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Testing for Structural Breaks in Variance and the Effect of Additive Outliers 

and Measurement Errors 

 
 

Abstract 
This paper discusses the asymptotic and finite-sample properties of CUSUM-based tests for 
detecting structural breaks in volatility. Our aim is to analyze formally the effects of 
stochastic contamination, such as additive outliers or measurement errors. This analysis is 
particularly relevant for financial data, for which these tests are the most common way to 
detect variance breaks. In particular, we focus on the tests by Inclán and Tiao (1994) [IT] 
and Kokoszka and Leipus (1998, 2000) [KL], which have been intensively used on these 
data in the applied literature. Our results are extensible to related procedures. We show that 
the asymptotic distribution of the IT test can largely be affected by sample contamination, 
whereas the distribution of the KL test remains invariant. Furthermore, the break-point 
estimator of the KL test renders consistent estimates. In spite of the good large-sample 
properties for this test, we discuss that large additive outliers tend to generate power 
distortions or wrong break-date estimates in small samples. 
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1.   Introduction 
 

There is much evidence that economic time-series are non-stationary when observed 
over long enough periods of time. Police-regime shifts and other many factors may 
generate parameter instability in the underlying generating process, often leading to abrupt 
changes. While there has been an obvious interest to analyze mean shifts in variables as 
well as their specific sources, the recent literature in Financial Economics also concerns 
with instability on higher moments. A special interest has been directed towards addressing 
variance homogeneity, since this moment heavily characterizes the statistical properties of 
the economic models and their predictions. For instance, McConnell and Perez-Quirós 
(2000), and Sensier and van Dijk (2004), among others, find strong evidence suggesting a 
sharp decline in the volatility of macroeconomic variables, which has important policy 
implications. Also, since volatility is central to Financial theory and its related applications 
in risk management and investment decision-making, there is a growing interest to analyze 
variance stability in financial markets (see, among others, De Santis and Imrohoroglu 1997) 
and the effects of neglected breaks in time-series modelling (see Lamoureaux and Lastrapes 
1990, Granger and Hyung 2004, Mikosch and Stărică 2004, and Hillebrand 2005). 
 

The statistical procedures specifically designed to estimate breaks in volatility 
which have been mostly used in the applied literature are based on CUSUM-type 
procedures.4 Into this category fall the parametric and non-parametric methods discussed in 
Pagan and Schwertz (1990), Phillips and Loretan (1990), Inclán and Tiao (1994), Kokoszka 
and Leipus (1998, 2000), Kim, Cho and Lee (2000), Sansó, Aragó and Carrión (2004), 
Chen, Choi and Zhou (2005), as well as several extensions of these procedures. The reason 
for this preference is that these tests are easily implemeted and, furthemore, most of the 
them are model-free and admit a fairly general class of generating processes. All the tests 
adopt a simmilar strategy to detect breaks, although some of them differ significantly in 
their basic assumptions. The ability to identify sudden changes depends critically on the 
characteristics of the real data and the suitability of the assumptions. For financial data, the 
most relevant features are the existence of time-varying volatility patterns (i.e., temporal 
dependences) and contaminated observations, such as outliers. Andreou and Ghysels (2002) 
show by Monte Carlo simulation that strongly-persistent volatility may lead to important 
distortions in the size of several CUSUM tests. On the other hand, the effect of 
contaminated observations has not been analyzed formally. Nevertheless, there are at least 
two sources of stochastic contamination that are worth of discussion in the framework of 
financial data, namely, additive outliers and measurement errors. It is well-known that 
returns are characterized by leptokurtic distributions, but even after accounting for this 
feature, extreme market movements and other unpredictable events lead to abnormally 

                                                 
4There is a small but growing literature on detecting breaks in volatility. Andreou and 
Ghysels (2004) and Kokoszca and Teyssière (2002) discuss alternative methods to CUSUM 
tests. 
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large observations which are considered as outliers.5 Non-synchronous trading and thin-
trading may generate measurement errors in the recorded data of individual stocks, 
portfolios, and market indices; see Campbell, Lo and McKinlay (1997). This problem may 
be particularly serious in emerging markets, for which the literature related to variance 
stability has paid a special attention; see Bekaert and Harvey (1997, 2000), and Aggarwal, 
Inclán and Leal (1999). 

 
In this paper, we formally discuss the effects that sample contamination originating 

in any of these sources has on the asymptotic properties of CUSUM-type tests for detecting 
change points in variance. In particular, we analyze the effects of additive outliers and/or 
measurement errors on  i   the asymptotic distribution,  ii   the consistency of the turning 
point estimator, and  iii   the small-sample performance of these procedures. Owing to their 
empirical relevance in the applied framework, the especial focus of this paper is on two 
tests that differ in their basic assumptions, although our conclusions are easily generalizable 
for related tests. On the one hand, we study the test suggested by Inclán and Tiao (1994) 
[IT henceforth]. In spite of being based on strong restrictions, such as normally-distributed 
data, this method has been intensively used on financial time-series; see, among others, 
Aggarwal et al., (1999), Morana and Beltratti (2004), Nouira et al. (2004), and more 
recently Hyung, Poon and Granger (2005). On the other hand, we also focus on the more 
general procedure suggested in Kokoszka and Leipus (1998, 2000) [KL henceforth]. This 
test is not model-specific and relies on fairly general assumptions about the underlying 
process. It has also been applied on several studies, see among others Andreou and Ghysels 
(2002, 2004) and Cuñado et al. (2005) for recent studies. Furthermore, other tests in this 
literature (e.g., Pagan and Schwert 1990, Sansó et al. 2004, and Chen et al. 2005) are 
strongly related to the KL test and its assumptions, so the conclusions of our analysis are 
straightforwardly extensible. 

 
The results of our analysis can be summarized as follows. First, we show that the 

asymptotic distribution of the IT is not longer invariant if the sample includes contaminated 
observations. Given the characteristics of real data, our analysis predicts biases towards 
finding too many breaks --even in asymptotic samples, owing to the use of over-
conservative critical values. By contrast, the non-parametric structure of the KL test assures 
invariance against the sources of contamination treated in this paper. Furthermore, we show 
that the KL test renders consistent estimates of the changing-point, and therefore this test 
proves valid under the large-sample theory. Our analysis reveals patterns which would be 
hard to explain in absence of a formal theoretical analysis. For instance, the distribution of 
the IT test is more sensitive to a small likelihood of outliers that to a large probability of 

                                                 
5Outliers are discordant observations that seem to be far beyond the process that rules most 
observations. In financial markets, outliers are linked to rare shocks not related to the 
trading process, or abnormal flows of information arrivals. A well-known example is 
October 19, 1987. The major US indeces fell on this day over 20%, leading to the largest 
one-day decline in recorded stock market history. This extreme decline still lacks 
explanation 
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them, which is exactly the relevant case for empirical applications. Similarly, the 
asymptotic robustness of the KL test is not obvious, since sample contamination may 
introduce asymptotic biases in a number of methods based in least-squares estimates. 

 
Despite the good asymptotic performance, however, important distortions may arise 

in finite samples when there is a high degree of stochastic contamination. We discuss that 
particularly large outliers, even if they have small likelihood, are able to distort the power 
performance of the KL test severely. The reason is that the excess of variability originated 
by multiple large outliers may make it difficult to estimate correctly the location of the 
turning points, and hence the test tends to reject a null which is evaluated at a wrong 
location. Our results provide simple and straightforward reasons to explain the 
contradictory findings whenever the IT and KL tests are simultaneously applied. Neglected 
outliers bias the former test to find a large number of breaks, whereas the latter exhibits low 
power and would tend to find few or no breaks at all. Therefore, the techniques to deal with 
outliers based on deletion or bounded-influence methods, which are commonly applied in 
many statistical procedures, are also deserved in testing for variance stability. 

 
The rest of the paper is organized as follows. Section 2 outlines the statistical 

procedures which are analyzed in this paper. Section 3 derives the asymptotic properties 
(asymptotic distribution and consistency of the break-point estimator) under sample 
contamination and provides the set of sufficient conditions to justify the results. Section 4 
reports Monte Carlo experimentation, which illustrates the small-sample performance of 
these tests. Section 5 summarizes and concludes. Finally, a technical appendix collects the 
proofs of the theoretical results discussed in the paper. 

 
 

2. Testing for structural breaks in 
volatility with unknown break date 
 
2.1. The Inclán and Tiao Test 
 

The IT test is as a natural extension of the CUSUM-type tests for the detection of 
shifts in variance. This procedure has the advantage of being easily implemented and does 
not require parameter estimation. However, the asymptotic distribution is derived under a 
set of sufficient conditions which may turn out to be too restrictive for most practical 
applications. 
Let  rt t1

T
  a sample of a real-valued stochastic process defined on a certain probability 

space. The test statistic of the IT test is defined as  

                                                    
IT  T/2 max

1≤k≤T
|DTk|

                                                 (1) 
where  DTk  ∑t1

k rt
2/∑t1

T rt
2 − k/T ,   such that  DT0  DTT  0.   Inclán 

and Tiao (1994) show that if  rt   is a series of independent observations from a normal 
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distribution with zero mean and constant unconditional variance, then (1) converges weakly 
to the supremum of a standard Brownian Bridge. The test is based on the transformed series  
rt

2 ,   which are unbiased estimates of the unconditional variance of the process. Under the 
null hypothesis of homogenous variance over the entire sample, the test has power to detect 
changes in the level of the second-order moment. 
This procedure is initially intended to estimate the location of a single changing point in the 
sample. This is estimated as  

                                                              
k̂  max

1≤k≤T
|DTk|.

                                               (2) 
 
However, it is not difficult to define a more general procedure based on the successive 
computation of  (1)  and  (2)  to gain power against the alternative hypothesis of multiple 
breaks. Inclán and Tiao (1994) propose so-called Iterative Cumulative Sum of Squares 
(ICSS) method, which embeds the basic algorithm into an iterative scheme based on 
successive computations of the statistic at different parts of the series, which are 
consecutively determined after a possible change point. 
 
 
2.2. The Kokoszka and Leipus Test 
 

Kokoszka and Leipus [KL] (1998, 2000) suggested a robust method valid for 
detecting structural breaks under general conditions; see also Sansó et al. (2004). The class 
of errors which are allowed includes ARCH() dependences, and it makes this test suitable 
for applications on financial data. The approach is a non-parametric extension of the IT test 
and, furthermore, it is also adapted to the problem of identifying multiple breaks following 
a sequential procedure, in the same spirit as the ICSS method. 

 
The test statistic, say KL, is defined as  

                                                       
KL  T−1/2M4,T

−1/2
max
1≤k≤T

|GTk|
                                    (3) 

 

where  GTk  ∑t1
k rt

2 − k/T∑t1
T rt

2
  and  M4,T   is a consistent estimator of the 

long-run variance of  rt
2 − Ert

2 ,   i.e., the limit of  T−1E ∑t1
 rt

2 − Ert
2 2 ,   say  

M4  .   The break-point estimator  k̂   implied by the KL scheme is defined as  
 

                                                         
k̂  max

1≤k≤T
|GTk|.

                                                    (4) 
 

 
 
The computation of this statistic is straightforward and only requires a suitable 

method to estimate the long-run variance parameter. The authors suggest using a data-based 
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non-parametric estimator that does not rely upon the assumption of a explicit model, and 
hence it is robust to model misspecification. Since the Newey and West (1987), Andrews 
(1991) and Davidson and de Jong (2002), among others, discuss a suitable class of non-
parametric estimators which is consistent in the presence of both heteroskedasticity and 
autocorrelation of unknown form. 

 
 

3.  Asymptotic theory 
 

Let us start by discussing a data generating process [DGP] in which the main 
process is perturbed with a stochastic contamination process that generates additive outliers 
and/or measurement errors. Our aim is to define an observable process with similar 
statistical properties to the financial time-series in a model-free environment. In particular, 
the DGP we shall consider is defined as follows: 

                                         rt    t   t  Pt  v t , t  1, . . . ,T.                           (5) 
 

In this approach, the regular component is defined through the zero-mean process  
t  ; the measurement error (ME) process   t   is a pure noise term that leads to the 
impossibility of observing the true signal  t  ; finally,  Zt ≡ Pt  v t   is a stochastic 
process which generates additive outliers (AOs).6 In the financial literature,  Zt   is usually 
referred to as a (discrete-time) stochastic jump process. In the econometric literature, a 
number of papers have focused on the effects of AOs through restricted forms of this 
specification; see, for instance, Franses and Haldrup (1994), and van Dijk et al. (1999). 
 
3.1.  Assumptions 
 

We introduce now the set of assumptions under which the asymptotic properties of 
the tests will be derived. We first characterize the observable series  rt   and the stochastic 
behavior of the components   t,Zt   of the contamination process in assumptions A1-A2 
below. Also, we characterize the regular component  t   to assure that sufficient conditions 
hold to apply a functional central limit theorem (FCLT). In particular, we assume that either 
A3 or A3' below applies, with condition A4 holding true in any case. 

 

 
 

                                                 
6Since our primary interest is in financial time series, which are nearly white noise, the 
distinction between additive and innovative outliers seems of little importance. We 
therefore focus on the effects of additive outliers only. 
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Assumption A1. The real-valued observable process  rt, t ≥ 1   follows from (5). 
 
Assumption A2. The components of the contaminating term in (5) verify: 
 i   The process   t, t ≥ 1   is independent of  t   and  Zt  , and   t  iid0,

2    for some 
finite   ≥ 0.   Also,  E| t|4     for some    0.   
 ii   The process  Zt, t ≥ 1,    Zt ≡ Pt  v t ,   is independent of  t   and   t,   with  
Pt   being a Bernoulli variable with support  −1,1,0   and probabilities  p/2,p/2,1 − p  . 
Furthermore,  v t  iid0,1   such that  E|v t|4     for some    0,   and  0 ≤ p  1 ,  
0    , 0    .   
 
Assumption A3. The regular component  t, t ≥ 1   verifies: 
 i    Et   0,    Et

2   
2   . 

 ii   sup tE|t|4     for some   ≥ 0.   

 iii    t   is strong mixing with mixing numbers  mj   satisfying  ∑j1
 mj

s/s−2     for 

some  s  4,   and  limT→    E T−1∑t
2 − 

2 2 ≡ M4


 , with  0  M4
  .   

 
Assumption A3'. Let  F t   be the    -field generated by  t,Zt, t,t−1 ,Zt−1 , . . . .   Then  
t,F t t1


  is a strictly stationary and ergodic martingale difference process and  

E|t|4     for some   ≥ 0.   
 
Assumption A4.  t   is independent of   t,Zt.   

 
 

Some comments proceed. A2 assumes that the generating process of the AOs is 
independent of the regular component. This seems accurate for financial returns, as it 
captures extreme events which are unrelated to the normal trading process but which are 
able to influence the observable series in a major way. Similarly, the ME component is 
assumed to be exogenous. Note that, since   t   and  Zt   are bounded in probability, the 
regular process  t   is not perturbed with arbitrarily large values in our analysis. 

 
Condition A3 is fairly general and standard in the literature. It does not impose 

distributional restrictions and allows short-run dynamics in  t   under mixing conditions. 
Into this class fall finite-order ARMA structures, and several time-varying volatility 
processes such as the GARCH-type and stochastic volatility models, see Carrasco and Chen 
(2001). The finiteness of the fourth-order moment is necessary for ensuring test consistency 
(see Phillips and Loretan 1990) and rules out heavily-tailed distributions for which not even 
this moment is well-defined. This may seem restrictive, given the characteristic degree of 
leptokurtosis of many financial time-series. However, the AOs allowed in A1 may generate 
large kurtosis in  rt   even if  t   is not extremely leptokurtic. Condition A3' may be 
sufficient when the series are uncorrelated but not independent, as it is often the case in 
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financial time-series. In this case, only restrictions to ensure a FCLT for martingales are 
necessary. Finally, A4 is a maintained assumption in related studies, such as Franses and 
Haldrup (1994) and van Dijk et al. (1999). Its practical purpose is to allow us to analyze the 
effects of stochastic contamination in a model-free framework. We shall comment the 
effects of weakening this assumption later on. 

 
In the sequel, we denote by `   ' the weak convergence of probability measures in  

D0,1  , the space of all right continuous real-valued functions having finite left limits on  
0,1  , while ` 

p
→  ' is used to denote convergence in probability;  W   denotes a standard 

Wiener process on   ∈ 0,1,   and  W∗  W − rW1   is a standard Brownian 
Bridge. Finally,     is the integer function, and  tr   denotes the trace of a matrix. 

 
 
3.2.  Asymptotic distribution of the test statistics 
 

In this section, we formally derive the asymptotic behavior of the distribution of the 
IT and KL test statistics under additive outliers and/or measurement errors. We first state 
two useful lemmas, whose proof is shown in the technical appendix. 

 
Lemma 3.1. Assume the DGP in A1 with A2, A3 or A3' and A4 holding true. Define the 

random vector  t  t
2 ,Zt

2 , t
2 , 2tZt, 2t t, 2 tZt 

′
 . Then, as  T →  , 

                                          

T−1/2∑
t1

T

t − Et   1/2W

                                     (6) 
in  D0,16   and uniformly in   ∈ 0,1  where  W   is a multivariate standard Wiener 
process with diagonal covariance matrix     ii   such that:  
 

11  M4


22  p4 − 2  44
v  223  3

v  − 2 

33  4
 − 

2

44  4
2p2  2 ; 55  4

2
2 ; 66  4

2
2 ;  

  where  Et
2   

2 , j
v  E v t

j
 ,  j

  E v t
j ,    

M4
  limT→ E T−1 ∑t1

T t
2 − 

2 
2 .   
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Lemma 3.2. Denote  r̃t  rt − ̂T   such that  ̂T   is a  T  -consistent estimator of  .   
Under the conditions of Lemma 3.1, the following results can be established as  T →  : 
 

  (i)  T
−1/2∑t1

Tr̃t
2 − Ert

2   M4
1/2W,   

  (ii)  T
−1/2∑t1

T r̃t
2 − Ert

2   M4
1/2W1,   

  (iii)  T
−1∑t1

T r̃t
2 p
→ 

2  p2  2   
2 ,   

 
for any  r ∈ 0,1,   where  M4  Varrt

2 − Ert
2   tr.   

Proof. See appendix. 

 
 

Lemmas 3.1 and 3.2 state the convergence of the functionals involved in the IT and 
KL tests. With these results, it is easy to state the asymptotic distribution of the CUSUM 
tests, which is given as a proposition. 

 
 
Theorem 3.1. Let the IT and KL test statistics be defined as in (1)  and  (2) , respectively, 
and let   M̂4,T   be a consistent estimator of the long-run variance parameter  M4 .   Then, as  
T → ,    

                                   

IT 
M4

1/2

2 
2  p2  p2  

2 
sup

∈0,1 
|W∗|;

KL  sup
∈0,1 

|W∗|

 

 

                    (7 -8) 
where  W∗   is a standard Brownian bridge and  M4  tr  . 

 
Proof. Straightforward from Lemmas 3.1 and 3.2 and the continuous mapping theorem. See 
appendix for details. 
 
Corollary 3.1. Assuming the particular situation where only additive outliers contaminate 
the sample, then Theorem 3.1 trivially holds with    4

  0.   Similarly, assume that 
only measurement errors are present, i.e., the degenerate case for  p  0 , then Theorem 
3.1 trivially holds by setting all parameters related to the AOs equal to zero. 
 
Proof. Follows straightforwardly from Lemmas 3.1, 3.2 and Theorem 3.1. 
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Theorem 3.1 states formally one of the theoretical results of this paper and has 
important implications for the empirical framework. First, the asymptotic distribution of the 
IT test is not invariant but it turns out to be heavily influenced by the characteristics of the 
contamination process. Second, the asymptotic distribution of the KL test converges to a 
well-defined distribution that is free of nuisance parameters, namely the supremum of a 
standard Brownian Bridge (SSBB). In other words, whereas the critical values from the 
standard distribution can be applied for the KL test even in presence of large extreme 
outliers or measurement errors, these are generally inadequate for the IT test. 

 
It is interesting to comment the reasons underlying the failure of the IT test. The 

factor scaling its limit distribution depends on  p,,   as well as several moments of  v t   
and   t  , and it fully determines the type of departure with respect to the usual SSBB. The 
critical values from the correct asymptotic distribution will be larger whenever  
tr  2Ert

2 2
 , and smaller otherwise. Remarkably, this condition also determines 

whether the observable series  rt   exhibits excess of kurtosis or not. Hence, the failure of 
the IT test is related to the fact that it explicitly assumes the degree of kurtosis of the 
normal distribution in the observable series. Naturally, this assumption can easily be 
violated in our context. For simplicity, set      0  and assume that  t   is i.i.d., such 

that  tr  2Ert
2 2

  reduces to  4 − 3  4p − 3p2   0.   Clearly, if  t   is 
leptokurtic and/or the data include a moderate non-zero probability of extreme 
observations, using the SSBB as a limit distribution necessarily leads to over-conservative 
critical values.7 It is remarkable that the excess of kurtosis is concave on  p  , so small 
values of  p   will lead the test to over-rejection, whereas large values of this parameter will 
cause undersizing. Given the characteristics of real data, the IT test is expected to be biased 
to find too many breaks in empirical applications. The situation worsens if we allow for 
time-varying volatility patterns in  t   (e.g, GARCH or stochastic volatility models), 
because this type of dependence generates by itself excess of kurtosis. This feature is also 
discussed in Kim, Cho and Lin (2000), and Sansó et al., (2004). The IT test should 
therefore be used with caution and only when the researcher is aware that the data verify 
the underlying assumptions, as this proves critical for the correct behavior of the procedure. 
 
Remark 3.1: The diagonality of the asymptotic covariance matrix     follows directly 
from the assumption of independence in A4. We may weaken this condition and allow for 
dependences between some measurable function of  t  , say  V1t ,   and lagged values of 
a function  V2Zt, t   , provided conditions A3 or A3' are still fulfilled. A relevant example 
of  V1  , V2   in this context are both the quadratic or the absolute-value function so that the 
volatility process may be affected by outliers. Define  ̄t  t − Et    and let  
∗  limT→ T−1E ∑t1

T ̄t ∑t1
T ̄t

′ .   If A4 is replaced by the assumption that  ∗   
                                                 
7It is not difficult to see that a similar observation would apply if the measurement error is 
not Gaussian. 
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is a finite positive definite matrix such that  ∗  t
′  , then it follows as  T →   that  

T−1/2∑ t1
T ̄t      W,   with this result generalizing Lemma 3.1 in an obvious way. 

The diagonal elements of  ∗   are those of  ,   whereas the (non-zero) off-diagonal 
elements of this matrix depend specifically on the covariance structure related to  V1   and  
V2  , and hence are model-dependent. It also follows that  
T−1/2∑t1

Tr̃t
2 − Ert

2   1 ′ W,   and  T
−1∑t1

T r̃t
2 p
→ 1 ′Ett

′ 1,   with  1   being a 
conformable vector of ones. As in Proposition 3.1, it can be shown that  
IT   sup∈0,1  |W∗|,   with       1 ′∗1 2 1 ′Ett

′ 1 −1 ,   and again  
KL  sup∈0,1  |W∗|.   
 
Remark 3.2: A number of statistical procedures are strongly related to the KL test, since 
they use a HAC estiamation of the long-run variance parameter to render convergence to 
the distribution of the SSBB. See, for instance, Sansó et al. (2004). We may easily show 
that the asymptotic properties discussed in this paper hold for such procedures as well. 
 
 
3.3. Consistency of the change-point estimator 
 

From Theorem 3.1, applying the IT test on data exhibiting the stylized features of 
financial data is much likely to lead to misleading inference even in large samples. On the 
other hand, the KL test still converges to its standard distribution under the null hypothesis. 
In this section, we discuss the ability of both tests to estimate consistently the location of an 
unknown turning point under the alternative hypothesis. We assume that the break affects 
the dynamics of the variance of the regular component  t  , as there is no practical sense in 
considering breaks in the contaminating structure. Also, it is necessary to characterize the 
magnitude of the break and its consequences, and therefore make some additional 
assumptions. 

 
Let us introduce some previous notation. Denote as  0  ∗  1  the break fraction, 

such that a shift in volatility occurs at time  k ∗  1,    k ∗  T∗ .   Denote as  
1t  t t1

k∗
  and  2t  t tk∗1

T
  the pre- and post-break sub-samples of the regular 

component, and assume that  E1t
2   1

2   and  E2t
2   1

2  Δ  , such that  0  |Δ| .   
Thus, we are allowing for a break in the variance of the regular component of magnitude  Δ  
, which may be originated from a shift in the conditional or unconditional structure of the 
regular series. In both cases, the shift in the variance of  t   leads to a shift of the same 
magnitude in the overall variance of  rt  , i.e.,  Δ   Var rt,t≤T∗  −  Var rt,tT∗ .   This 
property allows us to test for the change in the unobservable component  t   by using the 
observed series  rt   instead. 
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The KL procedure defines an estimator of the break fraction  ∗   as follows  
 

                                                 
̂ : T−1 max

1≤k≤T
∑
t1

k

rt
2 − k

T∑
t1

T

rt
2

                                     (9) 
 

while the IT procedure estimates the break point as  1≤k≤T
max |DTk|.

  The latter is 

algebraically equivalent to  1≤k≤T
max 1/T|GTk|

  for    ∑t1
T rt

2 /T.   Therefore, the break-
point estimator of the IT test is the same as in the KL procedure. Our interest is to analyze 
if  ̂

p
→ ∗   when the observed series  rt   is contaminated. We require the following 

condition. 
 
 
Assumption A5. The sequence  t t1


  verifies  i   sup tEt

4     for all  t  , and  ii   
Cov t

2 ,j
2  O|t−j|   for all  1 ≤ t, j ≤ T   and some  0 ≤   1.   

 
Condition A5 is embedded in A3 or A3' when there are no breaks. With  i   we rule 

out shifts which dramatically change the statistical properties of the process as considered 
under the null, such as parameter instability leading to diverging moments up to the fourth 
order. Condition  ii   restricts the covariance structure of the time-series. Although  t   is 
not stationary under parameter instability, we still require that the covariance between 
distant observations decay towards zero at a suitable rate. Note that condition  ii   holds 
trivially for i.i.d. series, as well as for dependent series with an ARCH    
characterization (see Kokoszka and Leipus 2000). Moreover,  ii   may be weakened 
considerably, as consistency can be proven under the more general restriction lim 
T→T−2∑k1

T ∑ i,j
k Cov t

2 ,j
2  0,   which may allow for different rates of decay in the 

covariances. Convergence in probability for the estimator  ̂   is provided as a theorem 
below. 

 
Theorem 3.2. Consider the realization of a process  rt t1

T
  as defined in A1 such that A2 

and A4 hold true. Assume that the unconditional variance of the regular component shifts 
from  

2   to  
2  Δ,    0  |Δ| ,   at some time  k ∗  T∗    for some  ∗ ∈ 0,1   such 

that A5 holds true. Let  ̂   given by  (9) . Then, for an arbitrary    0  and some constant  
C   it follows that 

                                              
Pr|̂ − ∗ |  ≤ C

2Δ2 T                                             (10) 
and, therefore,  ̂

p
→ ∗.   
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Proof. The proof for consistency uses the Hájek-Rénji inequality in Kokoszka and Leipus 
(2000). See appendix for details. 
 
 

Theorem 3.2 shows the consistency of the estimator. The rate of convergence 
depends on  Δ  . For a fixed shift  Δ,   the estimation bias  |̂ − ∗ |   can be shown to be  
OpT−1   , so the estimator  ̂   is super-consistent. This result is similar to the results in the 
change-point literature (the formal proof follows entirely the lines of Kokoszka and Leipus 
2000 and is therefore omitted). Consistency guarantees that the KL test does not only use 
the correct critical values, but also that these are applied on the correct estimation of the 
break-date when the sample grows unbounded. It is also interesting to note that the theorem 
provides insight on how some of the characteristic of the DGP affect the asymptotic bias. 
The numerator on the right side of (11) is influenced by the degree of serial dependence, 
the time of the break, and the excess of variability generated by the contaminating process 
(see Appendix for details). The latter is particularly important in our context, becuase it 
implies that the contamination process makes it more difficult to locate the breaks position 
correctly. Intuitively, the break-date must be inferred by observing  rt,   which conveys 
noisy (contaminated) information about the break time. More accurate testing could be 
carried out if the `clean' series  t   could be observed instead. The estimation bias increases 
with these terms, and reduces with the factors appearing in the denominator of (11), namely 
the sample size and/or the magnitude of the shift. The tension between these factors totally 
disappears as  T → ,   but the characteristics of data may drive to potential distortions 
when the sample is small. 
 
Remark 3.3: If we allow for dependences between the lagged values of the contamination 
process and a measurable function   t

2  , as in Remark 3.1, consistency will hold if we 
additionally require in A5 that Cov  t

2 ,x j   O|t−j|   for all  1 ≤ t, j ≤ T  , and  
x j  Zj

2 , j
2 .   More generally, consistency holds under the high-level assumption lim 

T→T−2∑k1
T ∑ i,j

k Cov rt
2 , rj

2  0.   
 
 

4.  Finite-sample behavior 
 

In this section we turn to the small-sample properties of the IT and KL tests 
discussed theoretically in the previous section. Our main goal is to analyze whether the 
asymptotic theory accurately characterize the small-sample properties of these tests in 
applications with a finite number of observations. Given its particular relevance and for the 
sake of saving space, we center our attention on the effects of additive outliers. 
There are several reasons to concern about the small-sample performance of these 
procedures. First, serial dependence is known to slow down the speed of convergence of 
Kolmogorov-Smirnov type tests. Time-series with strongly persistent volatility may require 
much more observations in order to make accurate inference; see, for instance, the 
departures observed in the experimental analysis of Andreou and Ghysels (2002). 
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Similarly, outliers may interfere with the small-sample properties of the tests. Finally, 
consistency is purely an asymptotic property. As seen in the theoretical analysis, the 
characteristics of the contamination process may have pervasive influences in the ability to 
estimate correctly the break-fraction in a finite sample. We design several experiments to 
address possible small-sample size departures when the regular component is  A   an i.i.d. 
process,  B   it follows a time-varying volatility process, and to address  C   consistency of 
the turning point estimator in small-samples. 

 
A) Empirical size: additive outliers and independent observations. 
 
We first analyze the possibility of size distortions due to additive outliers by assuming that 
the regular component  t   is i.i.d. We generate simulated paths for  rt  t  Pt  v t   
with  t,v t  iidN0,1.   The Bernoulli variable  Pt   takes values  −1,1,0   given the 
grid of probabilities  p  0,0.01, . . . , 0. 50,   with increments of  0.01.   We set  
  0.5,1, . . . , 5,   with increments of  0.50 . In this way, we cover a wide set of realistic 
values for empirical purposes. We initially set      1.   The sample size is  T  1000  
and we repeat the simulation process 25000 times for any combination of the analyzed 
values. The IT and KL tests are computed using the simulated series, and the corresponding 
statistics compared with the 95% percentile from the supremum of a Brownian bridge. The 
rejection rates of the null hypothesis are plotted in Figures 1 and 2. 
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Figure 1. Empirical size of the Inclán-Tiao test (5% nominal size) with outlier-
contaminated data. 
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The data  rt   are simulated from  rt  t  Dt  v t ,    t,v t  Niid0,1  ,  Dt  1,0   

with probabilities  p/2,1 − p.   The probability of outliers is plotted on the  x  -axis, and the expected size 

of the outlier,  ,   is plotted on the  y  -axis. We use 15,000 simulations for samples of length 1000 and  
  1 . The test statistic is tested with the critical values from the supremum of a Brownian bridge under the 
null of variance homogeneity. The experimental proportion of rejections are plotted on the vertical axis. 
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Figure 2. Empirical size of the Kokoszka-Leipus test (5% nominal size) with outlier-
contaminated data. 
 

0
0.1

0.2
0.3

0.4
0.5

0

2

4

6
0.025

0.03

0.035

0.04

0.045

0.05

p

KL test, δ =1

λ

E
m

pi
ric

al
 s

iz
e,

 5
%

 n
om

in
al

 

The data  rt   are simulated from  rt  t  Dt  v t ,    t,v t  Niid0,1  ,  Dt  1,0   

with probabilities  p/2,1 − p.   The probability of outliers is plotted on the x-axis, and the expected size 

of the outlier     is plotted on the y-axis. The long-run variance of  rt
2 − Ert

2    is computed through the 

Newey-West estimator with Bartlett kernel and bandwidth  h  4100/T2/9 .   We use 15,000 

simulations for samples of length T=1000 and    1 . The test statistic is tested with the critical values 
from the supremum of a Brownian bridge under the null of variance homogeneity. The experimental 
proportion of rejections are plotted on the vertical axis. 
 
 

As discussed in the theoretical section, the distribution of the IT is strongly affected 
by the parameters that characterize the dynamics of the outlier process. We observe that 
this type of heterogeneity may lead to large departures from the nominal size, especially for 
small yet non-zero values of  p   together with large values of    , which is precisely the 
type of process that may be expected in real data. These values generate excess of kurtosis 
and lead the IT test to over-reject. On the other hand, relatively large values of  p   lead to 
undersized tests. This may seem surprising, but from Theorem 3.1 we note that large values 
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of  p   may lead to  tr  2Ert
2 2

 , thus undersizing the test.8 However, it seems 
unlikely that such a degree of heterogeneity can be observed in practice. Although not 
reported here, in order to save space, the distortion in size is amplified as     increases 
(since kurtosis depends on this parameter as well). By contrast, the KL test shows a flat, 
uniform distribution for the empirical rate of rejection which does not depend on nuisance 
parameters. For an i.i.d. regular component, there are no significant distortions in small 
samples when the KL test is applied. The test shows a slightly negative bias which is 
observable even if  p  0 , and therefore attributable to finite-sample bias.  

 
 
B) Empirical size: additive outliers and time-varying volatility. 

 
 
We now turn our attention to the case in which the regular component shows time-varying 
volatility patterns. Given its empirical relevance, we assume that  t   follows a 
GARCH(1,1)-type model, 
 

                                              

rt   tt  Zt; t  iidN0,1

 t
2     t−1

2   t−1
2

                                     (11) 
 
with    0,    ,  0 . There are two possible specifications, depending on whether 
outliers only affect the level of the series (level outliers), or affect both the level and the 
variance (volatility outliers); see Hotta and Tsay (1998). In the first case   t

2   is 
independent of  Zt,   and therefore   t   tt  . Thus, the returns result from the 
convolution of a jump-process and a standard GARCH model. This is the case studied in 
the theoretical section, and the DGP considered in standard empirical applications. 
Alternatively, if   t

2   is also perturbed by AOs, it follows that   t  rt   and then the 
GARCH model includes jumps, a far more complex type of non-linear volatility process. 
We shall analyze both possibilities in our simulations. 
 

First, consider the level-outlier case with AOs affecting only the conditional mean. 
We normalize the unconditional variance to unity by setting    1 −  − ,   and set 
different values for  ,  . In particular, we consider the same DGPs as in Andreou and 

                                                 
8For instance, if  t   is an i.i.d. Gaussian series (   3 ) and we set    0  for simplicity, 

then the condition  tr  2Ert
2 2

  reduces to  p  1/3.   A probability of outliers 
exceeding this threshold leads to undersized tests when using the standard limit distribution 
of the IT test. 
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Ghysels (2002) to make comparisons with the results therein. These are a low persistent ( 
  0.10,  0.50 ) [GARCH1] and a highly-persistent GARCH model ( 
  0.10,  0.80 ) [GARCH2]. Simulations are performed as in experiment A), with the 
long-run variance paramete being computed for the KL test by using a Newey-West 
estimator with Bartlett kernel and a deterministic bandwidth selection procedure. The rate 
of rejections of the null hypothesis in this experiment are shown in Figures 3, 4 and 5.  
 
 
 
Figure 3. Empirical size of the Inclán-Tiao test (5% nominal size) with GARCH 
[GARCH2] errors and outliers. 
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The data  rt   are simulated from  rt   tt  Dt  v t ,    t,v t  Niid0,1  ,  Dt  1,0   

with probabilities  p/2, 1 − p.   The conditional volatility   t
2   follows a GARCH(1,1) process with 

parameters  ,  0.1,0.8.   The probability of outliers is plotted on the y-axis, and the expected size 

of the outlier     is plotted on the x-axis. The long-run variance of  rt
2 − Ert

2    is computed through the 

Newey-West estimator with Bartlett kernel and bandwidth  h  4100/T2/9 .   We use 15,000 

simulations for samples of length T=1000 and    1 . The test statistic is tested with the critical values 
from the supremum of a Brownian bridge under the null of variance homogeneity. The experimental 
proportion of rejections are plotted on the vertical axis. 
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Figure 4. Empirical size of the Kokoszka-Leipus test (5% nominal size) with GARCH 
errors [GARCH1] and outliers. 
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The data  rt   are simulated from  rt  t  Dt  v t ,    t,v t  Niid0,1  ,  Dt  1,0   

with probabilities  p/2, 1 − p.   The probability of observing outliers is plotted on the y-axis, and the 

expected size of the outlier     is plotted on the x-axis. The conditional volatility   t
2   follows a 

GARCH(1,1) process with parameters  ,  0.1,0.5.  The long-run variance of  rt
2 − Ert

2    is 

computed through the Newey-West estimator with Bartlett kernel and bandwidth  h  4100/T2/9 .   

We use 15,000 simulations for samples of length T=1000 and    1 . The test statistic is tested with the 
critical values from the supremum of a Brownian bridge under the null of variance homogeneity. The 
experimental proportion of rejections are plotted on the vertical axis. 
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Figure 5. Empirical size of the Kokoszka-Leipus test (5% nominal size) with GARCH 
errors [GARCH2] and outliers. 
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The data  rt   are simulated from  rt  t  Dt  v t ,    t,v t  Niid0,1  ,  Dt  1,0   

with probabilities  p/2, 1 − p.   The probability of outliers,  p  , is plotted on the y-axis, and the 

expected size of the outlier     is plotted on the x-axis. The conditional volatility   t
2   follows a 

GARCH(1,1) process with parameters  ,  0.1,0.8.  The long-run variance of  rt
2 − Ert

2    is 

computed through the Newey-West estimator with Bartlett kernel and bandwidth  h  4100/T2/9 .   

We use 15,000 simulations for samples of length T=1000 and    1 . The test statistic is tested with the 
critical values from the supremum of a Brownian bridge under the variance homogeneity null hypothesis. The 
experimental proportion of rejections are plotted on the vertical axis. 
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Figure 3 shows the empirical size for the IT test for the GARCH2 model.9 As 

expected, the empirical analysis confirms the results of the theoretical section. First, 
GARCH-type dependences generate excess of kurtosis leading to size departures in the IT 
test even if  p  0 . When  p  0 , rare extreme events (low  p   and large    ) considerably 
increase the total kurtosis of the distribution, leading to even larger size distortions. Figure 
4 and 5 show the empirical size for the KL tests given GARCH1 and GARCH2 models, 
respectively. We can observe that a different degree of persistence generates has different 
effects. Remarkably, in absence of outliers, the KL test suffers of important small-sample 
size distortions for large values of    ,   as reported in Andreou and Ghysels (2002). 
This finite-sample distortion (recall that the test would display correct critical values 
asymptotically) is related to the fact that the estimator of the long-run variance parameter is 
known to suffer of large small-sample biases for strongly persistent data. In contrast to the 
case of the IT test, the existence of AOs does not worsen the behavior of the KL test respect 
to the case  p  0 . The observed departures are solely attributable to patterns of depedence 
in the volatility process. 

 
When outliers affect the both the conditional mean and the variance, i.e., setting  

 t
2    rt−1

2   t−1
2   in  ref: GARCH ,   the departures from the nominal size of the 

IT test are even larger than before. For instance, in the case of the GARCH2 model we do 
not observe empirical sizes inferior to 50%. The excess of kurtosis is now ever greater, as 
the kurtosis of  rt   increase as a result of the positive correlation between  t

2   and the lags 
of  Zt

2  . On the other hand, there are there are meaningful differences from the preceding 
case in the case of the KL test. As in the case of i.i.d. observations, the empirical rate of 
rejection seems almost totally invariant to the driving parameters of the jump process. 
 

Therefore, in the context of stongly-persistent volatility patterns and additive 
outliers, the IT test is severely distorted and expected to provide unreliable inference. 
Similarly and despite the large-sample theory, the KL test can show large size departures 
when the volatility is strongly-persistent in a finite sample. It should be stressed that such 
distortions are attributable to the long-run dependence in volatility and not to additive 
outliers. Size departures are related to the poor performance of HAC-type estimators, which 
are known to suffer of important small-sample biases under serial depedence; since  t

2   is 
strongly correlated as       tends to one, more and more observations would be necessary 
to remove the finite-sample bias in the estimator, and hence eliminate size distortion. In the 
limit, if the researcher might dispose of an arbitrarily long sample, these distortions will end 
up disappearing completely, which nevertheless is not the case for the IT test. 

 

                                                 
9We omit presentation of results for the GARCH1 model in order to save space, since these 
are not qualitatively different from the results presented in the text. However, these are 
available upon request. 
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C) Finite-sample properties: consistency of the break-point estimator 

 
 
As in Chen, Choi and Zhou (2005), the aim of our last experiment is to evaluate the average 
size of the estimation bias  ̂ − ∗   , and the corresponding standard error of the break-
point estimate (efficiency) in a finite sample. We set the turning-point fractions  
∗  0.25,0.50,075   and consider  1  1  as well as several values for  Δ.   As in the 
previous experiments, we repeat the simulations with a DGP in which the disturbances are 
i.i.d., and follow the GARCH1 and GARCH2 models. For the sake of conciseness, we 
summarize the results of this experiment for different values of  ,p,   for a relatively 
large shift  Δ  0.50,   and for    1  in Table 1. The table shows the average value of  ̂   
and the standard error of the estimator in a sample of  T  1000. 
 
First, it should be noticed that the testing procedures are consistent in detecting structural 
breaks, since increasing  T   and/or the magnitude of the shift makes the estimation bias and 
the standard error of  ̂   decrease (we do not show the results for different values of  T   or  
Δ   for the shake of saving space). Nevertheless, for a finite value of  T  , AOs may lead to 
meaningful distortions. The extent of finite-size distortions depends on the number of 
available observations  T  , the shift-magnitude  Δ  , and the relative position of the break  
∗  . For instance, note in Table 1 that even in absence of outliers,  ̂   may show an 
incresing skewness as the true change-point moves to the right. This is common to 
analogous CUSUM-type estimators, see also . Serial depedence also interferes with the 
ability of the test to identify the break location, and strongly-persistent GARCH patterns 
increase the estimation bias and deteriorate its efficiency. When allowing for additive 
outliers, we observe slightly larger distortions for moderate values of     and  p  . However, 
the properties of  ̂   prove particularly sensitive to the size of outliers, since large values of  
   are able to bias  ̂   towards 1/2 (as is the case when no break is present in the sample) 
and considerably increase the standard error of the estimates. 
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Table 1.  Average Estmation, E(τ), and standard errors (x100) of τ. 
 
 
 

 
 
 

 i.i.d  GARCH1  GARCH2 
   τ       τ       τ    

 0.250  0.500  0.750   0.250  0.500  0.750   0.250  0.500  0.750  
(λ,p) E(τ) s.e. E(τ) s.e. E(τ) s.e.  E(τ) s.e. E(τ) s.e. E(τ) s.e.  E(τ) s.e. E(τ) s.e. E(τ) s.e. 
(0,0) 0.289 0.050 0.509 0.020 0.745 0.020  0.306 0.070 0.514 0.030 0.742 0.030  0.358 0.120 0.530 0.060 0.728 0.080 
(0,0,10) 0.293 0.060 0.509 0.020 0.743 0.030  0.309 0.080 0.515 0.030 0.740 0.040  0.361 0.120 0.530 0.060 0.728 0.080 
(0,0.25) 0.297 0.070 0.510 0.020 0.739 0.040  0.312 0.080 0.515 0.030 0.736 0.040  0.362 0.130 0.530 0.060 0.724 0.090 
(0,0.50) 0.304 0.080 0.512 0.030 0.734 0.040  0.319 0.090 0.519 0.040 0.733 0.050  0.367 0.130 0.530 0.060 0.720 0.090 
                     
(1,0) 0.289 0.050 0.509 0.020 0.745 0.020  0.307 0.070 0.514 0.030 0.742 0.030  0.358 0.120 0.530 0.050 0.730 0.080 
(1,0,10) 0.297 0.060 0.501 0.020 0.739 0.030  0.314 0.080 0.515 0.030 0.736 0.040  0.361 0.120 0.530 0.060 0.723 0.090 
(1,0.25) 0.306 0.080 0.510 0.030 0.734 0.050  0.322 0.090 0.516 0.040 0.729 0.060  0.367 0.130 0.530 0.060 0.717 0.100 
(1,0.50) 0.320 0.100 0.513 0.040 0.721 0.070  0.333 0.110 0.518 0.050 0.719 0.080  0.375 0.140 0.532 0.070 0.707 0.110 
                     
(2.5,0) 0.289 0.050 0.509 0.020 0.746 0.020  0.307 0.080 0.514 0.030 0.742 0.030  0.357 0.120 0.528 0.060 0.729 0.080 
(2.5,0,10) 0.320 0.100 0.510 0.050 0.714 0.080  0.333 0.110 0.515 0.050 0.710 0.090  0.378 0.140 0.531 0.080 0.701 0.120 
(2.5,0.25) 0.351 0.140 0.514 0.080 0.683 0.120  0.367 0.140 0.517 0.080 0.682 0.130  0.394 0.160 0.529 0.100 0.670 0.150 
(2.5,0.50) 0.391 0.170 0.518 0.110 0.655 0.160  0.396 0.170 0.524 0.110 0.656 0.160  0.420 0.170 0.536 0.120 0.647 0.180 
                     
(5,0) 0.289 0.060 0.509 0.020 0.746 0.020  0.307 0.080 0.514 0.030 0.742 0.030  0.358 0.120 0.530 0.060 0.729 0.080 
(5,0,10) 0.412 0.190 0.506 0.140 0.603 0.190  0.415 0.190 0.509 0.140 0.604 0.190  0.431 0.190 0.519 0.150 0.601 0.200 
(5,0.25) 0.455 0.200 0.514 0.170 0.566 0.210  0.459 0.200 0.513 0.170 0.569 0.210  0.465 0.200 0.522 0.180 0.567 0.210 
(5,0.50) 0.477 0.210 0.523 0.180 0.556 0.220  0.485 0.210 0.523 0.190 0.561 0.220  0.488 0.210 0.526 0.190 0.556 0.220 
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From this experiment, we observe that relatively large additive outliers may 
generate large biases in finite samples, even if they occur with a small probability. The 
reason is that the additional variability generated by multiple outliers is able to mask the 
true position of a shift. Intuitively, whereas the IT test will tend to find spurious breaks 
from using over-conservative critical values, the KL test may be biased towards non-
detection in this context because the correct critical values may be applied on wrongly 
estimated turning-points, thereby rejecting the null. Furthermore, even if the test were able 
to reject the null, it would be likely the case that the estimation of the break-point is 
inaccurate. 

 
It is interesting to deep into this idea through further experimentation. Consider the 

most favorable case for the KL test in which  t   is i.i.d., and asssume that a large single 
shift increases the unconditional variance from 1 to 1.5 in a sample of  1000  observations. 
We consider the same relative location for this break as before, namely  
∗  0.25,0.50,0.75  , and apply the KL  test. In absence of outliers, the average value 
of  ̂   is always in the neighborhood of  ∗  , and the probability of rejecting the false null 
hypothesis is nearly 100% in using the 5% asymptotic nominal size. On the other hand, if 
the series is contaminated with AOs (e.g, setting    5  and  p  0.10  the average value 
of  ̂   turns out to be heavily biased,  0.41,0.51,0.41.   Most importantly, the probability 
of rejection the false null of homogenous variance collapses dramatically towards  
21.1%,41.2%,25.7% . Note that in the most favourable case for the KL test in which 
the break occurs in half of the sample, the power reduction nearly reaches 60% with respect 
to the no-outliers case. Moreover, when we analyze the cases in which the test is able to 
reject, the conditioned distribution of  ̂   given  ∗   and a previous rejection is heavily 
skewed, showing expectations which overwhemingly differ from the true values. These 
biases are entirely attributable to a finite-sample effect, and vanish as the sample size 
increases. 
 

Finally, it has been argued that using the absolute value of the returns as a proxy for 
volatility instead of the squares may enhance results if one suspects that outliers 
contaminate the sample. We replicate the previous analysis by considering this proxy of 
volatility. Although this strategy is able to reduce the bias of  ̂,   the enhancement is very 
conservative and far from being satisfactory in the cases in which the results based on 
squared-series are distorted. 
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5.   Conclusions 
 

In this paper, we have analyzed the size properties of CUSUM-type tests for 
detecting structural breaks in variance when the series of interest include some of the most 
relevant features that characterize financial data. Our especial focus has been on additive 
outliers, which prove able to generate large distortions of the test proposed by Inclán and 
Tiao (1994). This test was originally intended for Gaussian i.i.d. series and, therefore, 
considerable caution should be exercised when it is applied to financial data. On the other 
hand, the asymptotic distribution of the procedure of Kokoszka and Leipus (2000) is 
consistent against a wide class of errors provided the conditions for the central limit 
theorem for dependent and heterogenous data hold. From our analysis, we show that the 
distribution of the test statistic is robust against additive outliers and measurement errors in 
asymptotic samples. Furthermore, the estimator of the break point is shown to be 
consistent. Unfortunately, in the case of small samples, the characteristics of the outlier 
generating process may lead to strong distortions in dating the break and misleading 
conclusions. 

 
A question of empirical relevance is what to do with extreme anomalous 

observations in order to perform a given statistical procedure, such as testing for variance 
homogeneity. Although outliers do not have significant effects on the asymptotic 
distribution of the KL test, they can generate large distortions in finite samples, as the test 
shows poor ability to date unbiasedly the break position. This evidence makes it necessary 
to resort to the use of robust procedures, such as deleting or control methods. Bai (1995, 
1998) early proposed to use robustified procedures in the context of regressions with 
structural changes, see also the bounded-influence estimators proposed in Fiteni (2004). 
These methods can largely outperform least-squares based estimators under possible 
contaminated distributions. Since the KL test strongly builds on least-squares estimates, the 
use of bounded-influence estimators may provide further improvements in the small-sample 
performance of this test. This is an interesting question which is left for future research. 
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Appendix 
 
Proof of Lemma 3.1. 
 
Consider the process defined in A1. Without loss of generality, set    0  and note that 

rt
2  t

2  Zt
2   t

2  2tZt  2t t  2 tZt

 1 ′t  
with the vector  t   being trivially defined and  1   is a conformable vector of ones. 
Furthermore,  

Ert
2   Et

2   EZt
2   E t

2 

 E1 ′t   1 ′Et   
where from the assumptions presented for the processes involved the expected values of the 
cross products is zero. 
Hence, we can write  

∑
t1

T

rt
2 − Ert

2  ∑
t1

T

t
2 − 

2  ∑
t1

T

Zt
2 − EZt

2  ∑
t1

T

 t
2 − 

2 

 2∑
t1

T

Ztt  2∑
t1

T

 tt  2∑
t1

T

 tZt

 I1  I2  I3  I4  I5  I6

∑
t1

T

1 ′t − 1 ′Et  ∑
t1

T

1 ′t − Et 

 
where it is easy to show that these terms are uncorrelated because of the i.i.d. property of  
Zt, t   and the independence with  t.   Under conditions A3 or A3', all the terms,  Ij,    
j  1, . . . , 6,   involved satisfy a functional central limit theorem (FCLT) and it can be 
shown that  Ij  Op T .   More specifically, the functionals  I1 , I4 , I5 ,   satisfy a FCLT 
for mixing sequences (martingale differences) under A3 (A3'), while  I4 , I5 , I6   verify 
directly the FCLT from Donsker's lemma under A2; see White (2000) for an overview. 
Therefore, it is straightforward to show that under these assumptions, as  T → ,    

1
T

Ij   jj W
 

 

where   jj ≡ limT→ T−1E ∑t1
T jt − Ejt 

2 ,   with  jt   being the  j  -th element of  
t.   
Finally, since the  Ij   terms are uncorrelated, it follows from the Gaussian properties of the 
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Wiener process that  

T−1/2∑
t1

T

t − Et   1/2Wr,
 

where  Wr   is a 6-dimensional Wiener process and the matrix     ii   is diagonal 
with elements defined in Lemma 3.1. The joint convergence follows straightforwardly from 
stacking the individual components into a vector. The Cramer-Rao device completes the 
proof.    

 
 
Proof of Lemma 3.2. 

 
 
Let 1 be the a vector of ones in  R6  . Since  

T−1/2∑
t1

T

r̃t
2 − Ert

2   T−1/2∑
t1

T

1 ′t − Et   op1Op1
 

it follows from standard probabilistic convergence that the limit distribution of the 
functional converges weakly to the distribution of  1 ′W  W  , a standard Wiener 
process, with scalar variance  1 ′1  tr.   This yields the required result. Part (ii) of the 
lemma is immediate by considering the particular case    1 , and part (iii) follows from 
applying an argument of weak law of large numbers, as for Lemma 3.1; see White (2000). 
   

 
 
Proof of Theorem 3.1. 

 
 
We first show the convergence of the IT test. Observe that  DTk   can be rewritten as  

CTT−1CTk − k/TCTT  CTT−1GTk  op1  

where  CTk  ∑t1
k rt

2
 . Therefore,  

T−1/2DTk  CTT/T−1T−1/2GTk  op1  
From i) and ii) of Lemma 3.2 it follows that  

T−1/2CTk − k/TCTT  M4 W − M4 W1

 M4 W∗  
with  
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M4 ≡ lim
T→

T−1E ∑
t1

T

jt − Ejt 

2

 tr

 
and from Lemma 3.2iii),  

CTT/T
p
→ Varrt   

2  p2  2   
2 .  

From this result and the continuos mapping theorem, it follows that  

max
1≤k≤T

T/2 |DTk|
M4

1/2

2 
2  p2  p2  

2 
sup

∈0,1 
|W∗|.

 
 

In case of the KL test, assume that  M4,T   is a consistent estimator of  M4  . From Lemma 
3.2 and the continouos mapping theorem it follows straightforwardly  

T−1/2M4,T
−1/2

max
1≤k≤T

|GTk|  max
1≤k≤T

T−1/2M4,T
−1/2

CTk − T−1/2M4,T
−1/2

k/TCTT

 sup
∈0,1 

|W∗|.
 

This completes the proof.    

 
Proof of Theorem 3.2. 
 
First observe that the estimator  k̂   is the solution of the objective function  

max
1≤k≤T
∑
t1

k

rt
2 − k

T∑
t1

T

rt
2

 
which is algebraically equivalent to 

max
1≤k≤T

kT − k
T

1
k ∑

t1

k

rt
2 − 1

T − k ∑
tk1

T

rt
2 ≡ max

1≤k≤T
|Rk |

 

where  ∑t1
k rt

2 /k   and  ∑tk1
T rt

2 /T − k   are the least-squares estimators of the 
unconditional variance of the first  k   and last  T − k   observations. Therefore, for any  
  k/T  and for  k ∗  ∗T   we note  

ERk   Δ1 − ∗ 1k≤k∗  Δ∗1 − 1kk∗  
and 

ERk∗   Δ∗1 − ∗   
which implies that  

|ERk∗ |−|ERk | |Δ|∗ − 1 − 1k≤k∗  |Δ|∗ − ∗ 1kk∗  
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with  1   being an indicator function, and hence 

|ERk∗ |−|ERk | ≥ |Δ||∗ − |min∗, 1 − ∗.  
Based on this result, it can be shown that 

|Δ||∗ − |min∗, 1 − ∗ ≤ 2 max
1≤k≤T

|Rk − ERk |
 

or, equivalent, 

|∗ − | ≤ 1
T max

1≤k≤T

4∑t1
k rt

2 − Ert
2 

|Δ|min∗, 1 − ∗
.

 
From the Hájek-Rényi type inequality shown in Theorem 4.1 in Kokoszka and Leipus 
(2000), it follows that 
 

2 Pr 1
T max

1≤k≤T
∑
t1

k

rt
2 − Ert

2    ≤ 2
T2 ∑

k1

T−1

Varrk1
2  ∑

i,j1

k

Cov ri
2 , rj

2

1/2

 1
T2 ∑

k0

T−1

Varrk1
2 .

 
 
Recall that  rt

2  1′t,   with  t   defined in the proof of Lemma 3.1. Since  Zt, t   is an 
i.i.d. sequence which is independent of  t

2  , and Cov i
2 ,j

2  O|t−j|,   it follows that  
Cov ri

2 , rj
2

  has finite upper bounds that decay exponentially. Note that, from the 
independence of  Zt,   it follows that  

Cov ri
2 , rj

2  Cov i
2 ,j

2  VarZi 1ij  Var i 1ij.  
 
For  i  j,    0 ≤ Cov ri

2 , rj
2 ≤ ,   with    C1

∗  VarZi   Var i     for some 
constant  C1

∗  0 . Note that, from the Cauchy-Schwartz inequality, it follows 
straightforwardly that  C1

∗ ≤ supt Et
4   . For  i ≠ j  ,  Cov ri

2 , rj
2  Cov i

2 ,j
2

  and 
therefore  0 ≤ Cov ri

2 , rj
2 ≤ C1

∗|i−j|
  for some  0 ≤   1.   Note that     rules the 

temporal structure of the correlations as a function of the parametric specification of the 
model (see Kokoszka and Leipus (2000) for a discussion in the case of an ARCH    
model). 
 
Hence, it follows that  0 ≤ Cov ri

2 ,rj
2 ≤    |i−j|   uniformly for  1 ≤ i, j ≤ T.   Denote  

4
∗  max1tT Vart

2 .   Then,  
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2 Pr 1
T max

1≤k≤T
∑
t1

k

rt
2 − Ert

2    ≤
2 4

∗

T2 ∑
k1

T−1

∑
i,j1

k

Cov ri
2 , rj

2

1/2


4
∗

T

≤
2 4

∗

T2 ∑
k1

T−1

∑
i,j1

k

|i−j|

1/2


4
∗

T

≤
2 4

∗

T2 1 − 
∑
k1

T−1

k 1/2 
4
∗

T

≤ K1

T

4
∗

T ≤ K2

T  
 

where  K1  4/3 4
∗/1 −    and for some  K2  K1  0.   Finally,  

Pr|∗ − |   ≤ Pr 1
T max

1≤k≤T
∑
t1

k

rt
2 − Ert

2  
|Δ|min∗, 1 − ∗

4

≤ 16K2

2Δ2min∗, 1 − ∗2 T
≤ C
2Δ2 T

.
 

This completes the proof .   
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