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Abstract

The paper presents a study of the generalized partially linear model including random
effects in its linear part. For these kinds of models we propose an estimator combining
likelihood approaches for mixed effects models with kernel methods. Following the
methodology of Hardle et al. (1998), we introduce different tests that allow us to choose
between a parametric and the semiparametric mixed effects model. Along these lines we
also discuss some bootstrap procedures to simulate the critical values. We prove
consistency and give asymptotic theory for all our methods. Finally, a simulation study
and a real data application are provided in order to demonstrate the feasibility and the
excellent behaviour of our methods. *
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1. Introduction

Model-based small area estimation has received considerable attention in the last two
decades in both the public and private sectors. The term “small area” is commonly used
to denote a small geographical area, such a county, a census division, state, etc. It may
also describe a “small domain”, i.e. a small subpopulation such as a specific group of
people classified by age and sex or their race; or it even refers to climatic clusters. It is
recognized that direct survey estimates for small areas are likely to yield unacceptably
large standard errors due to the sample size. Traditionally, small area estimation relies
on linear mixed effects model, relating the responses of interest in the small areas to
each other and to covariates. Mixed models are suitable for small area estimation
because of their flexibility in effectively combining different sources of information and
explaining different sources of errors. These models typically incorporate area-specific
random effects to explain the variations in information from different areas not
explained by the fixed effects part of the model. In the exclusively model-based
framework some interesting research has been done using Bayes methodology and
using frequentist methodology, see Ghosh and Rao (1994), Rao (2003) and Jiang and
Lahiri (2006) for a thorough review of different small-area estimation technigues.

Nowadays, in some countries, small area inference is an important statistical tool. Since
2003, EUROSTAT requires that EU States use it to provide statistics for their small
areas (provinces, districts, departments, etc.). In the United States it is used by, among
others, the Census Bureau’s Small Area Income and Poverty Estimates Program, the
Bureau of Labor Statistics’ Local Area Unemployment Statistics Program, and the
National Agricultural Statistics Service’s County Estimates Program. It is not surprising
that small area statistics has attracted a lot of attention in statistical research. For
example, the U.S. Department of Agriculture publishes annual estimates of farm real-
estate values for 48 states based on the Agricultural and Land Values Survey (ALVS),
which is characterized by its low response rate. For that reason, Pfefferman and Barnard
(1991) studied efficient ways of combining the auxiliary data (e.g. from the Agriculture
Census) with ALVS to improve estimates of farm land value. Battese et al. (1988)
proposed model-based county estimates of crop acreage using remote sensing satellite
data as auxiliary information, a method today adopted by the U.S. National Agricultural
Service. To illustrate our methodology we are going to apply it to predict the number of
hectares of forest in 53 comarcas (administrative regions) of Galicia (Northwest of
Spain). This methodology has the advantage of being inexpensive and easily
implemented.

Prasad and Rao (1990) discussed three of the most frequently considered models in
small area statistics giving one closed linear mixed effects formula, see below. Similar
to the simple linear models, the linear mixed effects models have been extended to
generalized mixed effect models, defined by

G(E[YdJ |ud7de])= XEjjlg—'—ZEﬂjud, d ::L"'a D7 J =L""nd!

where D is the number of small areas and n= Z::l n, the sample size, with n, being
the small area size. For unit or individuum j of area d, Y, ei is the dependent
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variable, X, ej * the observable regressors (including the constant 1), g its

coefficients (the fixed effects), z 4 = X 4 of dimension fi, and ug4 € i an unobservable

area-specific effect. In practice, this is treated as a random effect and only its variance
will be estimated. The reasoning can be different but the main, practical aspect, is that
most of the n, are small and D is large. A necessary assumption in the existing

methodology is that u, is independent from X ;. This assumption is also made here but
studied in detail in Lombardia and Sperlich (2006b). The function G(-) is the (known)
link function and g(-) its unique inverse. When G is the identity, then model (1)
includes the three classical versions: the nested-error regression (with 7z =1, us€i ),
the random regression coefficient (with 74 = X ), and the Fay-Herriot model (with
only area-specific information, i.e. X 4= X4 Vi, j). Prasad and Rao (1990) condensed

them in one single model of type (1) and indicated formulas for common estimators of
£ and linear predictors. However, the random regression coefficient has been treated in

much less detail and is probably also the one least used.

Due to the effectiveness of mixed models, in particular the nested-error regression
model, they are broadly applied in different fields of statistical analysis, including
biology, medical research and surveys. Examples and overviews of this vast topic are
provided by Searle et al. (1982), Breslow and Clayton (1993), Lee and Nelder (1996),
Malec et al. (1997), Ghosh et al. (1998), McCulloch and Searle (2001). Further
examples and explanations, but in particular different approaches to the nontrivial
problem of implementation are provided, among others, by Fahrmeir and Tutz (2001),
Diggle et al. (1998), and most recently by Skrondal and Rabe-Hesketh (2005). They
have been extended to nonlinear parametric mixed models; see Kuhn and Lavielle
(2005).

Quite recently, mixed effect models have entered the world of non- and semiparametric
statistics. A first step was to separate the nonparametric functional into a deterministic
(fixed effects) and a random part (random effects). Then, the smoothing parameter of a
spline or sieve estimator can be written in terms of the variances of the random effect
and error term; further extensions followed immediately, for more details see Ruppert et
al. (2003) or Wand (2003). Similar ideas appear in the random fields theory, see
Hamilton (2001). So far this research concentrates mainly on the challenging
development of feasible algorithms for non- and semiparametric mixed models using
spline methods. Kneip et al. (2005) provide a series estimator for a partial linear model
with time varying individual effects; while Verbyla et al. (1999) study longitudinal data
from designed experiments with smoothing splines. However, in most of the cases,
asymptotic theory is missing. The same holds for theory based suggestions of model
specification tests in (generalized) mixed models. Finally, to our knowledge mixed
models have not been combined with kernel smoothing methods although the major part
of the existing asymptotic theory for non- and semiparametric statistics is based on
kernel smoothing methods.

This article intends to show how the combination of kernel based methods and mixed
effects models can open a huge variety of statistical methods for the analysis, e.g. small
area problems. To this aim we consider a generalized partially linear model (see e.g.
Severini and Staniswalis, 1994) but include random effects, i.e.



G(E[Yy lua:Ta» X gl)=M(T )+ XyB+Zkus d=1...D;j=1...n,.

with Yy, ug » Xg, Zg, B as above, and Tyej ® further covariates with a

nonparametric impact function m(-):j * — i . The random effects y, are supposed to
be i.i.d. with mean zero and a i xii matrix of co-variances 2. We denote by

ty = E[Vg [ug, T X gl = g(m(de)+ XE]ﬂ*‘ZEjUd)

the conditional expectation. Under this setup, let Y be the nx1 vector with elements
Yy, X be the pxn matrix with rows X, U =diag{u,,d =1...,D} the (iD)xD

dj ?

block matrix of random effects, and Z =diag{Z,,d =1...,D} a (fiD)xn block matrix
with blocks 74 =(Z g1,.... Z an,) - Note that for the most popular nested-error model this

simplifies to U =u with u=(uy....,up)' and Z =diag{1},.d =1...,D}, where 1,
denotes a column vector of ones with size n,. Then, in matrix notation, the model is
m(T)+ X'B+7zVU . Further we define the ajjs as the elements of the diagonal matrix
Var[Y |u,T,X],and set V =Var[Y |T, X].

We will first introduce an estimation procedure for the model including asymptotic
theory. Then, for the parametric part, confidence intervals and testing procedures can be
derived directly. In contrast, for the nonparametric part m(-) statistical inference is

much more sophisticated in theory and practice. The same holds for prediction intervals,
where a lot of research is still going on even for purely parametric models. Therefore, a
sensible first step is to check whether such an effort is justified. This means testing m(-)
for significant nonlinearity. An extension to test significant deviations of m(-) from a
fixed polynomial or just a constant is obvious. An additional strong motivation for our
test is that inference in small areas is model based. Therefore, model selection and
validation play a vital role in the model-based inference. Seriously misspecified models
lead to erroneous conclusions. However, hypothesis testing in the general mixed model
framework for small areas inference has hardly been investigated. Jiang et al. (2001)
studied a generalization of the Pearson’s »* goodness-of-fit test, which is applied to a
real data example with geographically small areas. Zhu and Fung (2004) investigated a

test for heteroscedasticity within the framework of semiparametric mixed models,
illustrated with the analysis of a longitudinal study.

We introduce a test for the parametric null hypothesis
H,: mT)=c+T% vs H;: mT)=c+TY

for any » and c, i.e. a generalized linear mixed effects model versus the

semiparametric alternative (2). Such a test was introduced by Hardle et al. (1998),
among others, for the case when there are no random effects. It turns out that their
theory carries over to our mixed effects model. This also holds true for the
(nonparametric) bootstrap we will use to obtain reasonable critical values for the test
statistic. Extensions to related bootstrap tests in these kind of models, e.g. like those
proposed most recently by Hardle et al. (2004) or Rodriguez-Péo et al. (2004) are also
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obvious.

The rest of the paper is organized as follows. In Section 2 we introduce the estimators
for the semiparametric model (2), i.e. the parametric counterpart of the null hypothesis
H,, together with its asymptotic properties. In Section 3 we first introduce an estimator
of the parametric model that is convoluted with a kernel and will be used in the test
statistic to account for the bias present in the estimate of the semiparametric alternative.
Then, we will introduce and discuss tests statistics and adequate bootstrap procedures,
again together with its asymptotic behaviours. A simulation study in Section 4 shows
the excellent behaviour of the tests even for moderate sample sizes. A real data
application illustrates its feasibility in practical problems. Section 5 contains the
conclusion. The lists of technical assumptions and definitions can be found in the
Appendix.

2. Estimating the Semiparametric Model

Our aim is to study the relationship between Y € and a set of explanatory variables
(T,X)ej *P, taking the random effects into account. To streamline the presentation
we restrict to oy =0, V d=1..,D,j=1..,n, and set & =(vec(s?),07), also called

the variance components. Here, vec(s2) means that if 52 is of dimension larger than

1x1, then we stack the elements into a vector. Heteroscedasticity is a straight forward
extension but would so complicate the presentation as to obscure our basic ideas. In
small area statistics, one typically assumes D — o at rate O(n). Suppose we have a
sample of n= ZL ny replicates {(Yy;,T g X o)}

given the random effects u, T, and X is from the family of densities
{fY|u,T,X;m8):6eA,m(T)eM} with M and A compact sets, where & =(5,6).

The observations are taken independently, (T, X) are taken from compact sets N < j °

and Jcj  respectively, and are independent from the random effect. Finally,
p(u; 52) denotes the density of the random effects.

“+i1- The conditional distribution of Y

n
i

We will consider the profiled likelihood approach by Breslow and Clayton (1993). For
this purpose, assume m(-) as being known and concentrate on the estimation of .

They derived a penalized quasi likelihood (PQL) that is based on this criterion

D ng D
Hd:lHj:l f (YdJ | ud:de: X dj;maé)l—[d:l p(UdaO-lzj)

(LU[Y.T.Xim,0) = el L ,
JITTE TS, 0 luaT g X 6. 6) Plusio2)dud B

where it is enough to maximize the numerator, see Fahrmeir and Tutz (2001). This they
modified to a profiled likelihood to get simultaneous estimates for the variance
components. Gonzalez-Manteiga et al. (2005) also started with the PQL but estimated
the variance components from a linearized version of the generalized linear model,
going back to the Schall (1991) idea. Following these ideas, one considers the log-
likelihoods

4)



D ny
¢1(Y3m75)zzzlog f(YdJ ‘ud:podeamaé‘)a

d=1 j=1

D
?,(Usol) = z log p(ua; o)
d=1

and e(Y,u;m,8) =@, (Y;m,8) + ¢, (U; o0).

To obtain an estimator of the nonparametric part we first have to fix a point t, on which
we aim to estimate function m(:). We again consider (7) and take the emmpirical
counterpart of

E[log f (Y [u,T,X;m,8)+log p(u;o) | T =t |

which is, in terms of kernels Kh(-),

D Ny
@,(Y;m, o) = Z Z Kh (to—T dj) log f (Vg [uasT g» X s M(te), 0) + @, ;o

d=1 j=1

with Kh(') a g-dimensional product kernel, and h=(h,...,h,) the corresponding

bandwidth vector. This is also called the smoothed likelihood function. Note that the
conditioning on T has no impact on ¢, ; that is why we do not convolute that part with
the kernel function. Because T is assumed to be independent of u, one might also use
the simplified smoothed likelihood by skipping ¢, (uq;o5) from ¢, :

D ny
P (Y;m,0) = z z Kh (to—T dj) log f (Yy; [ug> T g X i M(t0), 5).
d

=1 j=1

The version based on the Breslow and Clayton (1993) approach may be the most
popular, because of its availability and easy handling. In SAS for example it is
implemented as procedure GLIMMIX. However, in the last few years the integral
method, see (10), has also gained popularity; see e.g. procedure NLMIXED in SAS. For
the integral method we could have defined likelihoods (5) to (9) based on the likelihood

FOY T Xm8) = F0Y, 10T g X o:M.8) p(Us o2)du

Taking the logarithm again provides us with a possible objective function; see e.g.
McCulloch and Searle (2001) for the parametric case.

To estimate the whole model (2) we have to combine the existing fully parametric
likelihood approach for random effect models with a semiparametric regression.
Therefore we continue with the profiled likelihood idea. Let ms denote a least

favorable curve — for definition see Appendix —in M to take into account the nuisance

®)

(6)
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parameter m(-) when estimating ¢ . Then the 5 that maximizes ¢(Y,u;m5,5) is a
consistent and asymptotically efficient estimator for & . Because m s is unknown,

Severini and Wong (1992) (hereinafter SW92) established sufficient conditions for an
estimator rﬁ5, their so called Conditions NP, also in the Appendix, so that maximizing

¢(Y,u;m§,§) yields a consistent and asymptotically efficient estimator for 6. They

also provide conditions to guarantee that maximizing the smoothed log likelihood,
compare above, is such a valid estimator. Rodriguez-P6o et al. (2003) (hereinafter
RSV03) have extended the results of SW92 such that they apply to our context with
o, (Y;m,5) being the smoothed log likelihood in question. Summarizing, we get

Procedure A.
1. Foravalue t;, and fixed ¢ estimate m(t,) as the solution of the problem

m . =argmaxe, (Y;m,o).
5 {meM}

2. Estimate 6 by

o =argmaxe(Y,u;m _,0).
{5€A} 5

3. Notice that the Breslow and Clayton (1993) approach predicts the u, for all d

simultaneously, whereas the integral approach, compare (10), does not.
4. With the estimates obtained in steps 1 and 2, set finally m = rﬁ5 .

Clearly, the first step is to get estimators for the least favourable curve. For many
likelihoods this yields the Nadaraya Watson smoother. Other estimators are thinkable;
the one given here corresponds to the one proposed by SW92, Severini, Staniswalis
(1994), and RSV03 (each one in a different context). We conclude

Lemma 1. Suppose D — o at rate O(n) and assumptions [A.1] - [A.3], [B.1] - [B.3]

and [N.1] - [N.2] from the Appendix hold. Then, maximizing the smoothed likelihood as
given in step 1 of Procedure A provides a valid estimator of the least favourable curve.

Denote the true parameter by §,. Given a valid estimator s, a consequence of SW92
and RSV03 is:

Corollary 1. Let o be the log likelihood estimate as given in step 2 of Procedure A.
Then, under the assumptions of Lemma 1, as n= ZL n, tends to infinity

ﬁ(é—ao)—deN[o,lgj,

where I5 is the (marginal) Fisher information matrix, i.e. is equal to

0 0 0 0
ET{EX,U,T |:$I(Y,m,§)a—5tl(Y,m,5):|— EX,u [%I(Y,m,é‘)%l (Y,m,5)‘Tj|

(1)



d > 7 0 0
E —IY;mo) | |T| E, | —I(Y;:mo)—I(Y;:m, )T |}
€, [i0man 17| £ Zi0rmo) Zirima)

where E,[] is the expectation with respect the variable W . Further, 1(Y;m,5)=
log f(Y |u,T,X;m,8) +log p(u;3), and

t
0 0 0 0 0
—I(Y;m,0)=| —I(Y;m,8),L ,—I1(Y;m,5), [(Y;m, o), I(Y;m, o).

1 p u e

As can be observed from this result, the semiparametric estimator achieves the
semiparametric efficiency bound, see Newey (1994). In practice, the asymptotic
variance can be approximated with the aid of the Hessian matrix that one obtains as a
by-product from the maximum likelihood estimation. Note further that our model
assumptions do not contain restrictions on the dependence structure between X and T .

Remark 1. If we assume a link g(-) being the identity function considering the nested-
error regression model, i.e.

Yo = m(T g) + X:ﬂjﬁ—}_Ud—‘f—gdja d=1..,D,j=1..,ng;
with uq and &, defined as before, we get for the variance of ,é the Fisher information

| o =E {XVIX -E[X [TIVE[X |T]}

B
= E, {(X —E[X [TV (X —E[X |T])}

which equals the variance of Robinson (1988) in the simple partial linear model.

The above mentioned articles also provide us with the asymptotic distribution of the
. . . . . q
final nonparametric estimate. To this end, define h =1_[j=l h; and h_, =max,h,.

Then we can state,

Corollary 2. Using the same conditions as in Corollary 1, t, being from the interior of

the support of T, p; (-) its density function, and n = ZD

N4 going to infinity, we have

nhprod (rﬁ(tO) - m(tO) - Bm (tO))L) N (O,Varm (to)),

with B_ (t,) =O(h’,) and

IK(t)Zdt
pr (t)E[ 1(Ysm, 50)" 1T =to]

Var, (t) =

Alternatively, one could estimate the variance components by moment methods, and
applying local polynomial expansions instead of a simple kernel convolution, see

(12)

(13)



Lombardia and Sperlich (2006a).

Remark 2. If the conditional distribution of Y belongs to the exponential family, then

1

0 , _
E{%I(Y;m,go)zw =t0} - E[g (X' B, +Zu+ m(to))Z}Var[Y Uyt X
which gives an asymptotic variance Var, (to) of the form

I K (t)*dtp;* (to)Var[Y |U,to, X | g’(x ‘B,+Z'u+ m(to))_z.
Furthermore, the bias B, (t,) then becomes

, 0° h2 OM 6pT
Vz(K){ JZ_;‘hJ atz m(to) + T(O)Z_; Jat (to) ('[0) +0(hrsy)s

where v, (K) is implicitly defined by jtttK(t)dt:vz(K)l , with 1 being the identity
matrix, compare Fan et al. (1995).

3. Testing the Parametric versus the Semiparametric
Model

As discussed in detail in the Introduction, model specification testing in this context has
at least two driving motivations: a) inference in small area statistics is model based so
that a correct model specification is essential; b) semiparametric inference is much more
complicated and expensive than the parametric one. For these reasons we will consider
a test checking parametric versus semiparametric modelling. More specifically, we
consider the testing problem H,:m(t)=c+t'y vs. H,:m(t)#c+t'y. The testing of

other parametric specifications is analogous. Our test statistic is based on an almost
direct comparison of the semiparametric estimate with the corresponding estimate in the
parametric model. First note that for this purpose it is enough to have

Sup|m(to) - m(to)| =0

0€~

nh

Iogn}

prod

see Rodriguez-Poo et al. (2004). It follows from Rodriguez-P6o et al. (2003) that this
holds for our estimator introduced in Section 2.

Let us consider the null hypothesis that
G(E[Ydj [UaT g X gi]) =C+T o7 + X 68 + Zua-

Here, the estimation problem is purely parametric. Set in the following ;/tc =(c,7"), and

denote the log-likelihood estimators for this model by (;9@1%15’5’. Following the
arguments of Hardle et al. (1998), a direct comparison of Mm(T) with & T'% may be
misleading, because m(-) has a smoothing bias which is typically non negligible. To
avoid this effect, we add a bias to & T'# that will compensate for the bias of m(T):



Procedure B.
1. We build the artificial data set: {4, T 4, X 4} With

Y%J = g((%kng;%k ngjﬁﬁ" Zfﬂjl%)),

the parametric fit of u, = E[Yy [ua,Tap» X o] -
2. Repeat only the nonparametric step from Procedure A replacing all parametric

unknowns by their estimates 4 (and eventually &). E.g., using the likelihood
(8) or (9) one would set

{meM}

3. The resulting estimators we use for the direct comparison with its
semiparametric analogy are therefore (r%l%%).

Then, under H,:m(t)=c+t, one will get |t)—[&6t'B, (t)]|=0,(1), where
B, (t) is the bias of m(t), and therefore | m(t) - Mét) |= 0, (1) .
A most traditional testing approach would be based on the likelihood ratio. But this test

does not work here because M and & were calculated with different likelihood
functions (smoothed and unsmoothed functions), see Hardle et al. (1998). Instead let us
consider the following weighted and unweighted squared differences:

n

Ry =5, 3 H(M(t5). ) Milta) -t + X503 - 9] (e

or just

R=

:1 njl [rﬁ(tdj) - rﬁ(td]) + X E;(ﬁ - ﬁﬂzﬂ'(tdj),

with z(-) being a weight function chosen by the empirical researcher and

2

H(m(ty), ) = %I(Ydj;mﬁ)

In semiparametric, these kinds of test statistics are quite popular. On the one hand they
try to imitate the likelihood ratio in the semiparametric world, see Hardle et al. (1998)
and Mauller (2001). On the other hand, all expressions are automatically calculated
during the estimation procedure. Alternative statistics, either for incorporating the
random effects or for simplifying the computational expense, are discussed in
Lombardia and Sperlich (2006a). The covariances between the {m(t)—rP6ty)} are
asymptotically negligible for different observations of t,. Due to this fact, the

asymptotic distribution of our test statistic can be concluded from Hardle, et al. (1998):

Corollary 3. Under the hypothesis m(t) =c+t'y, the previous assumptions and [A.4],
it holds that

10
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v*i(R, —b)——> N(0,1), where

b= h;,rlod IK(t)Zth[ﬂ(l') p*(T)]+o(@) and Vv?=2h' J.K‘Z) ()’ dtE[2(T)* p~(T)].

prod
Here, K@ refers to a two-fold convolution of kernel K.

If we skip the weighting with H(:) in the test statistic (16), bias and variance will
become

b=hlu J K (t)*dtE[ E[H *(M(T),50)7(T)p™*(T) |+0(1) and
v =an, [KO @ AE [ H 2 (m(T). 62T p (1))

It is well known in non and semiparametric that in practice, even though we can
substitute estimates for the unknowns, the asymptotics do not even come close to the
real finite sample distribution, see e.g. Hjellvik et al. (1998). Mostly, bootstrap or
subsampling is used to simulate the critical values. Therefore, here we introduce a wild
bootstrap version, which was first proposed by Hardle and Mammen (1993) in
nonparametric setups. Liu (1988) studied the wild bootstrap under regression models
with non-i.i.d. observations, and Hardle et al. (2004) discussed intensively different
bootstrap methods for doing inference in generalized partial linear additive models. Our
procedure works as follows:

Procedure C.
1. From the sample, calculate a consistent estimator @ = (52,52) of 6 =(5%,07).

2. Generate D independent copies of a vector w, e " with E[w,]=0 and
E[wi]=1; with subexponential tails; that is, for a constant C, it holds that
Elexp{lw:|/C,}] < C.1s (c.f. [A.4]). Construct the vector y* = o, w; such that the
mean vector is zero and the variance covariance matrix is &2. Here,

~2\1/2
Ou~— (CTU) .

3. Generate n independent copies of w, such that E[w,]=0 and E[w;]=1 with

subexponential tails (c.f. [A.4]). Set e* = 5.w,, which is independent of y*, has

mean vector zero, and variance 2.
4. Under H, true, set

Y =0 (Tif X B0 Zui)+e5.d =1L ,D, j=1L ,n,.

5. Calculate the test statistic from the bootstrap sample (Y~, X,T).

In the binary response Y, is a Bernoulli variable with parameter ;. Hence, then it is
reasonable to resample from the Bernoulli distribution with parameter ;. E.g. for the

special situation of the logistic semiparametric mixed model, we recommend the
following parametric bootstrap:

11
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Procedure C’.
1. From the sample, calculate a consistent estimator 52 of 52.
2. Same as step 2 from Procedure C
3. Under H, true, generate observations by generating values of a binomial

distribution with sizes n, and probabilities
o = O XM Ziui)
T L expfT il X 5H% Zhuid

d=1K,D; j=1K ,n,.

4. Calculate the test statistic from the bootstrap sample (Y, X,T).

The computation of quantiles of the distributions of R, =R or R,, can be done by
Monte Carlo: generate B independent sets of bootstrap samples (y*®,X,T),
b=1L ,B. The (1-«) quantiles of the distributions R, can be estimated then the
{[@-a)B]+1}th order statistic of R'™ =R"(y*®,X,T) (b=1L ,B). Theorem 1
shows that the bootstrap procedure works:

Theorem 1. Under the assumptions of Corollary 3, it holds for R =R, R =R,
respectively, that

d, | For e |—>0.
where F, is the distribution of R, F_. is the conditional distribution of R (given the

sample), and d, is the Kolgomorov distance, which is defined as
d (v.7) =supy, ;[ V(X <) —z(X <1)]
for two probability measures v and z on the real line.

Proof. The consistency of bootstrap methods is proved by imitation. For a general
discussion of the validation of bootstrap methods see Shao and Tu (1995, pp.76). Using
the same process as in Hardle et al. (1998, see proof of their Theorem 2 in the
Appendix), taking into account the asymptotics results of the previous section and that

| Yy | has a bounded conditional Laplace transform (in a neighbourhood of 0). For more

details see Mammen and van de Geer (1997, Section 5); these authors studied the
asymptotic distribution of the parametric component of a regression model using the
wild bootstrap. Thus, it holds

dk(FR*r,N(b,vz))—>0

in probability, with b and v? introduced in Corollary 3.

4. Finite Sample Performance

As mentioned in the previous sections, there are several papers that discuss algorithms
for the estimation of semiparametric mixed effects models for spline and wavelet
methods, different implementations, and likelihood approaches. Therefore, we have
concentrated here more on the testing side and have stuck to a model relatively easy to
estimate. Here, we study in detail the size and power of both tests, R, and R in

samples of moderate size with different bandwidths, and in particular the effect of
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different designs. Afterwards, we applied our procedures, estimation and testing, to the
real data example discussed in the introduction.

4.1. Simulation Study

For the simulation study we consider on the nested-error regression model because, the
random coefficient model is hardly used in practice, and the Fay-Herriot model is a
particular case of the nested-error one. The data generating process in our study was

ydj =l+(1_a)tdj +asin(77tdj)+ﬂtxdj +Uy + &y,

for d=1..,D,,j=1..,n,, where g'=(2,1), (ty.xy)€i ° iid. us: N(0,1) i.i.d., and

g4 N(0,0.25) i.id., where N(u,0°) is the normal distribution with mean x and

variance o”. We simulated the case where a runs from 0 (giving the null hypothesis
model) to 0.5 to study the error of the first and second type. Further, for the explanatory
variables (tdj,x‘dj) we simulated three different (always random) designs; first U[0,2]°,

second normal with mean 1.0, variance 0.6 but uncorrelated, and finally normal with
mean 1.0, variance 0.6 but covariance 0.15. We did this because it is well known that
non- and semiparametric inference is unfortunately strongly affected by the
experimental design; in this context it obviously is of special interest to see the
(expected) loss in power when we first change from uniform (“optimal” for
nonparametric estimation) to normal, and second from uncorrelated to correlated
designs.

Note that they all have the same mean, but in case of normal distribution about 10 to
20% of the observations fall outside of the [0,2]° cube. We studied two sample sizes,
n=100 and n=200. When n=100 we set D =10 with n, to n, equalto 5, 7, 8, 9,
10, 10 ,11, 12, 13, and 15. For n=200 we set D =20 and each of the above n,

occurred twice. We used always B =500 bootstrap replications to estimate the critical
values of the test statistic.

u[o.2J® N(1,0.6)
Cov=0.0 Cov=.15
hy 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
p 481 501 526 | .491 554 600 | .502  .588  .639

1% 012 .002 .002 014 .004 .002 .014 .002 .002
5% .068 .052 .024 .066 .034 014 .078 .028 .016
10% 110 .098 072 120 .066 .052 130 .066 .034

Table 1. The p-values ( p ) and first error type at 1, 5, and 10% level for n=100, D =10.

Even though our smoother suffers from boundary effects, we did neither boundary
corrections nor any trimming, i.e. we set z(t) =1 throughout; instead, we trusted in the

ability of the bootstrap to capture these effects adequately. For estimation we used the
Epanechnikov kernel. The literature on bandwidths selection for nonparametric (kernel)
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estimation is abundant but it is also well known that the optimal bandwidth for testing
has a faster rate, i.e. should be slightly under-smoothing in practice. Although the cross
validation bandwidth is asymptotically optimal for estimation rather then for testing, in
our experience it behaves fairly well for testing problems with finite samples, probably
because of its tendency to slightly under-smooth. Alternatively, there exists an
increasing amount of literature on adaptive testing, i.e. choosing a bandwidth that
maximizes the power of the test. However, these methods are only available for some
specific testing problems, are difficult to implement and take a long time to compute.
An approach that could probably be extended to our testing problem has been recently
proposed by Rodriguez-Pdo et al. (2004) and is based on the Spokoiny (2001) idea. The
results presented were calculated with bandwidths h = h,/n*® where h,=1.0, 1.5, and

2.0 respectively. Note that, as in (18) the canonical link function is the identity, the test
statistics R, and R coincide.
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Figurel. The power of R for =100, D =10 (solid), and n=200, D =20 (dashed) for
different designs and rejection levels (a =1% upper line, & =10% lower line).

In Table 1 we provide the real p —value and rejection levels for different nominal levels
under the null hypothesis of linearity of m(-), i.e. setting a=0 in (18), calculated from
500 simulation runs. As expected, depending on the bandwidth, the rejection levels
vary somewhat but due to the implemented bias reduction (compare discussion in

Section 3, Procedure B) this test holds the level. It even tends to be conservative which
at least is better than being too liberal in our opinion.

To study the power performance we determined the real rejection levels for a in model
(18) running from 0 to 0.5, based on 100 simulation runs with h, =1.5. In Figure 1 we

plotted the power functions (solid line for n=100, D =10, dashed for n=200,
D =20). From these plots we can draw several conclusions. Obviously, even for this
rather small sample size of only 100 (D =10) observations our tests work quite well
detecting already moderate deviations from the null hypothesis. For n=200, D =20
we see that the size remains basically the same, the differences between the models
change slightly, and the power improves (not surprisingly) considerably, especially for
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the uniform design. Finally, the loss of power caused by introducing correlation in the
design is moderate but visible. The case study with uniform design does, maybe
surprisingly, no better than the one with normally uncorrelated distributed regressors.
This is either due to the larger boundary effects the nonparametric estimator suffers
from in the uniform case or due to the implicit weighting by the design density when in
R we average over the data.

4.2. Real Data Application

For further illustration of the feasibility of our methods but also to show their usefulness
in empirical studies, we now turn to the example mentioned in the Introduction,
predicting the forested hectares in Galicia’s 53 comarcas (administrative regions).
Especially in the Mediterranean area, knowledge of the amount of forest (not used in
forestry) is of great interest for environmental, tourism and health reasons. However, the
measurement of forested hectares in a rocky and mountainous region like Galicia is
quite expensive. All the data is from 1999, and was collected by Galician section of the
Spanish National Statistical Institute (INE), and is accessible on the Internet. For the
prediction we only wanted to use easily available indicators (quick and inexpensive). In
this example we have the density of population ( popdens) measured in persons by

square kilometre, herbaceous cultivation (herbac) in hectares, (in Galician cultivos
herbaceos, barbeitos, hortas familiares, including fields that are left fallow, and large
family vegetable gardens) fruit farming ( fruit) in hectares, and vineyards (viney ) again

in hectares. Note that there are no olive groves in Northern Spain (and therefore in
Galicia) and so they are not included here. There are D =53 comarcas (our small areas)
with 2<n, <12, and in total n=314 observations.

As in the simulation study, we concentrate mainly on the model specification test. The
model under consideration is

t
Yo = B X+ M(tg) +Ug + &y,

for d=1..,53, j=L1..,n,. Inafirst step we estimated (19) with t; being any one of

the four covariates popdens, herbac, fruit or viney respectively, while the three
remaining covariates entered the model linearly. Afterwards, in a second step we
consider two dimensional t; .

For smoothing reasons, we used a simple bandwidth choice and a modified

EpaneChnikov kernel
0.75 log(t,+1) —log(ty +1 ?
Kh(tO tdj) - {l —( g( 0 ) g( di )] } .

h h

This can be interpreted as estimating function w(-), where @(logt) = m(t), but with the
original Epanechnikov kernel K(z) :0.75{1—22}+. For bandwidth h we took for each

elementtej of tej ? therange of log(t+1) divided by a number h, , see below.

In Figure 2 are given the nonparametric estimates of the four different models, i.e. in the
upper left we see m(popdens) from model
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Yy = pherbac + g, fruit + Bviney + m(popdens) +u, + & .
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Figure 2. The nonparametric estimates of the four different models when only one variable

enters non-parametrically, h, =7.
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Figure 3. The nonparametric estimates of the four different models when only one variable
enters non-parametrically versus log(t +1) for variable t, h, =7.

We have drawn the functions not as solid lines but in terms of circles indicating how the
observations of covariate t are distributed over the range. As can be seen, none of them



looks really linear, but some of them might be log-linear. Therefore we plotted m(-)
also versus log(t+1), see Figure 3. These plots lead us to test Hg:m(t) = 't and
HZ:m(t)=»"In(t+1) against the nonparametric alternative for each covariate. We
suspect that we will not reject HZ for herbac. In addition it is likely that we will accept
H, and H for viney because the noise dominates there.

Hy:m(t) = 't HZ :m(t) =" In(t+1)
t= \h, = 6 7 8 9|6 7 8 9
popdens .000 .000 .000 .000 | .104 118 130 114
herbac .000 .000 .000 .002 | .716 904 918 .950
fruit .000 .000 .000 .000 | .002 .000 .000 014
viney 336 282 .208 332 | .3%4 .302 .284 .346

Table 2. The p-values of H;, when tej is either one of the four explanatory variables,

assuming that the other covariates enter the model linearly. The critical values have been
calculated by 500 bootstrap replications.

The results for these tests are given in Table 2. Since we don’t have a data adaptive
bandwidth choice searching the optimal bandwidth for each test, we simply repeated
each test for various possible bandwidths. As for the estimation we took the range of
In(t+1) divided by (different) h, . No matter what bandwidth we chose and whether we

took a rejection level of 1, 5 or 10% our expectations were met except for popdens in
HZ.

Ho:m(t) = 't HZ :m(t) =" In(t+1)
t= \h, = 3 4 5 6 3 4 5 6
popdens, fruit .004 .002 .000 .000 | .148 .052 .016 024
popdens, viney .060 .014 .004 .004 | 416 .350 .282 .250
fruit, viney .024 .024 .006 .000| .024 .010 .004 .010

Table 3. The p-values of H, when tej ? are either one of the combinations of explanatory

variables shown in the left column. The other variables were assumed to enter the model
linearly. The critical values have been calculated by 500 bootstrap replications.

As a final step we checked the linearity of two covariates jointly. For this we had to
estimate a two dimensional functional m(-). This was quite problematic with only

n =314 observations, so we expected a serious loss of power. For the smoothing we
simply took a product kernel from the above described modified Epanechnikov kernel.
The bandwidth needs to be chosen larger for the two dimensional case, compare h,

from Table 2 and Table 3. In Table 3 we provide the results of selected combinations of
the covariates which enter non-parametrically. That is, in the first line we tested whether
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m( popdens, fruit) is (log-)linear or not. As can be seen from the p-values, we rejected

linearity for almost all combinations of covariates and bandwidths. In contrast, log-
linearity cannot be rejected for m(popdens,viney). For m(popdens, fruit) the decision

depends on the supposed smoothness, i.e. the used bandwidth and the rejection level.

5. Conclusions

We have introduced generalized partial linear mixed effect models which combine most
of the known linear mixed effects models with flexible semiparametric modelling. For
these kinds of models we first have derived estimation procedures and have afterwards
used them to construct model specification tests. Finally, we have provided a bootstrap
procedure to calculate the critical values of the test. However, this bootstrap procedure
can certainly also be used for constructing confidence intervals or bands. Note that
thanks to using the specific variance-covariance structure in mixed effects models, not
only the parametric but also the nonparametric part is estimated efficiently.

Unlike most of the existing literature on semiparametric mixed effect models, we have
been able to provide both feasible procedures and asymptotic theory for all our
methods. The particular importance of these models and this kind of inference has been
discussed for small area statistics although mixed effects models are also frequently
used in many other fields. Our examples, especially the real data application, come from
this field, as well. It is important to emphasize again that for any model-based inference
the question of model specification is essential.

Our simulation study demonstrates the feasibility and the good behaviour of our quite
complex methods. Even for small sample sizes the nonparametric smoothing is no
problem, and the bootstrap-based test easily detects deviations from the null hypothesis.
Correlations in the design turned out not to cause serious problems here. We concluded
our findings with a real data application, also illustrating the usefulness and importance
of our methods for empirical studies in practice.

Extensions to other estimation approaches (already studied in the parametric context),
alternative test statistics, bootstrap procedures for heteroscedastic errors, and extensions
to other models like generalized additive models, are deferred to Lombardia and
Sperlich (2006a) for the sake of clarity and brevity of this paper.

Appendix

To provide our technical assumptions and definitions, we first introduce some more
notations. We define
oM
D*a(x) =—————a(x),
axlﬂl’l_ ’axklk
. . . k
being u, a k-vector of nonnegative integer constants, |yx|:zj:lyj and a(x) e * any
function. We denote by D;;7(Y)=D™"D¥I(Y;m,8) and by f{* (y,u,x|t) the

conditional density of D;7;*(Y) given T =t. Let us define for each 6 €A and teJ
h(o,m,t) =E[lI(Y;m,5)|T =t]

and mg(t) the solution to
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ih(5,m,t) =0,
om

with respect to m for each fixed ¢ and t.
Recall that I(Y;m,&)=log f (Y [u,T,X;m,8) +log p(u;cy).

Next we provide the conditions in the case where we consider the family of density
functions {f (-|u,t,x;m,5):06 e A meM}.
A.1 For fixed but arbitrary (m,s5) €M xA, let

p(M,5) = J1(y:m,8) £ (y | u,t, x;m, 5)dy,
with (m,0) e M xA . If 6 # 5, then p(m,d) < p(M,,51) -

A.2 The matrix I5 is positive definite forall 5 A and meM .

A.3 Assume that for vectors |r |<4 and |s; |<4 such that |1 |+]|s;|<4 the function
D™D*I(Y;m, &) exists for almost all Y . Further, assume that

E{supgsupm | D"D%I(Y;m, ) |2} <o,
A4 The Laplace transformation E[exp{t|Y, [}] is finite for t >0 small enough.

The condition [A.2] and [A.3] are usual in likelihood related problems. E.g. [A.3]
allows differentiation and integration to be interchanged when differentiating

p(M,5) = J10y;m,8) £ (¥ |u,t, x;m, 5,)dy.

The condition [A.4] is essential for the asymptotic expansions of Corollary 3, see
Mammen and van de Geer (1997).

Next, we need to include some smoothness assumptions that are necessary because of
the use of nonparametric smoothing methods:

B.1 Foreach 6eA andte3J,

Sup{é‘,m,t} | D"D*D* h(59 mat) |< ©

for 2<|r, <4, |s;1<2, [ X |<1,and |r, [+]S;|+]X |<4.
B.2 The solution to (21), mgs(t), is unique and for any constant >0 there exists
another v >0 such that

<v

0
sup 5Supy ‘a—m (. m (0.0
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implies that

Sup gsupy ‘m5(t) - m5(t) <eg.

B.3. Assume that
(a) E[supmsup5 | Dy (Y)[I<oo for |r [<5 and |s;[<3,

(b) for some even integer & >10 it holds that supmsupéE[| Dy (Y)[*]< o for |1, <3
and |s; <4,

(C) Sup,SUPgSUP, ¢ , | f (m%) (y,u,x|t) |< oo for |r, |<4 and |s,|<3,

(d) sup; | D*p(t)|< oo and SUP,SUP gSUP ¢ x, | D*f ,(y,u,x|t)|<o for |x [<a+2,

(e) and 0< inf{tej}p(t) < sup{tej}p(t) <00,

The assumptions [B.1] - [B.3] are sufficient to guarantee that the nonparametric
estimator from step 1 of Procedures A and B fulfill sup; . [M(to) —M(to) [= 0,(n*),

and thus it is the estimator of least favourable curves.

Finally, we also need to impose some conditions on the kernel function K(-) and the

bandwidth h:
N1. Function K(-) is a bounded kernel of order a with compact support, and

sup; | D*K(z) |< o for|t, |<a+2.

N2. The bandwidth vector h is of order O(n™*), 1/(4a) < a < (£ —3)/4q(& +6) such
that a/q > (£ —3)/(£+6) with & from [B.3] b).

Note that as in RSV03 we consider here the use of higher order kernels to allow for
higher dimensions of t. Otherwise, one could substitute conditions [N.1], [N.2] for the
ones of SW92 in Lemma 8 and 9.

Definition of least favourable curve and valid estimators

Acurve 6 >mg with m, = m is called least favourable if

2 2
d d
E,|—I(o,m <E,|—I(o,m
O[‘” ( 5)‘55(} 0[‘” ( 15)‘550]

for any other smooth curve &—m ¢ with m =m,. For more details and a
geometrical interpretation see SW92.
We next give the so called Conditions NP, i.e. conditions for being a valid estimator to

get an efficient parametric estimate for & . Here, m’" indicates a derivative w.r.t. & :
@ On ¥, (x) converges for each x to a constant r% (x) for all oA,

n% eM, andforallrs_OLz r+s<2, r05;1%(x) and r55m5(x) exist.

Further, ||o— g =0,(n"%), |M'o—mt|=0,(n""), where o+B>05 and
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a>0.25. Furthermore, sups_,

n.— : su n .- :
M5~ Poa|™ s M’&H

sup 5, mng—mﬁgu are all of order o,(1). Finally, for some &>0,

|orhy/ox — org/ox| and ||orv/Ox — Orrey/0x|| are of order op(n‘§).
(b) The curve r%§ is a least favourable curve.
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