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Abstract 

The paper presents a study of the generalized partially linear model including random 
effects in its linear part. For these kinds of models we propose an estimator combining 
likelihood approaches for mixed effects models with kernel methods. Following the 
methodology of Härdle et al. (1998), we introduce different tests that allow us to choose 
between a parametric and the semiparametric mixed effects model. Along these lines we 
also discuss some bootstrap procedures to simulate the critical values. We prove 
consistency and give asymptotic theory for all our methods. Finally, a simulation study 
and a real data application are provided in order to demonstrate the feasibility and the 
excellent behaviour of our methods. 1
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1. Introduction 

Model-based small area estimation has received considerable attention in the last two 
decades in both the public and private sectors. The term “small area” is commonly used 
to denote a small geographical area, such a county, a census division, state, etc. It may 
also describe a “small domain”, i.e. a small subpopulation such as a specific group of 
people classified by age and sex or their race; or it even refers to climatic clusters. It is 
recognized that direct survey estimates for small areas are likely to yield unacceptably 
large standard errors due to the sample size. Traditionally, small area estimation relies 
on linear mixed effects model, relating the responses of interest in the small areas to 
each other and to covariates. Mixed models are suitable for small area estimation 
because of their flexibility in effectively combining different sources of information and 
explaining different sources of errors. These models typically incorporate area-specific 
random effects to explain the variations in information from different areas not 
explained by the fixed effects part of the model. In the exclusively model-based 
framework some interesting research has been done using Bayes methodology and 
using frequentist methodology, see Ghosh and Rao (1994), Rao (2003) and Jiang and 
Lahiri (2006) for a thorough review of different small-area estimation techniques.  
 
Nowadays, in some countries, small area inference is an important statistical tool. Since 
2003, EUROSTAT requires that EU States use it to provide statistics for their small 
areas (provinces, districts, departments, etc.). In the United States it is used by, among 
others, the Census Bureau’s Small Area Income and Poverty Estimates Program, the 
Bureau of Labor Statistics’ Local Area Unemployment Statistics Program, and the 
National Agricultural Statistics Service’s County Estimates Program. It is not surprising 
that small area statistics has attracted a lot of attention in statistical research. For 
example, the U.S. Department of Agriculture publishes annual estimates of farm real-
estate values for 48 states based on the Agricultural and Land Values Survey (ALVS), 
which is characterized by its low response rate. For that reason, Pfefferman and Barnard 
(1991) studied efficient ways of combining the auxiliary data (e.g. from the Agriculture 
Census) with ALVS to improve estimates of farm land value. Battese et al. (1988) 
proposed model-based county estimates of crop acreage using remote sensing satellite 
data as auxiliary information, a method today adopted by the U.S. National Agricultural 
Service. To illustrate our methodology we are going to apply it to predict the number of 
hectares of forest in 53 comarcas (administrative regions) of Galicia (Northwest of 
Spain). This methodology has the advantage of being inexpensive and easily 
implemented.  
 
Prasad and Rao (1990) discussed three of the most frequently considered models in 
small area statistics giving one closed linear mixed effects formula, see below. Similar 
to the simple linear models, the linear mixed effects models have been extended to 
generalized mixed effect models, defined by  
 
  (1) ( )[ ] 1 1t t

dj dj djd ddj dG E Y d … D j … nu uX X Zβ| , = + , = , , ; = , , ,

n
 
where  is the number of small areas and D

1

D
dd

n
=

=∑  the sample size, with  being 

the small area size. For unit or individuum 
dn

j  of area d , djY ∈ ¡  is the dependent 
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variable,  the observable regressors (including the constant 1), p
djX ∈ ¡ β  its 

coefficients (the fixed effects), dj djZ X⊆  of dimension ñ , and  an unobservable 
area-specific effect. In practice, this is treated as a random effect and only its variance 
will be estimated. The reasoning can be different but the main, practical aspect, is that 
most of the  are small and  is large. A necessary assumption in the existing 
methodology is that  is independent from

du ∈ ¡ ñ

dn D

du djX . This assumption is also made here but 
studied in detail in Lombardía and Sperlich (2006b). The function  is the (known) 
link function and  its unique inverse. When G  is the identity, then model (1) 
includes the three classical versions: the nested-error regression (with , ), 
the random regression coefficient (with 

( )G ⋅
( )g ⋅

1djZ = du ∈ ¡
dj djZ X= ), and the Fay-Herriot model (with 

only area-specific information, i.e. dj diX X=  i j∀ , ). Prasad and Rao (1990) condensed 
them in one single model of type (1) and indicated formulas for common estimators of 
β  and linear predictors. However, the random regression coefficient has been treated in 
much less detail and is probably also the one least used.  
 
Due to the effectiveness of mixed models, in particular the nested-error regression 
model, they are broadly applied in different fields of statistical analysis, including 
biology, medical research and surveys. Examples and overviews of this vast topic are 
provided by Searle et al. (1982), Breslow and Clayton (1993), Lee and Nelder (1996), 
Malec et al. (1997), Ghosh et al. (1998), McCulloch and Searle (2001). Further 
examples and explanations, but in particular different approaches to the nontrivial 
problem of implementation are provided, among others, by Fahrmeir and Tutz (2001), 
Diggle et al. (1998), and most recently by Skrondal and Rabe-Hesketh (2005). They 
have been extended to nonlinear parametric mixed models; see Kuhn and Lavielle 
(2005).  
 
Quite recently, mixed effect models have entered the world of non- and semiparametric 
statistics. A first step was to separate the nonparametric functional into a deterministic 
(fixed effects) and a random part (random effects). Then, the smoothing parameter of a 
spline or sieve estimator can be written in terms of the variances of the random effect 
and error term; further extensions followed immediately, for more details see Ruppert et 
al. (2003) or Wand (2003). Similar ideas appear in the random fields theory, see 
Hamilton (2001). So far this research concentrates mainly on the challenging 
development of feasible algorithms for non- and semiparametric mixed models using 
spline methods. Kneip et al. (2005) provide a series estimator for a partial linear model 
with time varying individual effects; while Verbyla et al. (1999) study longitudinal data 
from designed experiments with smoothing splines. However, in most of the cases, 
asymptotic theory is missing. The same holds for theory based suggestions of model 
specification tests in (generalized) mixed models. Finally, to our knowledge mixed 
models have not been combined with kernel smoothing methods although the major part 
of the existing asymptotic theory for non- and semiparametric statistics is based on 
kernel smoothing methods.  
 
This article intends to show how the combination of kernel based methods and mixed 
effects models can open a huge variety of statistical methods for the analysis, e.g. small 
area problems. To this aim we consider a generalized partially linear model (see e.g. 
Severini and Staniswalis, 1994) but include random effects, i.e.  
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  (2) ( )[ ] ( ) 1 1t t
dj dj dj dj djd ddj dG E Y m d … D j … nu uT X T X Zβ| , , = + + , = , , ; = , , .

 
with ,  , djY du djX , djZ , β  as above, and  further covariates with a 

nonparametric impact function . The random effects  are supposed to 
be i.i.d. with mean zero and a  matrix of co-variances 

q
djT ∈ ¡

( ) qm ⋅ : →¡ ¡ du
×ñ ñ 2

uσ . We denote by  
 
 ( )[ ] ( ) t t

dj dj dj dj djd ddj djE Y g mu uT X T X Zμ β= | , , = + +  

 
the conditional expectation. Under this setup, let Y  be the 1n×  vector with elements 

, djY X  be the p n×  matrix with rows djX , diag{ 1 }dU u d … D= , = , ,  the ( )  
block matrix of random effects, and 

D D×ñ
diag{ 1 }dZ Z d … D= , = , ,  a  block matrix 

with blocks . Note that for the most popular nested-error model this 
simplifies to U  with  and 

( )D n×ñ
1(

dd d dn…Z Z Z= , , )
)u= 1( t

Du …u u= , , diag{ 1 }1 d

t
nZ d … D= , = , , , where 1  

denotes a column vector of ones with size . Then, in matrix notation, the model is 
dn

dn
( ) t tm T UX Zβ+ + . Further we define the 2

djσ s as the elements of the diagonal matrix 
, and set .  [ ]Var Y u T X| , , [ ]V Var Y T X= | ,

 
We will first introduce an estimation procedure for the model including asymptotic 
theory. Then, for the parametric part, confidence intervals and testing procedures can be 
derived directly. In contrast, for the nonparametric part ( )m ⋅  statistical inference is 
much more sophisticated in theory and practice. The same holds for prediction intervals, 
where a lot of research is still going on even for purely parametric models. Therefore, a 
sensible first step is to check whether such an effort is justified. This means testing ( )m ⋅  
for significant nonlinearity. An extension to test significant deviations of  from a 
fixed polynomial or just a constant is obvious. An additional strong motivation for our 
test is that inference in small areas is model based. Therefore, model selection and 
validation play a vital role in the model-based inference. Seriously misspecified models 
lead to erroneous conclusions. However, hypothesis testing in the general mixed model 
framework for small areas inference has hardly been investigated. Jiang et al. (2001) 
studied a generalization of the Pearson’s 

( )m ⋅

2χ  goodness-of-fit test, which is applied to a 
real data example with geographically small areas. Zhu and Fung (2004) investigated a 
test for heteroscedasticity within the framework of semiparametric mixed models, 
illustrated with the analysis of a longitudinal study.  
 
We introduce a test for the parametric null hypothesis  
 
 0 1( ) vs ( )tH m T c H m T cT tTγ γ: = + : ≠ +  (3) 

 
for any γ  and , i.e. a generalized linear mixed effects model versus the 
semiparametric alternative (2). Such a test was introduced by Härdle et al. (1998), 
among others, for the case when there are no random effects. It turns out that their 
theory carries over to our mixed effects model. This also holds true for the 
(nonparametric) bootstrap we will use to obtain reasonable critical values for the test 
statistic. Extensions to related bootstrap tests in these kind of models, e.g. like those 
proposed most recently by Härdle et al. (2004) or Rodríguez-Póo et al. (2004) are also 

c
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obvious.  
 
The rest of the paper is organized as follows. In Section 2 we introduce the estimators 
for the semiparametric model (2), i.e. the parametric counterpart of the null hypothesis 

, together with its asymptotic properties. In Section 3 we first introduce an estimator 
of the parametric model that is convoluted with a kernel and will be used in the test 
statistic to account for the bias present in the estimate of the semiparametric alternative. 
Then, we will introduce and discuss tests statistics and adequate bootstrap procedures, 
again together with its asymptotic behaviours. A simulation study in Section 4 shows 
the excellent behaviour of the tests even for moderate sample sizes. A real data 
application illustrates its feasibility in practical problems. Section 5 contains the 
conclusion. The lists of technical assumptions and definitions can be found in the 
Appendix.  

0H

 

2. Estimating the Semiparametric Model 
Our aim is to study the relationship between Y ∈ ¡  and a set of explanatory variables 

, taking the random effects into account. To streamline the presentation 
we restrict to 
( ) q pT X +, ∈ ¡

2 2
dj eσ σ= ∀ )  1 1  and set dd … D j … n= , , , = , , 22( ( )u evecθ σσ= , , also called 

the variance components. Here, 2( )uvec σ  means that if 2
uσ  is of dimension larger than 

, then we stack the elements into a vector. Heteroscedasticity is a straight forward 
extension but would so complicate the presentation as to obscure our basic ideas. In 
small area statistics, one typically assumes  at rate . Suppose we have a 

sample of  replicates 

1 1×

D →∞ ( )O n

1

D
dd

n
=

=∑ n 1 1{( )} dn D
dj djdj j dY T X ,

= , =, , . The conditional distribution of Y  
given the random effects u , , and T X  is from the family of densities 
{ ( ) ( )f }Y u T X m m MTδ δ| , , ; , : ∈Δ, ∈  with M  and Δ  compact sets, where ( )δ β θ= , . 
The observations are taken independently, (T X ),  are taken from compact sets  
and  respectively, and are independent from the random effect. Finally, 

pℵ⊂ ¡
qℑ⊂ ¡

2( up u )σ;  denotes the density of the random effects.  
 
We will consider the profiled likelihood approach by Breslow and Clayton (1993). For 
this purpose, assume  as being known and concentrate on the estimation of ( )m ⋅ δ . 
They derived a penalized quasi likelihood (PQL) that is based on this criterion  
 

 
2

1 1 1

2
1 1

( ) (
( )

( ) (

d

d

D n D
dj djd ddjd j d

D n
dj djd d udjd j

f Y m pu uT X
f u Y T X m

)

)

u

f Y m p dudu uT X

δ σ
β θ

δ βσ

= = =

= =

| , , ; , ;
, | , , ; , = ,

| , , ; , ;

∏ ∏ ∏
∫ ∫∏ ∏

 (4) 

 
where it is enough to maximize the numerator, see Fahrmeir and Tutz (2001). This they 
modified to a profiled likelihood to get simultaneous estimates for the variance 
components. González-Manteiga et al. (2005) also started with the PQL but estimated 
the variance components from a linearized version of the generalized linear model, 
going back to the Schall (1991) idea. Following these ideas, one considers the log-
likelihoods  
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 1
1 1

( ) log (
dnD

dj djddj
d j

Y m f Y mu T X )ϕ δ
= =

; , = | , , ; , ,∑∑ δ

2)d u

 (5) 

 2
2

1

( ) log (
D

u
d

u p uϕ σ σ
=

; =∑ ;  (6) 

 
 
 2

1 2and ( ) ( ) ( )uY u m Y m uϕ δ ϕ δ ϕ σ, ; , = ; , + ; .  (7) 

 
To obtain an estimator of the nonparametric part we first have to fix a point  on which 
we aim to estimate function 

0t
( )m ⋅ . We again consider (7) and take the empirical 

counterpart of  
 
  2

0log ( ) log ( )uE f Y u T X m p u T tδ σ| , , ; , + ; | =⎡ ⎤⎣ ⎦
 
which is, in terms of kernels ( )Kh ⋅ ,  

 

 ( ) 2
0 0 2

1 1

( ) log ( ( ) ) (
dnD

dj dj djd us dj
d j

Y m K f Y m ut u tT T Xhϕ δ δ ϕ )σ
= =

; , = − | , , ; , + ;∑∑  (8) 

 
with  a q-dimensional product kernel, and ( )Kh ⋅ 1( qh h … h )= , ,  the corresponding 

bandwidth vector. This is also called the smoothed likelihood function. Note that the 
conditioning on T  has no impact on 2ϕ ; that is why we do not convolute that part with 
the kernel function. Because T  is assumed to be independent of u , one might also use 
the simplified smoothed likelihood by skipping 2

2 ( d uuϕ )σ;  from sϕ :  
 

 ( )0
1 1

( ) log ( ( )
dnD

dj dj djdss dj
d j

Y m K f Y mt uT T Xh 0 )tϕ δ δ
= =

; , = − | , , ; , .∑∑  (9) 

 
The version based on the Breslow and Clayton (1993) approach may be the most 
popular, because of its availability and easy handling. In SAS for example it is 
implemented as procedure GLIMMIX. However, in the last few years the integral 
method, see (10), has also gained popularity; see e.g. procedure NLMIXED in SAS. For 
the integral method we could have defined likelihoods (5) to (9) based on the likelihood  
 

 2( ) ( ) (dj dj udj )f Y T X m f Y u m p u duT Xδ δ σ| , ; , = | , , ; , ; .∫  (10) 
 
Taking the logarithm again provides us with a possible objective function; see e.g. 
McCulloch and Searle (2001) for the parametric case. 
 
To estimate the whole model (2) we have to combine the existing fully parametric 
likelihood approach for random effect models with a semiparametric regression. 
Therefore we continue with the profiled likelihood idea. Let mδ  denote a least 

favorable curve – for definition see Appendix – in M  to take into account the nuisance 
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parameter  when estimating ( )m ⋅ δ . Then the δ̂  that maximizes ( )Y u mϕ δδ, ; ,  is a 

consistent and asymptotically efficient estimator for δ . Because mδ  is unknown, 

Severini and Wong (1992) (hereinafter SW92) established sufficient conditions for an 
estimator m̂δ

, their so called Conditions NP, also in the Appendix, so that maximizing 

( ˆY u m )ϕ δ
δ

, ; ,  yields a consistent and asymptotically efficient estimator for δ . They 

also provide conditions to guarantee that maximizing the smoothed log likelihood, 
compare above, is such a valid estimator. Rodríguez-Póo et al. (2003) (hereinafter 
RSV03) have extended the results of SW92 such that they apply to our context with 

(s Y m )ϕ δ; ,  being the smoothed log likelihood in question. Summarizing, we get  
 
Procedure A.  

1. For a value  and fixed 0t δ  estimate  as the solution of the problem  0( )m t
 

{ }
( )ˆ s

m M
Y margmaxm ϕ δ

δ ∈
= ; , .  

2. Estimate δ  by  

{ }

( )ˆY uargmax mδ ϕ δ
δδ∈Δ

= , ; , .   (11) 

3. Notice that the Breslow and Clayton (1993) approach predicts the  for all d  
simultaneously, whereas the integral approach, compare (10), does not.  

du

4. With the estimates obtained in steps 1 and 2, set finally ˆ ˆm mδ
= .  

 
Clearly, the first step is to get estimators for the least favourable curve. For many 
likelihoods this yields the Nadaraya Watson smoother. Other estimators are thinkable; 
the one given here corresponds to the one proposed by SW92, Severini, Staniswalis 
(1994), and RSV03 (each one in a different context). We conclude  
 
Lemma 1.  Suppose  at rate  and assumptions [A.1] - [A.3], [B.1] - [B.3] 
and [N.1] - [N.2] from the Appendix hold. Then, maximizing the smoothed likelihood as 
given in step 1 of Procedure A provides a valid estimator of the least favourable curve.  

D →∞ ( )O n

 
Denote the true parameter by 0δ . Given a valid estimator m̂δ , a consequence of SW92 
and RSV03 is:  
 
Corollary 1.  Let δ  be the log likelihood estimate as given in step 2 of Procedure A. 
Then, under the assumptions of Lemma 1, as 

1

D
dd

n
=

= n∑  tends to infinity  

 1
0( ) 0

d

n Nδ δ Iδ
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

− , ,⎯→  

 
where Iδ  is the (marginal) Fisher information matrix, i.e. is equal to  

 ( ) ( ) ( ) ( ){T X u T X ut
E E l Y m l Y m E l Y m l Y m T

m
δ δ δ δ

δ δδ, , ,

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤; , ; , − ; , ; , |⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦
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 ( ) ( )
12

( )X u X u t
E l Y m T E l Y m l Y m T

m m
δ δ

δ

−

, ,

⎡ ⎤∂ ∂ ∂ }δ⎡ ⎤⎛ ⎞× ; , | ; , ; ,⎢ ⎥⎜ ⎟ | ,⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦
 (12) 

 
where  is the expectation with respect the variable W . Further, [ ]WE ⋅ ( )l Y m δ; , =  

log ( )f Y u T X m δ| , , ; ,  2log ( )up u σ+ ; , and  

 ( ) ( ) ( ) ( ) ( )2 2
1

t

p u e

l Y m l Y m l Y m l Y m l Y mδ δ δ δ
δ β β σ σ

⎛ ⎞∂ ∂ ∂ ∂ ∂
; , = ; , , , ; , , ; , , ; , .⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

L δ  

 
As can be observed from this result, the semiparametric estimator achieves the 
semiparametric efficiency bound, see Newey (1994). In practice, the asymptotic 
variance can be approximated with the aid of the Hessian matrix that one obtains as a 
by-product from the maximum likelihood estimation. Note further that our model 
assumptions do not contain restrictions on the dependence structure between X  and T .  
 
Remark 1.  If we assume a link ( )g ⋅  being the identity function considering the nested-
error regression model, i.e.  
 
 ( ) 1 1t

dj dj ddj dj dY m d … D j … nuT X β ε= + + + , = , , , = , , ;  

 
with  and du djε  defined as before, we get for the variance of β̂  the Fisher information  
 

 
{ }
{ }

1 1

1

[ ] [ ]

( [ ]) ( [ ]

t t
T

t
T

I E X V X E X T V E X T

E X E X T V X E X T

β
− −

−

= − | |

= − | − | )
 

 
which equals the variance of Robinson (1988) in the simple partial linear model.  
 
The above mentioned articles also provide us with the asymptotic distribution of the 
final nonparametric estimate. To this end, define 

1

q
prod jj

h h
=

=∏  and . 

Then we can state,  
1maxmax j q jh h≤ ≤=

 
Corollary 2.  Using the same conditions as in Corollary 1,  being from the interior of 

the support of T , 
0t

( )Tp ⋅  its density function, and 
1

D
dd

n
=

= n∑  going to infinity, we have  
 
 ( ) ( )0 0 0 0ˆ ( ) ( ) ( ) N 0 ( )d

prod m mnh m m B Vart t t t− − ⎯⎯→ , ,

ax

 

 
with  and  2

0( ) ( )m mB O ht =

 ( )
( )

2

0 2
0 0

( )
( )

m

T m

K t dtVar t
p E l Y m Tt tδ∂

∂ 0

= .
⎡ ⎤; , | =⎣ ⎦

∫
 (13) 

 
Alternatively, one could estimate the variance components by moment methods, and 
applying local polynomial expansions instead of a simple kernel convolution, see 
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Lombardía and Sperlich (2006a).  
 
 
Remark 2.  If the conditional distribution of Y  belongs to the exponential family, then  

 ( ) [ ] 12 2
0 0 0 00( ( ))t tE l Y m T E g u m Var Y u Xt t tX Zm

βδ
−⎡ ⎤

⎢ ⎥⎣ ⎦

∂⎡ ⎤ ′; , | = = + + ,| , ,⎢ ⎥∂⎣ ⎦
 

which gives an asymptotic variance ( )0mVar t  of the form  

 [ ] ( ) 22 1
0 0 0( ) ( ) ( )t t

TK t dtp Var Y u X g u mt t tX Zβ
−− ′ 0| , , + + .∫  

Furthermore, the bias  then becomes  0( )mB t

 
2

2 2
0 0 02 2

1 10

1 1( ) ( ) ( ) ( ) ( )
2 ( )

q q
T

j j
j jj T j j

pmK h m h o ht t tt p t tt
2
maxν

= =

⎡ ⎤∂∂ ∂
+ + ,⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
∑ ∑  

where 2 ( )Kν  is implicitly defined by , with 2( ) ( )ttt K t dt K Iν=∫ I  being the identity 
matrix, compare Fan et al. (1995).  

3. Testing the Parametric versus the Semiparametric 
Model 
As discussed in detail in the Introduction, model specification testing in this context has 
at least two driving motivations: a) inference in small area statistics is model based so 
that a correct model specification is essential; b) semiparametric inference is much more 
complicated and expensive than the parametric one. For these reasons we will consider 
a test checking parametric versus semiparametric modelling. More specifically, we 
consider the testing problem 0 ( ) tH m t c t γ: = +  vs. 1 ( ) tH m t c t γ: ≠ + . The testing of 
other parametric specifications is analogous. Our test statistic is based on an almost 
direct comparison of the semiparametric estimate with the corresponding estimate in the 
parametric model. First note that for this purpose it is enough to have  
 

 
0

0 0
logˆsup ( ) ( ) p

prod

nm m Ot t nht

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

∈ℑ ⎜ ⎟
⎝ ⎠

− = ,  

 
see Rodríguez-Póo et al. (2004). It follows from Rodríguez-Póo et al. (2003) that this 
holds for our estimator introduced in Section 2.  
 
Let us consider the null hypothesis that  
 
 ( [ ]) t t t

dj dj dj dj djd ddjG E Y cu uT X T X Zγ β| , , = + + + .

)t

 

 
Here, the estimation problem is purely parametric. Set in the following (t

c cγ γ= , , and 

denote the log-likelihood estimators for this model by ( c u )δγ , , %%% . Following the 
arguments of Härdle et al. (1998), a direct comparison of  with ˆ ( )m T tc T γ+ %%  may be 
misleading, because  has a smoothing bias which is typically non negligible. To 
avoid this effect, we add a bias to 

ˆ ( )m ⋅
tc T γ+ %%  that will compensate for the bias of :  ˆ ( )m T
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Procedure B.  
1. We build the artificial data set: { }dj djdj T XY , ,%  with  

( )t t t
dj dj dj ddj g c uT X ZY γ β= + + +%% %% % ,  

 
the parametric fit of [ ]dj djddj djE Y u T Xμ = | , , .  

2. Repeat only the nonparametric step from Procedure A replacing all parametric 
unknowns by their estimates δ% (and eventually u%). E.g., using the likelihood 
(8) or (9) one would set  

 
0

{ }
( ) ( )s

m M
m Yargmaxt mϕ δ

∈
= ; , .%%%  (14) 

 
3. The resulting estimators we use for the direct comparison with its 

semiparametric analogy are therefore ( )m u δ, , %% % .  
 
Then, under 0 ( ) tH m t c t γ: = + , one will get , where ( ) [ ( )] (1)t

m pm t c B t ot γ| − + + |=%% %
( )mB t  is the bias of , and therefore ˆ ( )m t ˆ ( ) ( ) (1)pm t m t o| − |=% .  

A most traditional testing approach would be based on the likelihood ratio. But this test 
does not work here because  and m̂ δ% were calculated with different likelihood 
functions (smoothed and unsmoothed functions), see Härdle et al. (1998). Instead let us 
consider the following weighted and unweighted squared differences:  
 

  (15) ° 2

1 1

ˆˆ(m( ) ) ( ) ( ) ( ) ( )
dnD

t
djdj dj dj djw

d j
R H m mt t t Xδ β

= =
⎡= , − + −∑ ∑ ⎣

% tβ π⎤ ,⎦

⎤ ,⎦

 
or just  

  (16) ° 2

1 1

ˆˆ ( ) ( ) ( ) ( )
dnD

t
djdj dj dj

d j

R m mt t tX β β π
= =

⎡= − + −⎣∑∑ %

 
with ( )π ⋅  being a weight function chosen by the empirical researcher and  
 

 ( )2
( ( ) )dj djH m l Y mt

m
δ δ∂
, = .; ,

∂
 

 
In semiparametric, these kinds of test statistics are quite popular. On the one hand they 
try to imitate the likelihood ratio in the semiparametric world, see Härdle et al. (1998) 
and Müller (2001). On the other hand, all expressions are automatically calculated 
during the estimation procedure. Alternative statistics, either for incorporating the 
random effects or for simplifying the computational expense, are discussed in 
Lombardía and Sperlich (2006a). The covariances between the  are 
asymptotically negligible for different observations of . Due to this fact, the 
asymptotic distribution of our test statistic can be concluded from Härdle, et al. (1998):  

ˆ{ ( ) ( )}dj djm mt t− %

djt

 
Corollary 3.  Under the hypothesis ( ) tm t c t γ= + , the previous assumptions and [A.4], 
it holds that  
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 1( ) (0d
wv R b N− 1)− ⎯⎯→ , ,  where (17) 

 
1 2 1( ) [ ( ) ( )] (1)prodb h K t dtE T p T oπ− −= +∫  and . 

Here,  refers to a two-fold convolution of kernel 

2 1 (2) 2 2 12 ( ) [ ( ) ( )]prodv h K t dtE T p Tπ− −= ∫
(2)K K .  

 
If we skip the weighting with ( )H ⋅  in the test statistic (16), bias and variance will 
become  

  

1 2 1 1
0

2 1 (2) 2 2 2 1
0

( ) [ ( ( ) ) ( ) ( ) (1) and

2 ( ) ( ( ) ) ( ) ( )

prod

prod

b h K t dtE E H m T T p T o

v h K t dtE H m T T p T

πδ

πδ

− − −

− − −

⎡ ⎤= ,⎣ ⎦

⎡ ⎤= ,⎣ ⎦

∫

∫

+

.

 
It is well known in non and semiparametric that in practice, even though we can 
substitute estimates for the unknowns, the asymptotics do not even come close to the 
real finite sample distribution, see e.g. Hjellvik et al. (1998). Mostly, bootstrap or 
subsampling is used to simulate the critical values. Therefore, here we introduce a wild 
bootstrap version, which was first proposed by Härdle and Mammen (1993) in 
nonparametric setups. Liu (1988) studied the wild bootstrap under regression models 
with non-i.i.d. observations, and Härdle et al. (2004) discussed intensively different 
bootstrap methods for doing inference in generalized partial linear additive models. Our 
procedure works as follows:  
 
Procedure C.  

1. From the sample, calculate a consistent estimator 2 2ˆ ( )ˆ ˆu eθ σ σ= ,  of 22( )u eθ σσ= , .  
2. Generate  independent copies of a vector  with  and 

 with subexponential tails; that is, for a constant  it holds that 
 (c.f. [A.4]). Construct the vector  such that the 

mean vector is zero and the variance covariance matrix is 

D 1w ∈ ¡ ñ
1[ ] 0E w =

2
1[ ] 1E w = ñ 1C

1 1 1[ { }] 1E exp C Cw| | / ≤ ñ 1uu σ∗ = w
2
uσ . Here, 

.  1 22( )ˆu uσ σ /=
3. Generate  independent copies of  such that n 2w 2[ ] 0E w =  and  with 

subexponential tails (c.f. [A.4]). Set , which is independent of u , has 
mean vector zero, and variance 

2
2[ ]E w =1

w2ˆ ee σ∗ = ∗

2ˆ eσ .  
4. Under  true, set  0H
 

( ) 1 1t t t
dj dj dj ddj dj dY g e d D j nuT X Zγ β∗ ∗∗= + + + , = , , , = , ,%% L L .  

 
5. Calculate the test statistic from the bootstrap sample ( )X TY ∗, , .  

 
In the binary response  is a Bernoulli variable with parameter djY djμ . Hence, then it is 
reasonable to resample from the Bernoulli distribution with parameter ˆ djμ . E.g. for the 
special situation of the logistic semiparametric mixed model, we recommend the 
following parametric bootstrap:  
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Procedure C’.  
1. From the sample, calculate a consistent estimator 2ˆ uσ  of 2

uσ .  
2. Same as step 2 from Procedure C  
3. Under  true, generate observations by generating values of a binomial 

distribution with sizes  and probabilities  
0H

djn

 
{ }

1 { }

t t t
dj dj dj d

dj t t t
dj dj dj d

exp uT X Z
exp uT X Z

γ β
μ

γ β

∗
∗

∗

+ +
=

+ + +

%%
%%

1, , ; 1, , dd D j n =K K . =

 
4. Calculate the test statistic from the bootstrap sample ( )X TY ∗, , .  

 
The computation of quantiles of the distributions of lR R=  or wR , can be done by 
Monte Carlo: generate B independent sets of bootstrap samples , 

. The (1

( )( )b X TY ∗ , ,
1b = , ,L B )α−  quantiles of the distributions lR  can be estimated then the 

{[(1 ) ] 1}Bα− + th order statistic of ( ) ( )( )b b
l lR R X TY∗ ∗ ∗ , , ( 1 )b B = = , ,L . Theorem 1 

shows that the bootstrap procedure works:  
 
Theorem 1.  Under the assumptions of Corollary 3, it holds for lR R= , l wR R=  
respectively, that  
 0

ll
k RR

d F F
⎛ ⎞
⎜ ⎟
⎜ ⎟∗⎜ ⎟
⎝ ⎠

∗ , ,⎯→  

where  is the distribution of 
lRF lR , 

lR
F ∗

∗  is the conditional distribution of lR∗  (given the 

sample), and  is the Kolgomorov distance, which is defined as  kd
 { }( ) ( ) ( )k td sup X t X tν τ ν τ∈, = | ≤ − ≤ |¡  

for two probability measures ν  and τ  on the real line.  
 
Proof. The consistency of bootstrap methods is proved by imitation. For a general 
discussion of the validation of bootstrap methods see Shao and Tu (1995, pp.76). Using 
the same process as in Härdle et al. (1998, see proof of their Theorem 2 in the 
Appendix), taking into account the asymptotics results of the previous section and that 

 has a bounded conditional Laplace transform (in a neighbourhood of 0). For more 
details see Mammen and van de Geer (1997, Section 5); these authors studied the 
asymptotic distribution of the parametric component of a regression model using the 
wild bootstrap. Thus, it holds  

djY ∗| |

( )2( )
l

k R
d F N b v∗

∗ , , 0⎯→  

in probability, with b  and  introduced in Corollary 3.   2v

4. Finite Sample Performance 

As mentioned in the previous sections, there are several papers that discuss algorithms 
for the estimation of semiparametric mixed effects models for spline and wavelet 
methods, different implementations, and likelihood approaches. Therefore, we have 
concentrated here more on the testing side and have stuck to a model relatively easy to 
estimate. Here, we study in detail the size and power of both tests, wR  and R  in 
samples of moderate size with different bandwidths, and in particular the effect of 
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different designs. Afterwards, we applied our procedures, estimation and testing, to the 
real data example discussed in the introduction.  

4.1. Simulation Study 

For the simulation study we consider on the nested-error regression model because, the 
random coefficient model is hardly used in practice, and the Fay-Herriot model is a 
particular case of the nested-error one. The data generating process in our study was  
 
 1 (1 ) ( ) t

djdj dj dj d djy a t asin t uxπ εβ= + − + + + + ,  (18) 
 
for , where 1 1 dd … D j … n= , , ,, = , , (2 1)tβ = , ,  i.i.d.,  i.i.d., and 3( )t

djdjt x, ∈ ¡ (0 1)du N ,:

(0 0 25)dj Nε , .:  i.i.d., where 2(N )μ σ,  is the normal distribution with mean μ  and 

variance 2σ . We simulated the case where  runs from  (giving the null hypothesis 
model) to  to study the error of the first and second type. Further, for the explanatory 
variables 

a 0
0 5.
( t

djdjt )x,  we simulated three different (always random) designs; first , 
second normal with mean 1 0 , variance 0 6

3[0 2]U ,
. .  but uncorrelated, and finally normal with 

mean 1 , variance 0 6  but covariance 0. . 0 15. . We did this because it is well known that 
non- and semiparametric inference is unfortunately strongly affected by the 
experimental design; in this context it obviously is of special interest to see the 
(expected) loss in power when we first change from uniform (“optimal” for 
nonparametric estimation) to normal, and second from uncorrelated to correlated 
designs.  
 
Note that they all have the same mean, but in case of normal distribution about 10  to 

 of the observations fall outside of the 20% 3[0 2],  cube. We studied two sample sizes, 
 and . When  we set 100n = 200n = 100n = 10D =  with  to 1n Dn  equal to 5 , 7 , 8 , 9 , 

,  ,11, , , and 15 . For 10 10 12 13 200n =  we set 20D =  and each of the above  
occurred twice. We used always 

dn
500B =  bootstrap replications to estimate the critical 

values of the test statistic.  
 

 U[0.2]3 N(1,0.6) 
    Cov = 0.0 Cov = .15 

0h  1 0.  1 5.  2 0.  1 0.  1 5.  2 0.  1 0.  1 5.  2 0.  
p  .481 .501 .526 .491 .554 .600 .502 .588 .639 

1%  .012 .002 .002 .014 .004 .002 .014 .002 .002 
5%  .068 .052 .024 .066 .034 .014 .078 .028 .016 

10%  .110 .098 .072 .120 .066 .052 .130 .066 .034 

Table 1. The p-values ( p ) and first error type at 1, , and 10  level for , . 5 % 100n = 10D =

 
Even though our smoother suffers from boundary effects, we did neither boundary 
corrections nor any trimming, i.e. we set ( ) 1tπ =  throughout; instead, we trusted in the 
ability of the bootstrap to capture these effects adequately. For estimation we used the 
Epanechnikov kernel. The literature on bandwidths selection for nonparametric (kernel) 
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estimation is abundant but it is also well known that the optimal bandwidth for testing 
has a faster rate, i.e. should be slightly under-smoothing in practice. Although the cross 
validation bandwidth is asymptotically optimal for estimation rather then for testing, in 
our experience it behaves fairly well for testing problems with finite samples, probably 
because of its tendency to slightly under-smooth. Alternatively, there exists an 
increasing amount of literature on adaptive testing, i.e. choosing a bandwidth that 
maximizes the power of the test. However, these methods are only available for some 
specific testing problems, are difficult to implement and take a long time to compute. 
An approach that could probably be extended to our testing problem has been recently 
proposed by Rodríguez-Póo et al. (2004) and is based on the Spokoiny (2001) idea. The 
results presented were calculated with bandwidths 2 9

0h h n /= /  where , 1 5 , and 
 respectively. Note that, as in (18) the canonical link function is the identity, the test 

statistics 

0 1 0h = . .
2 0.

wR  and R  coincide.  

Figure1. The power of R  for , 100n = 10D =  (solid), and 200n = ,  (dashed) for 
different designs and rejection levels (

20D =
1%α =  upper line, 10%α =  lower line). 

 
In Table 1 we provide the real p − value and rejection levels for different nominal levels 
under the null hypothesis of linearity of ( )m ⋅ , i.e. setting 0a =  in (18), calculated from 

 simulation runs. As expected, depending on the bandwidth, the rejection levels 
vary somewhat but due to the implemented bias reduction (compare discussion in 
Section 3, Procedure B) this test holds the level. It even tends to be conservative which 
at least is better than being too liberal in our opinion.  

500

 
To study the power performance we determined the real rejection levels for  in model 
(18) running from  to 0 5, based on 100  simulation runs with 

a
0 . 0 1 5h = . . In Figure 1 we 

plotted the power functions (solid line for 100n = , 10D = , dashed for , 
). From these plots we can draw several conclusions. Obviously, even for this 

rather small sample size of only 100  (

200n =
20D =

10D = ) observations our tests work quite well 
detecting already moderate deviations from the null hypothesis. For ,  
we see that the size remains basically the same, the differences between the models 
change slightly, and the power improves (not surprisingly) considerably, especially for 

200n = 20D =
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the uniform design. Finally, the loss of power caused by introducing correlation in the 
design is moderate but visible. The case study with uniform design does, maybe 
surprisingly, no better than the one with normally uncorrelated distributed regressors. 
This is either due to the larger boundary effects the nonparametric estimator suffers 
from in the uniform case or due to the implicit weighting by the design density when in 
R  we average over the data.  

4.2. Real Data Application 

For further illustration of the feasibility of our methods but also to show their usefulness 
in empirical studies, we now turn to the example mentioned in the Introduction, 
predicting the forested hectares in Galicia’s 53 comarcas (administrative regions). 
Especially in the Mediterranean area, knowledge of the amount of forest (not used in 
forestry) is of great interest for environmental, tourism and health reasons. However, the 
measurement of forested hectares in a rocky and mountainous region like Galicia is 
quite expensive. All the data is from 1999, and was collected by Galician section of the 
Spanish National Statistical Institute (INE), and is accessible on the Internet. For the 
prediction we only wanted to use easily available indicators (quick and inexpensive). In 
this example we have the density of population ( ) measured in persons by 
square kilometre, herbaceous cultivation ( ) in hectares, (in Galician cultivos 
herbáceos, barbeitos, hortas familiares, including fields that are left fallow, and large 
family vegetable gardens) fruit farming (

popdens
herbac

fruit ) in hectares, and vineyards ( vi ) again 
in hectares. Note that there are no olive groves in Northern Spain (and therefore in 
Galicia) and so they are not included here. There are 

ney

53D =  comarcas (our small areas) 
with , and in total  observations.  2 12dn≤ ≤ 314n =
 
As in the simulation study, we concentrate mainly on the model specification test. The 
model under consideration is  
 ( )t

dj djdj d djy m ux t εβ= + + + ,  (19) 
 
for . In a first step we estimated (19) with  being any one of 
the four covariates , , 

1 53 1 dd … j … n= , , , = , , djt
popdens herbac fruit  or  respectively, while the three 

remaining covariates entered the model linearly. Afterwards, in a second step we 
consider two dimensional .  

viney

djt
 
For smoothing reasons, we used a simple bandwidth choice and a modified 
Epanechnikov kernel  

 
2

0
0

log( 1) log( 1)0 75( ) 1 dj
djh

t tK t t
h h

+

⎧ ⎫+ − +. ⎛ ⎞⎪ ⎪− = − .⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
This can be interpreted as estimating function ( )ω ⋅ , where (log ) ( )t m tω = , but with the 
original Epanechnikov kernel 2( ) 0 75 1K z z⎧ ⎫

⎨ ⎬
⎩ ⎭+

= . − . For bandwidth  we took for each 

element t  of  the range of l

h

∈ ¡ qt∈ ¡ og( 1)t +  divided by a number , see below.  dh
 
In Figure 2 are given the nonparametric estimates of the four different models, i.e. in the 
upper left we see  from model  ˆ (m popdens)
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1 2 3 ( )dj d dy herbac fruit viney m popdens u jβ β β= + + + + ε+ . 

 

Figure 2. The nonparametric estimates of the four different models when only one variable 
enters non-parametrically, . 7dh =
 

Figure 3. The nonparametric estimates of the four different models when only one variable 
enters non-parametrically versus log( 1)t +  for variable , t 7dh = . 

 
We have drawn the functions not as solid lines but in terms of circles indicating how the 
observations of covariate t  are distributed over the range. As can be seen, none of them 
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looks really linear, but some of them might be log-linear. Therefore we plotted ˆ ( )m ⋅  
also versus , see Figure 3. These plots lead us to test log( 1)t + 1

0 ( ) tH m t tγ: =  and 
 against the nonparametric alternative for each covariate. We 

suspect that we will not reject 

2
0 ( ) ln( 1)tH m t tγ: = +

2
0H  for . In addition it is likely that we will accept herbac

1
0H  and 2

0H  for  because the noise dominates there.  viney
 
 

 1
0 ( ) tH m t tγ: =  2

0 ( ) ln( 1)tH m t tγ: = +  

dt \ h= =  6  7  8  9  6  7  8  9  
popdens  .000 .000 .000 .000 .104 .118 .130 .114 
herbac  .000 .000 .000 .002 .716 .904 .918 .950 

fruit  .000 .000 .000 .000 .002 .000 .000 .014 
viney  .336 .282 .298 .332 .354 .302 .284 .346 

Table 2. The p-values of  when t0H ∈ ¡  is either one of the four explanatory variables, 
assuming that the other covariates enter the model linearly. The critical values have been 
calculated by 500  bootstrap replications. 

 
 
The results for these tests are given in Table 2. Since we don’t have a data adaptive 
bandwidth choice searching the optimal bandwidth for each test, we simply repeated 
each test for various possible bandwidths. As for the estimation we took the range of 

 divided by (different) . No matter what bandwidth we chose and whether we 
took a rejection level of 1, 5  or 10  our expectations were met except for  in 
ln( 1)t + dh

% popdens
2
0H .  

 
 1

0 ( ) tH m t tγ: =  2
0 ( ) ln( 1)tH m t tγ: = +  

dt \ h= =  3  4  5  6  3  4  5  6  
popdens , fruit  .004 .002 .000 .000 .148 .052 .016 .024 
popdens ,  viney .060 .014 .004 .004 .416 .350 .282 .250 

fruit ,  viney .024 .024 .006 .000 .024 .010 .004 .010 

Table 3. The p-values of  when  are either one of the combinations of explanatory 
variables shown in the left column. The other variables were assumed to enter the model 
linearly. The critical values have been calculated by 500  bootstrap replications. 

0H 2t∈ ¡

 
 
As a final step we checked the linearity of two covariates jointly. For this we had to 
estimate a two dimensional functional ( )m ⋅ . This was quite problematic with only 

 observations, so we expected a serious loss of power. For the smoothing we 
simply took a product kernel from the above described modified Epanechnikov kernel. 
The bandwidth needs to be chosen larger for the two dimensional case, compare  
from Table 2 and Table 3. In Table 3 we provide the results of selected combinations of 
the covariates which enter non-parametrically. That is, in the first line we tested whether 

314n =

dh
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(m popdens fruit, )  is (log-)linear or not. As can be seen from the p-values, we rejected 
linearity for almost all combinations of covariates and bandwidths. In contrast, log-
linearity cannot be rejected for ( )m popdens viney, . For (m popdens fruit),  the decision 
depends on the supposed smoothness, i.e. the used bandwidth and the rejection level.  

5. Conclusions 

We have introduced generalized partial linear mixed effect models which combine most 
of the known linear mixed effects models with flexible semiparametric modelling. For 
these kinds of models we first have derived estimation procedures and have afterwards 
used them to construct model specification tests. Finally, we have provided a bootstrap 
procedure to calculate the critical values of the test. However, this bootstrap procedure 
can certainly also be used for constructing confidence intervals or bands. Note that 
thanks to using the specific variance-covariance structure in mixed effects models, not 
only the parametric but also the nonparametric part is estimated efficiently.  
Unlike most of the existing literature on semiparametric mixed effect models, we have 
been able to provide both feasible procedures and asymptotic theory for all our 
methods. The particular importance of these models and this kind of inference has been 
discussed for small area statistics although mixed effects models are also frequently 
used in many other fields. Our examples, especially the real data application, come from 
this field, as well. It is important to emphasize again that for any model-based inference 
the question of model specification is essential.  
Our simulation study demonstrates the feasibility and the good behaviour of our quite 
complex methods. Even for small sample sizes the nonparametric smoothing is no 
problem, and the bootstrap-based test easily detects deviations from the null hypothesis. 
Correlations in the design turned out not to cause serious problems here. We concluded 
our findings with a real data application, also illustrating the usefulness and importance 
of our methods for empirical studies in practice.  
Extensions to other estimation approaches (already studied in the parametric context), 
alternative test statistics, bootstrap procedures for heteroscedastic errors, and extensions 
to other models like generalized additive models, are deferred to Lombardía and 
Sperlich (2006a) for the sake of clarity and brevity of this paper.  

Appendix 

To provide our technical assumptions and definitions, we first introduce some more 
notations. We define  

 
1

1

( ) ( )
x

x

k
k

D a x a x
xx μμ

μμ | |∂
= ,
∂ , ,∂L

 

 
being xμ  a k-vector of nonnegative integer constants, 

1

k
jx j

μμ
=

| |= ∑  and  any 

function. We denote by 

( ) ka x ∈ ¡

( ) ( )m mr s r s
mD Y D D l Y mδ δ
δ δ,
, = ; ,  and by ( ) ( )mr s

mf y u x tδ
δ

, , , |  the 

conditional density of ( )mr s
mD Yδ
δ
,
,  given T t= . Let us define for each δ ∈Δ  and t   ∈ℑ

 
 ( ) [ ( )h m t E l Y m T t]δ δ, , = ; , | =  (20) 
 
and ( )tmδ

 the solution to  
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 ( )h m t
m

δ 0∂
, , = ,

∂
 (21) 

 
with respect to  for each fixed m δ  and .  t
Recall that ( ) log ( )l Y m f Y u T X mδ δ; , = | , , ; ,  2log ( )up u σ+ ; .  
 
Next we provide the conditions in the case where we consider the family of density 
functions { ( ) }f u t x m m Mδ δ⋅ | , , ; , : ∈Δ, ∈ .  
A.1 For fixed but arbitrary , let  11( )m Mδ, ∈ ×Δ

11( ) ( ) ( )m l y m f y u t x mρ δ δ δ, = ; , | , , ; ,∫ dy,  
 

with ( )m Mδ, ∈ ×Δ . If 1δ δ≠  then 11( ) (m m )ρ δ ρ δ, < , .  
 
A.2 The matrix Iδ  is positive definite for all δ ∈Δ  and m M∈ .  

A.3 Assume that for vectors  and 4mr| |≤ 4sδ| |≤  such that 4mr sδ| | + | |≤  the function 
(mr sD D l Y mδ )δ; ,  exists for almost all Y . Further, assume that  

 
2( )mr s

mE sup sup D D l Y mδ δδ
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

| ; , | < ∞.  

 
A.4 The Laplace transformation [ { }djE exp t Y ]| |  is finite for  small enough.  0t >

 
The condition [A.2] and [A.3] are usual in likelihood related problems. E.g. [A.3] 
allows differentiation and integration to be interchanged when differentiating  
 

  11( ) ( ) ( )m l y m f y u t x mρ δ δ δ, = ; , | , , ; ,∫ dy.
 
The condition [A.4] is essential for the asymptotic expansions of Corollary 3, see 
Mammen and van de Geer (1997).  
 
Next, we need to include some smoothness assumptions that are necessary because of 
the use of nonparametric smoothing methods:  
 
B.1 For each δ ∈Δ  and t ,  ∈ℑ
 

{ }
( )m tr s z

m
sup D D D h m tt

δ δδ , ,
| , , |< ∞  

 
for , 2 4mr≤| |≤ 2sδ| |≤ , , and 1tx| |≤ 4m tr s xδ| | + | | + | |≤ .  

B.2 The solution to (21), ( )tmδ , is unique and for any constant 0ε >  there exists 
another 0ν >  such that  

( ( ) )sup sup h t tmt m
δ νδ δ

∂
, , ≤

∂
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implies that  

( ) ( )sup sup t m tmt εδ δδ
− ≤ .  

 
B.3. Assume that  
(a)  for [ ( )mr s

m mE sup sup D Yδ
δδ
,
,| | < 5mr] ∞ | |≤  and 3sδ| |≤ ,  

(b) for some even integer 10ξ ≥  it holds that [ ( ) ]mr s q
m msup sup E D Yδ

δδ
,
,| | < ∞  for  

and ,  

3mr| |≤

4sδ| |≤

(c)  for ( )
{ }

( )mr s
m my usup sup sup f y u x tt x

δ
δδ

,
, , ,

| , , | |< ∞ 4mr| |≤  and 3sδ| |≤ ,  

(d)  and ( )txsup D p tt | |< ∞
{ }

( )tx
m my usup sup sup D f y u x tt x δδ , , ,

| , , | |< ∞  for ,  2tx a| |≤ +

(e) and .  
{ } { }

0 ( ) ( )inf p t sup p tt t∈ℑ ∈ℑ
< < < ∞

 
The assumptions [B.1] - [B.3] are sufficient to guarantee that the nonparametric 
estimator from step 1 of Procedures A and B fulfill , 
and thus it is the estimator of least favourable curves.  

0

1 4
0 0{ } ˆ ( ) ( ) ( )psup m m o nt tt

− /
∈ℑ | − |=

 
Finally, we also need to impose some conditions on the kernel function ( )K ⋅  and the 
bandwidth :  h
N1.  Function ( )K ⋅  is a bounded kernel of order a  with compact support, and   

( ) for 2zt
zsup D K z t az | |< ∞ | |≤ + . 

 
N2.  The bandwidth vector h  is of order ( )O n α− , 1 (4 ) ( 3) 4 ( 6)a qα ξ ξ/ < < − / +  such 

that ( 3) ( 6)a q ξ ξ/ > − / +  with ξ  from [B.3] b).  
 
Note that as in RSV03 we consider here the use of higher order kernels to allow for 
higher dimensions of t . Otherwise, one could substitute conditions [N.1], [N.2] for the 
ones of SW92 in Lemma 8 and 9.  

Definition of least favourable curve and valid estimators 

A curve mδ δ→  with 
0

0m mδ=  is called least favourable if  

 
0 0

2 2

0 0 1
( ) ( )d dE l m E l m

d d
δ δδ δδ δδ δδ δ= =

⎡ ⎤ ⎡
, ≤ ,⎢ ⎥ ⎢

⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥⎦

 

for any other smooth curve 
1

mδ δ→  with 
0

01mδ m= . For more details and a 

geometrical interpretation see SW92.  
 
We next give the so called Conditions NP, i.e. conditions for being a valid estimator to 
get an efficient parametric estimate for δ . Here, m̂′  indicates a derivative w.r.t. δ  :   

(a)   On , ℵ ( )ˆ xmδ
 converges for each x  to a constant ( )xmδ%  for all δ ∈Δ , 

Mmδ
∈% , and for all , 0 1 2r s, = , , 2r s+ ≤ , ( )r s

srx
xmδ δ

+∂
∂ ∂

%  and ( )ˆ
r s

srx
xmδ δ

+∂
∂ ∂

 exist. 

Further, 0 0 ( )ˆ po nm m α−− =% , 0 0 (ˆ po nm m )β−− =′ ′% , where 0 5α β+ ≥ .  and 
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0 25α ≥ . . Furthermore, sup m̂ mδ δ δ∈Δ
− % , sup m̂ mδ δ δ∈Δ

−′ ′% , 

sup m̂ mδ δ δ∈Δ
−′′ ′′%  are all of order . Finally, for some (1)po 0δ > , 

0 0ˆ x xm m∂ /∂ −∂ /∂%  and 0 0ˆ x xm m∂ /∂ −∂ /∂′ ′%  are of order ( )po n δ− .  
(b)   The curve mδ%  is a least favourable curve.  
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