td>Bank Market Power And Sme Financing Constraints.</td>
<td>Santiago Carbó-Valverde, Francisco Rodríguez-Fernández y Gregory F. Udell.</td>
</tr>
<tr>
<td>238</td>
<td>Trade Effects Of Monetary Agreements: Evidence For Oecd Countries.</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.</td>
</tr>
<tr>
<td>240</td>
<td>La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes.</td>
<td>Francisco García Pérez.</td>
</tr>
<tr>
<td>241</td>
<td>Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo.</td>
<td>Inés P. Murillo.</td>
</tr>
<tr>
<td>244</td>
<td>Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries?.</td>
<td>Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano</td>
</tr>
<tr>
<td>245</td>
<td>Intergenerational Health Mobility: An Empirical Approach Based On The Echp.</td>
<td>Marta Pascual and David Cantarero</td>
</tr>
<tr>
<td>246</td>
<td>Measurement and analysis of the Spanish Stock Exchange using the Lyapunov exponent with digital technology.</td>
<td>Salvador Rojí Ferrari and Ana Gonzalez Marcos</td>
</tr>
<tr>
<td>247</td>
<td>Testing For Structural Breaks In Variance Withadditive Outliers And Measurement Errors.</td>
<td>Paulo M.M. Rodrigues and Antonio Rubia</td>
</tr>
<tr>
<td>249</td>
<td>Elasticidades de largo plazo de la demanda de vivienda: evidencia para España (1885-2000).</td>
<td>Desiderio Romero Jordán, José Félix Sanz Sanz y César Pérez López</td>
</tr>
<tr>
<td>250</td>
<td>Regional Income Disparities in Europe: What role for location?.</td>
<td>Jesús López-Rodríguez and J. Andrés Faiña</td>
</tr>
<tr>
<td>251</td>
<td>Funciones abreviadas de bienestar social: Una forma sencilla de simultanear la medición de la eficiencia y la equidad de las políticas de gasto público.</td>
<td>Nuria Badenes Plá y Daniel Santín González</td>
</tr>
<tr>
<td>252</td>
<td>“The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”.</td>
<td>Luis Muga and Rafael Santamaria</td>
</tr>
<tr>
<td>253</td>
<td>Dinámica de precios en el mercado español de gasolina: un equilibrio de colusión tácita.</td>
<td>Jordi Perdiguero García</td>
</tr>
</tbody>
</table>
José M. Pastor, Empar Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana María Aldanondo-Ochoa y Carmen Almansa-Sáez

José Félix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José María Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguer.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich
Interest Groups, Incentives to Cooperation and Decision-Making Process in the European Union
A. García-Lorenzo y Jesús López-Rodríguez

Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luis Muga y Rafael Santamaría

Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales
Gracia Rubio Martín

Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general
Robert Meneu Gaya

El consumo y la valoración de activos
Elena Márquez y Belén Nieto

Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

Three measures of returns to education: An illustration for the case of Spain
María Arrazola y José de Hevia

Composition of Firms versus Composition of Jobs
Antoni Cunyat

La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

Foreign Capital and Business Strategies: a comparative analysis of urban transport in Madrid and Barcelona, 1871-1925
Alberte Martínez López

Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
289/2006 Globalisation and the Composition of Government Spending: An analysis for OECD countries
Norman Gemmell, Richard Kneller and Ismael Sanz

290/2006 La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico
Fernando Hernández Martínez

291/2006 Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain
Desiderio Romero-Jordán, Jose Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso

292/2006 Una teoría sobre la contribución de la función de compras al rendimiento empresarial
Javier González Benito

293/2006 Agility drivers, enablers and outcomes: empirical test of an integrated agile manufacturing model
Daniel Vázquez-Bustelo, Lucía Avella and Esteban Fernández

294/2006 Testing the parametric vs the semiparametric generalized mixed effects models
Maria José Lombardía and Stefan Sperlich

295/2006 Nonlinear dynamics in energy futures
Mariano Matilla-García

Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez

297/2006 Optimización fiscal en las transmisiones lucrativas: análisis metodológico
Félix Domínguez Barrero

298/2006 La situación actual de la banca online en España
Francisco José Climent Diranzo y Alexandre Momparler Pechuán

299/2006 Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas
Javier González Benito y Isabel Suárez González

300/2006 A Parametric Model to Estimate Risk in a Fixed Income Portfolio
Pilar Abad and Sonia Benito

301/2007 Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros
Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé

302/2007 Assessing the enlargement and deepening of regional trading blocs: The European Union case
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano

303/2007 ¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español
Vanessa Solís Rodríguez y Manuel González Díaz

304/2007 On the Finite-Sample Biases in Nonparametric Testing for Variance Constancy
Paulo M.M. Rodrigues and Antonio Rubia

305/2007 Spain is Different: Relative Wages 1989-98
José Antonio Carrasco Gallego
Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo

La Eficiencia en la Gestión del Riesgo de Crédito en las Cajas de Ahorro
Marcelino Martínez Cabrera

Optimal environmental policy in transport: unintended effects on consumers' generalized price
M. Pilar Socorro and Ofelia Betancor