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ABSTRACT 

This paper studies the possible nonlinear and chaotic nature of three energy 
futures: natural gas, unleaded gasoline and light crude oil. Nonlinearity is analyzed 
using the generalized BDS statistic, along with Kaplan’s test. The results show that 
nonlinearity cannot be rejected. The null hypothesis of chaos is then investigated via the 
stability of the largest Lyapunov exponent. Evidence of chaos is found in futures 
returns. Global modelling techniques, like genetic algorithms, have been used in order 
to estimate potential motion equations. In addition, short term forecasts in futures price 
movements have been conducted with these estimated equations. The results show that 
although forecast errors are statistically smaller than those computed with other 
stochastic approaches, further research on these topics needs to be done. 
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NONLINEAR DYNAMICS IN ENERGY FUTURES 
 
 

1. INTRODUCTION 
 
The behaviour of daily market energy futures can be profitable for chartists when 

predicting future trends as well as for analysts when explaining and determining market 

dynamics. Energy futures are clearly characterized by unpredictable and volatile price 

movements. As is well known, chaos theory shows that both characteristics are 

compatible with a nonlinear deterministic explanation of price movements, and not only 

with a pure random nonlinear approach. Despite the fact that fluctuations in prices 

might be attributed to some perfectly deterministic nonlinear feedback mechanism, only 

very short run predictions can be obtained, basically, because of the sensitivity to initial 

conditions that characterizes chaotic systems. If it is found that the data can be 

approximately described according to a nonlinear deterministic motion equation, it is 

worthwhile estimating it, since it might constitute a powerful forecasting tool. 

Researchers in economics and finance have been interested in testing for 

nonlinear dependence and chaos for more than a decade now. Interest in nonlinear 

models has developed in parallel with an expansion in the knowledge of the properties 

of tools for nonlinear data analysis. Financial market data like stock market returns, 

exchange rate returns, natural gas futures and daily oil production have been studied, 

among others, by Scheinkman et al. (1989), Hsieh (1989), Chwee (1998) and Panas et 

al. (2000), respectively. The interest in looking for chaos on financial markets has been 

recently renewed (see Moshiri and Foroutan, 2006; Fernández-Rodríguez et al. 2005; 

and Shintani and Linton, 2004). 

The core of this approach is that the market consists of a large number of traders 

who are organized into dynamic, volatile, complex, and adaptive systems that are 

sensitive to environmental constraints, and that evolve according to their internal 

structures. Daily price fluctuations are the outcome of these systems. Much research in 

financial economics has relied on the theory of dynamical systems to analyze price 

movements. This theory deals with the behaviour of the evolution of a dynamical 

process over time. It is realistic to assume that the equations describing the underlying 

futures’ dynamical processes are unknown. Additionally, the researcher only observes 

time series of prices or returns. Fortunately, time delay space reconstruction, due to 

Takens (1981), connects time series observation data and the underlying dynamical 
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system. Several nonlinear techniques, based on such reconstructed space, have been 

developed to detect nonlinearities and chaos in observed data. Particularly, Chwee 

(1998) used the BDS statistic and the Lyapunov spectra to test for nonlinearity and 

chaos in natural gas futures. Evidence in favour of chaos was not found. 

This paper analyzes the nature of three energy futures: natural gas, unleaded 

gasoline and light crude oil. These three futures have been intensively in terms of 

looking for a chaotic skeleton. As stated before results are not conclusive. The first goal 

of the paper is to examine the nonlinear and potential chaotic properties of these 

relevant energy futures. To this end several techniques are used: (1) the recent 

generalization of the well known BDS statistic; (2) the Kaplan statistic procedure; and 

(3) the stability of the largest Lyapunov exponent. The second goal of the paper is to 

estimate, if chaos is a potential source of nonlinearity, the motion equations driving 

energy futures returns. To this end genetic algorithms are used. A comparison, in terms 

of forecasting, with two other stochastic models is provided. This second aim is 

especially relevant since the available economic literature does not usually estimate the 

potential motion equations once chaos is detected. Obviously, in presence of nonlinear 

dynamics ARCH-type models are known to be very useful for forecasting. Whether 

these models are competitive (in terms of forecasting) in presence of nonlinear chaotic 

dynamics has not been investigated. Our results suggest that if the underlying process 

that generated observed data is chaotic, then other forecasting techniques as Genetic 

Algorithms outperforms (in terms of forecasting) the ARCH-type models. 

The paper is organized as follows. Firstly, in section 2, the data and their basic 

properties, as univariate time series, are described; secondly, the generalized BDS 

statistic tests and the Kaplan test are presented along with their respective results for the 

time series under study. The third section introduces the concept of the largest 

Lyapunov exponent, together with a recent test for the null hypothesis of chaos. 

Accordingly, tests for chaos are then conducted and reported. In section 4, the estimated 

equations, via genetic algorithms (GA), are presented. Conclusions are provided in 

section 5. 

 

 

2. TESTING FOR NONLINEARITY 
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The data consist of the following daily futures at the New York Mercantile Exchange 

(NYMEX):  Natural Gas from 04/03/1990 to 10/19/2005 (3892 observations), Unleaded 

Gasoline from 03/17/1992 to 01/31/06 (3499 observations) and Light Crude Oil from 

04/03/1990 to 10/19/2005 (3892). We focus, however, on market returns from these 

three futures prices. Stationary data sets are required when testing for nonlinearity. 

Returns (zt) are defined as the difference of the logarithms of the future settlement 

prices . 1ln ln , where Natural Gas, Unleaded Gas and Light Crude Oili i i
t t tz P P i−≡ − =

 Table 1 presents the descriptive statistics for the three returns. In all cases, there 

is excess kurtosis relative to the standard distribution. The distribution of all of them is 

negatively skewed2. These observations lead us to suspect that energy futures returns 

are not normally distributed as is suggested by Jarque-Bera statistics.  

 

 
Table 1. Summary Statistics for Energy Futures Returns 

 Natural Gas Unleaded Gas Crude 

Mean 5.35e-004 3.55e-004 2.89e-004 

Standard Deviation 0.036 0.020 0.024 

Skewness -0.031 -2.34 -1.357 

Kurtosis 11.334 48.06 25.289 

Minimum -0.37 -0.38 -0.40 

Maximum 0.32 0.13 0.14 

Jarque-Bera 1.12e+004* 2.98e+005* 8.16e+004* 

Note: The Jarque-Bera statistic tests for normality and is distributed as χ2(2). * denotes test significance at the 5% 
level. 
 
 
Due to the fact that nonlinearity is a necessary (but not sufficient) condition for chaos, 

two tests for nonlinearity are conducted in this section: A generalized version of the 

well known BDS statistic which incorporates different time delays and so a fine search 

is guaranteed, and a direct test known as the Kaplan test. 

 
2.1 Generalized BDS test 
 
The BDS test (Brock et al., 1996) is used to test the null of whiteness against the 

alternative of nonwhite linear and nonwhite nonlinear dependence. It is based on the 

estimation of the correlation integral, which was introduced in the context of dynamical 

systems by Grassberger and Procaccia (1983).  
                                                 
2 The skewness is zero for a symmetrical distribution. The kurtosis of a normal distribution is 3. 
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The basic idea behind state space reconstruction is that the past and the future of 

a time series both contain information about unobserved state variables that can be used 

to define a state at the present time. Reconstruction is done from a scalar time series and 

all relevant components (relative to the underlying dynamics) have to be extracted from 

it. Takens (1981) showed that this type of reconstruction yields a topologically 

equivalent attractor leaving the dynamic parameters invariant. The required 

reconstruction will embed the univariate observations into a multivariate phase space. 

To that end, information is encapsulated in the delay vector called the m-history.  

 

The Grassberger and Procaccia correlation integral is based on Takens' ‘time 

delay method’, and it consists of the two following steps: (1) for established values of m 

(dimension) and τ (delay time), to convert the scalar time series  into a set 

of m-histories: ; (2) to compute the correlation 

function or integral which is estimated by: 

{ 1 2, ,..., Tz z z }

}){,
2 ( 1, , ,...,m

i i i i i mz z z zz τ
+τ + τ + − τ=

 ( , ,
,

1

1( )

2

n n
m m

m n i j
i j i

c H
n

z zτ

= = +

ε = ε− −⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑∑ )τ τ

)

 (1) 

where n = T-(m-1)τ is the number of m-histories, with τ-delay time, that can be formed 

from T observations; and H is the Heaviside function so that  takes the 

value 1 if both observations are within distance ε  of each other, and 0 otherwise. In 

words, (1) measures the fraction of the pairs of points  that are within a distance of 

, ,( ,m m
i jH z zτ τ

iz ε  

from each other. This distance is chosen relative to the standard deviation divided by the 

spread of the data.  

It is known that the choice of time delay is crucial when estimating the correlation 

dimension (a measure based on the correlation integral), to the extent that an 

unfortunate time delay choice yields misleading results concerning the dimension of 

well known attractors. However, as Kantz and Schreiber (2004) indicate, the relevant 

mathematical framework for a proper choice of a time delay has not been convincingly 

studied. 

Since the BDS test fixes τ = 1, it does not take into account all the potential power of  

Takens’ ‘time delay method’ which implies a connection between geometric concepts 

(such as dimensions) and the analysis of time series. The ‘time delay method’ allows the 
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reconstruction of phase space. By fixing τ = 1, m successive observations are stacked in 

producing the embedded phase space vectors. Real-world time series are, however, 

noisy and finite. These restrictions make the selection of time delay crucial: For very 

small τ, the coordinates of each reconstructed state, z, do not significantly differ from 

one another and therefore the points are scattered along the diagonal. As a consequence, 

the dynamics in the space state, that take place in the coordinates of the reconstructed 

space, are almost linearly dependent (which is not the case for the real observable of a 

nonlinear system). On the other hand, a large delay time will cause the coordinates to 

disjoin by stretching and folding, so this will lead to vectors whose components are 

(seemingly) randomly distributed in the embedding space. 

 

Recently, a new test called BDS-G (Matilla et al., 2004) has included time delay 

as a new parameter, and in this light, the well known BDS is interpreted as a particular 

case of the BDS-G test. 

 

 The BDS-G statistic: 

 
τ

τ

ε − ε
ε τ = − − τ

σ ε
, 1

,

( ) ( ( ))
( , , , ) ( 1)

( )

m
m n

m n

c c
BDSG m T T m   

has an asymptotic normal distribution under the null hypothesis of IID, with mean zero 

and variance one, where  is an estimate of the asymptotic standard error of 

. 

, ( )m n
τσ ε

, 1( ) ( ( ))m
m nc cτ ε ε⎡ ⎤−⎣ ⎦

 

The BDS and the BDS-G tests provide an important advance in testing for 

nonlinear dependence when applied to prewhitened data. Consequentially, both 

statistical tests can be used to determine whether there is evidence of dependence 

remaining in the data. If all linear dependence has already been removed, then any 

remaining dependence must be nonlinear. Still, rejection of the null of IID could result 

either from a nonlinear deterministic or from a nonlinear stochastic system. In order to 

decide between these two alternatives one has to rely on other procedures. Particularly, 

we rely on the stability of Lyapunov exponents, which will be explained later in this 

paper. 

  In order to compute BDS-G tests one has to choose several parameters: the time 

delay τ, the embedding dimension m, and the radius . In order to select the ε
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dimensional distance  and the embedding dimension m, it is advisable to follow the 

indications of Brock et al. (1991) and Kanzler (1999), who have found that the power of 

the BDS test is maximized when the dimensional distance is selected between 1 and 2 

times the standard deviation. Moreover, Kanzler points out that as the embedding 

dimension m increases, the BDS empirical distribution moves away from its asymptotic 

distribution. This result holds for the BDS-G empirical distribution. Even though 

several methods exist to select τ, we estimate BDS-G for several time delays. 

ε

 

2.2 Results with BDS-G Statistic 

 

Firstly, we proceed to apply the BDS-G statistic after linear dependencies have been 

removed from data sets by an AR filter. Therefore if the null is rejected, it implies that 

the residuals are compatible with a nonlinear underlying system. This procedure has 

shown to be valuable in the past (see, for example, Barnett et al. 1997). 

As in Barnett et al. (1997) and following Chwee (1998), all time series have 

been filtered by using a LM test statistics on q lags where they are added until the null 

of ‘no serial correlation’ cannot be rejected at the 5 percent level3. Table 2 shows the 

selected filters for each data set, along with the Ljung-Box statistic on residuals, Q(15), 

and on squared residuals, Q2(15). 

 
Table 2. AR Models for Futures Returns

Natural Gas Unleaded Gas Crude

Fitted AR 2 5 5

Q (15) statistic 12,41 25,61 24,37
Q2 (15) statistic 340,78* 8,21 260,05*  

Note: The lag length is chosen until the null of non serial correlation cannot be 
rejected with a LM test. The Ljung-Box Q(15) statistics tests on the residuals under 
the null of no autocorrelation. The Q2(15) statistic is the Ljung-Box test on the 
squared residuals. * denotes significance at the 1% level. 

 

Practitioners of BDS and BDS-G tests usually consider different embedding 

dimensions. Table 3 shows BDS-G and BDS tests on filtered returns for five embedding 

dimensions4. Following Kanzler (1999) we have set5 =1σ. Time delay has varied from ε

                                                 
3 The same analysis has been conducted following a general-to-specific procedure in order to select the 
lag length, q. In this case, although the selected lags are different from those given in Table 2, BDS-G 
results are very similar to those presented in Table 3. 
 
4 Note that BDS = BDS-G (τ = 1). 
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1 to 5. It is evident from Table 3 that the null of whiteness is rejected according to all 

computed statistics, and hence the remaining dependence is consistent with a nonlinear 

dynamic explanation. Similar results are found using the non filtered returns6. 

 

 
Table 3. BDS-G Tests Statistics for AR Residuals and Hinich Bispectral p-values

2 3 4 5 6
Natural Gas Time delay

1 11.40 15.31 18.00 20.58 23.86
2 12.56 14.87 16.70 18.90 21.53
3 9.47 12.13 13.71 15.63 17.63
4 8.88 12.12 14.34 15.52 17.65

5 10.27 13.51 15.74 18.41 20.44
Hinich Bispectral p -val

Unleaded Gas Time delay 2 3 4 5 6
1 8.00 10.80 13.05 15.48 18.31
2 7.90 10.71 12.96 15.28 18.31
3 8.43 11.28 13.59 16.08 18.63
4 8.12 10.85 12.77 14.66 16.90
5 9.18 11.89 13.61 15.84 17.76

Hinich Bispectral p -val

Crude Time delay 2 3 4 5 6

1 7.23 9.70 11.98 14.02 16.44
2 9.30 11.58 14.19 16.56 19.05
3 9.70 12.30 13.90 15.83 17.88
4 8.27 11.00 13.11 15.21 17.81
5 10.05 12.05 13.78 16.15 18.10

Hinich Bispectral p -val

Embedding Dimension (m )

0.28

0.37

0.31  
Note: The critical values are 1.645, 1.960 and 2.575 for the 10%, 5% and 1% critical values, respectively. All test 
statistics are significant at the 10%, 5% and 1% levels. 
 
 According to these results, it can be concluded that there is evidence of non-

linearity of a general form, since BDS-G rejections might occur when the process has 

dependence in any moment of the distribution. Models that are nonlinear in variance but 

linear in mean are acknowledged to be valuable for modeling returns (Engle, 1982; 

Bollerslev, 1986; and Engle, 2002). Therefore, as residuals and returns are nonlinear, 

the Hinich bispectrum test (Hinich, 1982) is used in order to test for linearity on the 

conditional mean. One advantage of this test is that it is unaffected by the application of 

a linear filter. Our results are presented in Table 3 and, accordingly, energy returns seem 

to be linear in mean, but not on other moments7. In order to uncover a potential source 

                                                                                                                                               
0.5 and 2= σ ε = σ5 Results for ε  are similar to those presented in Table 3. 

6 These results are not reported here, but they are available upon request. 
7 The same conclusion is arrived at if outliers are removed, indicating that the effects of outliers (extreme 
observations) are not crucial in order to obtain a conclusion about the nature of the underlying process. 
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of nonlinearity related with conditional variance (GARCH-type dynamics), we have 

estimated a GARCH (1,1) model using the same AR structure. After that, we have 

applied the BDS-G test to the standardized residuals of the GARCH(1,1)-filter with the 

following heteroskedastic variance equation: 

 

  2
1 1t th h− −= ω+αε +β t

 
The parameter α  is usually known as the ARCH(1) term, while β  is the GARCH(1) 

term. The GARCH(1, 1) model is useful in detecting nonlinear patterns in variance. The 

difficulties in improving its performance when dealing with returns are well-known (see 

Hansen and Lunde, 2005). The parameter estimates of the GARCH(1, 1) models are 

presented in Table 4. The coefficients are positive and statistically significant in all 

cases. The Q2(15) statistics fail to reject the null of ‘no autocorrelation’ in the squared 

standardized residuals, indicating no residual ARCH effects. 

 
 
 
 
Table 4. GARCH (1,1)  Parameters Estimates and Diagnostics 

Coefficients Natural Gas Unleaded Gas Crude 
w

 

0.0001 
(3.41) 

0.0001 
(1.62) 

0.0001 
(2,76) 

ARCH(1) 
 

0.230 
(5.06) 

0.35 
(2.27) 

0.071 
(5.70) 

GARCH(1) 
 

0.719 
(16.57) 

0.61 
(4.54) 

0.92 
(94.10) 

Diagnostics    
Jarque-Bera 

 
5.17+e3 
(0.00) 

6.5+e5 
(0.00) 

1.3+e3 
(0.00) 

Kolmogorov-Smirnof 
 

0.055 
(0.00) 

0.070 
(0.00) 

0.044 
(0.00) 

Q(15) 
 

8.86 
(0.88) 

17.94 
(0.26) 

22.40 
(0.31) 

Q2(15) 11.96 
(0.68) 

2.24 
(0.99) 

21.91 
(0.11) 

Notes: The sample periods are April 3, 1990 through October 19, 2005 (Natural Gas and Crude) and March 3, 1992 
through January 31, 2006 (Unleaded Gas). The Bollerslev-Wooldrige robust standard errors are reported in 
parentheses. The Jarque-Bera statistic tests for normality and is distributed as χ2(2), p-values in parenthesis. The 
Kolmogorov-Smirnof statistic tests for standard normal distribution on the standardized residuals. The Ljung-Box 
Q(15) statistics tests on the standardized residuals under the null of no autocorrelation, p-values in parenthesis. The 
Q2(15) statistic is the Ljung-Box test on the squared standardized residuals, p-values in parenthesis.  
 
 
 
 

Table 5 presents the results of BDS-G tests on GARCH (1,1) standardized 

residuals. In clear contrast with the results given in Table 3, now the null of 

independence is not so generally rejected. Full rejection, that is, regardless of the 
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embedding dimension and the time delay, is uniquely found for the Crude residuals. 

However, dependences are found in the case of Natural Gas and Unleaded Gasoline for 

several combinations of embedding dimensions and delay times. These outcomes 

clearly indicate that the high statistics shown in Table 3 are compatible with 

compounding GARCH effects. However, the results in Table 5 also indicate that 

conditional heteroskedasticity does not completely collect the nonlinearity contained in 

Natural Gas residuals and in Unleaded Gasoline residuals. 

 
 
Table 5. BDS-G Tests Statistics for GARCH Residuals 

2 3 4 5 6
Natural Gas Time delay

1 -1,44 -0,98 -0,57 -0,35 0,31
2 0,45 0,22 0,15 0,59 1,37
3 0,09 0,16 0,05 0,51 0,97
4 -0,76 0,14 0,84 0,87 1,70
5 2,59* 2,86* 3,06* 4,45* 5,18*

Unleaded Gas
1 -0,24 -1,02 -0,73 -0,43 0,16
2 -0,19 -1,82 -1,56 -0,78 0,11
3 0,92 0,68 1,17 1,51 1,85
4 -0,05 1,08 1,82 2,72* 3,31*
5 1,03 1,25 1,71 2,74* 2,78*

Crude
1 -1,07 -0,74 -0,28 -0,15 0,1
2 0,74 0,54 0,91 1,06 1,01
3 0,86 0,98 0,28 -0,09 1.88
4 -0,04 -0,14 -0,23 -0,07 0,31
5 1,59 0,89 0,63 1,03 1,01

Embedding Dimension (m )

 
Note: The critical values are 1.645, 1.960 and 2.575 for the 10%, 5% and 1% significance levels, respectively. * 
means rejection of the null hypothesis at the 1% level. 
 
 

We turn now to confirm, with a different statistical procedure, whether future 

returns are compatible with a nonlinear explanation. To that end we analyze them with a 

direct test for linearity that has been shown to be as powerful as tests based on 

Grassberger-Procaccia’s correlation integral (see Barnett et al., 1997). 

 

2.3 The Kaplan Test 

 

The method described here is oriented towards situations where the functional form that 

generated the observed data is unknown, and the goal is to decide whether there is 

evidence of a deterministic mechanism. The main goal of Kaplan’s test is to decide 
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whether the observed data { are more consistent with a deterministic mechanism or 

with a stochastic model. In the case of a deterministic chaotic mechanism, a time series 

plot of the output of such process may be very difficult to distinguish visually from a 

stochastic process. In contrast, as is well known, the simple plot of  versi iz  

reveals the deterministic structure. In contrast, in the presence of stochastic data, this 

kind of plot will produce no structure, i.e., single-valuedness, rather than certain 

continuity. 

} 1

T
i i

z
=

 

1us z +  often

jz

)

 The test proposed by Kaplan (1994) is based on the fact that for chaotic 

processes, unlike stochastic ones, if two points  are very close together, then 

their images are also close together. In consequence, the test is ultimately rooted on the 

evidence of the continuity of an underlying function, since if the hypothetical 

underlying function linking images and pre-images is continuous, then it is expected 

that points that are nearby are also nearby under their image. One way of applying 

Kaplan’s statistic is to test for linearity against the alternative of nonlinear dynamics. To 

implement this procedure, one needs to compute the statistic from an adequately large 

number of linear stochastic processes that plausibly might have produced the data, and 

then compare the value of the test on such potential processes with the value of the test 

computed from the observed data. 

and iz

More generally and formally stated, given a vector8 

( 2 3 ( 1), , , ,...,t t t t t t mz z z z zτ τ τ τ− − − − −≡z  embedded in m-dimensional phase space and 

obtained from the observed data set { } 1

T
i i

z
=

, ( )t fτ+ t=z z  will be called the image of the 

point  for a fixed positive integer time delay tz τ , say for example 1τ = . For 

deterministic systems, nearby points in m-dimensional phase space will have nearby 

images. In contrast, for stochastic systems nearby points may have very different 

images. For a given embedding dimension m and for a given time delay τ , Kaplan’s 

technique involves examining all pairs of points ,j kz z  in terms of the distance between 

them ,j k j kδ = −z z  and the distance between their images ,j k j kτ τε + += −z z . Then one 

calculates averages of the values of ,j kε  conditional on the corresponding value of ,j kδ , 

that is: 

                                                 
8 We have eliminated notational dependence on τ and m for clarity. 
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 , ,( ) for ,   s.t. j k j kE r j k rε δ≡ <  

 

In words, ( )E r computes the average distance of the images whose pre-images are r-

close. For a deterministic system with continuous f, one expects that the average 

distance of the images will d corresponding pre-images are very close, in 

fact it will be expected that 0lim ( ) 0r E r→ → . Note, however, that for stochastic systems 

this convergence is not likely because n

ecrease as their 

earby pre-images may have very distinct 

ages. Precisely, Kaplan’s test statistic is: 

 

K E r

im

0lim ( )r→≡  

 

data. F

te many realizations of the Ho, and then estimate the 

signific

h the same mean, variance, autocorrelation 

dynamical system, then there is 

 

One way of interpreting the nonzero value of K is as the level of nondeterminism in the

or stochastic systems K is expected to be higher than for near deterministic ones. 

An appropriate null hypothesis (Ho) for many nonlinear dynamics tests is that 

the data arise from a linear dynamical system. In order to establish the significance of 

the test, one can genera

ance empirically.  

The null of "stochastic linear dynamical system" is not very specific. For 

instance, it does not describe simple quantities such as the mean and variance. One 

approach to make a specific Ho is to set the mean and variance to the same as that of the 

original data. In addition, and very importantly, the autocorrelation function and the 

histogram can be specified as being the same as that of the original data. We refer to 

surrogate data as random data generated wit

function and histogram as the original data. 

 In order to implement the analysis via surrogate data, one generates many 

realizations of the surrogate data, and calculates K independently on each one of them. 

To that end, one has to make sure that the embedding dimension m and time delay are 

the same for the surrogate data as for the original test data. If the measure of 

nondeterminism is smaller for the data than for the surrogate data, generated from a 

model that satisfies the null of stochastic linear 

evidence that the null hypothesis should be rejected. 

 There are several measures that can be useful for providing a certain guarantee 

of coming to a conclusion about the null hypothesis. It is worthwhile to compute the 
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minimum value of K that is consistent with the surrogates. One possibility is to 

calculate directly the minimum value of K from the finite number of surrogates, and 

impute that value to the population of surrogates consistent with the procedure. 

Another, perhaps more attractive, option is to compute the mean and the standard error 

of the K values from the finite sample and then subtract a multiple (2 or 3) of the 

standard error from the mean in order to obtain an estimate of the population minimum. 

Finally, sometimes it is useful to compare the level of noise in the data versus the level 

of noise in the surrogate data sets, as K might be interpreted as the level of 

nondeterminism. To that end the ratio of the mean of the surrogates to the test data is 

computed. The output is interpreted as the number of times as much noise is in the 

.4 Results with Kaplan Test 

 

-linearity, which, as expected, is consistent with the result given by BDS-

G statistics. 

                                                

surrogate as in the data. 

2

As stated before, the null hypothesis for Kaplan’s test is stochastic linearity of 

the process. In fact, the test, as applied in this paper, can either accept or reject linearity. 

Kaplan’s test statistics are displayed in Table 6 for embedding dimensions (m) 2, 3, 4 

and 5. We have used twenty surrogates9; hence the mean, minimum, strength and 

standard deviations are over the surrogates. The test rejects10 the null of linearity of the 

Natural Gas process at all dimensions. Similar results are found for Unleaded Gasoline 

and Crude futures returns, with the exception of dimension 3 for which the null is not 

rejected. In general, one might conclude that the null of linearity should be rejected in 

favour of non

 
9 Time delay has been fixed at 1 because, according to BDS-G results on Table 3, the null of IID is 
rejected regardless time delay, so we have used the most common time delay to facilitate future 
comparisons. However additional testing, not reported here, has been done for time delays distinct from 1, 
and similar results were obtained. 
10 We arrive at that conclusion by estimating the minimum K either as the minimum value of K from the 
finite number the surrogates or as the result of subtracting two times the standard deviation of the 
surrogates from the mean. 
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Table 6. Kaplan Tests Statistics in Energy Futures Returns under the null of stochastic linearity

Embedding Mean K on Std. Dev. of K on Min K on K Statistic on K strength
dimension surrogates surrogates surrogates Returns

Natural Gas 2 0.04 0.003 0.04 0.013 3.0
3 0.04 0.004 0.03 0.009 4.3
4 0.04 0.009 0.02 0.010 3.9
5 0.04 0.004 0.03 0.008 4.6

Unleaded Gas 2 0.023 0.002 0.020 0.016 1.2
3 0.023 0.003 0.013 0.015 1.4
4 0.022 0.004 0.010 0.015 1.5
5 0.023 0.003 0.015 0.012 1.8

Crude 2 0.027 0.002 0.022 0.021 1.2
3 0.027 0.003 0.019 0.020 1.3
4 0.027 0.004 0.019 0.017 1.6
5 0.029 0.005 0.022 0.012 2.3  

Note: K is the Kaplan test statistic. Time delay is fixed at 1. Twenty surrogates were used to compute: Mean, 
Minimum, Standard Deviation and Strength. ‘K strength’ refers to the ratio Mean K / K statistic. 
 

According to the results obtained in the preceding subsection, nonlinearity might 

be due to GARCH effects. We now turn to computing Kaplan’s test under the null of 

GARCH (1, 1) structure. To this end, surrogates for each return are generated from a 

model that satisfies the corresponding GARCH parameters, which are described in 

Table 4. From a broad perspective, Kaplan’s statistic (K) can be interpreted as a 

goodness of fit measure from fitting a continuous model of some fixed order to an 

infinite amount of data. Again, if this measure of fit is smaller for the data than for 

surrogate data, then there is evidence that the null hypothesis should be rejected. The 

results are displayed in Table 7. The evidence against GARCH effects is larger than that 

found with the BDS-G statistic (see Table 5). Now, the null is rejected at all 

embeddings for Natural Gas and Crude returns, while it cannot be rejected for the 

Unleaded Gasoline. 
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Table 7. Kaplan Tests in Energy Futures Returns under the Null GARCH (1,1) process
Embedding Mean K on Std. Dev. of K on Min K on K Statistic K strength
dimension surrogates surrogates surrogates Returns

Natural Gas 2 0.044 0.004 0.032 0.013 3.3
3 0.048 0.007 0.035 0.009 5.1
4 0.045 0.006 0.031 0.010 4.4
5 0.043 0.010 0.013 0.008 4.9

Unleaded Gas 2 0.018 0.002 0.013 0.016 1.2
3 0.020 0.003 0.014 0.015 1.3
4 0.020 0.004 0.009 0.015 1.3
5 0.019 0.004 0.011 0.012 1.6

Crude 2 0.109 0.020 0.087 0.021 5.1
3 0.111 0.018 0.068 0.020 5.4
4 0.107 0.014 0.068 0.017 6.2
5 0.111 0.024 0.081 0.012 8.8  

Note: K is the Kaplan test statistic. Time delay is fixed at 1. Twenty surrogates were used to compute: Mean, 
Minimum, Standard Deviation and Strength. ‘K strength’ refers to the ratio Mean K / K statistic. 
 
3. TEST FOR CHAOS 
 

The main conclusion obtained from the preceding section is that nonlinearity in 

energy futures price movements cannot be rejected. It is not completely clear, according 

to Kaplan’s test and BDS-G statistics, what exactly is the source of this nonlinear 

behaviour. In this section, we focus on testing whether the nonlinear dynamics found in 

the returns of the three energy futures has its origins in a chaotic skeleton. Through out 

this paper we consider chaotic in the sense of low-dimensional chaos, since high-

dimensional chaos is confused with stochastic models11. To that end the notion of 

Lyapunov exponent is introduced since it is usually taken as an indication of the chaotic 

character of the underlying dynamical system. In the presence of noise, as happens with 

real-world data sets, the meaning of “detecting deterministic chaotic dynamics” is 

ambiguous. For this reason, when the presence of noise is small, Lyapunov exponents 

test for ‘noisy chaos’. Moreover, under this circumstance, the estimated exponents can 

be interpreted as a measure of local stability. Following Fernández-Rodríguez et al. 

(2005), stability of the largest Lyapunov exponent is used to test for chaos. 

 

 

3.1 The Largest Lyapunov Exponent 

 

For a dynamical system, sensitivity to initial conditions can be quantified by the 

Lyapunov exponents. For example, consider two trajectories with infinitely close initial 
                                                 
11 As Ruelle (1994) comments, noise can be always be interpreted as a deterministic time evolution in 
infinite dimension. 
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conditions on an attractor. For chaotic systems, points in a common neighbourhood in 

the phase space diverge with time, on average, at an exponential rate characterized by 

the largest Lyapunov exponent. This concept is also generalized for the spectrum of 

Lyapunov exponents, { }1 2, ,..., nλ λ λ , by considering a small n-dimensional sphere of 

initial conditions, where n is the number of equations (or, equivalently, the number of 

state variables) used to describe the system. 

Lyapunov exponents offer information on how orbits on the attractor diverge (or 

contract) given the dynamic evolution of the system. The presence of a positive 

exponent is sufficient for diagnosing chaos and represents local instability in a 

particular direction. Note that for the existence of an attractor, the overall dynamics 

must be dissipative and the total rate of contraction must outweigh the total rate of 

expansion. Thus, even when there are several positive Lyapunov exponents, the sum 

across the entire spectrum is negative. 

 Experimental data often consist of time series from a single observable, and then 

the method of delays is generally employed as a proper technique for attractor 

reconstruction. Given the conditions provided by the ergodic theorem of Oseledec 

(1968), one can expect that two randomly chosen initial conditions will diverge 

exponentially at a rate given by the largest Lyapunov exponent ( maxλ ).  

The different methods for computing Lyapunov exponents from time series that 

have been proposed so far can be divided into two classes: (i) direct methods like Wolf 

et al. (1985) or Rosenstein et al. (1993), which assume that the initial divergence 

between initial states grows at the exponential rate given by maxλ  in the reconstructed 

state space of a time series; and (ii) Jacobian methods like McCaffrey et al. (1992), 

Nychka et al. (1992) or Shintani and Linton (2004), where data are used to estimate 

(using non-parametric techniques as kernels and neural nets) the Jacobians from an 

estimation of the conditional expectation of the process. This finally allows maxλ  to be 

estimated. 

 In this regard, one important disadvantage of Jacobian methods is that in the 

presence of observational noise, the noise is amplified by higher order nonlinearities12. 

Besides, tangent methods need, a priori, to fix a neural network structure. We refer the 

reader to Schreiber and Kantz (1995) for a detailed discussion. In this paper we have 

                                                 
12 Similarly, if the dimensionality of the underlying system increases, the evaluation of the diagonalized 
Jacobian requires extensive multiplication of the individual matrix elements of the Jacobian. 
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opted for direct methods, and then we make use of a simple direct method for 

estimating the largest Lyapunov exponent maxλ  of a time series. This technique was 

proposed by Rosenstein et al. (1993). 

 

3.2. Testing for stability of the Largest Lyapunov Exponent 

 

 Unfortunately, in practical implementations with finite time series, it is possible 

that Rosenstein’s algorithm finds positive values for the Lyapunov exponent, for any 

pure random process. This problem is relevant in energy returns since nonlinear 

stochastic models, like GARCH processes, are alternative models to the chaotic 

behaviour. 

In order to circumvent this problem, Fernández-Rodríguez et al. (2005) have 

shown that, for a large enough sample size, Lyapunov exponents will converge to some 

stable values directly associated with the complexity of the attractor. However, nothing 

guarantees the stability of the Lyapunov exponent if the process is non-chaotic 

stochastic. For GARCH processes, as the number of observations increases, the 

variability of the largest Lyapunov exponent will increase continuously. 

Based on the stability of the largest Lyapunov exponent, Fernández-Rodríguez et 

al. (2005) have proposed a test that has ‘low-dimensional chaos’ as the null hypothesis, 

while the alternative is that of a stochastic process. The test has great power against a 

rich variety of stochastic processes (either linear or nonlinear). In contrast to other 

statistical procedures, the test detects GARCH process even for small data sets. 

Given the observed time series { } 1

T
i i

z
=

, the new statistical procedure takes the 

following steps: 

1. Divide  into different subsamples, each of which contains the 

precedent: {
{ } 1

T
i i

z
=

}1 2, ,..., 1:
iNz z z i r= . 

2. Obtain the empirical distribution of the largest Lyapunov exponent 

from 100 moving block bootstraps for the subsamples obtained in 

step 1. The largest exponent is calculated according to Rosenstein et 

al.’s methodology. 
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3. Estimate the dominant Lyapunov exponent by computing the mean of 

the distribution of the 100 largest Lyapunov exponents computed 

from each sample size, Ni: ( )max
ˆ

iNλ  

4. Test for linear dependence between ( )max
ˆ

iNλ  and the sample size 

. To that end, the following regression is calculated: , 1,...,iN i r=

max 0 1 1 2( )    for , ,...,i i iN N i N N Nλ α α ε r T= + + = =  

5. Use the estimated parameter 1α̂  to test if the largest Lyapunov 

exponent does not increase with sample size13, indicating an 

underlying deterministic process: 

0 1

1

: 0  (chaotic process)
: 0  (stochastic process)A

H
H

α
α
≤
>

 

 
 Due to the fact that this procedure for testing the stability of the largest 

Lyapunov exponent relies on Rosenstein et al.’s algorithm, there exist two parameters 

that need to be selected. Firstly, the embedding dimension has been selected between 2 

and 6, and time delay has been fixed at 1 for all embeddings. These reconstruction 

parameters are habitual in the financial literature. However, as stated above, selecting 

appropriate parameters is important for any successful subsequent analysis on the 

reconstructed phase space. Precisely, the estimation of the largest Lyapunov exponent is 

based on the reconstructed space. Moreover, according to the output obtained in Table 

5, the time delay parameter seems to be crucial. In consequence, given the importance 

of a correct selection, we have also looked for optimal reconstruction parameters. 

Several algorithms have been suggested to find ‘optimal’ values for m and τ  (see Soofi 

and Cao 2002, for a complete summary). 

 

 

 

To find the optimal τ , an important class of algorithms directly considers the geometry 

of the reconstructed attractor. In this paper we use one of the most popular approaches 

that consists in finding the first minimum of mutual information of the reconstructed 

states (Fraser and Swinney, 1986). Once time delay has been chosen, the embedding 

                                                 
13 Critical values are given in Table I of Fernández-Rodríguez et al. (2005). 

 18



dimension can be determined. Most of the methods for determining m are based on 

continuity tests for the induced flow in the reconstructed space or for the embedding 

itself. The method known by average false nearest neighbours (Cao, 1997) is used in 

this paper.  

 

3.3  Results 

 

We now apply Fernández-Rodríguez et al.’s test to the standardized residuals. 

The results are presented in Table 8. Evidence of chaotic behaviour is found for the 

returns of Natural Gas and Unleaded Gasoline, when the embedding dimension is 2 and 

time delay is 1. For the remaining cases, the null of a chaotic process is rejected at the  

1% level. Interestingly, in accordance with the last row of Table 8, the three energy 

returns are compatible with a chaotic skeleton when reconstruction is carried out at the 

optimally selected parameters. Particularly, our conclusion about Natural Gas returns 

contrast sharply with that achieved by Chwee (1998). This difference can be explained 

partly because our test is different (we test for the null of chaos via stability of the 

Lyapunov exponent); partly because reconstruction is carried out according to optimally 

selected parameters14; and partly due to the fact that we are using a different sample 

period. Given these results, the next section will deal with modelling the underlying 

dynamics. In order to accomplish that, the ‘optimal’ reconstruction parameters will be 

taken into account. Forecast comparisons between chaotic equations and well known 

stochastic models are also performed. 

 

 

 

 

 

 

 

 

                                                 
14 The crucial role played by ‘time delay’ parameter is now evident. Note that Chwee’s results and those 
presented throughout this paper coincide for time delay fixed at 1 and embedding dimensions 3, 4, 5 and 
6. 
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Table 8. Tests for the Stability of the largest Lyapunov exponents 
  

Natural Gas 
 

Unleaded Gas 
 

Crude 
Embedding Dimension 

Time Delay = 1 
 

   

 
2 

 
2.34e-4 
(5.06) 

 

 
-2.12e-6 
(-0.11) 

 
2.11e-3* 

(6.63) 

3 1.49e-4* 
(6.01) 

 

6.85e-5* 
(4.17) 

 

2.10e-4* 
(6.76) 

4 9.79e-5* 
(6.30) 

 

7.39e-5* 
(5.05) 

1.21e-4* 
(6.83) 

5 8.28e-5* 
(6.61) 

 

7.67e-5* 
(5.17) 

8.61e-5* 
(7.08) 

6 6.15e-5* 
(7.71) 

6.20e-5* 
(4.18) 

6.36* 
(5.70) 

 
Optimal 

Parameters 
[dimension, time delay] 

 
-4.92e-5 
(-10.01)  

[5,5] 
 

 
-2.98e-5 
(-9.24) 
[5,5] 

 

 
-5.98 

(-12.93) 
[6,5] 

 
Notes: The sample periods are April 3, 1990 through October 19, 2005 (Natural Gas and Crude) and March 3, 1992 through January 

31, 2006 (Unleaded Gas). OLS estimation of the linear regression 
max 0 1

( )
t

T Tλ α α ε= + +  with t-ratio in parentheses. 

*Denotes rejection of the null hypothesis Ho:  (deterministic process) at the 1% level, following critical values of Fenández-

Rodríguez et al. (2005). Optimal reconstruction parameters have been chosen according to the ‘minimum of the mutual information 
function’, Fraser and Swinney (1986); and the ‘average false nearest neighbours’ Cao (1997). 

1 0α ≤

 
 
 
 
4. DYNAMIC MODELLING WITH GENETIC ALGORITHMS 
 
In general, the interest in searching for predictable components in energy futures is well 

known (see, Moshiri and Forouzan 2006, Sertelis and Gogas 1999, Chwee 1998 and 

Fama 1991). So far we have shown that the three energy futures returns studied in this 

paper are compatible with a nonlinear chaotic explanation. Once that space state 

reconstruction can be done in a presumably optimal way, the following step consists in 

estimating an underlying dynamic for each return. Artificial neural networks (see, Soofi 

and Cao 2002) and recently genetic algorithms (see, Beenstock and Szpiro 2002 and 

Alvarez et al. 2001) have dealt with this issue. In this last section, we use genetic 

algorithms to model the nonlinear dynamics found in energy returns. In addition, a 

comparative study with a GARCH (1,1) model and a naïve one is carried out. 

 The tenet of a genetic algorithm is that uses the concepts of evolutionary 

development to breed equations whose performance improves with each generation. A 

genetic algorithm is likely to provide a deeper understanding of the dynamics of a 
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generating process, since the functional solution is provided in analytical form. The 

estimation of time series models has also been studied by genetic algorithms (see, Koza 

1992, Szpiro 1997, Álvarez et al. 2003). One of the attributes that makes them 

interesting is that gradient type algorithms (think of artificial networks, among others) 

search from one single point to the next; meanwhile genetic algorithms through 

principles of selection, crossover and random mutation, tend to select superior 

dynasties, and therefore can be considered global, rather than local, searchers. Finally, 

one of the advantages of these algorithms is that they are robust approaches to 

determining the functional form in nonlinear time analysis (Szpiro 1997). Certainly, this 

is an interesting property in the context of the present paper. 

 Takens’ theorem guarantees that the system’s state information can be recovered 

from a sufficiently long observation of the output time series. According to the theorem, 

it also follows the existence of a smooth map  satisfying: : mE R R→

 

  ( )( ),...,t t t mz E z z+τ + τ=

 

The first step is to use past information to reconstruct the dynamics. Note that this step 

has already been considered when we introduced the method of the delay coordinates in 

previous sections. The next step is to build the model ( )E ⋅ . Various techniques can be 

considered to accomplish the task of approximating the function . Examples of 

these techniques are methods based on polynomial fitting, neural networks and radial 

basis functions (Soofi and Cao, 2002). More recently, a genetic algorithm search 

procedure based on Darwinian theories of natural selection and survival has been 

described (Álvarez et al., 2001; Koza, 1992). 

( )E ⋅

 The genetic algorithm, hence, is developed to approximate the equation (in 

symbolic form) that describes a given time series. The symbols conform an alphabet 

that can be interpreted through a simple grammar: two characters from the alphabet are 

combined by an arithmetic operator enclosing this expression in parentheses. The 

genetic algorithm is a stochastic search algorithm which acts on a population of possible 

solutions (Mitchell, 1996). The basic idea is to encoded potential solutions as ‘genes’, 

then new solutions can be produced by `mutating' members of the current population, 

and by ‘mating’ two solutions together to form a new solution. The better solutions are 

selected to breed and mutate, and the worst ones are discarded. The evolutionary steps 
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are repeated until a number of generations (a priori determined by the researcher) is 

achieved. Therefore, given a time series { } 1

T
t t

z
=

, a set of candidate equations of the form 

( ) ((( ) ))E A B C D⋅ = ⊗ ⊗ ⊗ , where A, B, C and D are lagged values of tz  or real number 

constants, and where  stands for the arithmetic operators (+,-,×,÷), is randomly 

generated. It has been proved that these four operators do describe complex time 

behaviours (see Szpiro, 1997; Yadavalli, 1999). Each individual  is used to 

compute estimates of all 

⊗

( )E ⋅

tz  in part of the time series (the training set). In order to 

compute the fitness of each equation-string a criterion that measures how well the 

equation explains the variance of the training set is defined by: 

[ ]
2

2 1

( )
1

T

t
t m

z E
R = +

− ⋅
= −

σ

∑
 

where  represents the variance of the training data set. The closer to the unit value R², 

the better will be the prediction based on , while low values indicate a poor forecast 

capability of the algorithm. Equation strings are ranked in descending order of their 

fitness, and then mates are selected according to their R² in order to exchange parts of 

the character strings between the two ‘parents’, therefore equations (genes) less fitted to 

the data are discarded. As a result of this crossover, new complicated offspring are 

generated. Since the length of the strings might turn out to be a real burden, an upper 

bound is fixed. Finally, some mutations are applied to strings, despite the fact that best 

solutions are protected from mutation. The evolutionary process is repeated a large 

number of times. In the end, a complex analytical form 

σ

( )E ⋅

ˆ ( )E ⋅  is obtained. To summarize, 

this procedure is an evolutionary algorithm that attempts to approximate the functional 

form underlying the data. This provides more direct knowledge of functional relations 

between past, present and future values of the time series. 

 In order to implement the genetic algorithm, the first step is to select the 

parameters upon which the dynamics will be reconstructed. Our selection has been 

conducted following the techniques described in subsection 3.2, and reported in the last 

row of Table 8. In addition the researcher also has to select a training set. In this regard, 

for each data set we have decided on the first 3800 observations for the natural gas and 

crude data sets, and on the first 3400 observations for the unleaded gas data set, leaving 

the last 92 data points to make predictions. The scalar estimated functions for the three 
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energy returns are given in Table 915, together with some statistics. The Q2(15) statistics 

show that for the three data sets no ARCH effects are present in the residuals. 
 
 
 
 
Table 9. Genetic Algorithms: In-Sample Equations and Diagnostics 

Future 
Returns Estimated Equations with GA K-S Q2(15) 

    

NATURAL GAS ( ) 210 20
20 5 5

58.73
ˆ NG t t

t t t
t

z zE z z z
z

− −
− − −

−

⎛ ⎞−
= − ⋅ −⎜ ⎟⋅⎝ ⎠

 

0.46 
(0.00) 

9.41 
(0.22) 

UNLEAD 
GASOLINE 

( )( ). .
10 5 20 51 85.94ˆU GAS

t t t tzE z z z− − − −−= +  
 

0.49 
(0.00) 

8.08 
(0.62) 

CRUDE  
3

25
5 10 30

10

2ˆ CRUDE t
t t t

t

zE z z z
z

−
− − −

−

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 0.47 

(0.00) 
6.53 

(0.96) 

Notes: The in-sample periods are April 3, 1990 through May 31, 2005 for Natural Gas and Crude returns, and March 
3, 1992 through September 8, 2005 for Unleaded Gas returns. The Q2(15) statistic is the Ljung-Box test on the 
squared residuals. The Kolmogorov-Smirnof statistic tests for standard normal distribution on the residuals (p-values 
in parenthesis). 
 

We turn now to the performance of the estimated equations applied to the problem of 

forecasting. The null of chaos driving energy futures returns has not been rejected by 

our findings. However, it is insightful to compare the GA forecast’s performance with 

other potential sources of nonlinearity. To that end the GA predictor is compared with 

two alternative market representations, namely, a naïve predictor  and a 

GARCH (1, 1) predictor. Table 10 presents the in-sample parameter estimates together 

with some diagnostics. Note that the estimates are positive and significant. 

1
naive

tz + = tz

                                                

 

 

 

 

 

 

 

 
 

 
15 In order to estimate the three GA equations, the following parameters regarding the evolutionary 
process have been used: Number of individuals in the population: 120. Total number of arguments and 
operators allowed: 16. Number of arguments and operators for the initial individuals: 7. Number of 
generations that determines the stopping criteria: 1000. Probability of mutation has been fixed at 10%. 

 23



Table 10. GARCH(1,1) In-Sample Estimates and Diagnostics 
Coefficients Natural Gas Unleaded Gas Crude 

 
W0 

 
1.1e-4 
(3.49) 

 
7.14e-5 
(2.03) 

 
2.03e-4 
(2,76) 

 
ARCH(1) 

 

 
0.25 

(5.15) 

 
0.34 

(4.81) 

 
0.07 

(5.68) 
 

GARCH(1) 
 

 
0.69 

(15.32) 

 
0.57 

(52.15) 

 
0.93 

(92.70) 
Diagnostics    

 
Kolmogorov-Smirnof 

 

 
0.05 

(0.00) 

 
0.46 

(0.00) 

 
0.04 

(0.00) 
 

Q2(15) 
 

 
10.83 
(0.76) 

 
7.61 

(0.93) 

 
21.51 
(0.12) 

Notes: The in-sample periods are April 3, 1990 through July 7, 2005 for Natural Gas and Crude returns, and March 3, 
1992 through September 8, 2005 for Unleaded Gas returns. The Bollerslev-Wooldrige robust standard errors are 
reported in the parentheses. The Kolmogorov-Smirnof statistic tests for standard normal distribution on the 
standardized residuals (p-values in parenthesis). The Q2(15) statistic is the Ljung-Box test on the squared 
standardized residuals (p-values in parenthesis). 
 

Forecasts are computed for the last 92 returns of each market. To that end, we use two 

statistical loss functions: 

 
( )

2
1

1
2

1

1

ˆ

ˆ

n

t t
t

n

t t
t

MSE n z z

MAD n z z

−

=

−

=

= −

= −

∑

∑
 

The MSE loss function is a typical mean squared error metric, while the MAD loss 

function is generally more robust to the possible presence of outliers than the MSE 

criterion. 

To compare among the three models (GARCH, naïve and GA) we make use of the 

Diebold and Mariano (1995) test of no difference in the accuracy of two competing 

forecasts. Assuming that the parameters of the system are set a priori and do not require 

estimation, the Diebold-Mariano test statistic is designed as follows: let 

{ } { }, 1 1
ˆ ˆ and 

nn
i t j tt t

z z
= =, t=

 ge denote two sequences of forecasts of the series { tz nerated by 

two competing models i and j and let 

} 1

n

{ } { }, ,1
 and 

n

i t t
e

= 1

n

j t t
e

=
 be the

his

 corresponding forecast 

errors. Given a loss function ( )g ⋅  (in t  case MSE or MAD), we can define the loss 

differential between the two competing forecasts (where i stands for the benchmark 

model, GA, and j for one of the other competing models) as , ,[ ( ) ( )].t i t j td g e g e≡ −  
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Diebold and Mariano (1995) showed that the asymptotic distribution of the sample 

mean loss differential 1
1 tt

d n d−
=

= ∑  is n ( ) ( )) . Under the null 

of equal forecast accuracy the statistic

0, (dn d N V dµ− ⎯⎯→

16 ( )ˆ( ) 0,1d V d N∼ . 

 
Table 11. Diebold-Mariano Tests Out-Sample Period 

 
Future 

 
GA against GARCH 

 
GA against Naïve 

 Returns  
  

MSE 
  

MSE 
 

MAD MAD 
 

atural GaN s 
 

 
-4 8 

 
-4 3 

 
-3 0 

 
-4 5 .7

(0.00) 
.5

(0.00) 
.2

(0.00) 
.8

(0.00) 
 

U  nleaded Gas.
 

 
-6.31 
(0.00) 

 
-4.09 
(0.00) 

 
-3.42 
(0.00) 

 
-6.57 
(0.00) 

 
Crude 

 

 
-3.57 
(0.00) 

 
-3.38 
(0.00) 

 
-3.42 
(0.00) 

 
-3.95 
(0.00) 

     
Notes: Th iods ar e 1, 2005 through er 7, 2005 (for N and Crude re
September 9 05 through Janu  2006 for Unleaded eturns. Diebol no statistics test for l 
forecast a uracy, p-values are d in parenthesis. 

c

c

e

                                                 
16 An estimate of the asymptotic variance is 

significantly outperforms the GARCH and the naïve models at any usual confidence 

level. Remarkably, the sign of the Diebold-Mariano statistic, when the GA model is 

compared to the GARCH model and to the naïve one, is always negative, implying that 

the GA’s loss is lower than that implied by these two models. 

It is important to note that, from our results in terms of fo

Table 11 reports the Diebold-Mariano t

 

e out-sample per
, 20

e Jun  Octob atural Gas turns); 
ary, 31

rep rte
 Gas r d-Maria  equa

cc o

est when the benchmark is the GA model, 

ompared to each one of the other models. It is evident that the GA predictor 

recasting, it cannot be 

oncluded that estimation procedures based on GA are superior to other well-

stablished statistical techniques. Readers interested on this kind of competition are 

suggested to see Neely and Weller (2001). In this regard, observe that, providing that 

the null of chaos has not been rejected, there is no reason to expect that heteroskedastic 

models or random walk models forecast better than others. Even in the case of chaos, a 

GARCH model will presumably forecast conditional variance very accurately. 

( ) ( )11 1

0 1 1
ˆ ˆ ˆ ˆ2 ,  where ( )( )

h n

k k k t t kk t k
V d n w n d d d dγ γ γ

−− −

−= = +
= + = − −∑ ∑ , and where h is the step-ahead-

forecast. 



 Another interesting observation is that the method of estimation shown in this 

study is univariate, so it will be desirable to complete the study with a multivariate time 

series approach. In this regard, the embedding dimension can guide the selection of the 

umbe

This paper examines and, if possible, estimates the nonlinear and chaotic nature 

ely: natural gas, unleaded gasoline and light crude oil. 

Nonlinearity has been studied using the generalized BDS statistic, together with 

Kaplan

futures’ returns. This is not the first time that evidence in favour, and against, of chaos 

has be

quations that 

best fit data have been supplied. Furthermore, we have used these estimated equations 

to fore

n r of relevant variables to include in the multivariate model. We leave these 

aspects as open questions for further research. 

5. CONCLUSION 

of three energy futures, nam

’s test. The results show that nonlinearity cannot be rejected. According to our 

findings, the source of nonlinearity is not clearly due to conditional heterokedastic 

variance. The recently generalized BDS test has shown that if the data are analyzed with 

appropriate delay times, nonlinearities are better detected. As a result, energy futures’ 

returns are compatible with a general form of nonlinearity. In order to further 

investigate a potential explanation for this nonlinearity the null of chaos has been tested. 

In order to test for chaos, the stability of the largest Lyapunov exponents have 

been studied. We have found evidence of nonlinear chaotic dynamics in all three energy 

en detected in energy prices (see Serletis and Gogas, 1999 and Chwee, 1998, 

respectively). A natural question arises: Does evidence of chaos depend on the test 

procedure used by the researcher? This question is left for future research. 

The next step has been to estimate the potential motion equation for each 

process. This has been done via genetic algorithms, and the deterministic e

cast short term movements in futures’ prices. The results show that, although 

forecast errors are smaller than those computed with well-established stochastic models, 

further research needs to be done. In this regard, a multivariate approach using genetic 

programming should be further investigated. 
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