FURTHER CONSIDERATIONS ON THE LINK BETWEEN ADJUSTMENT COSTS AND THE PRODUCTIVITY OF R&D INVESTMENT: EVIDENCE FOR SPAIN

Desiderio Romero-Jordán
José Félix Sanz-Sanz
Inmaculada Álvarez-Ayuso
De conformidad con la base quinta de la convocatoria del Programa de Estímulo a la Investigación, este trabajo ha sido sometido a evaluación externa anónima de especialistas cualificados a fin de contrastar su nivel técnico.

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los programas de la Fundación de las Cajas de Ahorros. Las opiniones son responsabilidad de los autores.
Further considerations on the link between adjustment costs and the productivity of R&D investment: evidence for Spain (1, 2, 3)

Desiderio Romero-Jordán
Universidad Rey Juan Carlos

José Félix Sanz-Sanz
Universidad Complutense de Madrid

Inmaculada Álvarez-Ayuso
Universidad Autónoma de Madrid

Summary: This paper constructs a dynamic model to estimate the impact of adjustment costs on the productivity of investment in R&D. In order to take into account the possible endogeneity of adjustment costs, the model is estimated by means of Instrumental Variables (IV), using a panel of Spanish companies. The results show that the elasticity of the productivity of R&D investment with regard to adjustment costs is high, with a value close to 1 (-0.96). This confirms that it is essential to include adjustment costs in the empirical analysis of R&D productivity, as suggested by Jones and Williams (1998) and Comin (2003, 2004).

Keywords: R&D, productivity, adjustment costs, companies

JEL code: O30, L60, C23

1. *Corresponding author.* Desiderio Romero-Jordán. Universidad Rey Juan Carlos (Vicálvaro Campus). Departamento de Economía Aplicada II y Fundamentos del Análisis Económico, Paseo de los Artilleros s/n. Madrid, 28032 (Spain). e-mail: desiderio.romero@urjc.es

2. We are grateful to José de Hevia for his comments and suggestions.

3. Desiderio Romero-Jordán wishes to thank the Community of Madrid and the Rey Juan Carlos University for financing Project V074/2006. José Félix Sanz-Sanz is grateful for contributions received from Project SEJ2006-04444/ECON, funded by the Spanish Ministry of Education and Science.
1. Introduction

Economists have made enormous efforts to evaluate the impact of R&D investment on growth and productivity (see the surveys undertaken by Griliches, 1992, Nadiri, 1993 and CBO, 2005). The evidence indicates that a positive relationship between these variables exists, although the range of elasticities is very wide (CBO, 2005). This breadth may be the result of various factors e.g. the type of data utilised in the empirical analysis, the definition of R&D, the econometric procedures used, etc. In recent years, certain authors, such as Jones and Williams (1998) and Comin (2003, 2004), have argued that the regressions habitually performed have omitted certain variables which simultaneously affect both productivity and investment in R&D. One factor frequently omitted in empirical research is that of adjustment costs (for some exceptions, see Schankerman and Nadiri, 1984, Nadiri and Kim, 1996 and Nishimura et al., 2005). Broadly speaking, adjustment costs, $H(\cdot)$, show the potential loss of output occurring during the maturation period of an investment project such as R&D. The sum of these costs is positively related to two factors: (i) the quantity of expenditure on R&D and (ii) the quantity of time elapsing from the beginning of the project until the results are fully incorporated into the production process.

Two principal arguments justify the incorporation of adjustment costs into the analysis of R&D productivity. Firstly, in an intertemporal setting, the optimal behaviour of the investor is determined by matching marginal costs and marginal benefits over the useful life of the investment. Obviously, dynamics can be rationalised by the existence of adjustment costs (apart from other factors, such as expectations). Secondly, adjustment costs are the result of multiple factors that enhance disembodied productivity, such as managerial and organisational practices, learning-by-doing mechanisms or the degree of commitment to the organisation on the part of white-collar workers (see Comin, 2004). In fact, since a...
portion of overall company knowledge is lost when white-collar workers leave or are dismissed, firms may make a strategic decision to spread their R&D expenditure over time (see Hall, 2002). This implies that spending on R&D at company level may entail high adjustment costs (for a discussion, see Hall et al., 1986, Lach and Schankerman, 1988, Bessen, 2002, 2003 and Comin, 2000, 2002).

Our contribution to this research field is twofold. Firstly, using Euler's equations as a basis, we construct a dynamic model for the estimation of R&D productivity regarding adjustment costs $H(.)$. Secondly, we model two types of adjustment costs: $H_i(.)$ represents the costs of the necessary equipment for researchers to perform their work i.e. the purchase of computers, acquisition of laboratory instruments, etc., while $H_R(.)$ depicts the loss of revenues due to changes in research staff membership i.e. the time which elapses between the incorporation of a scientist or engineer into the workforce (earning a salary), and the moment his or her activity begins to produce results.

The evaluation of the model is performed using a panel of Spanish manufacturing companies for the time period 1990-2001. The Spanish case is interesting for two reasons: firstly, because until today little analysis of this field has been performed in Spain and, secondly, because the proportion of Spanish company investment in R&D is one of the lowest in the EU-15. It may well be that the high adjustment costs in Spanish R&D investment explain such low levels.

This paper takes the following format. In Section 2 the model and the econometric specification are presented. The data utilised and the results of the estimation are given in Section 3, and the conclusions are described in Section 4.
2. Model and econometric specification

Under traditional assumptions, the present value of a given company is determined as follows:

\[
MaxE \sum_{t=1}^{n} \left[\prod_{s=t}^{n} \beta_{s} \right] \pi_{it}
\]
(1)

where \(E \) is the expectation operator, \(\pi_{it} \) is the after-tax dividends of the firm (throughout this article, the subindex \(i \) represents the company and \(t \) the time period), and \(\beta_{s} \) is the discount factor. The optimisation problem is subject to the restrictions inherent in the following equations (2), (3) and (4), which define the firm’s dividends and the R&D stock (see Whited, 1992):

\[
\pi_{it} = (i - \mu) \left[F(R_{i,t-1}, \cdot) - H(R_{i,t-1}, R_{i,t-1}) - C(\cdot) \right] - p^{R}_{it} R^{R}_{it}
\]
(2)

\[
\pi_{it} \geq 0
\]
(3)

\[
R_{it} = I^{R}_{it} + (1 - \delta_{R}) R_{i,t-1}
\]
(4)

where \(\mu \) is the nominal tax rate of corporation tax, \(F(\cdot) \) are revenues, \(H(\cdot) \) represents the adjustment costs of investment in R&D, \(I^{R} \) is the market value of the investment in R&D, \(R \) is the value of stock, \(C(\cdot) \) represents other intermediate costs (such as raw materials) and, finally, \(p^{R} \) is the “fiscal” price per unit of investment in R&D. Specifically, \(p^{R}_{it} = (1 - \Phi_{it}) \)

where \(\Phi_{it} \) is the present value of tax credits and tax depreciations for R&D investment (see Appendix).\(^4\) Deriving the first order conditions with respect to R&D stock, we obtain the following Euler equation:

\(^4\) In Spain, approximately 60% of R&D expenditure is constituted by personnel costs, 25% by capital expenditure and the remaining 15% by other current expenditure (INE, 2001). Thus, \(R \) is a
Following the appropriate operations and simplifications, we obtain:

\[
(1 + \lambda_{t}) \left\{ (1 - \mu) \left[\frac{\partial F(R_{i,j-1},)}{\partial R_{i,j-1}} - \frac{\partial H(I_{it}, R_{i,j-1})}{\partial I_{it}} \frac{\partial I_{it}}{\partial R_{i,j-1}} - \frac{\partial H(I_{it}, R_{i,j-1})}{\partial R_{i,j-1}} \right] - p_{it}^R \frac{\partial I_{it}}{\partial R_{i,t}} \right\} +
\]

\[
+ (1 + \lambda_{i,j+1}) \beta_{i,j+1} E_t \left\{ (1 - \mu) \left[\frac{\partial F(R_{i,j+1},)}{\partial R_{i,j+1}} - \frac{\partial H(I_{i,j+1}, R_{i,j+1})}{\partial I_{i,j+1}} \frac{\partial I_{i,j+1}}{\partial R_{i,j+1}} - \frac{\partial H(I_{i,j+1}, R_{i,j+1})}{\partial R_{i,j+1}} \right] - p_{i,j+1}^R \frac{\partial I_{i,j+1}}{\partial R_{i,j+1}} \right\} = 0
\]

where \(\lambda_{it} \) is the Lagrange multiplier associated to the constraint (3). Under the null hypothesis of no capital-market frictions, \(\lambda_{it} \approx \lambda_{i,j+1} \) (see Hubbard et al., 1995). In addition, we assume the existence of rational expectations. Dividing (6) by \((1 - \mu) \), we obtain:

\[
\left(1 + \lambda_{t}\right) \left\{ F_R \left(R_{i,j-1},\right) \frac{1}{1 - \delta_R} + \beta_{i,j+1} F_R \left(R_{i,j+1},\right) - H_R \left(I_{it}, R_{i,j-1}\right) - \beta_{i,j+1} H_R \left(I_{i,j+1}, R_{i,j+1}\right) \right\} - p_{it}^R \frac{\partial R_{i,j+1}}{\partial R_{i,t}}
\]

\[+
\beta_{i,j+1} (1 + \lambda_{i,j+1}) E_t \left\{ \left(1 - \mu\right) \left[F_R \left(R_{i,j+1},\right) + H_R \left(I_{i,j+1}, R_{i,j+1}\right) \right] - p_{i,j+1}^R \frac{\partial R_{i,j+1}}{\partial R_{i,t}} \right\} = 0
\]

The left-hand side of expression (7) represents the total amount of the current value of marginal productivity of the R&D stock valued at period \(t \). For estimation purposes, we define \(P_{it} \) as follows:

\[
P_{it} = \frac{Y_{it} - C_{it}}{R_{i,j-1}} \frac{1}{1 - \delta_R} + \beta_{i,j+1} \frac{Y_{i,j+1} - C_{i,j+1}}{R_{i,t}}
\]

mixture of technological capital (for example, laboratories) and of the know-how of scientists and engineers involved in R&D tasks.
where Y is the level of output and C represents intermediate costs. To obtain the values for $H_i(.)$ and $H_R(.)$, we use a convex quadratic adjustment costs function in R:

$$H(.) = \frac{1}{2} \left(\frac{I_{it}}{R_{i,t-1}} - v \right)^2 R_{i,t-1}$$ \hspace{1cm} (9)

For each firm, the greater the rate of investment ($I_{it}/R_{i,t-1}$), the greater the monetary costs associated with this investment. The parameter v can be interpreted as the specific level of investment required to minimise $H(.)$. For simplicity’s sake, we assume that v is zero for all firms. From (9) we derive the corresponding adjustment cost functions:

$$H_i(I_{it}^R, R_{i,t-1}) = \left[\frac{R_{i,t-1} + I_{it}^R}{1 - \delta_R} \right] - \frac{1}{2} \left(\frac{I_{it}^R}{R_{i,t-1}} \right)^2 \frac{1}{1 - \delta_R}$$ \hspace{1cm} (10)

$$H_i(I_{i,t+1}^R, R_{it}) = \left[\frac{R_{it} + I_{i,t+1}^R}{1 - \delta_R} \right] - \frac{1}{2} \left(\frac{I_{i,t+1}^R}{R_{it}} \right)^2 \frac{1}{1 - \delta_R}$$ \hspace{1cm} (11)

$$H_R(I_{it}^R, R_{i,t-1}) = \left[\frac{- (1 - \delta_R) R_{i,t-1} - I_{it}^R}{(R_{i,t-1})^2} \right] R_{i,t-1} + \frac{1}{2} \left(\frac{I_{it}^R}{R_{i,t-1}} \right)^2$$ \hspace{1cm} (12)

$$H_R(I_{i,t+1}^R, R_{it}) = \left[\frac{- (1 - \delta_R) R_{it} - I_{i,t+1}^R}{(R_{it})^2} \right] R_{it} + \frac{1}{2} \left(\frac{I_{i,t+1}^R}{R_{it}} \right)^2$$ \hspace{1cm} (13)

Thus, from expressions (7) to (13) we can rewrite the model as:
The term on the far right-hand-side includes the relation between productivity growth and adjustment costs. As can be observed, the expected relation between both magnitudes is negative. The second term from the right includes the effect of the taxation of investment on productivity. In this case, we expect the sign associated with parameter η to be positive.

Taking the logarithms in expression \[(14)\], we attain the model to be estimated:

\[
\ln P_{it} = \alpha - \gamma \beta_{i,t+1} \left[\frac{I_{i,t+1}}{R_{it}} \right] + \left(\frac{I_{i,t+1}}{R_{it}} \right) + \eta \left[p_{it} + \beta_{i,t+1} p_{i,t+1} (1 - \delta) \right] \tag{15}
\]

where X_{it} is the vector of the adjustment costs linked to the process of R&D investment, which is allowed to be correlated with v_{it}. The variation in effective “fiscal” prices is denoted by Z_{it}. In addition, two sets of dummies have been included in the model. The first of these is a proxy for time effects, D_t, while the second captures company characteristics i.e. if the company has at least 200 wage-earners (D_1), if it is quoted on the stock exchange (D_2), if it is constituted by public capital (D_3) and if it belongs to a technology-intensive sector (D_4).

Lastly, u_i are the fixed-effects (with σ_u standard deviation) which may be correlated with the variables in X_{it}, and v_{it} is the error component (with zero mean and σ_v standard deviation) which is uncorrelated with the variables in X_{it}.
3. Data and results

The database used in this study is the Survey of Company Strategies (ESEE). The ESEE, an annual representative survey of manufacturing companies, was undertaken in Spain for the Ministry of Industry during the period 1990-2000. A subsample of 125 companies (which fulfilled the condition of full and complete participation for all the years the survey was performed) was then extracted. The definition of the variables used, whether raw or derived, is explained in detail in the Appendix.

Table 1 shows the estimation results of equation (14). The model has been estimated by means of the within estimator in order to capture unobservable heterogeneity (see Hsiao, 1986); thus, the bias generated by the potential omission of variables in the regression has been avoided. Estimations have been carried out in logarithmic form, in order to control for the possible existence of heteroskedasticity. Column II includes the estimation of the model by Instrumental Variables (IV), in order to take into account the potential endogeneity of adjustment costs with regard to R&D productivity (for a discussion on this subject, see CBO, 2005). Estimation using IV makes it possible to obtain an unbiased estimation which is consistent with the parameters (see Wooldridge, 2006). The instrument used was the same variable, but one-period lagged. Figure 1 shows that the adjustment of the residuals to normal standardised distribution is greater when we use instrumental variables (right-hand graph).

As Table 1 shows, the F statistic demonstrates that the significance of both estimations is high. If the results obtained in Column II are examined, it is clear that the instrumentation of adjustment costs reinforces the negative sign of the coefficient. Likewise, the estimation with IV increases the significance of parameter γ to 95%. The results indicate that if
adjustment costs increase by 1%, growth in productivity will be reduced by 0.96%. The parameter associated with taxation of R&D, η, displays the correct sign but is nevertheless not significant.

On this point, it should be noted that the coefficients of the dummy variables maintain their sign and significance in the two estimations. The size and degree of technological intensity of companies have a positive effect on the productivity of R&D investment, while the public ownership of companies exerts a negative influence. The temporal dummies refer to each year of this study in the time period 1991-1999. Lastly, the high percentage of variance displayed by the fixed effects should be emphasised.

4. Final remarks

The present study evaluates the role of R&D adjustment costs. The results show that the elasticity of productivity with respect to R&D adjustment costs is approximately 1 (-0.96). This confirms that adjustment costs should be included in the empirical analysis of R&D productivity; otherwise, as Jones and Williams (1998) and Comin (2003, 2004) have suggested, R&D productivity could be incorrectly measured.
Table 1: Determinants of R&D Investment Productivity
Dependent Variable: $\ln P_{it}$
Panel data model with fixed effects

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Without Instrumental Variables</th>
<th>With Instrumental Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.34(3.21)**</td>
<td>2.07(3.23)**</td>
</tr>
<tr>
<td>$\ln X_{it}$</td>
<td>-0.04(-0.98)</td>
<td>-0.96(-2.03)**</td>
</tr>
<tr>
<td>$\ln Z_{it}$</td>
<td>-0.01(-2.12)**</td>
<td>0.01(0.73)</td>
</tr>
<tr>
<td>D_1</td>
<td>0.23(2.50)**</td>
<td>0.24(1.98)**</td>
</tr>
<tr>
<td>D_2</td>
<td>-0.00(-0.00)</td>
<td>-0.06(-0.52)</td>
</tr>
<tr>
<td>D_3</td>
<td>-0.43(-3.28)**</td>
<td>-0.47(-3.27)**</td>
</tr>
<tr>
<td>D_4</td>
<td>0.06(1.55)*</td>
<td>0.07(1.44)*</td>
</tr>
<tr>
<td>1991</td>
<td>0.72(8.85)**</td>
<td>-</td>
</tr>
<tr>
<td>1992</td>
<td>0.46(6.36)**</td>
<td>1.12(3.20)**</td>
</tr>
<tr>
<td>1993</td>
<td>0.40(5.74)**</td>
<td>0.84(3.59)**</td>
</tr>
<tr>
<td>1994</td>
<td>0.28(4.11)**</td>
<td>0.59(3.34)**</td>
</tr>
<tr>
<td>1995</td>
<td>0.24(3.64)**</td>
<td>0.45(3.50)**</td>
</tr>
<tr>
<td>1996</td>
<td>0.14(2.06)**</td>
<td>0.31(2.75)**</td>
</tr>
<tr>
<td>1997</td>
<td>0.08(1.19)</td>
<td>0.17(2.10)**</td>
</tr>
<tr>
<td>1998</td>
<td>0.06(0.86)</td>
<td>0.04(0.63)</td>
</tr>
</tbody>
</table>

σ_u	1.14	1.21
σ_e	0.50	0.53
ρ	0.84	0.84

F-test of significance: $F(14,986) = 14.91$, $F(138,862) = 8.10$
Observations: 1.125, 1.000

ρ: is the percentage of variance displayed by the fixed effects.
t-statistic in parentheses
* Parameter significant at 90%
** Parameter significant at 95%
Figure 1: Residual Analysis

Without instrumental variables

- Std.Dev.: 0.469
- Mean: 2.19e-09
- N: 1125

With instrumental variables

- Std.Dev.: 0.494
- Mean: 2.97e-09
- N: 1000
Appendix

Construction of variables

Production (Y)

The value of production (in 1990 pesetas) has been calculated as the monetary value of production (sales plus variation of stocks) divided by a deflator of production \(d_{it}^Y \). This deflator has been constructed for each company, based on the available information concerning the variation in annual sales prices \(\pi_{it} \).

Intermediate inputs (C)

Annual expenditure on intermediate inputs has been constructed as the sum of the purchases of energy and fuel, raw materials and payment for external services. As a deflator of this variable, the National Statistics Institute’s Index of Industrial Prices has been used. If we divide annual monetary expenditure on intermediate inputs by the deflator, we obtain the value of such inputs in 1990 pesetas. Unfortunately, the information provided by the ESEE does not itemise the expenditure assigned to R&D activities. Consequently, this variable is affected by a problem of double accounting.

Technological capital stock (R)

Technological capital stock, \(R_{in} \), is defined as the accumulation (net of depreciation) of annual expenditure on R&D. Such expenditure is aimed at the development of new materials, products or productive processes, as well as the improvement of existing production systems. Included in this variable is expenditure earmarked for external research contracts signed with, for example, universities and specialist companies. The stock of technological capital has been constructed for each company by means of the permanent inventory method referred to in equation (3). As in the majority of existing studies for the case of Spain (see Marra, 2004), in this paper a constant rate of depreciation of 15% is used. In order to calculate the stock of technological capital for the first year of the sample, we have used the procedure proposed by Beneito (2001):

\[
R_1 = I_1 (1 + m) \left[(1 - \eta^T) / (1 - \eta) \right]
\]

\[\text{[A.1]}\]
\[\eta = (1 - m)(1 - \delta) \]

where \(R_1 \) is the investment in year 1, \(m \) is the average growth rate of companies which undertake R&D, \(T \) is the number of years since the founding of the company and \(\delta \) is the (constant) rate of depreciation of R&D stock.

Effective “fiscal” price of technological capital (p)

The effective “fiscal” price, per unit of R&D investment, is defined as follows:

\[p_u = (1 - h_u - uz_u) \]

where \(h_u \) is the instantaneous tax credit on R&D investment and \(uz_u \) is the present value of tax savings from the depreciation of assets related to R&D activities.

For the years 1990 to 1992, the percentage of \(h_u \) is 30%. From 1993 onwards, there are two percentages of deduction: one is applicable to the total investment of the fiscal year analysed \(h_t \) and the other is applicable to the incremental base \(B_u \). The incremental base is the difference between the investment during the fiscal year analysed and the average investment of the two preceding fiscal years. Thus, tax savings derived from credit for R&D investment are defined as follows:

\[B_u h_t + \theta B^*_u h^* \]

being:

\[B^*_u = B_u - \frac{1}{2} \sum_{i=1}^{2} B_{u,i-1} \]

with the following restrictions:

\[\theta \begin{cases} 0 & \text{si} & B^*_u \leq 0 \\ 1 & \text{si} & B^*_u > 0 \end{cases} \]

\[[A.6] \]
For the years 1993 to 1995, the percentage applicable to the incremental base is 45%. During the period 1996 to 1999, a 20% deduction is applied, with an additional 40% on the incremental base. In the period 2000 to 2001 percentages of 30% and 50% are applied respectively.
Últimos números publicados

159/2000 Participación privada en la construcción y explotación de carreteras de peaje
Ginés de Rus, Manuel Romero y Lourdes Trujillo

160/2000 Errores y posibles soluciones en la aplicación del Value at Risk
Mariano González Sánchez

161/2000 Tax neutrality on saving assets. The spahish case before and after the tax reform
Cristina Ruza y de Paz-Curbera

162/2000 Private rates of return to human capital in Spain: new evidence
F. Barceinas, J. Oliver-Alonso, J.L. Raymond y J.L. Roig-Sabaté

163/2000 El control interno del riesgo. Una propuesta de sistema de límites
riesgo neutral
Mariano González Sánchez

164/2001 La evolución de las políticas de gasto de las Administraciones Públicas en los años 90
Alfonso Utrilla de la Hoz y Carmen Pérez Esparrells

165/2001 Bank cost efficiency and output specification
Emili Tortosa-Ausina

166/2001 Recent trends in Spanish income distribution: A robust picture of falling income inequality
Josep Oliver-Alonso, Xavier Ramos y José Luis Raymond-Bara

167/2001 Efectos redistributivos y sobre el bienestar social del tratamiento de las cargas familiares en
el nuevo IRPF
Nuria Badenes Plá, Julio López Laborda, Jorge Onrubia Fernández

168/2001 The Effects of Bank Debt on Financial Structure of Small and Medium Firms in some Euro-
cean Countries
Mónica Melle-Hernández

169/2001 La política de cohesión de la UE ampliada: la perspectiva de España
Ismael Sanz Labrador

170/2002 Riesgo de liquidez de Mercado
Mariano González Sánchez

171/2002 Los costes de administración para el afiliado en los sistemas de pensiones basados en cuentas
de capitalización individual: medida y comparación internacional.
José Enrique Devesa Carpio, Rosa Rodriguez Barrera, Carlos Vidal Meliá

y propuestas de metodología para la explotación de la información de los ingresos y el gasto.
Llorenç Pou, Joaquín Alegre

173/2002 Modelos paramétricos y no paramétricos en problemas de concesión de tarjetas de credito.
Rosa Puertas, María Bonilla, Ignacio Olmeda
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>174/2002</td>
<td>Mercado único, comercio intra-industrial y costes de ajuste en las manufacturas españolas.</td>
<td>José Vicente Blanes Cristóbal</td>
</tr>
<tr>
<td>175/2003</td>
<td>La Administración tributaria en España. Un análisis de la gestión a través de los ingresos y de los gastos.</td>
<td>Juan de Dios Jiménez Aguilera, Pedro Enrique Barrilao González</td>
</tr>
<tr>
<td>176/2003</td>
<td>The Falling Share of Cash Payments in Spain.</td>
<td>Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey</td>
</tr>
<tr>
<td>177/2003</td>
<td>Effects of ATMs and Electronic Payments on Banking Costs: The Spanish Case.</td>
<td>Santiago Carbó Valverde, Rafael López del Paso, David B. Humphrey</td>
</tr>
<tr>
<td>178/2003</td>
<td>Factors explaining the interest margin in the banking sectors of the European Union.</td>
<td>Joaquín Maudos y Juan Fernández Guevara</td>
</tr>
<tr>
<td>179/2003</td>
<td>Los planes de stock options para directivos y consejeros y su valoración por el mercado de valores en España.</td>
<td>Mónica Melle Hernández</td>
</tr>
<tr>
<td>181/2003</td>
<td>The Euro effect on the integration of the European stock markets.</td>
<td>Mónica Melle Hernández</td>
</tr>
<tr>
<td>182/2004</td>
<td>In search of complementarity in the innovation strategy: international R&D and external knowledge acquisition.</td>
<td>Bruno Cassiman, Reinhilde Veugelers</td>
</tr>
<tr>
<td>183/2004</td>
<td>Fijación de precios en el sector público: una aplicación para el servicio municipal de suministro de agua.</td>
<td>Mª Ángeles García Valiñas</td>
</tr>
<tr>
<td>184/2004</td>
<td>Estimación de la economía sumergida en España: un modelo estructural de variables latentes.</td>
<td>Ángel Alañón Pardo, Miguel Gómez de Antonio</td>
</tr>
<tr>
<td>185/2004</td>
<td>Causas políticas y consecuencias sociales de la corrupción.</td>
<td>Joan Oriol Prats Cabrera</td>
</tr>
<tr>
<td>186/2004</td>
<td>Loan bankers’ decisions and sensitivity to the audit report using the belief revision model.</td>
<td>Andrés Guiral Contreras and José A. Gonzalo Angulo</td>
</tr>
<tr>
<td>187/2004</td>
<td>El modelo de Black, Derman y Toy en la práctica. Aplicación al mercado español.</td>
<td>Marta Tolentino García-Abadillo y Antonio Díaz Pérez</td>
</tr>
<tr>
<td>188/2004</td>
<td>Does market competition make banks perform well?.</td>
<td>Mónica Melle</td>
</tr>
<tr>
<td>189/2004</td>
<td>Efficiency differences among banks: external, technical, internal, and managerial</td>
<td>Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso</td>
</tr>
</tbody>
</table>
190/2004 Una aproximación al análisis de los costes de la esquizofrenia en España: los modelos jerárquicos bayesianos
F. J. Vázquez-Polo, M. A. Negrín, J. M. Cavasés, E. Sánchez y grupo RIRAG

191/2004 Environmental proactivity and business performance: an empirical analysis
Javier González-Benito y Óscar González-Benito

192/2004 Economic risk to beneficiaries in national defined contribution accounts (NDCs)
Carlos Vidal-Meliá, Inmaculada Domínguez-Fabian y José Enrique Devesa-Carpio

193/2004 Sources of efficiency gains in port reform: non parametric malmquist decomposition tfp index for Mexico
Antonio Estache, Beatriz Tovar de la Fé y Lourdes Trujillo

194/2004 Persistencia de resultados en los fondos de inversión españoles
Alfredo Ciriaco Fernández y Rafael Santamaría Aquilué

195/2005 El modelo de revisión de creencias como aproximación psicológica a la formación del juicio del auditor sobre la gestión continuada
Andrés Guiral Contreras y Francisco Esteso Sánchez

196/2005 La nueva financiación sanitaria en España: descentralización y prospectiva
David Cantarero Prieto

197/2005 A cointegration analysis of the Long-Run supply response of Spanish agriculture to the common agricultural policy
José A. Mendez, Ricardo Mora y Carlos San Juan

198/2005 ¿Refleja la estructura temporal de los tipos de interés del mercado español preferencia por la liquidez?
Magdalena Massot Perelló y Juan M. Nave

199/2005 Análisis de impacto de los Fondos Estructurales Europeos recibidos por una economía regional: Un enfoque a través de Matrices de Contabilidad Social
M. Carmen Lima y M. Alejandro Cardenete

200/2005 Does the development of non-cash payments affect monetary policy transmission?
Santiago Carbó Valverde y Rafael López del Paso

201/2005 Firm and time varying technical and allocative efficiency: an application for port cargo handling firms
Ana Rodríguez-Álvarez, Beatriz Tovar de la Fé y Lourdes Trujillo

202/2005 Contractual complexity in strategic alliances
Jeffrey J. Reuer y África Ariño

203/2005 Factores determinantes de la evolución del empleo en las empresas adquiridas por opa
Nuria Alcalde Fradejas y Inés Pérez-Soba Aguilar

Elena Olmedo, Juan M. Valderas, Ricardo Gimeno and Lorenzo Escot
205/2005 Precio de la tierra con presión urbana: un modelo para España
Esther Decimavilla, Carlos San Juan y Stefan Sperlich

206/2005 Interregional migration in Spain: a semiparametric analysis
Adolfo Maza y José Villaverde

207/2005 Productivity growth in European banking
Carmen Murillo-Melchor, José Manuel Pastor y Emili Tortosa-Ausina

Santiago Carbó Valverde, David B. Humphrey y Rafael López del Paso

209/2005 La elasticidad de sustitución intertemporal con preferencias no separables intratemporalmente: los casos de Alemania, España y Francia.
Elena Márquez de la Cruz, Ana R. Martínez Cañete y Inés Pérez-Soba Aguilar

210/2005 Contribución de los efectos tamaño, book-to-market y momentum a la valoración de activos: el caso español.
Begoña Font-Belaire y Alfredo Juan Grau-Grau

211/2005 Permanent income, convergence and inequality among countries
José M. Pastor and Lorenzo Serrano

212/2005 The Latin Model of Welfare: Do 'Insertion Contracts' Reduce Long-Term Dependence?
Luis Ayala and Magdalena Rodríguez

213/2005 The effect of geographic expansion on the productivity of Spanish savings banks
Manuel Illueca, José M. Pastor and Emili Tortosa-Ausina

214/2005 Dynamic network interconnection under consumer switching costs
Ángel Luis López Rodríguez

215/2005 La influencia del entorno socioeconómico en la realización de estudios universitarios: una aproximación al caso español en la década de los noventa
Marta Rahona López

216/2005 The valuation of spanish ipos: efficiency analysis
Susana Álvarez Otero

217/2005 On the generation of a regular multi-input multi-output technology using parametric output distance functions
Sergio Perelman and Daniel Santín

218/2005 La gobernanza de los procesos parlamentarios: la organización industrial del congreso de los diputados en España
Gonzalo Caballero Miguez

219/2005 Determinants of bank market structure: Efficiency and political economy variables
Francisco González

220/2005 Agresividad de las órdenes introducidas en el mercado español: estrategias, determinantes y medidas de performance
David Abad Diaz
221/2005 Tendencia post-anuncio de resultados contables: evidencia para el mercado español
Carlos Forner Rodríguez, Joaquín Marhuenda Fructuoso y Sonia Sanabria García

222/2005 Human capital accumulation and geography: empirical evidence in the European Union
Jesús López-Rodríguez, J. Andrés Faíña y Jose Lopez Rodriguez

223/2005 Auditors' Forecasting in Going Concern Decisions: Framing, Confidence and Information Processing
Waymond Rodgers and Andrés Guiral

José Ramón Cancelo de la Torre, J. Andrés Faíña and Jesús López-Rodríguez

225/2005 The effects of ownership structure and board composition on the audit committee activity: Spanish evidence
Carlos Fernández Méndez and Rubén Arrondo García

226/2005 Cross-country determinants of bank income smoothing by managing loan loss provisions
Ana Rosa Fonseca and Francisco González

Alejandro Estellér Moré

228/2005 Region versus Industry effects: volatility transmission
Pilar Soriano Felipe and Francisco J. Climent Diranzo

Daniel Vázquez-Bustelo and Sandra Valle

Alfonso Palacio-Vera

231/2005 Reconciling Sustainability and Discounting in Cost Benefit Analysis: a methodological proposal
M. Carmen Almansa Sáez and Javier Calatrava Requena

232/2005 Can The Excess Of Liquidity Affect The Effectiveness Of The European Monetary Policy?
Santiago Carbó Valverde and Rafael López del Paso

Miguel Angel Barberán Lahuerta

Víctor M. González

Waymond Rodgers, Paul Pavlou and Andres Guiral.

Francisco J. André, M. Alejandro Cardenete y Carlos Romero.

238/2006 Trade Effects Of Monetary Agreements: Evidence For Oecd Countries. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

240/2006 La interacción entre el éxito competitivo y las condiciones del mercado doméstico como determinantes de la decisión de exportación en las Pymes. Francisco García Pérez.

241/2006 Una estimación de la depreciación del capital humano por sectores, por ocupación y en el tiempo. Inés P. Murillo.

244/2006 Did The European Exchange-Rate Mechanism Contribute To The Integration Of Peripheral Countries?. Salvador Gil-Pareja, Rafael Llorca-Vivero y José Antonio Martínez-Serrano.

José M. Pastor, Empar Pons y Lorenzo Serrano

255/2006 Environmental implications of organic food preferences: an application of the impure public goods model.
Ana Maria Aldanondo-Ochoa y Carmen Almansa-Sáez

José Felix Sanz-Sanz, Desiderio Romero-Jordán y Santiago Álvarez-Garcia

257/2006 La internacionalización de la empresa manufacturera española: efectos del capital humano genérico y específico.
José López Rodríguez

María Martínez Torres

259/2006 Efficiency and market power in Spanish banking.
Rolf Färe, Shawna Grosskopf y Emili Tortosa-Ausina.

Helena Chuliá y Hipòlit Torró.

José Antonio Ortega.

262/2006 Accidentes de tráfico, víctimas mortales y consumo de alcohol.
José Mª Arranz y Ana I. Gil.

263/2006 Análisis de la Presencia de la Mujer en los Consejos de Administración de las Mil Mayores Empresas Españolas.
Ruth Mateos de Cabo, Lorenzo Escot Mangas y Ricardo Gimeno Nogués.

Ignacio Álvarez Peralta.

Jaime Vallés-Giménez y Anabel Zárate-Marco.

266/2006 Health Human Capital And The Shift From Foraging To Farming.
Paolo Rungo.

Juan Luis Jiménez y Jordi Perdiguer.

Desiderio Romero-Jordán y José Félix Sanz-Sanz.

269/2006 Banking competition, financial dependence and economic growth
Joaquín Maudos y Juan Fernández de Guevara

270/2006 Efficiency, subsidies and environmental adaptation of animal farming under CAP
Werner Kleinhans, Carmen Murillo, Carlos San Juan y Stefan Sperlich

272/2006 Riesgo asimétrico y estrategias de momentum en el mercado de valores español. Luís Muga y Rafael Santamaria

273/2006 Valoración de capital-riesgo en proyectos de base tecnológica e innovadora a través de la teoría de opciones reales. Gracia Rubio Martín

274/2006 Capital stock and unemployment: searching for the missing link. Ana Rosa Martínez-Cañete, Elena Márquez de la Cruz, Alfonso Palacio-Vera and Inés Pérez-Soba Aguilar

275/2006 Study of the influence of the voters’ political culture on vote decision through the simulation of a political competition problem in Spain. Sagrario Lantarón, Isabel Lillo, Mª Dolores López and Javier Rodrigo

276/2006 Investment and growth in Europe during the Golden Age. Antonio Cubel and Mª Teresa Sanchis

277/2006 Efectos de vincular la pensión pública a la inversión en cantidad y calidad de hijos en un modelo de equilibrio general. Robert Meneu Gaya

278/2006 El consumo y la valoración de activos. Elena Márquez y Belén Nieto

280/2006 Three measures of returns to education: An illustration for the case of Spain. María Arrazola y José de Hevia

281/2006 Composition of Firms versus Composition of Jobs. Antoni Cunyat

283/2006 Una visión panorámica de las entidades de crédito en España en la última década. Constantino García Ramos

285/2006 Los intereses belgas en la red ferroviaria catalana, 1890-1936. Alberete Martínez López

286/2006 The Governance of Quality: The Case of the Agrifood Brand Names. Marta Fernández Barcala, Manuel González-Díaz y Emmanuel Raynaud

287/2006 Modelling the role of health status in the transition out of malthusian equilibrium. Paolo Rungo, Luis Currais and Berta Rivera

288/2006 Industrial Effects of Climate Change Policies through the EU Emissions Trading Scheme. Xavier Labandeira and Miguel Rodríguez
Globalisation and the Composition of Government Spending: An analysis for OECD countries
Norman Gemmell, Richard Kneller and Ismael Sanz

La producción de energía eléctrica en España: Análisis económico de la actividad tras la liberali-
zación del Sector Eléctrico
Fernando Hernández Martínez

Further considerations on the link between adjustment costs and the productivity of R&D invest-
ment: evidence for Spain
Desiderio Romero-Jordán, José Félix Sanz-Sanz and Inmaculada Álvarez-Ayuso