POVERTY REDUCTION AND SAM MULTIPLIERS: AN EVALUATION OF PUBLIC POLICIES IN A REGIONAL FRAMEWORK

FRANCISCO JAVIER DE MIGUEL-VÉLEZ
JESÚS PÉREZ-MAYO
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros.

Las opiniones son responsabilidad de los autores.
Poverty reduction and SAM multipliers:
An evaluation of public policies in a regional framework

Francisco Javier De Miguel-Vélez
Jesús Pérez-Mayo
Departamento de Economía Aplicada
Fac. CC. Económicas
Universidad de Extremadura (Badajoz)

Abstract

The objective of this paper is to obtain several poverty reduction effects by using accounting multipliers based on Social Accounting Matrices (SAMs). Expressions relating these multipliers to FGT poverty measures were derived, and two simulation exercises were carried out for the Spanish region of Extremadura using a SAM of this economy as database. In the first, we posited a per capita transfer for the amount of certain social policy instruments that are already in place in this region. In the second, we calculated the minimum government expenditure in transfers needed to reduce the regional poverty indices to the corresponding national values. The results confirmed that the main characteristic of poverty in Extremadura is its incidence.

Keywords: Poverty reduction, social transfers, SAM multipliers.

JEL classification: C69, I32, I38, R15.

1 The first author acknowledges the financial support by Spanish Ministry of Science and Technology (SEC2003-06080) and by the Generalitat de Catalunya (2004XT00095). The second author thanks the financial support by the Regional Government of Extremadura (3PR05A112). Finally, we thank also an anonymous referee his/her useful comments. All errors are our responsibility.
1. INTRODUCTION

The relationship between economic growth and the reduction of poverty is a key question in the economic literature, and has been the object of very different micro- and/or macro-economic approaches. A landmark article among general equilibrium approaches was that of THORBECKE and JUNG, 1996. This proposed a decomposition method of SAM multipliers to analyze the poverty reductions caused by exogenous shocks in demand. It is evident that the growth of a given production sector generates additional primary incomes that reduce the poverty of households directly related to that sector. Nevertheless, the economic interrelationships captured through the SAM multipliers determine that there will be indirect effects on other sectors and household groups. These multipliers would therefore seem to be an appropriate tool with which to evaluate the effects of different public policies aimed at reducing poverty.

The present work is based on the aforementioned initial contribution, although with some differences. The main one is that, while THORBECKE and JUNG, 1996 analyzed the effects of exogenous injections on activity sectors, in our case we consider the effect of additional transfers on household groups. The linear nature of the model and the additive decomposability property of the poverty measures that we use allow us to estimate the reductions in each household group's poverty rates and in overall poverty, as well as the conjoint effects of multiple exogenous injections.

We present two particular applications for the case of Extremadura, an Objective 1 Region of the European Union located in SW Spain. Firstly, we analyze different effects on poverty caused by a hypothetical per capita transfer whose amount is equivalent to the value of certain aids to social insertion that are in effect in this region. Secondly, we determine the minimum social expenditure needed to ensure that the
regional poverty measures reach the respective national values. In both cases, the use of the FGT poverty measures, P_α, proposed by FOSTER, GREER and THORBECKE, 1984, allows the phenomena of the incidence, depth, and severity of poverty to be analyzed separately.

It should be emphasized that this method of analysis allows one to identify the household groups which most benefit from the implementation of the proposed transfer schemes, and to determine the groups that generate the greatest poverty reductions in receiving these transfers. The results reflect not only qualitative aspects, i.e., the hierarchical ordering of the effects, but also the quantitative reductions in poverty.

The work is structured as follows. Section 2 briefly presents the generic formulation of multipliers based on social accounting matrix. Section 3 relates these linear SAM models to the FGT poverty measures, with the aim of analyzing and quantifying the different partial and overall effects on poverty. Sections 4 and 5 present the results of the two applications done for Extremadura. Finally, section 6 gives the main conclusions that can be drawn from our analysis.

2. SOCIAL ACCOUNTING MATRICES AND LINEAR SAM MODELS

In general terms, social accounting matrices are extensive databases that include the entirety of the transactions occurring in an economy during a certain period of time. To this end, they incorporate information on the operations corresponding to the various economic agents which are basically the production sectors, households, public sector, and external sector. In essence, SAMs constitute a disaggregated matrix representation of the circular flow of income.
SAMs are customarily presented as square matrices, with a row and a column identically arranged for each agent or economic sector incorporated in the matrix. By convention, the row entries in the matrix are interpreted as receipts, and the column entries as payments or expenditures. An important accounting constraint on a SAM is the necessary equality between the sum of each row and the sum of its corresponding column.

The wealth of information included in these matrices makes them valuable descriptive tools of economic activity. Their main application, however, is to serve as the basis for the construction of different economic models. An important group of such models is that of the so-called linear SAM models or SAM multiplier models which allow one to determine the changes in the different agents' production or income levels caused by possible exogenous injections or shocks.\(^2\)

It is important to note that, since it completely captures the interrelationships between the different agents and sectors, this methodological approach is well suited to evaluating multiplier effects. Also, the level of disaggregation that SAMs normally incorporate enables the resulting multipliers to be presented in great detail.

In order to take the step from a SAM as a mere accounting structure to an operative multiplier model, it is necessary initially to distribute the accounts in the SAM into exogenous and endogenous. Exogenous accounts are usually considered to be those determined outside the economic system or which constitute economic policy instruments, i.e., the accounts relating to government, savings/investment or capital accounts, and external sector accounts. The endogenous accounts are the remainder – generally primary factor accounts, other institutions and production sectors. It is

\(^2\) Social accounting matrices are also linked to computable general equilibrium modelling.
nonetheless possible to modify this distribution by additionally incorporating some accounts into the endogenous part of the model\(^3\).

With respect to their formulation, SAM multiplier models basically transform the accounting identities of this matrix into a different form that allows exogenous injections to be related to endogenous incomes. In particular, one initially defines the matrix \(A_n\) of mean expenditure propensities, which incorporates the endogenous transaction matrix coefficients standardized by columns. If \(x\) is the column vector representing the sum of exogenous injections received by each endogenous account, \(I\) the identity matrix, and \(y_n\) the column vector of endogenous incomes, the equation of the linear SAM model can be expressed as follows:

\[
y_n = A_n^T y_n + x = (I - A_n)^{-1} x = M_a x
\]

(1)

The matrix \(M_a\) is usually known as the accounting multiplier matrix. Its generic element \(m_{ih}\) reflects the increase in the income of endogenous account \(i\) if account \(h\) receives a unit exogenous injection. Although this expression has important similarities with the traditional input-output demand model, the linear SAM model is closed not only with respect to the production sectors, and is indeed an extension and generalization of the latter\(^4\).

Given the interdependency that characterizes the economic system, it may sometimes be important to decompose the multipliers into a series of values that represent the role of the different economic interrelationships. There are many contributions in this regard in the literature, outstanding being the initial work of

\(^3\) See, for example, REINERT et al. (1993).

\(^4\) Alternative SAM multipliers have been proposed. Examples are the fixed price multipliers of PYATT and ROUND (1979), and the mixed multipliers of LEWIS and THORBECKE (1992).
PYATT and ROUND, 1979, and the structural path analysis procedure put forward by DEFOURNY and THORBECKE, 1984.

3. LINEAR SAM MODELS AND POVERTY SENSITIVITY EFFECTS

The linear SAM multipliers methodology has been applied in very different issues, particularly noteworthy being the analysis of income distribution\(^5\). The objective of the present work, as was noted above, is the analysis of questions linked to poverty alleviation using the analytical framework provided by these models and the households disaggregation customarily included in SAMs. More particularly, our aim is to show to what extent possible income transfers directed at the different household groups would permit a significant reduction of poverty.

Assuming the traditional distribution into endogenous and exogenous accounts described in section 2, the accounting multipliers matrix \(M_a\) has a partitioned structure in which diverse types of effects can be differentiated. Given the applications to be made in the present study, we centre our analysis on the submatrix of \(M_a\) that represents the effects on the household groups of income injections that they receive.

It is evident that to approach this analysis one must start by choosing a poverty measure with the appropriate properties. Following THORBECKE and JUNG, 1996, we use the FGT \(P_\alpha\) poverty measures proposed by FOSTER, GREER and THORBECKE, 1984, given its property of additive decomposability. This property is very important for our work, since the SAM's households disaggregation permits both partial analyses of poverty by specific household groups and overall analyses.

\(^5\) RUBIO and PERDIZ (2003) and DE MIGUEL-VÉLEZ and PÉREZ-MAYO (2006) present both applications to España and Extremadura, respectively.
This family of poverty measures represents a generalization of the most common indices in the literature. Their generic expression is:

\[
P_\alpha = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{z - y_i}{z} \right)^\alpha, \alpha \geq 0
\]

with \(z \) being the poverty line, \(q \) the number of poor people, \(n \) the size of the population and \(y_i \) the per capita income or expenditure of individual \(i \). The parameter \(\alpha \) represents the individuals' different sensitivities to the poverty gap in terms of poverty threshold (i.e., distance from the poverty line). The greater the value of this parameter, the more importance will be given to people with a greater poverty gap. It can thus be interpreted as the degree of aversion to poverty.

As it is well-known in the literature, for \(\alpha \) equal to 0, the FGT index measures the incidence of poverty. If \(\alpha \) is equal to 1, it reflects the depth of poverty. Finally, the severity of poverty is captured by the third FGT poverty measure which we used in this study, in which the parameter \(\alpha \) is taken equal to 2.

KAKWANI, 1993, shows how a change in a poverty measure can be decomposed into the sum of two components: the variation in the mean income, and the change in the income distribution:

\[
dP_{\alpha l} = \frac{\partial P_{\alpha l}}{\partial \bar{Y}_l} d\bar{Y}_l + \sum_{k=1}^{i} \frac{\partial P_{\alpha l}}{\partial \theta_k} d\theta_k
\]
with $P_{\alpha i}$ being the FGT P_{α} poverty measure corresponding to household group i, \bar{y}_i its mean income, and θ_{ik} the income distribution parameters.\(^6\)

We can define $\eta_{\alpha i}$ as the elasticity of the $P_{\alpha i}$ poverty measure with respect to the mean income of household group i.\(^7\) Assuming that the additional income transfers which constitute the exogenous shocks are distributionally neutral, equation (3) can be expressed in the following way:

$$\frac{dP_{\alpha i}}{P_{\alpha i}} = \eta_{\alpha i} \frac{d\bar{y}_i}{\bar{y}_i} \quad (4)$$

To link the SAM multiplier with the variations in the poverty measure, it is necessary to consider the definition of the generic multiplier m_{ih} and to make a simple transformation in its expression ($dy_i = m_{ih} dx_h$):

$$d\bar{y}_i = m_{ih} d\bar{x}_h \quad (5)$$

where $d\bar{x}_h$ is the exogenous change in the income of household group h defined on a per capita basis for group i. Substituting this expression into equation (4), one obtains

$$\frac{dP_{\alpha i}(h)}{P_{\alpha i}} = \eta_{\alpha i} m_{ih} \frac{d\bar{x}_h}{\bar{y}_i} \quad (6)$$

\(^6\) In the expression (3) it is implicitly assumed that there is no relationship between income and inequality changes. Therefore, the results should be analysed upon this assumption.

\(^7\) These elasticities were calculated using the program DAD (Duclos et al., 2001) according to the following expressions: $\eta_{\alpha i} = -\alpha \frac{P_{\alpha i} - P_{\alpha}}{P_{\alpha}}$ for α different from 0; and $\eta_{\alpha i} = -\frac{f(z)}{P_0}$ for α equal to 0, with $f(z)$ being the non-parametrically estimated income density function.
This equation is important because it allows one to determine the relative reduction in the poverty of household group i due to an exogenous injection to group h. These effects will be explicitly considered in the first application to be presented in the following section.

Given the characteristics of the FGT poverty measures, it is possible to define an aggregate or overall poverty measure P_α as a weighted sum of the individual poverty measures of the different household groups:

$$P_\alpha = \sum_{i=1}^{m} P_{\alpha_i} \frac{n_i}{n}$$ \hspace{1cm} (7)

with n_i being the population of household group i, and n the total population ($n = \sum_{i=1}^{m} n_i$). Differentiating this expression and carrying out simple transformations, one obtains

$$\frac{dP_\alpha}{P_\alpha} = \sum_{i=1}^{m} \left(\frac{dP_{\alpha_i}}{P_{\alpha_i}} \right) \left(\frac{P_{\alpha_i} n_i}{P_\alpha n} \right)$$ \hspace{1cm} (8)

Considering the definition of the P_α class of poverty measures, and with s_{α_i} being the poverty share of household group i of the total poverty, one can express equation (8) in the form

8 The letter “h” in the term on the left-hand side of this equation is simply a notation to differentiate the group of households receiving the exogenous injection. For this same reason, it is also included in equations (10), (12), and (13). Besides, this equation actually expresses poverty reductions because positive income transfers are considered and all the elasticities included in the analysis are negative.
Substituting expression (6) into this expression, one has

\[
\frac{dP_{\alpha i}}{P_{\alpha i}} = \sum_{i=1}^{m} \left(\frac{dP_{\alpha i}}{P_{\alpha i}} \right) s_{\alpha i} \tag{9}
\]

Substituting expression (6) into this expression, one has

\[
\frac{dP_{\alpha i}(h)}{P_{\alpha i}} = \sum_{i=1}^{m} s_{\alpha i} \eta_{\alpha i} m_{ih} \frac{d\bar{x}^i_h}{\bar{y}_j} \tag{10}
\]

This equation will also be important in the subsequent application. In particular, it allows one to determine the relative reduction in overall poverty caused by an exogenous injection to household group \(h \). One observes that this overall effect is no more than the weighted sum of the changes that this injection causes in the poverty of the different groups –see equation (6)– using the parameters \(s_{\alpha i} \) as weights.

Finally, the applications carried out show the effects of exogenous injections received, not by a single household group, but by several groups simultaneously. Because of the linear character of the model, the equations corresponding to multiple exogenous injections involve minimal changes from the foregoing equations, consisting basically in the inclusion of summations. One thus obtains the following equations, the respective analogues of expressions (5), (6), and (10):

\[
d\bar{y}_j = \sum_{h=1}^{m} m_{ih} d\bar{x}^i_h \tag{11}
\]

\[
\frac{dP_{\alpha i}}{P_{\alpha i}} = \eta_{\alpha i} \frac{d\bar{y}_j}{\bar{y}_j} = \eta_{\alpha i} \left(\sum_{h=1}^{m} m_{ih} d\bar{x}^i_h \right) \frac{1}{\bar{y}_j} = \sum_{h=1}^{m} \eta_{\alpha i} m_{ih} \frac{d\bar{x}^i_h}{\bar{y}_j} = \sum_{h=1}^{m} \frac{dP_{\alpha i}(h)}{P_{\alpha i}} \tag{12}
\]
\[
\frac{dP_a}{P_a} = \sum_{i=1}^{m} \left(\frac{dP_{ai}}{P_{ai}} \right) s_{ai} = \\
= \sum_{i=1}^{m} \left(\sum_{h=1}^{m} \eta_{ai} m_{ih} d\bar{x}_h \right) s_{ai} = \sum_{i=1}^{m} \sum_{h=1}^{m} s_{ai} \eta_{ai} m_{ih} \frac{d\bar{x}_h}{\bar{y}_i} = \sum_{h=1}^{m} \frac{dP_a(h)}{P_a}
\]

(13)

Equations (12) and (13) merit especial mention. Equation (12) shows the conjoint effect of the different exogenous injections on the poverty of household group \(i \), and can be calculated as the sum of the individual effects of each injection on this group's poverty – see equation (6). Analogously, equation (13) shows the total reduction in the aggregate poverty measure due to the different exogenous shocks. As in the previous case, this overall effect is calculated as a sum, in this case of the effects obtained from equation (10).

4. PER CAPITA TRANSFERS AND POVERTY REDUCTION

From the set of equations presented in the previous section two different applications are carried out. In the first, we analyzed the reduction that would occur in poverty if there were a universal per capita injection in every household group whose amount would be equivalent to the social insertion aids granted by the Extremadura Regional Government. In the second, we determined the minimum expenditure in transfers that the government would have to make in order to reduce the poverty levels in Extremadura to the national levels.

In both cases, to implement the model we used a social accounting matrix for the Extremadura’s economy corresponding to the year 2000 as database. This is an update of a previous matrix for the year 1990\(^9\). The main statistical sources that we used in its

\(^9\) This update has been developed by means of the cross-entropy method (ROBINSON et al., 2001).
construction were the National and Regional Accounts and diverse taxation statistics. Besides, the European Community Household Panel and the Household Budget Continuous Survey have been used as reference sources in the disaggregation of households sector. The 5 household groups considered in the matrix, and therefore in our applications, are shown in Figure 1. The first three groups correspond to households whose principal income receiving member is active, additionally disaggregated according to the main source of income. The other two groups correspond to non-active households, classified according to their income level.

Table 1 lists for each of these groups the initial values of the different FGT poverty measures considered, as well as their respective elasticities, their poverty shares, and their mean incomes10. The table also presents the population data and the household-household accounting multiplier submatrix. In general, the information in this table is basic for interpreting the results of the two applications that were carried out.

In this section, we analyze the effects obtained in the first application. More specifically, we simulate a per capita universal injection in every group of households, similar to a Basic Income scheme. In order to determine the amount of these transfers, we choose an injection equivalent to the amount of the social insertion aid granted by the government in Extremadura, which is on average equivalent to approximately 30% of the inter-professional minimum wage.

10 To obtain these data, we used as the variable of interest the household per capita income. Although our analysis is centred on a particular regional economy, the European Union considers the national level to be the framework of reference in terms of poverty. We hence defined the poverty line as the value representing 50% of Spain's annual per capita income, precisely 459108 pesetas.
Three identical format tables of results will next be presented, corresponding to the head-count ratio ($\alpha = 0$), the poverty gap ($\alpha = 1$), and the distributionally-sensitive index ($\alpha = 2$). Hence, the results to be presented capture the effects of the proposed transfers in terms of the incidence, depth, and severity of poverty. Each of these tables incorporates four types of effects on poverty.

To begin with table 2 ($\alpha = 0$), a first set of effects captures the reductions in poverty of each household group caused by each exogenous shock, i.e., it shows the effects $dP_{\alpha i}(h)/P_{\alpha i}$ obtained using equation (6). For example, the per capita transfer targeted on the first household group (h_1) would lead to a 4.54% poverty reduction of the second group (i_2).

The results allow one to affirm firstly that transfer targeted at a certain household group leads to the greatest reduction in poverty of that same group – see the diagonal elements shown in the upper part of the table. This result is unsurprising, and holds in practically all the cases and independently of the value of α. Also, one can state that the active–self-employed households (group 2) act more as a "receptor" than as an "inductor" of poverty reduction, since its reduction in poverty due to transfer received by other groups is clearly greater than the effects in the opposite sense (cf. the symmetrical elements)\(^\text{11}\). For the active–other income households (group 3) the exact opposite is the case.

A second set of effects on poverty is presented in the final column of table 2. In particular, the effects $dP_{\alpha i}/P_{\alpha i}$ indicate the poverty reductions of each household group caused jointly by the total of transfers. Using a certain analogy with the nomenclature of the accounting multipliers, we can denominate them poverty reduction absorption effects; i.e., they capture to what extent the injections considered are translated into a

\(^{11}\) This result not only holds in terms of the incidence of poverty, but also in terms of depth (table 3) and severity (table 4).
reduction of each household group's poverty level. As was noted above, these reductions can be calculated as the sum of the effects in the corresponding row – see equation (12).

To comment on these results, we would first observe that the set of transfers would cause a significant poverty reduction of over 20% in the non-active–low income group \((i_4)\). This group's high elasticity \((\eta_{0,i_4})\) and low per capita income \((\bar{y}_{i_4})\) contribute decisively to this effect – see table 1. For the active–self-employed group \((i_2)\) also, the reduction would be 15.63%, basically as a consequence of its high multipliers \(m_{12,h}\). This result highlights the important role that the multipliers play in the calculation of the poverty reductions. In the contrary sense, the poverty reduction corresponding to the non-active–high income group \((i_5)\) is very small – only approximately 4%.

Thirdly, table 2 also shows the effect of each exogenous injection on the aggregate poverty measure, i.e., it presents the effects \(dP_a(h)/P_a\) obtained using equation (10). Recall that these effects, which we can call poverty reduction diffusion effects, are calculated as a weighted sum of the elements in the upper column, using the respective poverty shares of each household group as weights.

The results again show the important role that the non-active–low income group \((h_4)\) plays in terms of poverty reduction, since it presents the greatest diffusion effect: the per capita transfer granted to this group would allow the overall poverty to be reduced by 4.3%. This group is followed by the active–wage-earning group \((h_1)\) with a reduction of 3.75%, a result largely conditioned by the high proportion of poor existing

12 In a SAM model framework, this nomenclature and the later used, “diffusion effects”, are employed in, for example, De Miguel and Manresa (2004).

13 In table 1, one observes that the multipliers in the rows of the active–wage-earner (group 1) and active–self-employed (group 2) groups are clearly greater than the rest. The low values corresponding to the three last groups are because a very important part of their income comes from transfers received from the government, which lack the interdependency effects of the factorial income distribution.
in this group (close to 35% – see table 1)\(^{14}\). The effect shown by the non-active–high income group \((h_3)\) is again of minimal relevance.

Finally, the bottom row of table 2 shows the joint effect on the aggregate poverty of all the transfers – the effect \(dP_a/P_a\) calculated using equation (13). In this case, the overall poverty reduction would be 11.98%, a figure that is of course the sum of the different diffusion effects.

We next analyze the effects on the depth of poverty \((\alpha =1)\) shown in table 3. Firstly, it is evident that the poverty reductions obtained in this case are substantially greater than those given in table 2, because the corresponding elasticities \(\eta_i\) are greater than in the previous case, \(\eta_{0i}\). The final effect on the aggregate poverty of all the transfers is sufficiently illustrative, reaching a reduction of 23.2% practically double that obtained in the previous case.

In this sense, one observes the influence of the income distribution. The proposed transfers would reduce the distance to the poverty line and hence the depth of poverty, although not necessarily its incidence since there would be poor households that would not surpass the poverty line. Hence, with the transfer considered here, the depth of poverty is considerably more sensitive than the incidence.

Nonetheless, in qualitative terms the results have a certain similarity with those presented previously. For example, in the poverty reduction absorption effects, the non-active–low income \((i_4)\) and the active–self-employed \((i_2)\) household groups which would have poverty reductions of around 41.5% and 31.5%, respectively, stand out again.

\(^{14}\) Although this household group presents relatively small elasticities, its influence is important since it involves about 40% of the population.
The poverty reduction diffusion effects present greater deviations from the foregoing effects, since in this case the transfers targeted at the active–other income group \((h_3)\) would cause the greatest reduction in aggregate poverty (7.89%). This group is followed by the active–wage-earning \((h_1)\) and non-active low-income \((h_4)\) groups, with overall poverty reductions of 6.43% and 6.29%, respectively. This change in order is due to the variation of the poverty shares between incidence and depth, with \(s_{ui}\) presenting very high values for groups \(h_3\) and \(h_1\) – see table 1. Recall that incidence and depth capture different phenomena, so that these changes in the poverty shares are again determined by the income distribution itself; i.e., the active–other income group's greater depth index combined with its high percentage of the population mean that this group has a large contribution to the overall poverty \((s_{ui})\).

Finally, in table 4 we analyze the effects on poverty severity \((\alpha = 2).\) In this case, the reduction in overall poverty caused by all the simulated transfers would be greater than that observed in the two previous cases, reaching 27.11%. Again, there is a major contribution to this from the high diffusion effect presented by the active–other income group \((h_3)\), which in turn is due to its high elasticity \((\eta_{2i13})\) and its high share of the total poverty \((s_{2i3})\).

The differences between the results for this measure and for the two previous measures are once more given by the income distribution. The severity measure takes into account the income inequality between poor households, and therefore depends on the income distribution between those households. Nonetheless, one observes that the results for poverty severity and depth are relatively similar to each other, the differences with respect to incidence being greater.
More specifically, comparison of tables 3 and 4 shows again that household groups h_3, h_1 and h_4 determine the greatest reductions in overall poverty. The poverty reduction absorption effects also follow to a certain extent the same patterns, since the non-active–low income group (i_4) is again that which has the greatest poverty reduction, 32.33%. The second place in terms of severity is now occupied by the active–other income group (i_3), with its absorption effect undergoing a notable increase over its previous values.

Before concluding the description of this first application, we would stress that, for the three poverty measures considered (incidence, depth, and severity), the non-active–high income household group has poverty reductions of little relevance (absorption effects i_5), and a very limited capacity to induce reductions in overall poverty (diffusion effects h_5). This result is not surprising since this group is the one with the lowest initial poverty rates, rates which are indeed very low – see table 1.
5. EXPENDITURE MINIMIZATION AND POVERTY REDUCTION

The previous application has shown the capacity to reduce overall poverty of the active–wage-earning (group 1), active–other income (group 3), and non-active–low income (group 4) groups when they receive per capita transfers. These last two groups, together with the active–self-employed group (group 2), are those that also undergo the greatest poverty level reductions. For the three versions of the FGT poverty measure considered, one also observes that the greater the value of α, the greater the importance of the active–other income household group (group 3), which presents clearly greater diffusion and absorption effects.

In the calculation of these effects, it was necessary to consider together the elasticities of the poverty measure with respect to the mean income, the poverty shares with respect to the total poverty, the accounting multipliers, the exogenous injections, and the mean incomes. All these parameters were involved in determining the poverty reductions that were obtained and the resulting hierarchical ordering of the effects.

In this second exercise, we considered an application that was clearly different from the foregoing. In particular, our objective was to determine the minimum expenditure in transfers that the government must make in order to reduce overall poverty in Extremadura to the national value15. Evidently, this expenditure is just the sum of the transfers allocated to each of the 5 household groups. We included two additional constraints. Firstly, all the transfers must at least be null to guarantee that no household group has a reduction in the transfers that it is currently receiving. And

15 These values are 0.1768 in terms of poverty incidence, 0.0416 for the depth, and 0.0150 for the severity. Hence, the reductions needed in the overall poverty figures for Extremadura are 52.80%, 51.96%, and 51.61%, respectively. As can be observed in the subsequent table 5, these are exactly the reductions obtained with the set of proposed transfers.
secondly, no poverty measure, whether overall or specific to some household group, may be negative.

Since we are dealing with three different aspects of poverty, we considered three different optimization problems. Because of the characteristics of the objective function and of the constraints, these problems were solvable by linear programming techniques.

Table 5 presents a synthesis of the results for these three cases. Firstly, one observes that the minimum expenditure necessary to reduce the aggregate poverty in Extremadura to the national level is clearly smaller in terms of depth and, above all, severity in comparison with the expenditure necessary in terms of incidence.

This fact allows us to emphasize a result briefly outlined in the previous application: if one wants to define a distinguishing characteristic of poverty in Extremadura, this is without doubt its incidence16. In this sense, in order to reach the national values, the expenditure needed for FGT P_0 is 2.6 times the necessary expenditure in terms of depth, and 4.3 times the expenditure in terms of severity. I.e., although the figures for severity and depth are still above the national measures, and the percentage reductions required are very similar to those corresponding to incidence, they both involve fewer households and can be corrected with a smaller economic expenditure.

On the other hand, comparing the minimum expenditure of 17191 millions pesetas corresponding to severity with the amount of the per capita injection considered in the first application –which was approximately 23260 millions pesetas– one again clearly observes that the effects on poverty will be very different according to which household groups the income transfers are targeted at. In this second application, by

16 This same conclusion is reached in previous studies of poverty for the Extremadura region. See, for example, JURADO and PÉREZ-MAYO (2005). Also, from the foregoing tables 2 to 4 one observes that, for the same exogenous injections, the greatest reductions in overall poverty are in terms of severity and depth.
allocating all the transfers to the third group, not only would the quantity be less than in the previous application, but the reductions obtained in overall poverty would be spectacularly greater (51.61% as against 27.11%).

Analyzing in more detail the results given in table 5, one observes that in all the cases this third household group (active–other income) appears as a major receiver of transfers, with reductions in its poverty measure ranging between 75.86% and 95.28%. For the first two measures considered (incidence and depth) the non-active–low income households (group 4) would also receive an important volume of transfers that would allow their poverty rates to be reduced to zero. In general, the fact that these two groups should be the targets of transfers is a logical result in view of their defining parameters, especially their high poverty elasticities, high poverty shares, and low mean incomes.

For the other household groups, there would be reductions ranging between 0.09% and 38.49%, particularly noteworthy being the reductions for the active–self-employed households (group 2), given the high absorption effects that this group presents.

6. CONCLUSIONS

In this work, we have used accounting multipliers based on social accounting matrices to analyze different public policies directed at the poverty alleviation. Starting from the expression for the FGT poverty measures, we determined the relationships between variations in the poverty indices and exogenous increases in income. The expressions thus obtained showed that the resulting poverty reductions depend on these
multipliers, as well as on the elasticities of the poverty measure with respect to the mean income, the poverty shares with respect to the total poverty, and the mean incomes.

One attractive feature of SAM multipliers is that they allow one to consider not only the direct effects of the transfers received by a given household group on its own poverty rates, but also the effects of such transfers on the poverty rates of other groups. Thus, this methodological approach allows the identification of those household groups that undergo the greatest poverty reductions (absorption effects), and of those groups that, on receiving income injections, lead to the greatest reductions in overall poverty (diffusion effect).

This methodology was applied to the region of Extremadura in two different exercises. The first simulated a per capita transfer for the amount of certain already existing social policy instruments in this region. As a complement to this first simulation, in the second exercise, the minimum expenditure was determined that would allow the region to achieve the national values of the respective FGT poverty measures.

In general, it was found that poverty in Extremadura is a phenomenon fundamentally related to incidence, i.e., although there exists a great number of poor, it is possible to state that, on average, their situation is not excessively serious. On the other hand, it was found that, for any value of the parameter α, the active–other income and non-active–low income household groups presented the highest poverty indices, whereas the poverty situation of the non-active–high income group was very light.

In relation to the first simulation, it was observed that, for all three measures considered, the active–other income, non-active–low income, and active–wage-earning groups presented the largest diffusion effects, i.e., they showed the greatest capacity to reduce overall poverty. With respect to the poverty reduction undergone by each group in response to the set of transfers considered, the non-active–low income group
benefited most. In general, these results were determined by the aforementioned set of model parameters.

The second application allowed us to emphasize the problem of the poverty incidence. The minimum expenditure needed to reach the national head-count ratio was distinctly greater than the corresponding expenditure for the national poverty gap index or the distributionally-sensitive index. Furthermore, given the large diffusion effects shown by the active–other income and non-active–low income groups, the transfers should go entirely to these two groups.

To conclude, we would point out the potential of the present analysis. Using the SAM multiplier methodology allowed us to obtain important results related to the processes of income distribution and poverty reduction.

REFERENCES

Figure 1. Household groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Active–wage-earners</td>
</tr>
<tr>
<td>Group 2</td>
<td>Active–self-employed</td>
</tr>
<tr>
<td>Group 3</td>
<td>Active–other income</td>
</tr>
<tr>
<td>Group 4</td>
<td>Non-active–low income</td>
</tr>
<tr>
<td>Group 5</td>
<td>Non-active–high income</td>
</tr>
</tbody>
</table>
Table 1. Data for the model implementation (1)

<table>
<thead>
<tr>
<th></th>
<th>Poverty measures – initial values</th>
<th>Elastics</th>
<th>Poverty shares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((P_{0i}))</td>
<td>((P_{1i}))</td>
<td>((P_{2i}))</td>
</tr>
<tr>
<td>Group 1</td>
<td>Active–wage-earners</td>
<td>0.3303</td>
<td>0.0709</td>
</tr>
<tr>
<td></td>
<td>Group 2</td>
<td>Active–self-employed</td>
<td>0.3489</td>
</tr>
<tr>
<td></td>
<td>Group 3</td>
<td>Active–other income</td>
<td>0.4967</td>
</tr>
<tr>
<td></td>
<td>Group 4</td>
<td>Non-active–low income</td>
<td>0.7194</td>
</tr>
<tr>
<td></td>
<td>Group 5</td>
<td>Non-active–high income</td>
<td>0.0209</td>
</tr>
<tr>
<td>Total</td>
<td>((P_{a}))</td>
<td>0.3746</td>
<td>0.0866</td>
</tr>
</tbody>
</table>

Table 1. Data for the model implementation (2)

<table>
<thead>
<tr>
<th></th>
<th>Mean income (pesetas)</th>
<th>Percentage of the population</th>
<th>Household–household accounting multipliers submatrix ((m_{i,j}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((Y_i))</td>
<td>((n_i/n))</td>
<td>(h_1)</td>
</tr>
<tr>
<td>Group 1</td>
<td>Active–wage-earners</td>
<td>640.842</td>
<td>0.3947</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i_1)</td>
</tr>
<tr>
<td>Group 2</td>
<td>Active–self-employed</td>
<td>619.870</td>
<td>0.1650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i_2)</td>
</tr>
<tr>
<td>Group 3</td>
<td>Active–other income</td>
<td>519.209</td>
<td>0.2033</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i_3)</td>
</tr>
<tr>
<td>Group 4</td>
<td>Non-active–low income</td>
<td>427.514</td>
<td>0.1155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i_4)</td>
</tr>
<tr>
<td>Group 5</td>
<td>Non-active–high income</td>
<td>854.650</td>
<td>0.1214</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i_5)</td>
</tr>
</tbody>
</table>
Table 2. Poverty reduction due to per capita transfers.

FGT P_0 (incidence)

<table>
<thead>
<tr>
<th>$dP_{a(h)}/P_{ai}$</th>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
<th>h_4</th>
<th>h_5</th>
<th>dP_{a}/P_{ai}</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_1</td>
<td>-0.0719</td>
<td>-0.0026</td>
<td>-0.0078</td>
<td>-0.0041</td>
<td>-0.0027</td>
<td>-0.0892</td>
</tr>
<tr>
<td>i_2</td>
<td>-0.0454</td>
<td>-0.0640</td>
<td>-0.0247</td>
<td>-0.0134</td>
<td>-0.0088</td>
<td>-0.1563</td>
</tr>
<tr>
<td>i_3</td>
<td>-0.0072</td>
<td>-0.0013</td>
<td>-0.0582</td>
<td>-0.0021</td>
<td>-0.0014</td>
<td>-0.0702</td>
</tr>
<tr>
<td>i_4</td>
<td>-0.0158</td>
<td>-0.0028</td>
<td>-0.0086</td>
<td>-0.1753</td>
<td>-0.0030</td>
<td>-0.2055</td>
</tr>
<tr>
<td>i_5</td>
<td>-0.0076</td>
<td>-0.0014</td>
<td>-0.0041</td>
<td>-0.0022</td>
<td>-0.0252</td>
<td>-0.0405</td>
</tr>
</tbody>
</table>

$dP_{a(h)}/P_{a}$ | -0.0375 | -0.0117 | -0.0241 | -0.0430 | -0.0035 | |

dP_{a}/P_{a} | -0.1198 | |

Table 3. Poverty reduction due to per capita transfers.

FGT P_1 (depth)

<table>
<thead>
<tr>
<th>$dP_{a(h)}/P_{ai}$</th>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
<th>h_4</th>
<th>h_5</th>
<th>dP_{a}/P_{ai}</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_1</td>
<td>-0.1240</td>
<td>-0.0045</td>
<td>-0.0134</td>
<td>-0.0072</td>
<td>-0.0047</td>
<td>-0.1538</td>
</tr>
<tr>
<td>i_2</td>
<td>-0.0915</td>
<td>-0.1289</td>
<td>-0.0497</td>
<td>-0.0269</td>
<td>-0.0176</td>
<td>-0.3148</td>
</tr>
<tr>
<td>i_3</td>
<td>-0.0204</td>
<td>-0.0037</td>
<td>-0.1652</td>
<td>-0.0059</td>
<td>-0.0039</td>
<td>-0.1990</td>
</tr>
<tr>
<td>i_4</td>
<td>-0.0320</td>
<td>-0.0057</td>
<td>-0.0173</td>
<td>-0.3551</td>
<td>-0.0062</td>
<td>-0.4163</td>
</tr>
<tr>
<td>i_5</td>
<td>-0.0018</td>
<td>-0.0003</td>
<td>-0.0010</td>
<td>-0.0005</td>
<td>-0.0061</td>
<td>-0.0098</td>
</tr>
</tbody>
</table>

$dP_{a(h)}/P_{a}$ | -0.0643 | -0.0196 | -0.0789 | -0.0629 | -0.0062 | |

dP_{a}/P_{a} | -0.2320 | |

Table 4. Poverty reduction due to per capita transfers.

FGT P_2 (severity)

<table>
<thead>
<tr>
<th>$dP_{a(h)}/P_{ai}$</th>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
<th>h_4</th>
<th>h_5</th>
<th>dP_{a}/P_{ai}</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_1</td>
<td>-0.1325</td>
<td>-0.0048</td>
<td>-0.0143</td>
<td>-0.0076</td>
<td>-0.0051</td>
<td>-0.1642</td>
</tr>
<tr>
<td>i_2</td>
<td>-0.0792</td>
<td>-0.1116</td>
<td>-0.0430</td>
<td>-0.0233</td>
<td>-0.0153</td>
<td>-0.2724</td>
</tr>
<tr>
<td>i_3</td>
<td>-0.0323</td>
<td>-0.0058</td>
<td>-0.2621</td>
<td>-0.0094</td>
<td>-0.0062</td>
<td>-0.3157</td>
</tr>
<tr>
<td>i_4</td>
<td>-0.0248</td>
<td>-0.0045</td>
<td>-0.0135</td>
<td>-0.2757</td>
<td>-0.0048</td>
<td>-0.3233</td>
</tr>
<tr>
<td>i_5</td>
<td>-0.0004</td>
<td>-0.0001</td>
<td>-0.0002</td>
<td>-0.0001</td>
<td>-0.0013</td>
<td>-0.0021</td>
</tr>
</tbody>
</table>

$dP_{a(h)}/P_{a}$ | -0.0634 | -0.0167 | -0.1421 | -0.0422 | -0.0067 | |

dP_{a}/P_{a} | -0.2711 | |
Table 5. Minimum expenditure and poverty reduction

<table>
<thead>
<tr>
<th>FGT P_0 (incidence)</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Minimum expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>dx_h (millions pesetas)</td>
<td>0</td>
<td>0</td>
<td>60.734.8</td>
<td>13.639.4</td>
<td>0</td>
<td>74.374.2</td>
</tr>
<tr>
<td>dP_{ui} / P_{ui}</td>
<td>-0.1206</td>
<td>-0.3849</td>
<td>-0.7586</td>
<td>-1</td>
<td>-0.0642</td>
<td></td>
</tr>
<tr>
<td>dP_a / P_a</td>
<td>-0.5280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FGT P_1 (depth)</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Minimum expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>dx_h (millions pesetas)</td>
<td>0</td>
<td>0</td>
<td>21.369.2</td>
<td>6.971.1</td>
<td>0</td>
<td>28.340.3</td>
</tr>
<tr>
<td>dP_{ui} / P_{ui}</td>
<td>-0.0790</td>
<td>-0.2946</td>
<td>-0.7618</td>
<td>-1</td>
<td>-0.0059</td>
<td></td>
</tr>
<tr>
<td>dP_a / P_a</td>
<td>-0.5196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FGT P_2 (severity)</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Minimum expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>dx_h (millions pesetas)</td>
<td>0</td>
<td>0</td>
<td>17.191.0</td>
<td>0</td>
<td>0</td>
<td>17.191.0</td>
</tr>
<tr>
<td>dP_{ui} / P_{ui}</td>
<td>-0.0519</td>
<td>-0.1565</td>
<td>-0.9528</td>
<td>-0.0490</td>
<td>-0.0009</td>
<td></td>
</tr>
<tr>
<td>dP_a / P_a</td>
<td>-0.5161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número</td>
<td>Título</td>
<td>Autor(es)</td>
<td>Ano</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159/2000</td>
<td>Participación privada en la construcción y explotación de carreteras de peaje</td>
<td>Ginés de Rus, Manuel Romero y Lourdes Trujillo</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161/2000</td>
<td>Tax neutrality on saving assets. The Spanish case before and after the tax reform</td>
<td>Cristina Ruza y de Paz-Curbera</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163/2000</td>
<td>El control interno del riesgo. Una propuesta de sistema de límites riesgo neutral</td>
<td>Mariano González Sánchez</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164/2001</td>
<td>La evolución de las políticas de gasto de las Administraciones Públicas en los años 90</td>
<td>Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells</td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167/2001</td>
<td>Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en el nuevo IRPF</td>
<td>Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández</td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168/2001</td>
<td>The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some European Countries</td>
<td>Mónica Melle-Hernández</td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169/2001</td>
<td>La política de cohesión de la UE ampliada: la perspectiva de España</td>
<td>Ismael Sanz Labrador</td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170/2002</td>
<td>Riesgo de liquidez de Mercado</td>
<td>Mariano González Sánchez</td>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171/2002</td>
<td>Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas de capitalización individual: medida y comparación internacional.</td>
<td>José Enrique Devesa Carpio, Rosa Rodriguez Barrera, Carlos Vidal Melíá</td>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
174/2002 Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.
José Vicente Blanes Cristóbal

175/2003 La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos.
Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González

Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

177/2003 Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.
Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey

178/2003 Factors explaining the interest margin in the banking sectors of the European Union.
Joaquín Maudos y Juan Fernández Guevara

179/2003 Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España.
Mónica Melle Hernández

Yener Altunbas, Santiago Carbó y Phil Molyneux

181/2003 The Euro effect on the integration of the European stock markets.
Mónica Melle Hernández

182/2004 In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition.
Bruno Cassiman, Reinhilde Veugelers

183/2004 Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua.
Mª Ángeles García Valiñas

184/2004 Estimación de la economía sumergida en España: un modelo estructural de variables latentes.
Ángel Alañón Pardo, Miguel Gómez de Antonio

185/2004 Causas políticas y consecuencias sociales de la corrupción.
Joan Oriol Prats Cabrera

186/2004 Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.
Andrés Guiral Contreras and José A. Gonzalo Angulo

Marta Tolentino García-Abadillo y Antonio Díaz Pérez

188/2004 Does market competition make banks perform well?.
Mónica Melle

189/2004 Efficiency differences among banks: external, technical, internal, and managerial
Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en españa: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Canteraro Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodriguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y Africa Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do 'Insertion Contracts' Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodriguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodríguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Miguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Diaz
221/2005 Tendencia post-anuncio de resultados contables: evidencia para el mercado español
Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García

222/2005 Human capital accumulation and geography: empirical evidence in the European Union
Jesús López-Rodriguez, J. Andrés Faíña y Jose Lopez Rodriguez

223/2005 Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing
Waymond Rodgers and Andrés Guiral

José Ramón Canelo de la Torre, J. Andrés Faíña and Jesús López-Rodriguez

225/2005 The effects of ownership structure and board composition on the audit committee activity: Spanish evidence
Carlos Fernández Méndez and Rubén Arrondo García

226/2005 Cross-country determinants of bank income smoothing by managing loan loss provisions
Ana Rosa Fonseca and Francisco González

Alejandro Estellé Moré

228/2005 Region versus Industry effects: volatility transmission
Pilar Soriano Felipe and Francisco J. Climent Diranzo

Daniel Vázquez-Bustelo and Sandra Valle

Alfonso Palacio-Vera

231/2005 Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal
M. Carmen Almansa Sáez and Javier Calatrava Requena

232/2005 Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?
Santiago Carbó Valverde and Rafael López del Paso

Miguel Angel Barberán Lahuerta

Víctor M. González

Waymond Rodgers, Paul Pavlou and Andres Guiral.

Francisco J. André, M. Alejandro Cardenete y Carlos Romero.
Santiago Carbó-Valverde, Francisco Rodríguez-Fernández y Gregory F. Udell.

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

Marcos Álvarez-Díaz y Gonzalo Caballero Miguez.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes.
Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo.
Inés P. Murillo.

Manuel A. Gómez.

Jose Manuel Cordero-Ferrera, Francisco Pedraja-Chaparro y Javier Salinas-Jiménez

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries?.
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano

Marta Pascual and David Cantarero

Salvador Rojí Ferrari and Ana González Marcos

247/2006 Testing For Structural Breaks In Variance With Additive Outliers And Measurement Errors.
Paulo M.M. Rodrigues and Antonio Rubia

Joaquín Maudos and Juan Fernández de Guevara

Desiderio Romero Jordán, José Félix Sanz Sanz y César Pérez López

250/2006 Regional Income Disparities in Europe: What role for location?.
Jesús López-Rodríguez and J. Andrés Faiña

251/2006 Funciones abreviadas de bienestar social: Una forma sencilla de simultanear la medición de la eficiencia y la equidad de las políticas de gasto público.
Nuria Badenes Plá y Daniel Santín González

252/2006 “The momentum effect in the Spanish stock market: Omitted risk factors or investor behaviour?”.
Luis Muga and Rafael Santamaría

253/2006 Dinámica de precios en el mercado español de gasolina: un equilibrio de colusión tácita.
Jordi Perdiguero García
Desigualdad regional en España: renta permanente versus renta corriente.
José M. Pastor, Empar Pons y Lorenzo Serrano

Environmental implications of organic food preferences: an application of the impure public goods model.
Ana Maria Aldanondo-Ochoa y Carmen Almansa-Sáez

Family tax credits versus family allowances when labour supply matters: Evidence for Spain.
José Felix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-García

La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Asimetrías en volatilidad, beta y contagios entre las empresas grandes y pequeñas cotizadas en la bolsa española.
Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Crisis y Reforma del Pacto de Estabilidad y Crecimiento. Las Limitaciones de la Política Económica en Europa.
Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguero.

El cumplimiento del Protocolo de Kyoto para los hogares españoles: el papel de la imposición sobre la energía.
Desiderio Romero-Jordán y José Félix Sanz-Sanz.

Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhänaß, Carmen Murillo, Carlos San Juan y Stefan Sperlich
A. García-Lorenzo y Jesús López-Rodríguez

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español
Luis Muga y Rafael Santamaría

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales
Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link
Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain
Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age
Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general
Robert Meneu Gaya

278/2006 El consumo y la valoración de activos
Elena Márquez y Belén Nieto

279/2006 Economic growth and currency crisis: A real exchange rate entropic approach
David Matesanz Gómez y Guillermo J. Ortega

280/2006 Three measures of returns to education: An illustration for the case of Spain
Maria Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs
Antoni Cunyat

282/2006 La vocación internacional de un holding tranviario belga: la Compagnie Mutuelle de Tramways, 1895-1918
Alberte Martínez López

283/2006 Una visión panorámica de las entidades de crédito en España en la última década.
Constantino García Ramos

Alberte Martínez López

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936
Alberte Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names
Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium
Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme
Xavier Labandeira and Miguel Rodríguez
289/2006 Globalisation and the Composition of Government Spending: An analysis for OECD countries
Norman Gemmell, Richard Kneller and Ismael Sanz

290/2006 La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberalización del Sector Eléctrico
Fernando Hernández Martínez

291/2006 Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain
Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso

292/2006 Una teoría sobre la contribución de la función de compras al rendimiento empresarial
Javier González Benito

293/2006 Agility drivers, enablers and outcomes: empirical test of an integrated agile manufacturing model
Daniel Vázquez-Bustelo, Lucía Avella and Esteban Fernández

294/2006 Testing the parametric vs the semiparametric generalized mixed effects models
Maria José Lombardía and Stefan Sperlich

295/2006 Nonlinear dynamics in energy futures
Mariano Matilla-García

Esteban Fernández Vázquez, Matías Mayor Fernández and Jorge Rodríguez-Valez

297/2006 Optimización fiscal en las transmisiones lucrativas: análisis metodológico
Félix Domínguez Barrero

298/2006 La situación actual de la banca online en España
Francisco José Climent Diranzo y Alexandre Momparler Pechuán

299/2006 Estrategia competitiva y rendimiento del negocio: el papel mediador de la estrategia y las capacidades productivas
Javier González Benito y Isabel Suárez González

300/2006 A Parametric Model to Estimate Risk in a Fixed Income Portfolio
Pilar Abad and Sonia Benito

301/2007 Análisis Empírico de las Preferencias Sociales Respecto del Gasto en Obra Social de las Cajas de Ahorros
Alejandro Esteller-Moré, Jonathan Jorba Jiménez y Albert Solé-Ollé

302/2007 Assessing the enlargement and deepening of regional trading blocs: The European Union case
Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano

303/2007 ¿Es la Franquicia un Medio de Financiación?: Evidencia para el Caso Español
Vanesa Solís Rodriguez y Manuel González Díaz

304/2007 On the Finite-Sample Biases in Nonparametric Testing for Variance Constancy
Paulo M.M. Rodrigues and Antonio Rubia

305/2007 Spain is Different: Relative Wages 1989-98
José Antonio Carrasco Gallego

306/2007 Poverty reduction and SAM multipliers: An evaluation of public policies in a regional framework
Francisco Javier De Miguel-Vélez y Jesús Pérez-Mayo